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ABSTRACT

Prior work has demonstrated a consistent tendency in neural networks engaged in
continual learning tasks, wherein intermediate task similarity results in the highest
levels of catastrophic interference. This phenomenon is attributed to the network’s
tendency to reuse learned features across tasks. However, this explanation heavily
relies on the premise that neuron specialisation occurs, i.e. the emergence of
localised representations. Our investigation challenges the validity of this assump-
tion. Using theoretical frameworks for the analysis of neural networks, we show
a strong dependence of specialisation on the initial condition. More precisely,
we show that weight imbalance and high weight entropy can favour specialised
solutions. We then apply these insights in the context of continual learning,
first showing the emergence of a monotonic relation between task-similarity and
forgetting in non-specialised networks, and, finally, assessing the implications on
the commonly employed elastic weight consolidation regularisation technique.

1 INTRODUCTION

Theories of representation in biological neural networks span from highly localised representations
in single neural units (Barlow, 1972) to fully distributed or shared representations (Hopfield, 1982).
While shared representations offer greater resilience, specialised representations allow for more ef-
ficient encoding of information. Experimental evidence supports both ends of this spectrum, with
different brain areas and tasks exhibiting distinct forms of representation (Blakemore et al., 1973;
Quiroga et al., 2005; Georgopoulos et al., 1986; Ishai et al., 2000; Averbeck et al., 2006). Similarly,
artificial neural networks display both shared (LeCun et al., 1989; Erhan et al., 2010; Yosinski et al.,
2014) and specialised representations (Zeiler & Fergus, 2014; Voita et al., 2019), where a recent ad-
vancements in explainable AI, such as the Golden Gate Claude model (Templeton, 2024), exemplify
an extreme of the spectrum.

Given the trade-off between shared and specialised representations, a critical research challenge
lies in understanding how to guide neural networks towards one form or the other. This tension is
especially relevant in contexts like disentangled representation learning (Bengio et al., 2013) and
multi-task learning (Caruana, 1997), including continual learning and transfer learning. Specialised
representations can facilitate faster adaptation and reduce catastrophic forgetting (McCloskey &
Cohen, 1989; Ratcliff, 1990), as they allow networks to rewire efficiently (Suddarth & Kergosien,
1990). Rich Caruana’s seminal work on multi-task learning (Caruana, 1997) emphasised the value
of specialisation in enhancing performance across multiple tasks. Recent efforts to mitigate catas-
trophic forgetting (Parisi et al., 2019; De Lange et al., 2021) have led to the development of reg-
ularisation strategies that promote specialisation, such as elastic weight consolidation (Kirkpatrick
et al., 2017), synaptic intelligence (Zenke et al., 2017), and learning without forgetting (Li & Hoiem,
2017). In disentangled representation learning, Locatello et al. (2019) highlighted that, despite the
potential success of unsupervised approaches, disentanglement does not emerge naturally without
an explicit inductive bias, underscoring the need for supervision to enforce such structures.

In this study, we investigate the role of initialisation in steering neural networks towards specialised
or shared representations, providing a complementary perspective on both the lazy learning regime
(Jacot et al., 2018) and the rich learning regime (Mei et al., 2018; Chizat & Bach, 2018; Rotskoff
& Vanden-Eijnden, 2018). Previous research (Chizat et al., 2019; Geiger et al., 2020; Bordelon
& Pehlevan, 2022) has showns that by interpolating between these regimes, we can transition
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from shared representations–characterised by random projections in the neural tangent kernels–to
effective feature learning (Tarmoun et al., 2021; Kunin et al., 2024; Xu & Ziyin, 2024; Dominé
et al., 2024; Varre et al., 2024). While our analysis remains within the feature learning regime,
it adopts a distinct theoretical approach compared to these studies, concentrating specifically
on the impact of initialisation within standard synthetic frameworks for neural networks. This
exploration reveals how initialisation can skew the learning dynamics towards either specialised
or shared representations, thereby adding a new dimension to the study of learning dynamics in
over-parameterised networks.

Our work makes the following main contributions:

• We study the impact of initialisation on specialisation through two theoretical frameworks:
– We utilise the dynamics of deep linear networks to investigate the evolution of spe-

cialisation (Saxe et al., 2013);
– We extend this analysis to high-dimensional mean-field neural networks learning

with stochastic gradient descent (Saad & Solla, 1995b;a; Biehl & Schwarze, 1995).
• Our findings challenge prevailing assumptions regarding the relationship between task sim-

ilarity and catastrophic forgetting (Ramasesh et al., 2020; Lee et al., 2021; 2022).
• Moreover, we identify specific initialisation schemes that promote specialised solutions by

increasing the entropy of the readout weights and creating an imbalance between the first
and last layers, akin to the findings of Dominé et al. (2024).

• Finally, we demonstrate the practical implications of our results on regularisation strate-
gies, specifically analysing how Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) is influenced by specialisation dynamics, highlighting potential pitfalls associated
with regularisation methods in continual learning.

In Sec. 2, we introduce the concept of specialisation within the teacher-student framework and high-
light the relevant literature. Sec. 3 explores this issue through the lens of deep linear network dy-
namics, illustrating its impact on learned representations, particularly in the context of disentangled
representation learning. Sec. 4 addresses the continual learning problem, revisiting existing theoret-
ical frameworks and demonstrating how their conclusions may not hold under certain initialisation
schemes. We conclude this section by discussing the implications for the EWC mitigation strategy.
Finally, in Sec. 5, we reflect on the limitations of our work and propose future directions for research.

2 SPECIALISATION IN THE TEACHER-STUDENT

The teacher-student framework is a generative model that allows for the controlled creation of syn-
thetic datasets (Gardner & Derrida, 1989). The framework involves two classifiers: the teacher and
the student, for instance represented as neural networks as exemplified in Fig. 1a. The teacher, has
fixed randomly drawn weights and maps random inputs xxx from a given distribution to labels, pro-
viding a rule for generating data. The student, on the other hand, updates its parameters through
learning protocols like stochastic gradient descent (SGD) to approximate the teacher’s outputs.

While a detailed quantitative characterisation of specialisation follows in the next sections, we
briefly introduce the concept within the teacher-student framework. Saad & Solla (1995b) showed
that, when both teacher and student are modelled as committee machines, each student neuron
specialises by aligning with a specific teacher neuron. Similarly, Goldt et al. (2019) observed that
for certain activation functions in two-layer networks, an over-parameterised student will selectively
use only a subset of those units to replicate the teacher’s outputs. This phenomenon, termed
specialisation, stands in contrast to a student redundantly sharing representations of the teacher
across neurons. In this work we present a more comprehensive account of the factors underlying
specialisation. In contrast to (Goldt et al., 2019), we argue that initialisation—not the activation
function—is chiefly responsible. We highlight this in Fig. 1b, by showing that with carefully
chosen initialisations we can train a highly specialised ReLU student (bottom panels), and a non-
specialising sigmoidal student (top panels)–shown by the sparser Q and R matrices of the ReLU
network–which represents the opposite of the conclusions presented in (Goldt et al., 2019). We be-
gin by aiming to establish what properties of an initialisation promote specialisation. This question
is well suited to the deep linear network theory (Saxe et al., 2013) and we turn to this strategy now.
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Figure 1: Initialisation impacts specialisation. a) In the teacher-student setup a student network is
trained with labels generated by a fixed teacher network. Previous work established a relationship
between the activation function ϕ and the propensity for the student nodes to specialise to teacher
nodes. However we show in this work that this is an overly simplistic description; other factors
including student weight initialisations IW , Ih, parameterised by ΘW ,Θh arguably play a stronger
role. b) Generalisation error curves for two simulations of the teacher-student setup, one with a
ReLU activation function and one with a scaled error activation function. ΘW and Θh are chosen
to achieve a solution with ReLU that specialises—as indicated by sparser overlap matrices on the
bottom right, and a scaled error function solution that does not specialise—as indicated by denser
overlap matrices on the top right. A sparse (dense) Q matrix shows few (many) nodes are active,
while a sparse (dense) R matrix shows student nodes are representing teacher nodes in a targeted
(redundant) manner. Further details for the quantities described can be found in Sec. 4.

3 SPECIALISATION EXPLAINED USING LINEAR DYNAMICS

As a first step towards understanding specialisation in neural networks we turn to the deep lin-
ear neural network paradigm (Saxe et al., 2013). While deep linear networks can only represent
linear input-output mappings, they showcase intricate fixed point structure and nonlinear learning
dynamics reminiscent of phenomena seen in nonlinear networks. Deep linear networks have been
successfully used to describe the effects of depth and nonlinearity, while showcasing the influence of
initialisation (Saxe et al., 2022; 2019). Here we construct a synthetic setup, to study the influence of
initialisation on specialisation. In this work, we consider specialisation adhering to the definition of
proposed by the statistical physics literature (Goldt et al., 2019) which considers whether one neuron
will account for all of the variance associated to one feature, while the others remain inactive. This
is in contrast to other work on modularity (Jarvis et al., 2023) such as Neural Module Networks (An-
dreas et al., 2016; Hu et al., 2017; 2018; Andreas, 2018), mixture-of-expert models (Masoudnia &
Ebrahimpour, 2014; Bengio et al., 2015; Shazeer et al., 2017), tensor product networks (Smolensky
et al., 2022), among others (Chang et al., 2018; Goyal et al., 2019), which consider specialisation as a
subset of a network or module performing a single “task” or only being activated by one interpretable
feature in the dataset. Thus, these works are more concerned with what is learned and consider spe-
cialisation to imply feature sparsity (Dasgupta et al., 2022). While we are concerned with the manner
in which learning is represented, a phenomenon closer to activation sparsity and reminiscent of how
initial conditions can lead to minimal subnetworks in the “Lottery Ticket Hypothesis” (Frankle &
Carbin, 2018). While an unfortunate overlap in terminology, these two notions of specialisation are
orthogonal: when a neuron displays both feature and activation sparsity we consider this disentan-
glement - which is why we focus on disentanglement for the empirical results of Sec. 3.2.

3.1 SPECIALISATION IN THE DEEP LINEAR NETWORK FRAMEWORK

To connect this framework to specialisation we use the notion of the “neural race” from Saxe et al.
(2022). The neural race hypothesis says that the pathways through a network are racing to explain
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Figure 2: Summary of our setup, notation and strategy. a) The original network with two hidden
neurons learning the regression task. b) We split the network into two separate pathways and con-
sider their dynamics individually. Since both networks are learning the same task simultaneously,
their dynamics are coupled. c) To obtain the dynamics of the two pathways and calculate their es-
caping and hitting time we track the pathway dynamics in terms of the network’s effective singular
values. The closed form dynamics for the pathway singular value are given in Eq. 3.

the variance in the dataset (i.e. to perform the input-output mapping). Thus, we consider the limited
case of a network with two hidden neurons and one output neuron. Fig. 2 depicts the setup, notation
and strategy for this section. By defining “hitting time” as how long it takes a pathway to reach
its final converged value, and “escaping time” as how long it takes the pathway to begin learning,
we ask the question: “when will one pathway finish learning (reach it’s hitting time t∗) before the
other begins learning (reaches it’s escaping time t̂)”. In cases when this occurs, the network would
have specialised as only one pathway will have any activity and will explain all of the data. Similar
to Sec. 4 we generate data by sampling the elements of a data point from a Gaussian distribution
(xi ∼ N (0, 1)) with i = 1, . . . , d. We then define a ground-truth mapping (WWWT ) and generate labels
y = WWWT · xxx. We only consider regression tasks in this section, thus y ∈ R. For n inputs we can
form the input matrix XXX ∈ Rd×n and row vector of scalar outputs yyy ∈ R1×n. The dataset statistics
which drive learning are collected in the input and input-output correlation matrices, Σx and Σyx

respectively. For the task described above the singular value decomposition of these matrices are:

ΣΣΣx = E[XXXXXXT ] = VVVDDDVVV T , ΣΣΣyx = E[yyyXXXT ] = usvvvT . (1)

Here, u ∈ {−1, 1}, vvv is a vector such that vvvTvvv = 1 and VVV is an orthogonal singular vector matrix.
Correspondingly, s is the singular value for the rank 1 task and DDD is a diagonal matrix of singular
values. Note that – as in Saxe et al. (2013; 2022) – we assume that the correlation matrices are
mutually diagonalisable (share the same VVV ) up to the rank of Σyx.

For this task we consider a single hidden layer network (Fig. 2 left) computing output ŷ = hhhWWWxxx with
hhh ∈ Rp andWWW ∈ Rp×d in response to an inputxxx ∈ Rd. The network is trained to minimise the mean
squared error loss using full batch gradient descent with a small learning rate η. To identify when
specialisation will occur in this network, we split the network into two pathways with one hidden
neuron each. The input and output dimensions remain the same (Fig. 2 middle). Finally we obtain
the linear dynamics (ultimately depicted as Eq. 3) for each pathway (the full details and assumptions
of the derivation are given in Appendix A). In this setting, the pathway’s input-output mapping after
t epochs of training is h(t)www(t). Notice that, the pathways have one hidden layer and so h is a scalar
and w is the vector of input to respective hidden neuron weights, to once again alleviate notation we
do not denote which pathway. Assuming that the pathway weights align to the singular vectors of the
dataset from early in training, as described by the “silent alignment effect” (Atanasov et al., 2021),
we perform a change of variables and write the mapping in terms of the dataset singular vectors:

h(t)www(t) = uω(t)vvvT , (2)

where ω(t) is the pathway’s scalar effective singular value and the only time-dependent component
of the decomposed mapping. While the alignment assumption is strong, linear paradigms with these
assumptions have been used successfully in the past (Saxe et al., 2019; Lampinen & Ganguli, 2019;
Braun et al., 2022; Jarvis et al., 2023; Dominé et al., 2024). By appropriately changing variables,
we can obtain a closed form equation describing how ω evolves through time as:

ω(t) =
λ

2
sinh

2 tanh−1

k
(
c exp

(
sgn(λ)k

τ t
)
− 1
)
− λd

(
c exp

(
sgn(λ)k

τ t
)
+ 1
)

2s
(
c exp

(
sgn(λ)k

τ t
)
+ 1
)

 (3)

where c is a defined constant, τ = 1
η is the learning time constant and k =

√
4s2 + λ2d2. Eq. 3

shows that k is the variable interacting with time (t) and as a consequence determines how quickly
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Figure 3: Linear Dynamics from imbalanced initialisation leads to specialisation. Panels a-
b) Show agreement between our theoretical curves and simulations for the training dynamics of:
(a) the network’s singular value dynamics, escaping times (verticals towards left) and hitting times
(verticals towards right) for varying scales of weight imbalance λ (depicted by colour), (b) and the
network’s movement in weight space depicted by the sequence of dots over weight space. Colour
depicts the loss of the network configuration at a point. Panel c) shows a phase diagram representing
how pathways with different initial weight imbalances lead to specialisation. The two axis represent
the weight imbalance of the two pathways in our broader network (λ2 on the x-axis for the slower
pathway and λ1 on the y-axis for the faster pathway). The colour represents how close the slower
pathway is to reaching its escaping time at its closest point throughout training (in log scale). We
see that the more inbalanced the fast pathway relative to the slower pathway, the more likely the
network will specialise. The white region represents when the inbalance is equal or reversed.

the network will learn. Three factors affect k fastening learning: 1. s the input-output correlation
matrix singular value, 2. d the input correlation matrix singular value, and 3. λ = h2 −wwwwwwT which
denotes the imbalance between the weights of the network. Notice that–as shown in Appendix A–λ
is a conserved quantity and constant throughout training. Thus, given a dataset–which determine the
s and d matrices–the only property which can promote faster learning in the network is to increase
the imbalance parameter. For our experiments we whiten the input data xxx such that k =

√
4s2 + λ2

to remove one of the interactions within k. With the training dynamics of a singular value defined
as in Eq. 3, we can formally define the escaping time as t̂ = t such that ω(t) = δ for a small δ ∈ R.
Similarly, we define the hitting time as t∗ = t such that ω(∞)− ω(t) = δ for a small δ ∈ R

Fig. 3(a-b) show a confirmation of the validity our theory by comparing with simulations. Instead,
Fig. 3c represents the main result of this section. We consider both network pathways and vary
the weight imbalance for each (λslow for the pathway with the lower imbalance and λhigh for the
pathway with the larger imbalance). We place these two values on the axes and in colour depict how
close the slower pathway comes to reaching its escaping time across its training (min(t̂slow(t))).
When zero, it means that during training there is a timestep where the network is less than one epoch
from its escaping time (so it will learn). In this case there will not be specialisation as both pathways
will learn some part of the input-output mapping. When the colour is positive it means there will
be specialisation as the slower pathway is always at least a full epoch away from learning. It is
important to note that the slower pathway’s escaping time is moving constantly as the faster pathway
accounts for variance in the data. This decreases the input-output singular value in k for this pathway
and makes learning slower. Due to this coupling we are also unable to obtain completely closed form
equations for the slower pathway in term’s of the faster pathway’s effective singular value. However,
this phase diagram would not be computationally feasible without the closed-form escaping time,
hitting time and training dynamics (see Appendix B for our process on constructing this plot).
Finally, we only consider imbalances where the output layer is larger than the input layer. Recent
work (Kunin et al., 2024; Dominé et al., 2024) has shown that having larger input weight pushes
the network towards lazy learning while output heavy imbalance promotes feature learning. From
Fig. 3 we see that there is a clear phase transition from non-specialised representations to specialised
ones. This occurs with increasing imbalance of the faster pathway. Increasing the imbalance of the
slower pathway can similarly combat this specialisation pressure. Thus, the relative imbalance of
the two pathway at initialisation will dictate whether specialised representations are learned.

3.2 INCREASING SPECIALISATION IN DISENTANGLED REPRESENTATION LEARNING

To empirically support the linear network theory, we extend the results on inbalanced initialisation
and apply them, beyond the limited setting of our framework, in the context of disentangled repre-
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Figure 4: Violin plots of a) the Disentanglement, Completeness, and Informativenes (DCI) East-
wood & Williams (2018) score and b) the reconstruction loss against gain. The disentanglement
score decreases as the gain increases while the reconstruction loss remains steady, c) Example traver-
sals of models with gains 2 and 0.3, respectively, highlighting a disentangled dimension for gain 0.3
and a mixed dimension for gain 2. Experimental details can be found in appendix D.

sentation learning, where the goal is to separate latent factors. For further empirical support of our
theoretical results on Sparse Autoencoders (SAEs) see App. H. Bengio et al. (2013) introduced the
importance of disentanglement for interpretability and generalisation. A seminal contribution to this
domains came with the β-VAE model, where Higgins et al. (2017) demonstrated how increasing
the KL-divergence term can enforce disentanglement by encouraging specialised latent represen-
tations. Many studies have built upon these foundational frameworks to enhance disentanglement
performance, exploring different training regimes (Locatello et al., 2020; Fumero et al., 2021) and
loss functions (Chen et al., 2019; Kim & Mnih, 2019; Kumar et al., 2018). Here we contribute
to this literature by applying our theoretical insights and examining the impact of initialisation on
disentanglement performance.

Specifically, we examine how initialisation impacts specialisation in disentanglement learning on the
3DShapes dataset (Burgess & Kim, 2018) using the β-VAE model–widely adopted for such tasks
(Higgins et al., 2017; Burgess et al., 2018). We implement a β-VAE model, employing the ”Deep-
GaussianLinear” architecture for the decoder and the ”DeepLinear” architecture for the encoder, as
specified in Locatello et al. (2019). Both architectures are composed of five fully connected layers
with ReLU activations. The model is trained using the Adam optimiser, optimising a loss func-
tion that combines KL divergence and binary cross-entropy-based reconstruction loss. Additional
details are given in Appendix D. In these experiments, we adjust the variance of the weights in a
deep fully-connected encoder, by varying the constant gain of the Xavier initialisation (Glorot &
Bengio, 2010). Specifically, the first block of layers was initialised with gain g while the readout
layer received a gain 1/g. Notice that g = 1 represents the standard initialisation scheme.

Results are shown in Fig. 4, despite very similar levels of reconstruction loss, networks initialised
with smaller gains improved disentanglement in the β-VAE network, as reflected in higher Disen-
tanglement, Completeness, and Informativeness (DCI) scores (Eastwood & Williams, 2018). This
result confirms that modulating the initialisation gain can either enhance or reduce the network’s
disentanglement. Although the scope of these experiments is limited, they provide preliminary vali-
dation of our theoretical framework in more realistic contexts, encouraging further investigation into
alternative initialisation schemes with varying levels of balance. Having investigated the role ini-
tialisation plays in promoting specialisation, we return to the original setting of Sec. 2 to understand
the role of initialisation in governing network behaviour during continual learning. Specifically, we
aim to revisit in the light these results two established forgetting profiles empirically observed in the
continual learning literature: Namely, the Maslow’s Hammer profile, observed empirically first in
Ramasesh et al. (2020), and the monotonic forgetting profile, more typically assumed and observed
in Goodfellow et al. (2013).

4 CONTINUAL LEARNING

As Caruana (1997) noted, multi-task learning benefits significantly from task-specific specialisa-
tion, allowing the network to better preserve performance across multiple domains. In the context
of continual learning, Ramasesh et al. (2020) and Lee et al. (2021) observed that forgetting does not
monotonically increase with task similarity. Lee et al. (2022) provided a mechanistic explanation,
showing that this phenomenon is due to the interplay between re-use of specialised neurons and acti-
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vation of unused ones. In this section, we build on these findings and show that this phenomenology
can be disrupted by initialisation schemes that disincentives specialisation.

4.1 CONTINUAL LEARNING IN THE TWO-LAYER TEACHER-STUDENT SETUP

We use a teacher-student framework, introduced in Sec. 2, which has been analysed in Lee et al.
(2021; 2022). This model consists of two randomly initialised teacher networks—one for an up-
stream task and one for a downstream task. Each teacher is represented by two-layer neural networks
with p∗ hidden units and weights WWW (1)

T , hhh(1)
T for the upstream task, and WWW

(2)
T , hhh(2)

T for the down-
stream task. Given a random input xxx ∈ Rd, drawn i.i.d. from a Gaussian distribution xi ∼ N (0, 1),
the teachers generate labels according to the equation:

y(t) = hhh
(t)
T · ϕ

(
WWW

(t)
T xxx√
d

)
for t = 1, 2, (4)

where ϕ is a non-linear activation function, chosen here as ϕ(z) = erf
(
z/

√
2
)
. This setup allows us

to generate two datasets D(1) and D(2), with controlled similarity between the tasks by manipulating
the teacher weights. Specifically, we generateWWW (1)

T ,hhh(1)
T , andhhh(2)

T with i.i.d. Gaussian entries, while
WWW

(2)
T is generated as:

WWW
(2)
T = γWWW

(1)
T +

√
1− γ2WWW

(aux)
T , (5)

whereWWW (aux)
T is an auxiliary weight matrix, and γ controls the correlation between tasks. The student

is a two-layer neural network with p hidden units, using the same non-linearity ϕ. It is trained using
online stochastic gradient descent on a squared error loss, with a shared first-layer weight matrix
WWW and task-specific readout weights hhh(1) and hhh(2). For both layers, the initial weights are sampled
i.i.d. from a Gaussian distribution, with the first-layer weights WWW having standard deviation σW .
While most previous studies follow a similar scheme for the readout weights, we introduce a novel
initialisation scheme using polar coordinates, as detailed in Eq. 11. The updates for WWW and hhh(t) at
iteration e, under SGD on the squared error loss, are given by:

WWW [e+ 1] =WWW [e]− η√
d

(
hhh(t) · ϕ

(
WWWxxx√

d

)
− y(t)

)
ϕ′
(
WWWxxx√

d

)
vvv(t)xxx, (6)

hhh(t)[e+ 1] = hhh(t)[e]− η

d

(
hhh(t) · ϕ

(
WWWxxx√

d

)
− y(t)

)
ϕ

(
WWWxxx√

d

)
, (7)

where η is the learning rate and y(t) is the target output from the teacher network for task t.

In the large input dimension limit d → ∞, key observables, such as the generalisation error, can be
captured by a few order parameters:

QQQ =
1

d
WWWWWWT , RRR(t) =

1

d
WWWWWW

(t),T
T , TTT (t,t′) =

1

d
WWW

(t)
T WWW

(t′),T
T , hhh(t), hhh

(t)
T ; (8)

where t, t′ ∈ {1, 2} refer to the two tasks. The generalisation error for task t is then:

ϵ(t) =
1

2
Exxx

[(
hhh(t) · ϕ

(
WWWxxx√

d

)
− y(t)

)2
]

= I21(QQQ,hhh(t)) + I21(TTT
(t,t),hhh

(t)
T )− 1

2
I22(QQQ,RRR(t),TTT (t,t),hhh(t), ,hhh

(t)
T ),

(9)

where I21 and I22 are explicit functions of the order parameters, detailed in Appendix C. The evolu-
tion of these parameters throughout training can be tracked to study the learning dynamics, as first
shown in Saad & Solla (1995a); Biehl & Schwarze (1995); Goldt et al. (2019). For the specific
case of continual learning, Lee et al. (2021) derived the governing ordinary differential equations
(ODEs), provided in Appendix C.

4.2 SPECIALISATION’S RELEVANCE FOR CONTINUAL LEARNING

The continual learning results in the teacher-student setup, including the non-monotonic relationship
between catastrophic forgetting and task similarity, often implicitly assume that the student has
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Figure 5: Phase diagrams show significance of initialisation for specialisation. The phase di-
agrams show with colour the aggregated entropy Eq. 10 evaluated for different initialisations. On
the x-axis we span over the standard deviation of the first layer. The second layer is initialised us-
ing polar coordinates, and the y-axis represents the norm while the different panels give the angle
spanning from orthogonal units (θ = 0) to identical units (θ = π/4). Specialisation is achieved
by blue-leaning initialisations, while yellow-leaning ones exhibit high entropy and therefore non-
specialised solutions. Additional results can be found in Appendix E.

specialised to the teacher in the first task. This assumption allows for spare capacity to represent the
second task. However, as shown in Fig. 1b, there are regimes where this assumption of specialisation
is violated. Here, we expand on these findings and their implications for forgetting.

A student can effectively ignore a unit in two ways: either the unit’s post-activation is near 0 (inac-
tive), or the corresponding second-layer weight is 0. This motivates three measures for specialisation
based on the definition of entropy–over the hidden units, head weights, and the product of both:

Hh = −
p∑
i

˜|hi| log |h̃i|, HQ = −
p∑
i

Q̃ii log Q̃ii, Hm = −
p∑
i

Q̃ii|h̃i| log(Q̃ii|h̃i|); (10)

where the tilde denote normalisation, i.e. ˜|hi| = |hi|∑P
i |hi|

and Q̃ii =
Qii∑P
i Qii

. Maximum entropy in
these measures corresponds to no specialisation, while minimum entropy corresponds to maximum
specialisation.

We can investigate how these measures vary as a function of different properties of the problem
setup, in particular those related to initialisation. To simplify the analysis, we begin with the case
where the optimal number of tasks is p∗ = 1 and the network has p = 2 output units. This allows us
to initialise the second layer weights in polar coordinates, with precise and interpretable control over
scale and asymmetry of weights. Formally we parameterise our readout initialisations according to

hhh(t)[0; r(t), θ(t)] = (r(t) cos θ(t), r(t) sin θ(t)). (11)

Fig. 5 contain phase diagrams showing how the entropy measures in Eq. 10 vary with the initialisa-
tion parameters r(t), θ(t), and σW . We can make several observations: (i) the strongest determinant
of specialisation is the asymmetry in the second layer weights, i.e. the θ parameter. (ii) this is the
case for both ReLU and sigmoidal activation functions, reinforcing the point made in the example
from Fig. 1b. (iii) the scale of initialisations (parameters σW , r) are also important.

4.3 SPECIALISATION UNDERLIES MASLOW’S HAMMER

The phase diagrams in Fig. 5 demonstrate that initialisation can drastically change the type of so-
lutions found by the student after training on one teacher. While this may be inconsequential if the
generalisation error remains unaffected, in many cases, the precise nature of the learned representa-
tion can significantly impact downstream tasks.
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Figure 6: Initialisation and specialisation properties can influence profile of forgetting vs. sim-
ilarity. (a) forgetting as a function of task similarity can be both monotonic, shown here for the
cases of specialisation after both tasks (blue), and no-specialisation + large, asymmetric second
head initialisation (orange); or non-monotonic (green, as characterised by Maslow’s hammer Lee
et al. (2022)). (b) the final norm of the two nodes (one solid and one dashed), i.e. at the end of
training on both tasks, as a function of task similarity. In the cases that lead to monotonic forget-
ting, nodes are fully re-used, either because the corresponding new head is initialised large (orange)
or because the new head is symmetrically initialised and the nodes continue to represent redundant
information during the second task (blue). Params: N = 10000, η = 1, p∗ = 1, p = 2, σw = 0.001.

In the worst case scenario, the student undergoes no specialisation during the first task. During the
second task there is no notion of the trade-off between node re-use and node activation discussed
in Lee et al. (2022); rather the student continues to find a non-specialised solution to the second
teacher, effectively fully re-using it’s entire representation for the second task. Consequently, the
amount of forgetting with respect to the initial task decreases monotonically with task similarity,
thereby breaking the inverted U-shaped pattern characteristic of Maslow’s hammer that has been
observed in various continual learning setups (Ramasesh et al., 2020). This extreme case is illus-
trated in Fig. 6. Further, even with specialisation after the first task, large asymmetric initialisation
in the second task readout weights can induce this monotonic relationship, again by pushing the
student into re-use rather than activation. To complement these toy model results, we perform anal-
ogous experiments on a task constructed around MNIST and find qualitatively similar results. These
can be found in Appendix G.

In a broader context, a rich diversity of behaviours can emerge, driven by factors such as the ini-
tialisation schemes, the scale of weights in the first layer, and the readout heads for both tasks.
A glimpse of this behavioural diversity is provided in Appendix F, where we further explore the
interaction between these factors and their impact on forgetting in continual learning.

4.4 SPECIALISATION UNDERLIES EWC

The findings relating specialisation to forgetting from Sec. 4.3 have direct consequences for inter-
ference mitigation strategies such as EWC. EWC is a regularisation-based method that computes a
measure of “importance” for each weight with respect to a task via the Fischer information (Kirk-
patrick et al., 2017). Subsequently a squared penalty scaled by this importance is applied to deviation
of this weight during learning of future tasks as follows:

LEWC(WWW ) = L(WWW ) +
ξ

2

∑
i

Fi(Wi −W ∗
i ), (12)

where FFF is the Fischer information matrix, ξ is a regularisation strength parameter, and WWW ∗ are the
weights at the end of training on the first task.

In cases where the network does not specialise, i.e. multiple student nodes learn redundant repre-
sentations for a given teacher node, the nodes have equal importance. Consequently EWC cannot

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a)

0 0.2 0.4 0.6 0.8 1

·107

−8

−6

−4

−2

Step

lo
g
ϵ

Specialised Solution b)

0 0.2 0.4 0.6 0.8 1

·107

−6

−4

−2

Step

lo
g
ϵ

Non-Specialised Solution

ξ = 1 ξ = 10−2 ξ = 10−4 ξ = 10−6

Figure 7: EWC is strongly reliant on specialisation. We show the generalisation error in the
first (solid line) and second (dashed) task for different EWC regularisation strengths. (a) When the
student finds a specialised solution to the first task, there is a range of EWC regularisation strength
ξ for which the activated units can remain fixed and spare capacity can be used to learn the second
task—leading to low generalisation error in both tasks (ξ = 10−2, ξ = 10−4 perform very well).
(b) When the student does not specialise in the first task, EWC reduces to an inflexible regulariser
that either penalises plasticity everywhere—leading to little forgetting but no further learning (e.g.
ξ = 1), or does not penalise any plasticity—leading to catastrophic forgetting (e.g. ξ = 10−6).

distinguish between these sets of weights and depending on the regularisation parameter λ either lets
these nodes move during training on the second task (under-regularises) leading to forgetting, or lets
none move (over-regularises) leading to no transfer. We show results illustrating this behaviour in
the teacher-student setup in Fig. 7. In particular we show the regime of intermediate task similarity,
wherein (Lee et al., 2022) previously argued that EWC should perform better than methods such as
replay.

5 LIMITATIONS AND PERSPECTIVES

This work operates within simplified frameworks, which–while widely used in the analysis of neural
networks–do not fully capture the complexity of modern architectures and real-world data. Our
experiments rely on Gaussian input data and simplified input-output relations, which are far from
the intricacies of real-world scenarios. A natural next step is to extend our analysis to more realistic
generative models, such as the hidden manifold model (Goldt et al., 2020) or the superstatistical
generative model (Adomaityte et al., 2023), which offer more structured data distributions and better
capture observations from real data experiments.

Another promising direction is to complement analytical approaches with numerical experiments
on controlled real-world datasets. While this may sacrifice some analytical tractability, it brings
us closer to addressing practical challenges. For instance, transfer learning settings, such as those
explored in Gerace et al. (2024), provide a useful benchmark for testing our theoretical findings in
more complex environments.

While the current work remains theoretical in nature, focusing on simplified models for analyti-
cal tractability, a thorough exploration of the practical implications of our findings, particularly in
disentangled representation learning, is beyond the scope of this paper. However, we aim to ad-
dress this in future work by shifting towards a more experimental approach. Specifically, we plan
to explore a broader range of network architectures, datasets–such as Car3D (Du et al., 2024) and
dSprites (Matthey et al., 2017)–and evaluation metrics—such as SAP (Kumar et al., 2018; Higgins
et al., 2017). This future study will allow us to validate our theoretical insights and fully assess their
relevance in real-world settings.
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Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises, 2020. URL https:
//arxiv.org/abs/2002.02886.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42(2):275–293, 2014.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset, 2017.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried. Invariant visual
representation by single neurons in the human brain. Nature, 435(7045):1102–1107, 2005.

Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting: Hidden
representations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.
stat, 1050:22, 2018.

David Saad and Sara Solla. Dynamics of on-line gradient descent learning for multilayer neural
networks. Advances in neural information processing systems, 8, 1995a.

David Saad and Sara A Solla. On-line learning in soft committee machines. Physical Review E, 52
(4):4225, 1995b.

Andrew Saxe, Shagun Sodhani, and Sam Jay Lewallen. The neural race reduction: Dynamics of
abstraction in gated networks. In International Conference on Machine Learning, pp. 19287–
19309. PMLR, 2022.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

14

https://arxiv.org/abs/2002.02886
https://arxiv.org/abs/2002.02886


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Paul Smolensky, R Thomas McCoy, Roland Fernandez, Matthew Goldrick, and Jianfeng Gao. Neu-
rocompositional computing: From the central paradox of cognition to a new generation of ai
systems. arXiv preprint arXiv:2205.01128, 2022.

Steven C Suddarth and YL Kergosien. Rule-injection hints as a means of improving network perfor-
mance and learning time. In European association for signal processing workshop, pp. 120–129.
Springer, 1990.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pp. 10153–10161. PMLR, 2021.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Anthropic, 2024.

Aditya Vardhan Varre, Maria-Luiza Vladarean, Loucas Pillaud-Vivien, and Nicolas Flammarion.
On the spectral bias of two-layer linear networks. Advances in Neural Information Processing
Systems, 36, 2024.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
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A HYPERBOLIC-LINEAR DYNAMICS

For convenience we will derive the general dynamics here as it requires less notion. Consider a
linear network performing a regression task with one hidden layer computing output Ŷ = hWX in
response to an input batch of data X , with n datapoints, and trained to minimize the quadratic loss
using gradient descent:

L(W,h) =

n∑
i=1

1

2
||yi − hWxi||22

This gives the learning rules for each layer with learning rate η as:

∆W = ηnhT (Σyx − hWΣx); ∆h = ηn(Σyx − hWΣx)WT

These equations can be derived for a batch of data using the linearity of expectation, where Σx =
E[XXT ] is the input correlation matrix and Σyx = E[Y XT ] is the input-output correlation matrix,
as follows:

∆W = η
d

dW
L(W,h) = η

d

dW

n∑
i=1

1

2
(Yi − hWXi)

T (Yi − hWXi)

= η

n∑
i=1

hT (Yi − hWXi)X
T
i = ηnhT (E[YiX

T
i ]− hWE[XiX

T
i ])]
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= ηnhT (Σyx − hWΣx)

∆h = η
d

dh
L(W,h) = η

d

dh

n∑
i=1

1

2
(Yi − hWXi)

T (Yi − hWXi)

= η

P∑
i=1

(Yi − hWXi)(WXi)
T = ηn(E[YiX

T
i ]− hWE[XiX

T
i ])]W

T

= ηn(Σyx − hWΣx)WT

By using a small learning rate η and taking the continuous time limit, the mean change in weights is
given by:

τ
d

dt
W = hT (Σyx − hWΣx); τ

d

dt
h = (Σyx − hWΣx)WT

where τ = 1
Pη is the learning time constant. Here, t measures units of learning epochs. It is helpful

to note that since we are using a small learning rate the full batch gradient descent and stochastic
gradient descent dynamics will be the same.

Saxe et al. (2019) has shown that the learning dynamics depend on the singular value decomposition
of:

Σyx = USV T =

ry∑
α=1

σαu
αvα

T

; Σx = V DV T =

rx∑
α=1

δαu
αvα

T

Here ry and rx denote the ranks of the matrices. To solve for the dynamics we require that Σyx and
Σx are mutually diagonalizable such that the right singular vectors V of Σyx are also the singular
vectors of Σx. We verify that this is true for the tasks considered in this work and assume it to be
true for these derivations. We also assume that the network has at least ry hidden neurons (the
rank of Σyx which determines the number of singular values in the input-output covariance matrix)
so that it can learn the desired mapping perfectly. If this is not the case then the model will learn
the top nh singular values of the input-output mapping where nh is the number of hidden neurons
(Saxe et al., 2013). To ease notation for the remainder of this section we will use nh to denote both
the number of hidden neurons and rank of Σyx. S and D then are diagonal matrices of the singular
values of the input-output correlation and input correlation matrices respectfully.

We now perform a change of variables using the SVD of the dataset statistics. The purpose of this
step is to decouple the complex dynamics of the weights of the network, with interacting terms, into
multiple one-dimensional systems. Specifically we set:

h = UhRT ; W = RWV T

where R is an arbitrary orthogonal matrix such that RTR = I . Substituting this into the gradient
descent update rules for the parameters above yields:

τ
d

dt
W =hT (Σyx − hWΣx)

τ
d

dt
(RWV T ) =RhUT (USV T − UhRTRWV TV DV T )

τ
d

dt
(RWV T ) =Rh(SV T − hWDV T )

τ
d

dt
W =h(S − hWD)

and

τ
d

dt
h =(Σyx − hWΣx)WT

τ
d

dt
(UhRT ) =(USV T − UhRTRWV TV DV T )VWRT
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τ
d

dt
(UhRT ) =(US − UhWD)WRT

τ
d

dt
h =W (S − hWD)

Here we have used the orthogonality of the singular vectors such that V TV = I and UTU = I .
Importantly, all matrices in the dynamics are now diagonal and represent the decoupling of the
network into the modes transmitted from input to the hidden neurons and from hidden to output
neurons. In practice we do not initialize the network weights to adhere to this diagonalisation and so
it is not guaranteed that the matrices will be diagonal at initialisation. However, empirically it has
been found that the network singular values rapidly align to this required configuration (Saxe et al.,
2013; 2019).

The derivative then for the full-network input-output mapping can be obtain by using the product
rule:

τ
d

dt
hW =(τ

d

dt
h)W + h(τ

d

dt
W ) =

(
W (S − hWD)

)
W + h

(
h(S − hWD)

)
=W

2
(S − hWD) + h

2
(S − hWD) =

(
W

2
+ h

2
)
(S − hWD)

This means that at a minimum: S−hWD = 0 or S
DW

= h. This defines a hyperbolic space between
W and h. As a result we can use the change of variables: W =

√
λ sinh θ

2 and h =
√
λ cosh θ

2
parametrized by θ.

We note that there is a conserved quantity between the singular values of the weight matrices:

W
2 − h

2
=

(√
λ sinh

θ

2

)2

−
(√

λ cosh
θ

2

)2

= λ

This is known as λ-Balanced weights (Kunin et al., 2024) and for a given initial value for λ this
quantity will be conserved for all times during training. Aiming to write the network dynamics in
terms of this quantity to understand its effect on learning speed and initialisation and with the change
of variables to hyperbolic coordinates we begin with:(

W
2
+ h

2
)2

=(W
2
)2 + (h

2
)2

=
(
W

2 − h
2
)2

+ 4W
2
h
2

Substituting this into the network dynamics equation and defining the network singular value as
ω = hW we obtain:

τ
d

dt
ω =

(
W

2
+ h

2
)
(S − ωD)

τ
d

dt
ω =

√(
(W

2 − h
2
)2 + 4W

2
h
2
)
(S − ωD)

Now applying the change of variables to hyperbolic coordinates with W =
√
λ sinh θ

2 and h =√
λ cosh θ

2 parametrized by θ:

τ
d

dt
(
√
λ cosh

θ

2
)(
√
λ sinh

θ

2
) =√(

(λ sinh2
θ

2
)− (λ cosh2

θ

2
)

)2

+ 4(λ sinh2
θ

2
)(λ cosh2

θ

2
)(S − (

√
λ cosh

θ

2
)(
√
λ sinh

θ

2
)D)

τ
d

dt
λ cosh

θ

2
sinh

θ

2
=

√(
(λ sinh2

θ

2
)− (λ cosh2

θ

2
)

)2

+ 4λ2(cosh
θ

2
sinh

θ

2
)2(S − λ cosh

θ

2
sinh

θ

2
D)
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We can then apply the identities: cosh θ
2 sinh

θ
2 = 1

2 sinh θ and λ sinh2 θ
2 − λ cosh2 θ

2 = λ:

τ
d

dt

λ

2
sinh (θ) =

√
λ2 + 4λ2(

1

2
sinh (θ))2(S − λ

2
sinh (θ)D)

τ
d

dt

λ

2
sinh (θ) = |λ| cosh (θ)(S − λ

2
sinh (θ)D)

Now applying the derivative on the left:

τ
λ

2
cosh (θ)

d

dt
θ = |λ| cosh (θ)(S − λ

2
sinh (θ)D) (13)

d

dt
θ =

1

τ
sgn(λ)(2S − λD sinh (θ)) (14)

(15)

This is a separable differential equation in θ:∫ θf

θ0

1

(2S − λD sinh (θ))
dθ =

∫ t

0

sgn(λ)

τ
dt[

log
(∣∣2S tanh

(
θ
2

)
+
√
4S2 + λ2D2 + λD

∣∣)− log
(∣∣2S tanh

(
θ
2

)
−

√
4S2 + λ2D2 + λD

∣∣)
√
4S2 + λ2D2

]θf
θ0

=
sgn(λ)

τ
t

1√
4S2 + λ2D2

log

∣∣∣2S tanh

(
θf
2

)
+

√
4S2 + λ2D2 + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−

√
4S2 + λ2D2 + λD

∣∣∣


− log

(∣∣2S tanh
(
θ0
2

)
+
√
4S2 + λ2D2 + λD

∣∣∣∣2S tanh
(
θ0
2

)
−
√
4S2 + λ2D2 + λD

∣∣
)]

=
sgn(λ)

τ
t

If we let:

C =

∣∣2S tanh
(
θ0
2

)
+
√
4S2 + λ2D2 + λD

∣∣∣∣2S tanh
(
θ0
2

)
−
√
4S2 + λ2D2 + λD

∣∣ ;K =
√

4S2 + λ2D2

then:

1

K

log

∣∣∣2S tanh

(
θf
2

)
+K + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−K + λD

∣∣∣
− log(C)

 =
sgn(λ)

τ
t

We can further simplify this expression by writing θf in terms of t:

2S tanh

(
θf
2

)
+K + λD = C exp

(
sgn(λ)K

τ
t

)
(K − 2S tanh

(
θf
2

)
− λD)

tanh

(
θf
2

)
=

−K
(
1− C exp

(
sgn(λ)K

τ t
))

− λD
(
1 + C exp

(
sgn(λ)K

τ t
))

2S
(
1 + C exp

(
sgn(λ)K

τ t
))

θf = 2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)



To obtain the dynamics for the singular value of a mode of the network we use:

ω =λ sinh
θ

2
cosh

θ

2
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=
λ

2
sinh θ

=
λ

2
sinh

2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)


In the 1-dimensional case studied in Sec. 3 this equation becomes:

ω(t) =
λ

2
sinh

2 tanh−1

k
(
c exp

(
sgn(λ)k

τ t
)
− 1
)
− λd

(
c exp

(
sgn(λ)k

τ t
)
+ 1
)

2s
(
c exp

(
sgn(λ)k

τ t
)
+ 1
)

 (16)

with:

c =

∣∣2s tanh ( θ02 )+√
4s2 + λ2d2 + λd

∣∣∣∣2s tanh ( θ02 )−√
4s2 + λ2d2 + λd

∣∣ ; k =
√
4s2 + λ2d2

With the linear network dynamics we can now derive a network’s hitting time (t∗) for each
mode. Let υ∗ be a sufficiently small value, using Eq. 16 on the relation S

D − ω = υ∗ we obtain

tanh (
1

2
sinh−1 (

2S − 2Dυ∗

λD
)) =

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

Let T ∗ = tanh ( 12 sinh
−1 ( 2S−2Dυ∗

λD )) then

T ∗ =
K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2ST ∗
(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
= K

(
C exp

(
sgn(λ)K

τ
t

)
− 1

)
− λD

(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
exp

(
sgn(λ)K

τ
t

)
(2ST ∗C −KC + λDC) = −2ST ∗ −K − λD

sgn(λ)K

τ
t = log

(
−2ST ∗ −K − λD

2ST ∗C −KC + λDC

)
t∗ =

τ

sgn(λ)K
log

(
K + 2ST ∗ + λD

KC − 2ST ∗C − λDC

)

Similarly we derive the escaping time for each mode with sufficiently small υ̂ as:

ω = υ̂

λ

2
sinh

2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

 = υ̂

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
) = tanh

(
1

2
sinh−1

(
2υ̂

λ

))

Let T̂ = tanh
(
1
2 sinh

−1
(
2υ̂
λ

))
then

T̂ =
K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)
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Figure 8: Comparison between the predicted and simulated linear network dynamics. a) depicts the
singular value trajectories for varying levels of weight imbalance (depicted in various colours) while
gray represents the corresponding predicted trajetectories. b) The same plot for the loss dynamics
derived from the singular values. We see exact agreement between the simulations and predictions.
Vertical bar depict the escaping time (on left) and hitting time (one right).

2ST̂

(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
= K

(
C exp

(
sgn(λ)K

τ
t

)
− 1

)
− λD

(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)

Thus, the escaping time can be summarised as:

t̂ =
τ

sgn(λ)K
log

(
K + 2ST̂ + λD

KC − 2ST̂C − λDC

)
(17)

with the escaping time constant:

T̂ = tanh

(
1

2
sinh−1

(
2υ̂

λ

))
(18)

Similarly the hitting time is summarised as:

t∗ =
τ

sgn(λ)K
log

(
K + 2ST ∗ + λD

KC − 2ST ∗C − λDC

)
(19)

with the hitting time constant:

T ∗ = tanh (
1

2
sinh−1 (

2S − 2Dυ∗

λD
)) (20)

Fig. 8 depicts the accuracy of these closed-form equations.

B METHOD FOR WEIGHT IMBALANCE PHASE PLOT

Given Eqn. 17 and 19 we can discuss our method for construction of the phase plot in Fig. 3d). For
each combination of weight imbalanced for the two pathways we aim to find how close the slower
pathway is to begin learning at its closest point. We note that merely simulating the full network is
not enough as this would merely tell us whether the slower pathway learns something, but with no
additional precision. Further, we can also constrain our search space over time by noting that the
slower pathway will never be quicker than its initial escaping time. Finally, we share the notation in
this section with those in the main text and App. A and omit the notation definitions here. Thus, the
algorithm for constructing the phase plot, which we reproduce in Fig. 9, is as follows:

C MEAN-FIELD THEORY OF THE DYNAMICS

As outlined in Sec.4, the key observation for the mean-field analysis is that the main properties of
the learning dynamics can be expressed as functions of the order parameters–Eqs. 8. By combining
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Algorithm 1 An algorithm for constructing Fig. 3d). Hyperparameters used: S =
105,Λ1 = [0, 100],Λ1 = [0, 20], ϵ̂ = 5.0, ϵ∗ = 1.0, η = 1e−5

Require: s, τ, ϵ̂, ϵ∗,Λ1 and Λ2

Require: a(0) > 0
Phase = 0|Λ1|×|Λ2|

for λ1 in Λ1 do
for λ2 in Λ2 do

if λ1 < λ2 then
break

end if
b(0)1 =

√
(λ1 + a20)

b(0)2 =
√

(λ2 + a20)

θ1 = arcsin−1(2a(0)b(0)1/λ1)
θ2 = arcsin−1(2a(0)b(0)2/λ2)
t∗1 = HittingT ime(θ1, λ1, s, τ, ϵ

∗) ▷ Apply Eqn. 19
ω(t) = Dynamics(θ1, λ1, s, τ, ϵ

∗) ∀ t ∈ [0, t∗1] ▷ Apply Eqn. 3
for t ∈ [0, t∗1] do SlowThetas[t+ 1] = ThetaDeriv(θ2, λ2, s− omega(t), τ, ϵ̂)
end for ▷ Numerically integrate coupled slow dynamics using Eqn. 13
t̂coupled2 = EscapingT ime(SlowThetas, λ2, s− ω(t), τ, ϵ̂) ∀ t ∈ [0, t∗1] ▷ Apply

Eqn. 17
Phase[λ1, λ2] = mint(t̂

coupled
2 (t))

end for
end for

Figure 9: Reproduction of Fig. 3c). A phase diagram representing how pathways with different
initial weight imbalances lead to specialisation. The two axis represent the weight imbalance of
the two pathways in our broader network (λ2 on the x-axis for the slower pathway and λ1 on the
y-axis for the faster pathway). The colour represents how close the slower pathway is to reaching its
escaping time at its closest point throughout training (in log scale). We see that the more inbalanced
the fast pathway relative to the slower pathway, the more likely the network will specialise. The
white region represents when the inbalance is equal or reversed.
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these definitions with the update rules–Eqs. (6, 7)–we can derive closed-form expressions for the
evolution of the order parameters, enabling us to track the key observables throughout the train-
ing process. In the high-dimensional limit (d → ∞), these discrete update equations converge to
ordinary differential equations (ODEs), which can be integrated either numerically or analytically
in certain cases (Jain et al., 2024). As is often the case in the statistical physics of disordered sys-
tems, this approach was first derived non-rigorously by Saad & Solla (1995b) and Biehl & Schwarze
(1995), with later works laying down a mathematical foundation showing concentration of the ODEs
(Goldt et al., 2020; Ben Arous et al., 2022).

Following these prescriptions, we obtain the update equations as in Lee et al. (2021). Let us define
the pre-activations of the student and task-t teacher given an input xxx from task t as

λi =
1√
d
WWW i · xxx, ρ

(t)
i =

1√
d
WWW

(t)
T,i · xxx, (21)

and denote the difference between the teacher and student predictions by ∆(t) = hhh(t) · ϕ(λλλ)−hhh
(t)
T ·

ϕ(ρρρ). The corresponding ODEs for the order parameters in the limit d → ∞ are given by:

dQik

dτ
= −ηh

(t)
i ⟨ϕ′(λi)∆

(t)λk⟩ − ηh
(t)
k ⟨ϕ′(λk)∆

(t)λi⟩+ η2h
(t)
i h

(t)
k ⟨ϕ′(λi)ϕ

′(λk)(∆
(t))2⟩, (22)

dR
(t′)
in

dτ
= −ηh

(t)
i ⟨ϕ′(λi)∆

(t)ρ(t
′)

n ⟩, (23)

dh
(t)
i

dτ
= −η⟨∆(t)ϕ(λi)⟩, (24)

where τ = epoch/d represents continuous time in the high-dimensional limit, and t, t′ ∈ 1, 2
denote the task indices. The angular brackets indicate an average over the pre-activations. The pre-
activations themselves are centered Gaussian random variables with covariances determined by the
order parameters QQQ, RRR(t), and TTT .

These averages can be computed analytically for certain activation functions. For instance, in
the case of a rescaled error function introduced in the main text (Saad & Solla, 1995b; Biehl &
Schwarze, 1995), the relevant averages are given by:

⟨ϕ(β)ϕ(γ)⟩ = 1

π
arcsin

(
Σ12√

(1 + Σ11)(1 + Σ22)

)
, (25)

⟨ϕ′(ζ)βϕ(γ)⟩ = 2Σ23(1 + Σ11)− 2Σ12Σ13√
Λ3(1 + Σ11)

, (26)

⟨ϕ′(ζ)ϕ′(ι)ϕ(β)ϕ(γ)⟩ = 4

π2
√
Λ4

arcsin

(
Λ0√
Λ1Λ2

)
, (27)

where the Greek letters represent arbitrary pre-activations with covariance matrix ΣΣΣ, and the auxil-
iary quantities Λi are given by:

Λ0 = Λ4Σ34 − Σ23Σ24(1 + Σ11)− Σ13Σ14(1 + Σ22) + Σ12Σ13Σ24 +Σ12Σ14Σ23, (28)

Λ1 = Λ4(1 + Σ33)− Σ2
23(1 + Σ11)− Σ2

13(1 + Σ22) + 2Σ12Σ13Σ23, (29)

Λ2 = Λ4(1 + Σ44)− Σ2
24(1 + Σ11)− Σ2

14(1 + Σ22) + 2Σ12Σ14Σ24, (30)

Λ3 = (1 + Σ11)(1 + Σ33)− Σ2
13. (31)

These expressions provide a comprehensive analytical framework for tracking the dynamics of the
student network and the evolution of specialisation across training.

D DISENTENGLEMENT

We conduct our experiments using open-source frameworks Locatello et al. (2019); Abdi et al.
(2019). Specifically, we implement a beta-VAE with the ”DeepGaussianLinear” architecture for the
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decoder and ”DeepLinear” for the encoder. We modify the Xavier initialisation where the weights
of the linear layers will have values sampled from U(−a, a) with

a = gain ×
√

6

fan in + fan out
We vary the gain between 0.3 and 3 and run each experiment over 4 seeds. All network parameters
are set to their default values as provided by the respective open-source frameworks. We run the
experiments for 20 Epochs and 157499 iterations.

These experiment illustrate the impact of initialisation on network specialisation. Although the
scope of these experiments is limited, they provide preliminary validation of our theoretical frame-
work in more realistic contexts. We advocate for further investigation into alternative initialisa-
tion schemes with varying levels of balance. Moreover, we highlight the need for future research
to extend these experiments by considering a wider variety of datasets (Car3D Du et al. (2024),
dSprites Matthey et al. (2017),), network architectures (Conv,Linear), initialisation strategies ( Gaus-
sian Xavier Initalisation) and different metric (SAP Kumar et al. (2018); Higgins et al. (2017),) to
fully explore the implications of our findings. Note that in

DCI Disentanglement Eastwood & Williams (2018) define three key properties of learned repre-
sentations: Disentanglement, Completeness, and Informativeness. To assess these, they calculate
the importance of each dimension of the representation in predicting a factor of variation. This can
be done using models like Lasso or Random Forest classifiers. Disentanglement is computed by
subtracting the entropy of the probability that a representation dimension predicts a factor, weighted
by its relative importance. Completeness is similarly measured, focusing on how well a factor is
captured by the dimensions. Informativeness is evaluated as the prediction error of the factors. We
use the implementation in Locatello et al. (2019). In this implementation, we sample 10,000 training
and 5,000 test points, then use gradient-boosted trees from Scikit-learn to obtain feature importance
weights. These weights form an importance matrix, with rows representing factors and columns
representing dimensions. Disentanglement is calculated by normalizing the columns of this matrix,
subtracting the entropy from 1 for each column, and then weighting by each dimension’s relative
importance.

E ADDITIONAL ENTROPY PHASE DIAGRAMS

In Fig. 5 we showed phase diagrams of the aggregate entropy as a function of initialisation param-
eters, for both ReLU and sigmoidal networks. In Fig. 10 below, we show additional plots with
the individual entropy terms (Hu defined over the unit activations, and Hh defined over the head
weights).

F DIVERSITY OF FORGETTING CURVES

G FORGETTING CURVES IN MNIST

In order to support the findings presented in subsection 4.3, we turn now to a continual learning
task constructed around the MNIST dataset . This dataset has previously been adapted to continual
learning benchmarks e.g. most famously in the permuted MNIST task . Here we construct a slightly
different continual learning task to encode a notion of task similarity.

We begin by considering only one half of the 10 class MNIST dataset, such that we are left with
only data in the first 5 classes. Our first task in the sequence of two tasks consists simply of clas-
sifying these 5 digits. Our second task is also to classify 5 digits and ranges from classifying the
same 5 digits (maximum task similarity) to classifying 5 new digits, i.e. those that were discarded
to construct the first task (orthogonal tasks—minimum task similarity). In a 10 class dataset like
MNIST this gives us only a very coarse grip on task similarity, but this is enough to robustly elicit
behaviour analogous to what we observe in the toy teacher-student models.

We use a two-layer, multi-head, feed-forward architecture with sigmoidal activations to mirror the
models used in the teacher-student setup. The hidden dimension of our networks needs to be larger
to properly learn the classification task; we therefore lose the elegance and control afforded by the
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Figure 10: Additional Phase Diagrams. Here we show the equivalent phase diagrams from Fig. 5
for entropy measures over the unit activations and head weights.

polar coordinate initialisations of subsection 4.3 to vary entropy and scale of initialisations. The
method we use to generalise this notion is to interpolate between two initialisations: a high entropy
initialisation (e.g. a uniform distribution), and a relatively low entopy initialisation (e.g. Normal
or Laplace distribution). It is straightforward (but important) to ensure the scale of the samples
generated is consistent across this interpolation.

In Fig. 12, we show forgetting profiles for three different initialisation schemes (analogous to those
shown in Fig. 6) for the continual MNIST task described above. It is clear that in the case of low
entropy and specialisation in the first task along with high entropy second head initialisation, we get
behaviour characteristic of Maslow’s hammer. However when we initialise the second head with
low entropy, we recover the monotonic relationships found in the equivalent initialisations from the
toy models. At this stage these are primarily qualitative results, i.e. we are comparing the shapes of
these forgetting profiles and not the relative magnitudes or detailed forgetting metrics.

H SPARSE AUTO ENCODER EXPERIMENT

To further verify the applicability of the linear network theory presented in Sec. 3 we experimentally
verify a prediction from the theory. Sec. 3 finds that networks which are initialised with larger
hidden-to-output weights compared to the input-to-hidden weights will have a specialisation benefit.
As we mention in the main text, the notion of specialisation in this work is very similar to activation
sparsity. As a consequence, we predict that by leveraging an output heavy initialisation scheme we
can improve the sparsity of an autoencoder.

We conduct the following experiment in two phases: Phase 1: We train a standard VAE (similar to
Sec. 3.2) on MNIST which was initialised with small weights to ensure the network is in the feature
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learning regime (Geiger et al., 2020) (we sample from a Gaussian with standard deviation 0.001).
Importantly, the latent dimension of this VAE is smaller than the input and forms an entangled latent
space. Phase 2: In a similar manner to the recent approach on the Claude line of Large Language
Models (Templeton, 2024), we train a sparse autoencoder (SAE) from the latent space of the VAE,
with the aim of improving the sparsity and disentanglement of the latent space. In our experiments
the VAE has 16 hidden neurons. These 16 neurons become the input (and output) to the SAE. The
SAE then projects this up to a latent space of dimension 2048 which has a ReLU activation function.
For our baseline, we train the SAE with the typical L2 reconstruction loss and L1 regularisation on
the hidden activity. For our model, we train in exactly the same manner, except we do not use the
L1 regularisation on the hidden activity. Thus, for our model there is no explicit pressure on the
autoencoder to embed representations sparsely. For ease we will refer to this model as an implicit
Sparse Autoencoder (iSAE). We repeat this process with varying degrees of initialisation imbalance
and track the sparsity of the SAE and iSAE. Denoting the hidden layer activity of the networks
for the entire MNIST dataset as H we define an indicator function in Eqn. 32 for a single neuron
responding to a single datapoint:

1(Hij) =:

{
1, Hij > 0

0, otherwise
(32)

We calculate the sparsity across the dataset as the average number of datapoints the hidden neurons
respond to, over the 60000 datapoints:

1

2048

2048∑
i=1

60000∑
j=1

1(Hij) (33)

To initialise the layers of the iSAE and SAE we define an imbalance parameter υ (note that this is
not the same hyper-parameter as the λ notation employed in the main text and is defined purely for
practicality in this experiment). The encoder weights are initialised by sampling from a Gaussian
with standard deviation σ = 0.001 1

υ . The decoder weights are sampled from a Gaussian with
standard deviation σ = 0.001υ. Thus, as υ increases the decoder is initialised with increasingly
large weights compared to the decoder.

The results of this experiment are shown in Fig. 13. We see clearly from these results that as the ini-
tialisation imbalance is pushed towards the hidden-to-output weights such that they are larger than
the input-to-hidden weights, then the sparsity of the iSAE latent space improves dramatically. This
corresponds to a positive λ-balance in the theoretical results and, thus, our empirical and theoretical
results are consistent. This is in spite of there only being an implicit bias towards sparsity. Con-
versely the SAE with explicit sparsity regularization does not change in response to varying degrees
of initialisation imbalance. Importantly, this provides empirical support for the findings from the
linear network dynamics and verifies our prediction resulting from this theory.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 0)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 0)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 0)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 0)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 0)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 1)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 1)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 1)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 1)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 1)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 2)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 2)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 2)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 2)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 2)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 3)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 3)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 3)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 3)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 3)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 4)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 4)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 4)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 4)

0 0.5 1
0

0.1

0.2

0.3

Similarity
Fo

rg
et

tin
g

(θ(1), θ(2)) = (4, 4)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 5)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 5)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 5)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 5)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 5)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 6)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 6)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 6)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 6)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 6)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 7)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 7)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 7)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 7)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 7)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (0, 8)

0 0.5 1
0

0.1

0.2

0.3

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (1, 8)

0 0.5 1

0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (2, 8)

0 0.5 1
0

5 · 10−2

0.1

0.15

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (3, 8)

0 0.5 1
0

0.1

0.2

Similarity

Fo
rg

et
tin

g

(θ(1), θ(2)) = (4, 8)

Figure 11: Initialisation can lead to a diversity of specialisation dynamics and a diversity of
relationships between forgetting and task similarity. R, σW fixed, θ(1), θ(2) measured in incre-
ments of π/16. Scaled error function, P ∗ = 1, P = 1.26
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Figure 12: Forgetting profiles on MNIST continual learning problem. Forgetting vs. task sim-
ilarity on a continual learning task using the MNIST dataset. Here similarity is defined as the the
number of classes that are the same in a 5-way classification problem from the first task to the sec-
ond, i.e. 0 corresponds to 5 new classes and 5 corresponds to the same 5 classes. The green line
is achieved by initialising with low entropy and small weights in the first head followed by low
entropy and small weights in the second, while the blue and orange lines have low entropy second
head initialisations with high and low entropy initialisations in the first head respectively. These
forgetting profiles (in terms of their monotonocity patterns) qualitatively match those observed in
the theoretical toy problems discussed in subsection 4.3 (see Fig. 6). Note σ(i) denotes the scale of
the ith head initialisation (equivalent to r in Fig. 6) and γ(i) the relative entropy (plays similar role
to θ in Fig. 6).
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Figure 13: Implicit regularisation from initialisation imbalance: We track the sparsity of the
iSAE and SAE for varying degrees of initialisation imbalance (x-axis). The imbalance on the x-axis
depicts the natural log of the imbalance parameter (υ). Thus, 0.0 depicts balanced initialisation
typically used in practice. The y-axis depicts the corresponding sparsity calculated using Eqn. 33.
Clearly, as the imbalance increases the sparsity of the iSAE decreases (which is consistent with the
findings from the linear network theory of Sec. 3), while the SAE does not respond due to its explicit
regularisation. Results depict the average over ten runs with two standard deviations on either side
of the mean.
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