
Residual Matrix Transformers: Scaling the Size of the Residual Stream

Brian Mak 1 Jeffrey Flanigan 1

Abstract

The residual stream acts as a memory bus where
transformer layers both store and access features
(Elhage et al., 2021). We consider changing the
mechanism for retrieving and storing information
in the residual stream, and replace the residual
stream of the transformer with an outer prod-
uct memory matrix (Kohonen, 1972, Anderson,
1972). We call this model the Residual Matrix
Transformer (RMT). We find that the RMT enjoys
a number of attractive properties: 1) the size of
the residual stream can be scaled independently of
compute and model size, improving performance,
2) the RMT can achieve the same loss as the trans-
former with 58% fewer FLOPS, 25% fewer pa-
rameters, and 41% fewer training tokens tokens,
and 3) the RMT outperforms the transformer on
downstream evaluations. We theoretically ana-
lyze the transformer and the RMT, and show that
the RMT allows for more efficient scaling of the
residual stream, as well as improved variance
propagation properties. Code for this project can
be found at https://github.com/bmac3/residual-
matrix-transformer.

1. Introduction
Kaplan et al. (2020) presented a new way forward for the
field of NLP and AI, showing that simply scaling model size,
data size, and computational budget is sufficient to advance
model capabilities at an unprecedented rate. Their work
lead to the the creation of many of the frontier models today
(Achiam et al., 2023, Hoffmann et al., 2024, Dubey et al.,
2024). Meanwhile, data, compute, and model sizes continue
to grow exponentially each year (AI, 2024). In fact, we are
quickly scaling towards the limits on how much data and
energy is available (Muennighoff et al., 2023, Zachary Zim-

1Department of Computer Science, University of California
Santa Cruz, Santa Cruz, United States. Correspondence to: Brian
Mak <bmak2@ucsc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1000 1500 2000 2500 3000 3500 4000

residual stream size

0.4

0.6

0.8

1.0

1.2

1.4

FL
O

PS

×1013

Transformer
RMT

1000 1500 2000 2500 3000 3500 4000

residual stream size

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
od

el
si

ze

×109

Transformer
RMT

Figure 1. Model size and per-example FLOPS versus residual
stream size for the transformer and RMT. See §3.1 for details.

merman & Gramlich, 2023). This presents a need for more
data and compute efficient models.

When it comes to large scale LLM training, few architectural
modifications rival the impact that Mixture of Expert Models
(Fedus et al., 2022) have had. Their work inspired many
later cutting-edge models (Du et al., 2022, Jiang et al., 2024).
Their Switch Transformer model had the ability to scale
along the sparse parameter axis. This meant that model
size could be scaled without affecting per-example compute.
With this, they were able to scale LLM training in ways that
had previously been unexplored. In this new search space,
they found a training configuration that was 7 times more
efficient than standard transformer training.

In this paper, we follow a similar formula and present a new
transformer-type model, the Residual Matrix Transformer

1

https://github.com/bmac3/residual-matrix-transformer
https://github.com/bmac3/residual-matrix-transformer


Residual Matrix Transformers

(RMT), that can scale the residual stream size while keeping
model size and per-example compute fixed. The residual
stream is defined as the sum of all the outputs of the pre-
vious layers and acts as a communication channel between
layers (Elhage et al., 2021). The size (i.e. dimension) of
the residual stream determines how many features it can
store, so scaling its size can be thought of as scaling its
bandwidth. In our experiments, we find that scaling the
size of the residual stream while maintaining the constant
model size and per-example compute improves both data
and compute efficiency (§4.4).

Scaling the residual stream in a standard transformer resizes
all the parameter matrices, which linearly influences the
parameter and FLOP counts (see Fig. 1). To address this,
we replace the residual stream representation with an outer
product memory matrix (Kohonen, 1972, Anderson, 1972),
and find the relationship between the size of the residual
stream and parameter and FLOP count becomes nearly con-
stant for typical transformer dimensions. Additionally, we
find that the our proposed model is more efficient in terms of
data, FLOPS, and parameters than the standard transformer.

We summarize our contributions as follows:

• We introduce a new transformer-type model, the Resid-
ual Matrix Transformer (RMT), that replaces the resid-
ual stream with an outer product memory matrix (§2).

• We experimentally find that the RMT is more efficient
in terms of data, FLOPS, and parameters than the trans-
former. The RMT trains with fewer resources and
achieves better performance than the transformer and
variants (§4.2, §4.3, and §4.5).

• We present theory that shows the RMT exhibits effi-
cient scaling of the residual stream and has improved
variance propagation properties (§3).

• We experimentally explore the effects of scaling the
residual stream size while keeping model size and per-
example compute fixed with the RMT. We find that a
larger residual stream improves performance (§4.4).

2. Model Architecture
In this section we introduce the Residual Matrix Trans-
former, a transformer variant whose residual stream is re-
placed with an outer product memory mechanism. We first
review the transformer architecture (§2.1), and then present
the RMT formulation (§2.2).

2.1. Transformer

Transformer Overview We begin by giving the equations
that describe the transformer architecture (Vaswani et al.,
2017). In our formulation, the input to the transformer is a

matrix S ∈ RV×N whose columns are the one-hot-vectors
of some tokenized string. The first layer encodes the input.

X(0) = E(S) + P(N) (1)

Here, N ∈ RN×N are the one-hot-vectors representing
each token’s position. The output of this layer is an embed-
ding matrix X(0) ∈ RD×N , and it contains the first instance
of each token’s residual stream. The next 2L layers are de-
fined recursively and describe the successive application of
attention and feed-forward layers to the residual stream.

X(l) = MHA(LN(X(l−1))) +X(l−1) (2)

X(l+1) = FF(LN(X(l))) +X(l) (3)

where LN is LayerNorm (Xu et al., 2019). The final layer
reads out the logits of the next predicted token from the
residual stream. The transformer T is thus represented as:

T(S) = U(LN(X(2L))) (4)

Embedding Layer The embedding layer encodes the one-
hot-vector matrices using the learned embeddings WE ∈
RD×V and WPE ∈ RD×N .

E(S) = WES (5)

P(N) = WPEN (6)

Attention Layer For our attention layer definition, we
group the computation of each attention head separately.

MHA(X) =

H∑
h=1

W
(h)
O SHA(Q(h),K(h),V (h)) (7)

SHA(Q,K,V ) = Softmax(
QTK√

Dh

)V (8)

Q(h) = W
(h)
Q X K(h) = W

(h)
K X V (h) = W

(h)
V X

(9)
W

(h)
Q ,W

(h)
K ,W

(h)
V ∈ RDh×D and W

(h)
O ∈ RD×Dh .

FeedForward Layer We define our feed-forward net-
work in the standard way, using a Gelu activation. W1 ∈
RDFF×D and W2 ∈ RD×DFF .

FF(X) = W2Gelu(W1X) (10)

Unembedding Layer The unembedding layer multiplies
the final instance of the residual stream with unembedding
weights WU ∈ RV×D.

U(X) = WUX (11)

2



Residual Matrix Transformers

2.2. Residual Matrix Transformer

Here we give relevant technical background on outer product
memories and show how this mechanism can be applied to
the transformer.

Outer Product Memories We propose to replace the
residual stream with an outer product memory store. An
outer product memory store is created by summing the
outer products of a set of key-value vector pairs (Koho-
nen, 1972, Anderson, 1972, Gmitro et al., 1989). For
some set of key vectors {q(p) ∈ RDk}Np=1 and data vectors
{x(p) ∈ RDv}Np=1, an outer product store M ∈ RDk×Dv

can be constructed using the following equation:

M = Norm(

N∑
p=1

q(p) ⊗ x(p)) (12)

Here u ⊗ v = uvT . Norm is a normalization function,
which in the case of RMT is LayerNorm. One can retrieve
a particular data vector x(r) using its corresponding key
vector q(r):

x(r) ≈ q(r) ·1 M (13)

Here ·1 denotes tensor contraction over the first dimension
of q(r) and M .

RMT Overview The RMT is similar to the Transformer,
with the residual stream vectors replaced with outer product
memory stores.1 We refer to each token’s memory store
as its residual matrix. Whereas in the standard transformer
linear transformations are used to store and retrieve features
from the residual stream, our model uses key vectors to store
and retrieve data vectors from the residual matrix.

The RMT model is identical to Eqs. 1– 4, except now the
batched residual stream instances X(l) ∈ RDk×Dv×N are
tensors instead of matrices. This reflects the fact that in our
model, for every token position we have residual matrices
sized Dk ×Dv instead of residual stream vectors sized D.

X(0) = E(S) + P(N) (14)

X(l) = MHA(LN(X(l−1))) + X(l−1) (15)

X(l+1) = FF(LN(X(l))) + X(l) (16)

T(S) = U(LN(X(2L))) (17)
1More precisely, the residual stream vectors are replaced with

unnormalized outer product memory stores and the pre-LayerNorm
operations (Xiong et al., 2020) in Eqs. 15–17 provide the missing
normalization from Eq. 12.

Embedding Layer Eqs. 18 and 19 show how the initial
residual matrices are formed.

E(S) =
R∑

h=1

w
(h)
E ⊗W

(h)
E S (18)

P(N) =

R∑
h=1

w
(h)
PE ⊗W

(h)
PEN (19)

Here, W (h)
E ∈ RDv×V and w

(h)
E ∈ RDk and R is a hyper-

parameter. Notice the form of Eq. 18 and 19 mirror that of
Eqs. 12. The result of the embedding layer is a tensor of
shape Dk ×Dv ×N that contains an outer product memory
matrix for every token.

Attention Layer The attention equations for the RMT
strongly resemble Eqs. 7–9 with a few key differences.

MHA(X) =
R∑

h=1

w
(h)
O ⊗ SHA(Q(h),K(h),V (h)) (20)

SHA(Q,K,V ) = Softmax(
QTK√

Dv

)V (21)

Q(h) = r
(h)
Q ·1 X K(h) = r

(h)
K ·1 X V (h) = r

(h)
V ·1 X

(22)

In the RMT, features are retrieved from the residual matrix
using key vectors. Comparing equations Eqs. 22 to Eqs.
9, we see that the matrices W

(h)
Q , W (h)

K , and W
(h)
V are

replaced by the key vectors r(h)Q , r
(h)
K , r

(h)
V ∈ RDk . Addi-

tionally, the operations have changed from matrix multiplies
to tensor contractions over the first tensor dimension, which
is exactly the retrieval operation from Eq. 13.

Eqs. 22 produce the attention inputs Q(h),K(h),V (h) ∈
RDv×N . These matrices have the exact same dimensions as
they did in the standard transformer,2 so the SHA operation
remains the same.

In Eq. 20 we see that each attention head output acts as a
data vector that is associated to its corresponding key vector
w

(h)
O ∈ RDk before being added to the residual matrix.

FeedForward Layer To understand how the RMT feed-
forward layer is computed, first notice that Eq. 24 is identi-
cal to Eq. 10.

FF(X) =
R∑

h=1

w
(h)
FF ⊗ unvec1(F̃F(XFF ))h,:,: (23)

F̃F(X) = W2Gelu(W1X) (24)

2RMT’s Dv equals transformer’s Dh for our experiments

3



Residual Matrix Transformers

XFF = Concat
1≤h<R

(r
(h)
FF ·1 X) (25)

That is, the core operation of the layers is the same. The only
differences are Eqs. 23 and 25, which are adapters between
the residual matrix and the core feed-forward operation.
The idea behind Eq. 25 is that for every token position,
we retrieve R data vectors r

(h)
FF ·1 X ∈ RDv×N from the

residual matrix. These data vectors are concatenated along
their first dimensions resulting in the feed-forward input
XFF ∈ RRDv×N .3 In Eq. 24 the standard feed-forward
operation is applied. Then in Eq. 23, we see that unvec1
is applied to F̃F(XFF ) ∈ RRDv×N . As a result, the first
dimension of F̃F(XFF ) will be reshaped from RDv to R×
Dv. Intuitively, for every token, unvec1 splits the output
of the feed-forward operation into R data vectors. Then,
each of these data vectors is associated with a key vector
w

(h)
FF ∈ RDk and added to the residual stream.

Unlike in the attention formulation, matrices W1 and W2 of
the feed-forward layer were not replaced with key vectors.
Instead, we added key vector adapters between the linear
transformations and the residual matrix. The reason we
decided not to replace these matrices is that there is strong
evidence that the feedforward weights store factual informa-
tion in the transformer (Geva et al., 2021, Meng et al., 2022),
and therefore perform a function beyond simply reading-in
and writing-out features.

Unembedding Layer In Eq. 27, the unembedding layer
retrieves R data vectors X(h)

U ∈ RDv×N from the residual
matrix using the key vectors r(h)U ∈ Rdk . These data vectors
are then multiplied by the unembedding weights W (h)

U ∈
RV×Dv to get logit predictions for the next token.

U(X) =
R∑

h=1

W
(h)
U X

(h)
U (26)

X
(h)
U = r

(h)
U ·1 X (27)

3. Theoretical Properties
In §3.1 we show that the RMT allows for more efficient ex-
pansion of the residual stream compared to the transformer.
Then in §3.2 we show that the elements we modified in
the RMT have superior gradient and activation propagation
properties than their transformer counterparts.

3.1. Resource Scaling

Here we verify that we can scale the size of the residual
stream more efficiently with the RMT than the transformer
in terms of model size and FLOPS consumed. Fig. 1 shows

3RMT’s RDv equals transformer’s D for our experiments.

how the model size and per-example compute scales with the
residual stream size for both the transformer and the RMT.
We follow Hoffmann et al. (2024)’s formulas for computing
model size and per-example compute in the transformer, and
derive the corresponding formulas for the RMT (Appendix
§A, Table 7). We fix all model dimensions to those of
GPT2-medium4 (Radford et al., 2019) and vary D for the
transformer and Dk for the RMT (where Dv is fixed at 64).
We see that the model size and per-example compute for
the transformer scales proportionally to the residual stream
size. In the RMT, however, there is practically no parameter
or compute cost. In fact, if we increase the residual stream
size of the transformer by 100%, we will also see a 100%
increase in parameters and a ∼ 94% increase in FLOPS. For
the RMT, if we increase the residual stream size by 100%
we will see a < 1% increase in both model size and FLOP
count. We note that, as in the regular transformer, scaling
the residual stream of the RMT will impact memory usage
during training since residual stream activations need to be
saved for gradient checkpointing.

3.2. Moment Propagation Analysis

Here we verify that our proposed architectural modifica-
tions have superior moment propagation properties to their
transformer counterparts. In their landmark work, Glorot &
Bengio (2010) showed that proper propagation of mean and
variance through linear transformations at initialization is
critical for deep learning. Here, we perform a similar analy-
sis to Glorot & Bengio (2010) and Kedia et al. (2024) to find
how the mean and variance propagates through the RMT’s
storage and retrieval operations. We compare their moment
propagation properties to the operations they replaced.

In Table 1 we present the closed-form expression for mean
and variance propagation through the RMT’s storage and
retrieval operations at initialization. We find that, as with
linear transformations, if weights are initialized indepen-
dently with zero mean then the propagated mean will be
zero. In this respect, the mean propagation properties of
these components are the same as the transformer’s.

To understand the variance propagation properties, in Ta-
ble 2 we plug in the model dimensions for GPT2-medium
into the closed-form variance expressions in Table 1. Table
2 shows the results of this analysis. We follow Glorot &

Bengio (2010) and consider
σ2
xout

σ2
xin

= 1 and
σ2
gin

σ2
gout

= 1 to be
optimal since it prevents exploding or vanishing gradients
or activations. We see that in all cases except for the atten-
tion layer’s storage operation, the RMT’s operations show
favorable variance propagation.

4We choose GPT2-medium for this example but the general
scaling trends will hold true for any model shapes.

4



Residual Matrix Transformers

Table 1. Closed-form expressions for the propagation of mean and variance for storage and retrieval for the RMT. The expressions for the
transformer are taken from (Kedia et al., 2024). The derivation the RMT equations can be found in Appendix §B.

COMPONENT MODEL OPERATION µxout σ2
xout

µgin σ2
gin

STORAGE
RMT Xout =

∑R
h=1 w

(h) ⊗ xin 0 Rσ2
w(σ

2
xin

+ µ2
xin

) 0 dkσ
2
w(σ

2
Gout

+ µ2
Gout

)
TRANSFORMER xout = Wxin 0 dinσ

2
w(σ

2
xin

+ µ2
xin

) 0 doutσ
2
w(σ

2
gout

+ µ2
gout

)

RETRIEVAL
RMT xout = w ·1 Xin 0 dkσ

2
w(σ

2
Xin

+ µ2
Xin

) 0 Rσ2
w(σ

2
gout

+ µ2
gout

)
TRANSFORMER xout = Wxin 0 dinσ

2
w(σ

2
xin

+ µ2
xin

) 0 doutσ
2
w(σ

2
gout

+ µ2
gout

)

Table 2. Theoretical calculation of propagation of variance through
storage and retrieval operations on forward and backward passes.
We assume Xavier Initialization and GPT2-medium model shapes.
Boldface indicates where one model is better than the other.

LAYER OPERATION MODEL
σ2
xout
σ2
xin

σ2
gin

σ2
gout

ATTN
STORAGE

RMT 0.4 1.6
TRANSFORMER 1 1

RETRIEVAL
RMT 1.14 0.86

TRANSFORMER 0.5 1.5

FF
STORAGE

RMT 1 1
TRANSFORMER 1.6 0.4

RETRIEVAL
RMT 1 1

TRANSFORMER 0.4 1.6

4. Experiments
In §4.2 and §4.3 we compare the RMT to the transformer
and other relevant transformer variants and show that the
RMT offers more efficient pretraining in terms of parameter,
data, and compute efficiency. Then in §4.4 we show that
the new scaling axis we introduce (scaling residual stream
size) is an effective way to scale LLM training. In §4.5 we
evaluate the downstream performance of the RMT and show
that it outperforms a transformer that is 33% larger.

4.1. Pretraining Details

All models were trained on the OpenWebText dataset
(Gokaslan et al., 2019) in the infinite data regime. Full
details for all experiments can be found in Appendix §C.
To overcome the “Parameter Lottery” (Dey et al., 2024),
we performed hyperparameter tuning on both the RMT and
transformer using µParam Transfer (Yang et al., 2024). We
use the hyperparameters found for all pretraining experi-
ments except our comparison against transformer variants
experiments in §4.3, since it was too computationally de-
manding to run hyperparameter tuning for all variants. For
the experiments found in §4.3, we used standard transformer
hyperparameters for all models.

1016 1017 1018 1019

FLOPS

3× 100

3.5× 100

4× 100

lo
ss

Transformer
RMT

107 108

model parameters

3× 100

3.5× 100

4× 100

lo
ss

Transformer
RMT

Figure 2. Scaling law curves of RMT vs transformer. Model sizes
vary from 46M to 405M.

4.2. RMT vs Transformer

In this section we experimentally show that the RMT ex-
hibits better parameter, data, FLOP, and inference time mem-
ory efficiency than the transformer. We verify these trends
by examining the scaling properties of both architectures
and analyzing the training curves of the largest models.

We train a series of four models for both architectures. The
size of the models vary from 46M parameters to 405M pa-
rameters. The model dimensions were chosen such that
for each model in the transformer series, there is a corre-
sponding model in the RMT series whose model dimensions
mirror it in all aspects except the size of the residual stream.

5



Residual Matrix Transformers

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FLOPS ×1019

101

3× 100

4× 100

6× 100

lo
ss

RMT
Transformer

0 1 2 3 4 5 6

tokens ×109

101

3× 100

4× 100

6× 100

lo
ss

RMT
Transformer

Figure 3. Train loss curves for the transformer and RMT on a per-
token and per-flop basis.

Table 3. Resources used to reach train loss 3.03 (min loss achieved
by transformer).

RESOURCE TRANSFORMER RMT % DIFF

PARAMETERS 405M 305M -25%
FLOPS 1.18× 1019 4.97× 1018 -58%
TOKENS 6.04× 109 3.55× 109 -41%
TIME 1.86× 105 1.94× 105 +4%

The residual stream size of the RMT models is set to be 2.5
– 4 times larger than their transformer counterparts. Each
model is trained for its Chinchilla optimal number of train-
ing tokens (20×number of non-embedding parameters). Fig.
2 shows the results of these experiments. Due to resource
constraints, we were unable to explore how these trends
continue at larger model sizes.

Fig. 3 and Fig. 4 compare the training runs of the largest
models in both series. Both models mirror GPT2-medium’s
dimensions, except that the residual stream size of the RMT
model is expanded by a factor of 4. For a direct comparison,
we extended the number of tokens the RMT model was
trained on to match the transformer baseline. The results
in Fig. 2 still show the RMT’s training statistics stopped
at its respective Chinchilla optimal train tokens. Table 3

0 50000 100000 150000 200000 250000 300000

time (s)

101

3× 100

4× 100

6× 100

lo
ss

RMT
Transformer

Figure 4. Train loss curves for the transformer and RMT on a time
basis.

Table 4. Training statistics after training on 6B tokens.

RESOURCE TRANSFORMER RMT % DIFF

FLOPS 1.18× 1019 8.45× 1018 -28%
TIME 1.86× 105 3.30× 105 +43%
TRAIN LOSS 3.03 2.91
DEV LOSS 3.02 2.91

reports the resources consumed to reach the minimum loss
achieved by the transformer baseline while Table 4 shows
the resources consumed to train on the full 6B tokens.

Parameter Efficiency From the bottom plot of Fig. 2 we
see that the RMT exhibits more efficient parameter scaling
than the transformer. Table 3 and Table 4 quantify this result
for our largest runs. We see that the RMT is able to achieve
a lower loss than a transformer model that is 33% larger.

The reason why the RMT uses fewer parameters than the
transformer is that the W

(h)
Q , W

(h)
K , W

(h)
V , and W

(h)
O

weight matrices are replaced by vectors in the RMT mod-
els. As a result, the RMT models have 33% fewer non-
embedding parameters than their transformer counterparts.
Furthermore, because of its resource scaling properties from
§3.1, we can make the RMT models have a much larger
residual stream than their transformer counterparts for prac-
tically no parameter penalty.

Data Efficiency Fig. 3 shows that the RMT exhibits much
faster convergence on a token basis than the transformer.
Table 3 quantifies this improvement, showing that the RMT
is 41% more token efficient than the transformer. This type
of data efficiency is particularly important in the current cli-
mate of LLM training, where we are quickly scaling toward
the limit of text available to train models on (Villalobos
et al., 2024, Muennighoff et al., 2023).

6



Residual Matrix Transformers

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FLOPS ×1018

4× 100

5× 100

6× 100

lo
ss

Depthwise LSTM
Hierarchical Aggregation
Highway Transformer
RMT
Transformer

1.4 1.6 1.8 2.0 2.2

model parameters ×108

3.375

3.400

3.425

3.450

3.475

3.500

3.525

3.550

lo
ss

Depthwise LSTM

Hierarchical Aggregation

Highway Transformer

RMT

Transformer

Figure 5. RMT versus other transformer variants that modify the
residual stream (Vaswani et al., 2017, Dou et al., 2018, Chai et al.,
2020, Xu et al., 2024).

FLOP Efficiency From the top plot of Fig. 2 we see that
the RMT architecture exhibits more efficient FLOP scaling
than the transformer. Fig. 3 corroborates this by showing
that on our largest runs the RMT converged faster than the
transformer on a per-FLOP basis. Table 3 shows that the
RMT is 58% more FLOP efficient when training to the same
loss, and Table 3 shows that the RMT is 28% more FLOP
efficient when training to the same number of tokens.

We assert that this improved FLOP efficiency presents huge
opportunities for energy savings in LLM training. Energy
efficiency is another important factor to consider, because
like data consumption, energy consumption is also scaling
at an untenable rate (Strubell et al., 2019, Luccioni et al.,
2023, Wu et al., 2022).

Memory Usage We find that during training, the memory
usage of both models is about equal. At inference time,
however, the RMT is more memory efficient.

We deduced that the train time memory usage of both mod-
els is about equal by performing a batch size search on our
largest models. We found that, in both cases, the maximum

batch size found was 256.5 From this we infer that the ex-
tra space needed to store the gradient checkpoints for the
expanded residual stream is offset by reduced model size.

At inference time, since there is no need to keep residual
stream instances for gradient checkpointing, the memory
savings from the reduced model size outweigh the expanded
residual stream.6 This presents opportunities for more pow-
erful models to be run with smaller devices.

Runtime Fig. 4 shows that on a per-time basis, our model
is about even with the transformer. Table 3 shows that the
RMT is 4% slower than the transformer even though it is
more FLOP and data efficient. This discrepancy is due to the
fact that the RMT took 7.17s per train step, while the trans-
former only took 4.06s. We expect that a hardware-aware
implementation of our model would significantly improve
its runtime, but we consider this is out of the scope of this
work. Currently, we find that runtime is the biggest limita-
tion of our model. See Appendix §E for further discussion.

4.3. RMT vs Transformer Variants

Here we compare the RMT to transformer variants that can
be viewed as non-orthogonal to our work.7 We find that
this class of architectures includes transformer variants that
make an architectural modification to the residual stream
(Dou et al., 2018, Chai et al., 2020, Xu et al., 2024). We
show that our architecture offers more efficient pretraining
than all prior variants (Fig. 5).

We train a collection of transformer variants whose model
dimensions mirror GPT2-small where applicable. Fig. 5
shows the training curves and final train loss plotted against
model size. From the results we see that the RMT is the
most compute and parameter efficient variant of this collec-
tion, achieving lower loss while using fewer FLOPS and
parameters. We note that our approach is distinguished from
prior residual stream modifications in that all prior architec-
tures use more parameters and per-example compute than
the transformer, while ours uses fewer. Thus, from an ef-
ficiency standpoint, the improvements made by the prior
variants are outweighed by their cost in our replications.

4.4. Effect of Scaling the Residual Stream

In §1 we proposed a new axis to scale LLM training along.
In this section we show that this is an effective axis for scal-
ing. In particular, we show that scaling a model’s residual
stream while keeping model size, dataset size, and computa-

5The max batch size search was constrained to powers of 2.
6Only a single residual matrix needs to be instantiated per

sequence for autoregressive decoding. This cost is negligible
compared to the size of the replaced attention parameters.

7Residual stream modifications can be combined with ours,
and so are orthogonal to our work. See related work §5.

7



Residual Matrix Transformers

tional budget fixed increases model performance. We note
that this type of experiment is only possible using the RMT
and not the transformer (§3.1).

We train a series of GPT2-small sized RMT models with
residual stream sizes 384, 768, 1536, 2048, 3072, and 4096.
All models are identical except for their residual key di-
mensions Dk. We choose to vary Dk because it does not
affect the model’s core computations, allowing us to directly
observe the effects of scaling the residual stream. The dif-
ference in total parameter and FLOP counts between the
largest and smallest models is < 1%.

The results are shown in Fig. 6. We see that increasing
the residual stream size monotonically decreases dev loss,
showing that expanding the residual stream improves model
performance. If we compare the model with residual size
4096 to the model with residual size 768 (the residual stream
size of GPT2-small), we see that the model with the ex-
panded residual stream was able to train to the same final
loss with 23% fewer FLOPS and 25% fewer tokens.

We can compare an RMT with a transformer with the same
residual stream size, since the experiments performed in this
section were trained with the same experimental settings
as §4.2. We see that when the residual stream size is the
same, the RMT model achieves a final train loss of 3.42
while the GPT2 model achieves 3.43. This verifies that if
the residual stream is not expanded, the performance of the
RMT is about the same as the transformer.

384 768 1536 2048 3072 4096

residual stream size

3.35× 100

3.4× 100

3.45× 100

3.5× 100

3.55× 100

3.6× 100

lo
ss

Figure 6. Dev loss vs residual stream size. Model size, dataset size,
and computational budget are held constant for all runs. Residual
stream size is calculated as Dk ×Dv .

4.5. Downstream Evaluation

In this section we present zero-shot downstream results of
the RMT and transformer. We use our largest pretrained
models from §4.2 trained on all 6B tokens. Table 5 and
Table 6 show that the RMT performs significantly better

Table 5. Downstream perplexity results (Gokaslan et al., 2019,
Paperno et al., 2016, Gao et al., 2020, Merity et al., 2016). Lower
is better..

DATA SET TRANSFORMER RMT

LAMBADA OPENAI 61.34 25.21
OPENWEBTEXT 20.64 18.36
PILE 10K 30.23 23.54
WIKITEXT 76.35 55.94

Table 6. Downstream accuracy results (Clark et al., 2018, Zellers
et al., 2019, Bisk et al., 2020, Sakaguchi et al., 2019). Higher is
better.

DATA SET TRANSFORMER RMT

ARC C 19.7 20.6
ARC E 44.3 46.1
HELLASWAG 28.7 30.5
PIQA 61.9 63.7
WINOGRANDE 49.5 52.5

than the transformer on all downstream tasks despite having
25% fewer parameters and using 28% fewer FLOPS during
training.

5. Related Work
Layer aggregation models bear some resemblance to our
model, since they allow later layers to access earlier lay-
ers more easily. Indeed, our model can be interpreted as
a type of layer aggregation model if one were to multiply
out all key vectors and remove LayerNorm. Huang et al.
(2017) introduced dense connections and showed that they
can improve the performance of convolutional neural net-
works. Godin et al. (2017) extended dense connections to
RNNs and showed that they can help with language model-
ing. Shen et al. (2018), Dou et al. (2018), and ElNokrashy
et al. (2024) introduced dynamic layer aggregation through
depthwise-attention and showed improvements on NMT and
classification. Dou et al. (2018) also explored different types
of static layer aggregation and showed improved results in
NMT. Dou et al. (2019) then showed that layer aggregation
with capsules and routing by agreement can further improve
results on NMT. We note that for most layer aggregation
models it is unrealistic to train in multi-gpu settings as they
would incur a huge penalty in terms of device-to-device
communication. Dou et al. (2018)’s model is an excep-
tion to this rule, and we include it in our comparison of
transformer variants (§4.3).

The class of models that we find most similar to our own
are those that manage their residual stream memory. These
models offer multi-gpu scalability, and, in theory, they also
make important features produced by earlier layers more

8



Residual Matrix Transformers

available to later layers. Srivastava et al. (2015) introduce
Highway Networks that control which layer’s outputs are
carried down the residual stream. Chai et al. (2020) iterated
on Highway Networks and applied them to transformers. Xu
et al. (2024) used an LSTM to manage the residual stream.
Our work is different from these as we consider the scaling
ramifications of expanding the residual stream instead of
managing its memory.

We find that modifications that involve residual stream scal-
ing, normalization, and weight initialization to improve
moment propagation (Kedia et al., 2024, Wang et al., 2024,
Shleifer et al., 2021, Huang et al., 2020, Bachlechner et al.,
2020) are orthogonal to our approach because they could be
extended and applied to our model.

We consider transformer variants that modify components
other than the residual stream (Dao & Gu, 2024, Peng et al.,
2023, Sun et al., 2023, Fedus et al., 2022) to be orthogonal to
our work as well since our approach can be easily integrated
with these architectures.

6. Conclusion
We present a novel architecture that replaces the residual
stream with an outer product memory mechanism, resulting
in a transformer variant with an expandable residual stream.
We theoretically show that our modifications provide effi-
cient scaling and favorable moment propagation properties.
Our architecture allows for scaling along a new scaling law
axis that, to our knowledge, was previously unexplored. We
experimentally showed that scaling the size of the residual
stream leads to more efficient training in terms of compute,
parameter, and data efficiency.

Acknowledgments
We are thankful for the computing resources provided by
the Pacific Research Platform’s Nautilus cluster, supported
in part by National Science Foundation (NSF) awards CNS-
1730158, ACI-1540112, ACI-1541349, OAC-1826967,
OAC-2112167, CNS-2100237, CNS-2120019, the Univer-
sity of California Office of the President, and the University
of California San Diego’s California Institute for Telecom-
munications and Information Technology/Qualcomm Insti-
tute, and CENIC for the 100Gbps networks. We also thank
the anonymous ICML reviewers and the members of JLab
for their proofreading and valuable feedback.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AI, E. Data on notable ai models, 2024. URL https://epoch.
ai/data/notable-ai-models. Accessed: 2024-12-14.

Anderson, J. A. A simple neural network generating an in-
teractive memory. Mathematical Biosciences, 14(3):197–
220, 1972. ISSN 0025-5564. doi: https://doi.org/10.1016/
0025-5564(72)90075-2. URL https://www.sciencedirect.
com/science/article/pii/0025556472900752.

Bachlechner, T., Majumder, B. P., Mao, H. H., Cottrell,
G. W., and McAuley, J. J. Rezero is all you need: Fast
convergence at large depth. CoRR, abs/2003.04887, 2020.
URL https://arxiv.org/abs/2003.04887.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Chai, Y., Jin, S., and Hou, X. Highway transformer:
Self-gating enhanced self-attentive networks. In Juraf-
sky, D., Chai, J., Schluter, N., and Tetreault, J. (eds.),
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 6887–6900,
Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.616. URL
https://aclanthology.org/2020.acl-main.616.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

Dao, T. and Gu, A. Transformers are SSMs: Generalized
models and efficient algorithms through structured state
space duality. In Salakhutdinov, R., Kolter, Z., Heller, K.,
Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 10041–10071. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
dao24a.html.

9

https://epoch.ai/data/notable-ai-models
https://epoch.ai/data/notable-ai-models
https://www.sciencedirect.com/science/article/pii/0025556472900752
https://www.sciencedirect.com/science/article/pii/0025556472900752
https://arxiv.org/abs/2003.04887
http://github.com/jax-ml/jax
https://aclanthology.org/2020.acl-main.616
https://proceedings.mlr.press/v235/dao24a.html
https://proceedings.mlr.press/v235/dao24a.html


Residual Matrix Transformers

Dey, N., Anthony, Q., and Hestness, J. The prac-
titioner’s guide to the maximal update parameteri-
zation. https://www.cerebras.ai/blog/the-practitioners-
guide-to-the-maximal-update-parameterization, Septem-
ber 2024.

Dou, Z.-Y., Tu, Z., Wang, X., Shi, S., and Zhang, T. Exploit-
ing deep representations for neural machine translation.
In Riloff, E., Chiang, D., Hockenmaier, J., and Tsujii, J.
(eds.), Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 4253–
4262, Brussels, Belgium, October-November 2018. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/
D18-1457. URL https://aclanthology.org/D18-1457.

Dou, Z.-Y., Tu, Z., Wang, X., Wang, L., Shi, S., and Zhang,
T. Dynamic layer aggregation for neural machine trans-
lation with routing-by-agreement. Proceedings of the
AAAI Conference on Artificial Intelligence, 33(01):86–
93, Jul. 2019. doi: 10.1609/aaai.v33i01.330186. URL
https://ojs.aaai.org/index.php/AAAI/article/view/3772.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O.,
Zoph, B., Fedus, L., Bosma, M. P., Zhou, Z., Wang,
T., Wang, E., Webster, K., Pellat, M., Robinson, K.,
Meier-Hellstern, K., Duke, T., Dixon, L., Zhang, K.,
Le, Q., Wu, Y., Chen, Z., and Cui, C. GLaM: Effi-
cient scaling of language models with mixture-of-experts.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., and Sabato, S. (eds.), Proceedings of the
39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Re-
search, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

ElNokrashy, M., AlKhamissi, B., and Diab, M. Depth-
wise attention (DWAtt): A layer fusion method for data-
efficient classification. In Calzolari, N., Kan, M.-Y.,
Hoste, V., Lenci, A., Sakti, S., and Xue, N. (eds.),
Proceedings of the 2024 Joint International Confer-
ence on Computational Linguistics, Language Resources

and Evaluation (LREC-COLING 2024), pp. 4665–4674,
Torino, Italia, May 2024. ELRA and ICCL. URL https:
//aclanthology.org/2024.lrec-main.417.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
scaling to trillion parameter models with simple and effi-
cient sparsity. J. Mach. Learn. Res., 23(1), January 2022.
ISSN 1532-4435.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li, H.,
McDonell, K., Muennighoff, N., Ociepa, C., Phang, J.,
Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika, L.,
Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. A
framework for few-shot language model evaluation, 12
2023. URL https://zenodo.org/records/10256836.

Geva, M., Schuster, R., Berant, J., and Levy, O. Trans-
former feed-forward layers are key-value memories. In
Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-
t. (eds.), Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pp.
5484–5495, Online and Punta Cana, Dominican Repub-
lic, November 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Teh, Y. W.
and Titterington, M. (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning
Research, pp. 249–256, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010. PMLR. URL https://proceedings.
mlr.press/v9/glorot10a.html.

Gmitro, A. F., Keller, P. E., and Gindi, G. R. Statistical
performance of outer-product associative memory models.
Appl. Opt., 28(10):1940–1948, May 1989. doi: 10.1364/
AO.28.001940. URL https://opg.optica.org/ao/abstract.
cfm?URI=ao-28-10-1940.

Godin, F., Dambre, J., and De Neve, W. Improving lan-
guage modeling using densely connected recurrent neural
networks. In Blunsom, P., Bordes, A., Cho, K., Cohen,
S., Dyer, C., Grefenstette, E., Hermann, K. M., Rimell,
L., Weston, J., and Yih, S. (eds.), Proceedings of the 2nd
Workshop on Representation Learning for NLP, pp. 186–
190, Vancouver, Canada, August 2017. Association for
Computational Linguistics. doi: 10.18653/v1/W17-2622.
URL https://aclanthology.org/W17-2622.

10

https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://aclanthology.org/D18-1457
https://ojs.aaai.org/index.php/AAAI/article/view/3772
https://proceedings.mlr.press/v162/du22c.html
https://aclanthology.org/2024.lrec-main.417
https://aclanthology.org/2024.lrec-main.417
https://zenodo.org/records/10256836
https://aclanthology.org/2021.emnlp-main.446
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://opg.optica.org/ao/abstract.cfm?URI=ao-28-10-1940
https://opg.optica.org/ao/abstract.cfm?URI=ao-28-10-1940
https://aclanthology.org/W17-2622


Residual Matrix Transformers

Gokaslan, A., Cohen, V., Pavlick, E., and Tellex,
S. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Hall, D., Zhou, I., Adams, V., Wang, J., and Liang, P. Levan-
ter, 2024. URL https://github.com/stanford-crfm/levanter.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy, A.,
Osindero, S., Simonyan, K., Elsen, E., Vinyals, O., Rae,
J. W., and Sifre, L. Training compute-optimal large lan-
guage models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates
Inc. ISBN 9781713871088.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261–2269, 2017. doi: 10.1109/
CVPR.2017.243.

Huang, X. S., Perez, F., Ba, J., and Volkovs, M. Improv-
ing transformer optimization through better initializa-
tion. In III, H. D. and Singh, A. (eds.), Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pp. 4475–4483. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/huang20f.html.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024. URL https://arxiv.org/
abs/2401.04088.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kedia, A., Zaidi, M. A., Khyalia, S., Jung, J., Goka, H., and
Lee, H. Transformers get stable: an end-to-end signal
propagation theory for language models. In Proceed-
ings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Kidger, P. and Garcia, C. Equinox: neural networks in JAX
via callable PyTrees and filtered transformations. Differ-
entiable Programming workshop at Neural Information
Processing Systems 2021, 2021.

Kohonen, T. Correlation matrix memories. IEEE Trans-
actions on Computers, C-21(4):353–359, 1972. doi:
10.1109/TC.1972.5008975.

Luccioni, A. S., Viguier, S., and Ligozat, A.-L. Estimating
the carbon footprint of bloom, a 176b parameter lan-
guage model. Journal of Machine Learning Research,
24(253):1–15, 2023. URL http://jmlr.org/papers/v24/23-
0069.html.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y.
Locating and editing factual associations in gpt. In
Koyejo, S., Mohamed, S., Agarwal, A., Belgrave,
D., Cho, K., and Oh, A. (eds.), Advances in Neural
Information Processing Systems, volume 35, pp.
17359–17372. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper files/paper/2022/
file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-
Conference.pdf.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Muennighoff, N., Rush, A., Barak, B., Le Scao, T.,
Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., and Raffel,
C. A. Scaling data-constrained language models.
In Oh, A., Naumann, T., Globerson, A., Saenko,
K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36,
pp. 50358–50376. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper files/paper/
2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-
Conference.pdf.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset, Aug 2016.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Der-
czynski, L., Du, X., Grella, M., Gv, K., He, X., Hou, H.,
Kazienko, P., Kocon, J., Kong, J., Koptyra, B., Lau, H.,
Lin, J., Mantri, K. S. I., Mom, F., Saito, A., Song, G.,
Tang, X., Wind, J., Woźniak, S., Zhang, Z., Zhou, Q.,
Zhu, J., and Zhu, R.-J. RWKV: Reinventing RNNs for
the transformer era. In Bouamor, H., Pino, J., and Bali,
K. (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 14048–14077, Singapore,
December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-emnlp.936. URL
https://aclanthology.org/2023.findings-emnlp.936/.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/stanford-crfm/levanter
https://proceedings.mlr.press/v119/huang20f.html
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
http://jmlr.org/papers/v24/23-0069.html
http://jmlr.org/papers/v24/23-0069.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9d89448b63ce1e2e8dc7af72c984c196-Paper-Conference.pdf
https://aclanthology.org/2023.findings-emnlp.936/


Residual Matrix Transformers

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. arXiv preprint arXiv:1907.10641, 2019.

Shen, Y., Tan, X., He, D., Qin, T., and Liu, T.-Y. Dense in-
formation flow for neural machine translation. In Walker,
M., Ji, H., and Stent, A. (eds.), Proceedings of the 2018
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 1294–1303,
New Orleans, Louisiana, June 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/N18-1117. URL
https://aclanthology.org/N18-1117.

Shleifer, S., Weston, J., and Ott, M. Normformer: Improved
transformer pretraining with extra normalization. CoRR,
abs/2110.09456, 2021. URL https://arxiv.org/abs/2110.
09456.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
networks, 2015. URL https://arxiv.org/abs/1505.00387.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in NLP. In Ko-
rhonen, A., Traum, D., and Màrquez, L. (eds.), Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 3645–3650,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1355. URL
https://aclanthology.org/P19-1355.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor
to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Villalobos, P., Ho, A., Sevilla, J., Besiroglu, T., Heim, L.,
and Hobbhahn, M. Will we run out of data? limits of
llm scaling based on human-generated data, 2024. URL
https://arxiv.org/abs/2211.04325.

Wang, H., Ma, S., Dong, L., Huang, S., Zhang, D.,
and Wei, F. DeepNet: Scaling Transformers to
1,000 Layers . IEEE Transactions on Pattern Analy-
sis & Machine Intelligence, 46(10):6761–6774, October
2024. ISSN 1939-3539. doi: 10.1109/TPAMI.2024.
3386927. URL https://doi.ieeecomputersociety.org/10.
1109/TPAMI.2024.3386927.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai,
C., Gschwind, M., Gupta, A., Ott, M., Melnikov,
A., Candido, S., Brooks, D., Chauhan, G., Lee,
B., Lee, H.-H., Akyildiz, B., Balandat, M., Spisak,
J., Jain, R., Rabbat, M., and Hazelwood, K. Sus-
tainable ai: Environmental implications, challenges
and opportunities. In Marculescu, D., Chi, Y., and
Wu, C. (eds.), Proceedings of Machine Learning
and Systems, volume 4, pp. 795–813, 2022. URL
https://proceedings.mlsys.org/paper files/paper/2022/
file/462211f67c7d858f663355eff93b745e-Paper.pdf.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C.,
Zhang, H., Lan, Y., Wang, L., and Liu, T.-Y. On layer
normalization in the transformer architecture. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org, 2020.

Xu, H., Song, Y., Liu, Q., van Genabith, J., and Xiong, D.
Rewiring the transformer with depth-wise LSTMs. In
Calzolari, N., Kan, M.-Y., Hoste, V., Lenci, A., Sakti,
S., and Xue, N. (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING
2024), pp. 14122–14133, Torino, Italia, May 2024. ELRA
and ICCL. URL https://aclanthology.org/2024.lrec-main.
1231.

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J.
Understanding and improving layer normalization.
In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL
https://proceedings.neurips.cc/paper files/paper/2019/
file/2f4fe03d77724a7217006e5d16728874-Paper.pdf.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi,
D., Ryder, N., Pachocki, J., Chen, W., and Gao, J. Tensor
programs v: tuning large neural networks via zero-shot
hyperparameter transfer. In Proceedings of the 35th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran
Associates Inc. ISBN 9781713845393.

Zachary Zimmerman, M. G. and Gramlich, R. Ready-to-
go transmission projects 2023. Technical report, Grid
Strategies, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

12

https://aclanthology.org/N18-1117
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/1505.00387
https://aclanthology.org/P19-1355
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2211.04325
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2024.3386927
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2024.3386927
https://proceedings.mlsys.org/paper_files/paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf
https://aclanthology.org/2024.lrec-main.1231
https://aclanthology.org/2024.lrec-main.1231
https://proceedings.neurips.cc/paper_files/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf


Residual Matrix Transformers

A. Parameter and FLOP calculations
See Table 7 for the equations used to compute FLOP and parameter counts for the transformer and RMT in Fig. 1. §A.1
and §A.2 describe how the equations for the RMT were derived. The equations for the transformer follow Hoffmann et al.
(2024). Our derivations for the RMT’s FLOP and parameter counts also follow the approach taken by Hoffmann et al.
(2024). In particular, we approximate the backward-pass FLOP count as twice the forward-pass count.

A.1. RMT Parameters

• Embeddings

– Word embeddings: RVDv

– Position embeddings: RNDv

– Key vectors: 2RDk

– Embedding params: RVDv +RNDv + 2RDk

• Attention (Single Layer)

– QKV key vectors: 3RDk

– O key vectors: RDk

– Attention params: 3RDk +RDk

• Feed-Forward Network (Single Layer)

– Input key vectors: RDk

– Core params: 2RDvDFF

– Output key vectors: RDk

– FF params: RDk + 2RDvDFF +RDk

• Unembedding

– Key vectors: RDk

– Unembedding weights: RVDv

– Unembedding params: RDk +RVDv

Total Params = embedding params + L× attention params + FF params) + unembedding params
= R(2Dk(3L+ 1) +Dv(2LDFF + V +N))

A.2. RMT FLOPS

• Embeddings

– Word embeddings: 2NV RDv

– Position embeddings: 2NV RDv

– Key vectors: 4NDkDvR

– Embedding FLOPS: 2NV RDv + 2NV RDv + 4NDkDvR

• Attention (Single Layer)

– QKV key vectors: 6NDkDvR

– SHA: 2NNDvR+ 3RNN + 2NNDvR

– O key vectors: 2NDkDvR

– Attention FLOPS: 6NDkDvR+ 2NNDvR+ 3RNN + 2NNDvR+ 2NDkDvR

• Feed-Forward Network (Single Layer)

– Input key vectors: 2NDkDvR

13



Residual Matrix Transformers

Table 7. Parameter and forward pass FLOP count equations.

RESOURCE TRANSFORMER RMT

PARAMETERS D(L(4HDh + 2DFF ) + V ) R(2Dk(3L+ 1) +Dv(2LDFF + V +N))

FLOPS 4N(V + LD(2DhH +DFF ) + L(NDhH + 3
4
NH)) 6NRDKDv(1 + L) +NR(4V Dv + L(4NDv + 3N + 4DvDFF ))

– Core params: 4NRDvDFF

– Output key vectors: 2NDkDvR

– FF FLOPS: 2NDkDvR+ 4NRDvDFF + 2NDkDvR

• Unembedding

– Key vectors: 2NDkDvR

– Unembedding weights: 2NV RDv

– Unembedding FLOPS: 2NDkDvR+ 2NV RDv

Total forward pass FLOPS = embedding FLOPS + L× (attention FLOPS + FF FLOPS) + unembedding FLOPS
= 6NRDKDv(1 + L) +NR(4V Dv + L(4NDv + 3N + 4DvDFF ))

B. Moment Propagation Derivation
Here we modify the derivations from (Kedia et al., 2024) to derive the mean and variance propagation equations for the
RMT’s storage and retrival operations.

B.1. Storage

For R input data vectors x(h)
in ∈ RDv and an output matrix Xout ∈ RDk×Dv , the forward pass operation for a single token is

defined as follows.

Xout =

R∑
h=1

w(h) ⊗ x
(h)
in

=

R∑
h=1

w(h)x
(h)T
in

The backward pass operation is then defined as follows.

g
(h)
in = w(h)TGout

14



Residual Matrix Transformers

For the expected value of the forward pass, we have,

E[Xoutij ] = E[
R∑

h=1

w
(h)
i x

(h)
inj ]

=

R∑
h=1

E[w(h)
i x

(h)
inj ]

=

R∑
h=1

E[w(h)
i ]E[x(h)

inj ] (by ind.)

=

R∑
h=1

E[w(h)
i ]E[x(h)

inj ]

=

R∑
h=1

0× E[x(h)
inj ] (w is initialized with mean 0)

= 0

For the variance of the forward pass we have,

Var(Xoutij ) = Var(
R∑

h=1

w
(h)
i x

(h)
inj )

=

R∑
h=1

Var(w(h)
i x

(h)
inj ) (by ind. of weights from each other)

=

R∑
h=1

((σ2
xin

+ µ2
xin
)(σ2

w + µ2
w)− µ2

xin
µ2
w) (by ind. of weights and inputs)

=

R∑
h=1

(σ2
xin

+ µ2
xin
)σ2

w

= R(σ2
xin

+ µ2
xin
)σ2

w

For the expected value of the backward pass we have,

E[g(h)
inj ] = E[

Dk∑
i=1

w
(h)
i Goutij ]

=

Dk∑
i=1

E[w(h)
i Goutij ]

=

Dk∑
i=1

E[w(h)
i ]E[Goutij ] (by ind.)

= 0

15



Residual Matrix Transformers

And for the variance of the backwards path we have,

Var(g(h)
inj ) = Var(

Dk∑
i=1

w
(h)
i Goutij )

=

Dk∑
i=1

Var(w(h)
i Goutij ) (by ind. of weights from each other)

=

Dk∑
i=1

((σ2
Gout

+ µ2
Gout

)(σ2
w + µ2

w)− µ2
Gout

µ2
w) (by ind. of weights and inputs)

=

Dk∑
i=1

(σ2
Gout

+ µ2
Gout

)σ2
w

= Dk(σ
2
Gout

+ µ2
Gout

)σ2
w

B.2. Retrieval

For R input matrix Xin =∈ RDk×Dv and an output data vectors x(h)
out ∈ RDv , the forward pass operation for a single token

is defined as follows.

x
(h)
out = w(h) ·1 Xin

= w(h)TXin

And for the backward pass we have,

Gin =

R∑
h=1

w(h)gT
out

Notice that the forward equation for retrieval is the same as the backward table for storage, and vice versa. Then we can
follow the exact same derivations as in §B.1 to get,

E[x(h)
out ] = 0

Var(x(h)
out ) = dkσ

2
w(σ

2
Xin

+ µ2
Xin

)

E[Gin] = 0

Var(Gin) = Rσ2
w(σ

2
gout

+ µ2
gout

)

C. Experimental Setup
C.1. Training Details

All of our models are trained on the OpenWebText dataset and we use HuggingFace’s GPT2 tokenizer. The vocab size is
therefore set to 50257 for all models. Learned positional embeddings are used, and unless otherwise specified, models are
trained with a sequence length of 512 tokens. We use pre-LayerNorm with the epsilon parameter set to 1e−6. We do not use
any bias terms, nor do we use weight-tying for embedding and unembedding layers. In both models we include Mistral’s
GPT2 stability tweeks (attention upcasting and inverse layer scaling), as well as inverse layer scaling on layer outputs
from GPT2. The loss function used is z-loss with its coefficient set to 1e−4. When we report loss values, we report them
without the z-loss term which is equivalent to normal cross-entropy loss. All models are trained with the AdamW optimizer,
with β1 = 0.9, β2 = 0.95, and ϵ = 1e−8. We use decoupled weight decay with a scaling factor of 1e−4. Layernorm,

16



Residual Matrix Transformers

Table 8. Transformer hyperparameters for scaling laws experiment

MODEL SIZE DEVICE BATCH SIZE L D DFF H Dh TRAIN TOKENS

49M RTX 3090 64 6 384 1536 12 32 212M
160M RTX 3090 64 12 768 3072 12 64 1.7B
260M A100 64 18 896 3584 14 64 3.5B
405M A100 256 24 1024 4096 16 64 6B

Table 9. RMT hyperparameters for scaling laws experiment

MODEL SIZE DEVICE BATCH SIZE L Dk Dv R DFF TRAIN TOKENS

46M RTX 3090 64 6 32 32 12 1536 142M
134M RTX 3090 64 12 32 64 12 3072 1.1B
206M A100 64 18 896 48 14 3584 2.3B
305M A100 256 24 1024 64 16 4096 6B

embedding, and unembedding weights are excluded when weight decay is applied. We use linear warmup for 5% of the
total training tokens, and cosine decay for the remaining tokens that decays to 10% of the max learning rate. In addition,
gradient checkpoint is used with all models.

All training experiments are implemented using JAX (Bradbury et al., 2018), Equionx (Kidger & Garcia, 2021), and Haliax
(Hall et al., 2024).

C.2. RMT vs Transformer Experiments

Table 8 and Table 9 show the hyperparameters used for the experiments in §4.2.

C.2.1. µPARAM

The ”Parameterization Lottery” refers to how new architectures can appear to be successful or not successful based on
their compatibility with existing hyperparameters. Furthermore, the typical hyperparameters used when training standard
transformers are the product of years of tuning done by the machine learning community. To help mitigate biases associated
with hyperparameter selection, we perform our own hyperparameter tuning on both the transformer and RMT’s using
µTransfer. For each model type we perform 100 hyperparameter searches that follow suggestions from the µTransfer paper.
We sample from a loguniform distribution: learning rate on the interval [1e−4, 1e−1], input alpha on the interval [1e−1, 1.],
attention alpha on the interval [1e−1, 1.], output alpha on the interval [1e−1, 1.], and initialization standard deviation on the
interval [1e−1, 1.]. Our trail models have sequence length 128, 4 layers, 8 attention heads, head dimension 32, and 1024
feed-forward neurons. The embed size of the standard transformer is set to 256, and for the RMT the residual key and value
dimensions are both set to 32, and the layer rank R is set to 8. These models are all trained on Nvida GTX 1080 Ti gpus
with a batch size of 32, train over 5K steps. We select the hyperparameters of the best performing run from each model type.
For the standard transformer we have lr = 6.5e−3, input alpha = 9.76, attention alpha = 0.25, output alpha = 5.52, and
init std = 0.15.

C.3. Scaling Residual Stream Experiments

These models are all trained on Nvidia GeForce RTX 3090 gpus with a batch size of 64. All models use a max learning
rate of 1e−2 and are trained over 50K steps. The models have 12 layers, residual matrix value dimension Dv of 64, 3072
feed-forward neurons, and a layer rank R8 of 12 for a total of 135M parameters. Note that R is equal to the number of
attention heads, R ∗Dv is input/output dimension of the core feed-forward operation (Eq. 24), and Dv is the attention head
dimension.

8Same R from Eqs. in §2.2

17



Residual Matrix Transformers

Table 10. Transformer variants statistics

ARCHITECTURE MODEL SIZE RESIDUAL STREAM SIZE FINAL TRAIN LOSS

TRANSFORMER 160M 768 3.43
RMT 134M 2048 3.38

HIERARCHICAL AGGREGATION 165M 768 3.47
DEPTHWISE LSTM 233M 768 3.54

HIGHWAY TRANSFORMER 191M 768 3.41

C.4. Transformer Variants Experiments

All models were trained on Geforce-RTX 3090 gpus with a batch size a 64. They were trained for 5000 train steps for a total
of 1.6B train tokens. The models all had 12 layers, DFF of 3072, 12 attention heads, and Dh = 64. For the RMT model Dk

was set to 32 and Dv was set to 64. Table 10 shows the models size and residual stream sizes for these models. The max
learning rate was set to 1e−2 and we used Lecun initialization for all parameters.

D. Downstream Evaluation Details
All results from Table 6 plus the Lambada perplexities presented in Table 5 were generated using the EleutherAI evaluation
harness (Gao et al., 2023). The remaining perplexity results in Table 5 were evaluated by hand.

E. Runtime Discussion
Although hardware-specific implementations and diagnostics are outside the scope of this work, we hypothesize that
much of the slowdown is due to replacing highly optimized GEMM operations with unoptimized tensor contractions. The
storage and retrieval operations are both implemented as tensor contractions, whereas the storage and retrieval operations
for the transformer are GEMMs. The contraction dimension of the RMT’s tensor contraction is small compared to the
embedding dimension of the transformer (the K dimension of the transformer’s GEMM operations). We expect that a naive
implementation of this tensor contraction will have much lower throughput than an optimized GEMM kernel; however, we
expect that a custom CUDA kernel that takes advantage of the small size of the key vectors could dramatically improve
runtime performance.

18


