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ABSTRACT

We investigate the unsupervised constituency parsing task, which organizes words
and phrases of a sentence into a hierarchical structure without using linguistically
annotated data. We observe that existing unsupervised parsers capture different
aspects of parsing structures, which can be leveraged to enhance unsupervised
parsing performance. To this end, we propose a notion of “tree averaging,” based
on which we further propose a novel ensemble method for unsupervised parsing.
To improve inference efficiency, we further distill the ensemble knowledge into a
student model; such an ensemble-then-distill process is an effective approach to
mitigate the over-smoothing problem existing in common multi-teacher distilling
methods. Experiments show that our method surpasses all previous approaches,
consistently demonstrating its effectiveness and robustness across various runs,
with different ensemble components, and under domain-shift conditions.1

1 INTRODUCTION

Constituency parsing is a well-established task in natural language processing (NLP), which inter-
prets a sentence and induces its constituency tree, a syntactic structure representation that organizes
words and phrases into a hierarchy (Chomsky, 1967). It has wide applications in various downstream
tasks, including semantic role labeling (Mohammadshahi & Henderson, 2023) and explainability of
AI models (Tenney et al., 2019; Wu et al., 2022). Traditionally, parsing is accomplished by super-
vised models trained with linguistically annotated treebanks (Charniak, 2000), which are expensive
to obtain and may not be available for low-resource scenarios. Also, these supervised parsers often
underperform when encountering domain shifts. This motivates researchers to explore unsupervised
methods as they eliminate the need for annotated data.

To address unsupervised parsing, researchers have proposed various heuristics and indirect su-
pervision signals. Clark (2001) employs context distribution clustering to induce a probabilistic
context-free grammar (PCFG; Booth, 1969). Klein & Manning (2002) define a joint distribution
for sentences and parse structures, the latter learned by expectation–maximization (EM) algorithms.
Snyder et al. (2009) further extend unsupervised parsing to the multilingual setting with bilingual
supervision.

In the deep learning era, unsupervised parsing techniques keep advancing. Cao et al. (2020) uti-
lize linguistic constituency tests (Chomsky, 1967) as heuristics, evaluating all spans as potential
constituents for selection. Li & Lu (2023) modify each span based on linguistic perturbations and
observe changes in the contextual representations of a masked language model; according to the
level of distortion, they determine how likely the span is a constituent. Maveli & Cohen (2022) use
rules to train two classifiers with local features and contextual features, respectively, which are fur-
ther refined in a co-training fashion. Another way to obtain the parsing structure in an unsupervised

⋆Work partially done during Mitacs internship at Borealis AI.
1Code available at https://github.com/MANGA-UOFA/ED4UCP
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Compound PCFG 100
DIORA 55.8 100

S-DIORA 58.1 63.6 100
Compound DIORA S-DIORA

PCFG

DIORA✩ 100
DIORA✧ 74.1 100
DIORA✻ 74.3 74.9 100

DIORA✩ DIORA✧ DIORA✻

Table 1: Correlation analysis of unsupervised parsers. Numbers are the F1 score of one model
against another on the Penn Treebank dataset (Marcus et al., 1993). The left table considers three
heterogeneous models (Compound PCFG, DIORA, and S-DIORA), whereas the right table consid-
ers three runs (✩, ✧, and ✻) of the same model. All their F1 scores against the groundtruth fall
within the range of 59–61, thus providing a controlled experimental setting.

way is to treat it as a latent variable and train it in downstream tasks, such as text classification (Li
et al., 2019), language modeling (Shen et al., 2019; Kim et al., 2019b), and sentence reconstruc-
tion (Drozdov et al., 2019; Kim et al., 2019a). Overall, unsupervised parsing is made feasible by
such heuristics and indirect supervisions, and has become a curious research direction in NLP.

In our work, we uncover an intriguing phenomenon of low correlation among different unsupervised
parsers, despite their similar overall F1 scores (the main evaluation metric for parsing), shown in
Table 1. While Williams et al. (2018) have shown low self-consistency in early latent-tree models,
we go further and show the correlation among different models is even lower than restarts of the same
model. This suggests that existing unsupervised parsers capture different aspects of the structures,
and our insight is that combining these parsers may leverage their different expertise to achieve
higher performance for unsupervised parsing.

To this end, we propose an ensemble method for unsupervised parsing. We first introduce a notion of
“tree averaging” based on the similarity of two constituency trees. Given a few existing unsupervised
parsers, referred to as teachers,2 we then propose to use a CYK-like algorithm (Kasami, 1966;
Younger, 1967; Manacher, 1978; Sennrich, 2014) that utilizes dynamic programming to search for
the tree that is most similar to all teachers’ outputs. In this way, we are able to obtain an “average”
parse tree, taking advantage of different existing unsupervised parsers.

To improve the inference efficiency, we distill our ensemble knowledge into a student model. In
particular, we choose the recurrent neural network grammar (RNNG; Dyer et al., 2016) with an
unsupervised self-training procedure (URNNG; Kim et al., 2019b), following the common practice
in unsupervised parsing (Kim et al., 2019a; Cao et al., 2020). Our ensemble-then-distill process is
able to mitigate the over-smoothing problem, where the standard cross-entropy loss encourages the
student to learn an overly smooth distribution (Wen et al., 2023b). Such a problem exists in common
multi-teacher distilling methods (Wu et al., 2021), and would be especially severe when the teachers
are heterogeneous, signifying the importance of our approach.

We evaluated our ensemble method on the Penn Treebank (PTB; Marcus et al., 1993) and SU-
SANNE (Sampson, 2002) corpora. Results show that our approach outperforms existing unsuper-
vised parsers by a large margin in terms of F1 scores, and that it achieves results comparable to
the supervised counterpart in the domain-shift setting. Overall, our paper largely bridges the gap
between supervised and unsupervised constituency parsing.

In short, the main contributions of this paper include: 1) We reveal an intriguing phenomenon that
existing unsupervised parsers have diverse expertise, which may be leveraged by model ensembles;
2) We propose a notion of tree averaging and utilize a CYK-like algorithm that searches for the av-
erage tree of existing unsupervised parsers; and 3) We propose an ensemble-then-distill approach to
improve inference efficiency and to alleviate the over-smoothing problem in common multi-teacher
distilling approaches.

2 APPROACH

2.1 UNSUPERVISED CONSTITUENCY PARSING

In linguistics, a constituent refers to a word or a group of words that function as a single unit in
a hierarchical tree structure (Chomsky, 1967). In the sentence “The quick brown fox jumps over

2Our full approach involves training a student model from the ensemble; thus, it is appropriate to use the
term teacher for an ensemble component.
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the lazy dog,” for example, the phrase “the lazy dog” serves as a noun phrase constituent, whereas
“jumps over the lazy dog” is a verb phrase constituent. In this study, we address unsupervised
constituency parsing, where no linguistic annotations are used for training. This reduces human
labor and is potentially useful for low-resource languages. Following most previous work in this
direction (Cao et al., 2020; Maveli & Cohen, 2022; Li & Lu, 2023), we focus on unlabeled, binary
parse trees, in which each constituent has a binary branching and is not labeled with its syntactic
role (such as a noun phrase or a verb phrase).

The standard evaluation metric for constituency parsing is the F1 score, which is the harmonic mean
of precision and recall (Shen et al., 2018; Zhang et al., 2021):

P =
|C(Tpred) ∩ C(Tref)|

|C(Tpred)|
, R =

|C(Tpred) ∩ C(Tref)|
|C(Tref)|

, F1 = 2
PR

P +R
(1)

where Tpred and Tref are predicted and reference trees, respectively, and C(T ) is the set of con-
stituents in a tree T .

2.2 A NOTION OF AVERAGING CONSTITUENCY TREES

In our study, we propose an ensemble approach to combine the expertise of existing unsupervised
parsers (called teachers), as we observe they have low correlation among themselves despite their
similar overall F1 scores (Table 1).

To accomplish ensemble binary constituency parsing, we need to define a notion of tree averaging;
that is, our ensemble output is the average tree that is most similar to all teachers’ outputs. Inspired
by the evaluation metric, we suggest the average tree should have the highest total F1 score compared
with different teachers. Let s be a sentence and Tk be the kth teacher parser. Given K teachers, we
define the average tree to be

AvgTree(s, {Tk}Kk=1) = argmax
T∈T (s)

K∑
k=1

F1(T, Tk(s)) (2)

where T (s) is all possible unlabeled binary trees on sentence s, and Tk(s) is the kth teacher’s output.

It is emphasized that only the trees of the same sentence can be averaged. This simplifies the F1

score of binary trees, as the denominators for both precision and recall are 2|s| − 1 for a sentence
with |s| words, i.e., |C(Tpred)| = |C(Tref)| = 2|s| − 1. Thus, Eqn. (2) can be rewritten as:

AvgTree(s, {Tk}Kk=1) = argmax
T∈T (s)

K∑
k=1

F1(T, Tk(s)) = argmax
T∈T (s)

K∑
k=1

|C(T ) ∩ C(Tk(s))|
2|s| − 1

(3)

= argmax
T∈T (s)

∑
c∈C(T )

K∑
k=1

1[c ∈ C(Tk(s))]︸ ︷︷ ︸
HitCount(c,{Tk(s)}K

k=1)

(4)

Here, we define the HitCount function to be the number of times that a constituent c appears in the
teachers’ outputs. In other words, Eqn. (4) suggests that the average tree should be the one that hits
the teachers’ predicted constituents most.

Discussion on MBR decoding. Our work can be seen as minimum Bayes risk (MBR) decod-
ing (Bickel & Doksum, 2015). In general, MBR yields an output that minimizes an expected error
(called Bayes risk), defined according to the task of interest. In our case, the error function can
be thought of as −

∑
c∈C(T ) HitCount(c, {Tk(s)}Kk=1), and minimizing such-defined Bayes risk is

equivalent to maximizing the total hit count in Eqn. (4).

However, our MBR approach significantly differs from prior MBR studies in NLP. In fact, MBR has
been widely applied to text generation (Kumar & Byrne, 2004; Freitag et al., 2022; Suzgun et al.,
2023), where a set of candidate output sentences are obtained by sampling or beam search, and the
best one is selected based on a given error function, e.g., the dissimilarity against others; such an
MBR method is selective, meaning that the output can only be selected from a candidate set. On
the contrary, our MBR is generative, as the sentence’s entire parse space T (s) will be considered
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during the argmax process in (4). This follows Petrov & Klein (2007) who search for the global
lowest-risk tree in the task of supervised constituency parsing. Here, the global search is feasible
because the nature of tree structures facilitates efficient exact decoding with dynamic programming,
discussed in the next subsection.

2.3 OUR CYK VARIANT

As indicated by Eqn. (4), our method searches for the constituency tree with the highest total hit
count of its constituents in the teachers’ outputs. We can achieve this by a CYK (Kasami, 1966;
Younger, 1967)-like dynamic programming algorithm, because an optimal constituency parse struc-
ture of a span—a continuous subsequence of a sentence—is independent of the rest of the sentence.

Given a sentence s, we denote by sb:e a span starting from the bth word and ending right before the
eth word. Considering a set of teachers {Tk}Kk=1, we define a recursion variable

Hb:e = max
T∈T (sb:e)

∑
c∈C(T )

HitCount(c, {Tk(s)}Kk=1) (5)

which is the best total hit count for this span.3 We also define Lb:e to be the corresponding, locally
best parse structure, unambiguously represented by the set of all constituents in it.

The base cases are Hb:b+1 = K and Lb:b+1 = {sb:b+1} for b = 1, · · · , |s|, suggesting that the best
parse tree of a single-word span is the word itself, which appears in all teachers’ outputs and has a
hit count of K.

For recursion, we see a span sb:e will be split into two subspans sb:j and sj:e for some split position j,
because our work focuses on binary constituency parsing. Given j, the total hit count for the span
sb:e is the summation over those of the two subspans sb:j and sj:e, plus its own hit count. To obtain
the best split, we need to vary j from b to e (exclusive), given by

j∗b:e = argmax
b<j<e

[
Hb:j +Hj:e +HitCount(sb:e, {Tk(s)}Kk=1)

]
(6)

where the hit count is a constant for argmax and can be omitted in implementation. Then, we have

Hb:e = Hb:j∗b:e
+Hj∗b:e:e

+HitCount(sb:e, {Tk(s)}Kk=1) (7)

Lb:e = Lb:j∗b:e
∪ Lj∗b:e:e

∪ {sb:e} (8)

Eqn. (8) essentially groups two sub-parse structures Lb:j∗b:e
and Lj∗b:e:e

for the span sb:e. This can be
represented as the union operation on the sets of constituents.

The recursion terminates when we have computed L1:|s|+1, which is the best parse tree for the
sentence s, maximizing overall similarity to the teachers’ predictions and being our ensemble output.
In Appendix A, we summarize our ensemble procedure in pseudocode and provide an illustration.

2.4 ENSEMBLE DISTILLATION

In our work, we further propose an ensemble distilling approach that trains a student parser from
an ensemble of teachers. This is motivated by the fact that the ensemble requires performing infer-
ence for all teacher models and may be slow. Specifically, we choose the recurrent neural network
grammar (RNNG; Dyer et al., 2016) as the student model, which learns shift–reduce parsing op-
erations (Aho & Johnson, 1974) along with language modeling using recurrent neural networks.
The choice of RNNG is due to its unsupervised refinement procedure (URNNG; Kim et al., 2019b),
which treats syntactic structures as latent variables and uses variational inference to optimize the
joint probability of syntax and language modeling, given some unlabeled text. Such a self-training
process enables URNNG to significantly boost parsing performance.

Concretely, we treat the ensemble outputs as pseudo-groundtruth parse trees and use them to
train RNNG with cross-entropy loss. Then, we apply URNNG for refinement, following previous
work (Kim et al., 2019a; Cao et al., 2020).

3Note that, in Eqns. (5)–(8), Tk(s) should not be Tk(sb:e), because the hit count is based on the teachers’
sentence-level parsing.
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Discussion on union distillation. An alternative way of distilling knowledge from multiple teachers
is to perform cross-entropy training based on the union of the teachers’ outputs (Wu et al., 2021),
which we call union distillation. Specifically, the cross-entropy loss between a target distribution t
and a learned distribution p is −

∑
x t(x) log p(x), which tends to suffer from an over-smoothing

problem (Wei et al., 2019; Wen et al., 2023a;b): the machine learning model will predict an overly
smooth distribution p to cover the support of t; if otherwise p(x) is zero but t(x) is non-zero for
some x, the cross-entropy loss would be infinity. Such an over-smoothing problem is especially
severe in our scenario, as will be shown in Section 3.4, because our multiple teachers are hetero-
geneous and have different expertise (Table 1). By contrast, our proposed method is an ensemble-
then-distill approach, which first synthesizes a best parse tree by model ensemble and then learns
from the single best tree given an input sentence.

3 EXPERIMENTS

3.1 DATASETS

We evaluated our approach on the widely used Penn Treebank (PTB; Marcus et al., 1993) dataset,
following most previous work (Shen et al., 2019; Kim et al., 2019a; Cao et al., 2020; Maveli &
Cohen, 2022; Li & Lu, 2023). We adopted the standard split: 39,701 samples in Sections 02–21
for training, 1,690 samples in Section 22 for validation, and 2,412 samples in Section 23 for test. It
is emphasized that we did not use linguistic annotations in the training set, but took the unlabeled
sentences to train teacher unsupervised parsers and to distill knowledge into the student.

In addition, we used the SUSANNE dataset (Sampson, 2002) to evaluate model performance in a
domain-shift setting. Since it is a small, test-only dataset containing 6,424 samples in total, it is not
possible to train unsupervised parsers directly on SUSANNE, which on the other hand provides an
ideal opportunity for domain-shift evaluation.

We adopted the standard evaluation metric, the F1 score of unlabeled constituents, as has been
explained in Section 2.1. We used the same evaluation setup as Kim et al. (2019a), ignoring punctu-
ation and trivial constituents, i.e., single words and the whole sentence. We reported the average of
sentence-level F1 scores over the corpus.

3.2 COMPETING METHODS

Our ensemble approach involves the following classic or state-of-the-art unsupervised parsers as our
teachers, which are also baselines for comparison.

• Ordered Neurons (Shen et al., 2019), a neural language model that learns syntactic structures
with a gated attention mechanism;
• Neural PCFG (Kim et al., 2019a), which utilizes neural networks to learn a latent probabilistic

context-free grammar;
• Compound PCFG (Kim et al., 2019a), which improves the Neural PCFG by adding an addi-

tional sentence-level latent representation;
• DIORA (Drozdov et al., 2019), a deep inside–outside recursive auto-encoder that marginalizes

latent parse structures during encoder–decoder training;
• S-DIORA (Drozdov et al., 2020), a variant of DIORA that only considers the single most

probable tree during unsupervised training;
• ConTest (Cao et al., 2020), which induces parse trees by rules and heuristics inspired by con-

stituency tests (McCawley, 1998); and
• ContexDistort (Li & Lu, 2023), which induces parsing structures from pretrained masked lan-

guage models—in particular, the BERT-base model (Devlin et al., 2019) in our experiments—
based on contextual representation changes caused by linguistic perturbations.

To combine multiple teachers, we consider several alternatives:

• Selective MBR, which selects the lowest-risk constituency tree among a given candidate set
(Section 2.2). In particular, we consider teachers’ outputs as the candidates, and we have
SelectiveMBR(s, {Tk}Kk=1) = argmaxT∈{Tk(s)}K

k=1

∑K
k=1 F1(T, Tk(s)). This differs from
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Method Mean±Std Run 1 +RNNG +URNNG

1 Left branching 8.7 – – –
2 Right branching 39.5 – – –

3 Ordered Neurons (Shen et al., 2019) 44.3±6.0 44.8 45.4 45.3
4 Neural PCFG (Kim et al., 2019a) 51.0±1.7 48.4 48.9 51.1
5 Compound PCFG (Kim et al., 2019a) 55.5±2.4 60.1 60.5 67.4
6 DIORA (Drozdov et al., 2019) 58.9±1.8 55.4 58.6 62.3
7 S-DIORA (Drozdov et al., 2020) 57.0±2.1 56.3 59.4 62.2
8 ConTest (Cao et al., 2020) 62.9±1.6 65.9 64.6 68.5
9 ContexDistort (Li & Lu, 2023) 47.8±0.9 48.8 48.5 50.8

10 Union distillation – – 65.6 65.4
11 Selective MBR 66.3±0.6 66.7 68.6 71.5
12 Our ensemble (corresponding run) 70.4±0.6 70.5 69.7 71.7
13 Our ensemble (worst teacher across runs) 69.4 – 69.1 70.0
14 Our ensemble (best teacher across runs) 71.9 – 71.1 72.8
15 Oracle 83.3 – 76.0 76.0

Table 2: F1 scores on PTB. Teacher models’ results are given by our five runs of replication (de-
tailed in Appendix E) for a fair comparison. Due to the limit of computing resources, we trained
RNNG/URNNG with the first run only. The oracle refers to the highest possible F1 score of a binary
tree, as the groundtruth tree may not be binary.

our MBR approach, which is generative and performs the argmax over the entire binary tree
space, shown in Eqn. (2).
• Union distillation, which trains a student from the union of the teachers’ outputs (Section 2.4).

For hyperparameters and other setups of previous methods (all teacher and student models), we used
default values mentioned in either papers or codebases. It should be emphasized that our proposed
ensemble approach does not have any hyperparameters, thus not requiring any tuning.

3.3 MAIN RESULTS

Results on PTB. Table 2 presents the main results on the PTB dataset, where we performed five
runs of replication either by loading original authors’ checkpoints or by rerunning released code-
bases. Our replication results are comparable to those reported in previous papers, inventoried in
Appendix E, showing that we have successfully established a foundation for our ensemble research.

We first evaluate our ensembles of corresponding runs (Row 12), which is a fair comparison against
teacher models (Rows 3–9). Without RNNG/URNNG distillation, our method outperforms the best
teacher (Row 8) by 7.5 points in terms of F1 scores, showing that our ensemble approach is highly
effective and justifying the proposed notion of tree averaging for unsupervised parsing.

It is also possible to have an ensemble of the best (or worst) teachers, one per each model across
different runs, as the teacher models are all validated by a labeled development set. We observe
that the ensemble of the best (or worst) teachers achieves slightly higher (or lower) scores than
the ensemble of the teachers in corresponding runs, which is intuitive. However, the gap between
the best-teachers ensemble and worst-teachers ensemble is small (Rows 13 vs. 14), showing that
our approach is not sensitive to the variance of teachers. Interestingly, the ensemble of the worst
teachers still outperforms the best single teacher by a large margin of 6.5 F1 points.

We compare our ensemble approach with selective MBR (Row 11), which selects a minimum-risk
tree from the teachers’ predictions. As shown, selective MBR outperforms all the teachers too,
again verifying the effectiveness of our tree-averaging formulation. However, its performance is
worse than our method (Row 12), which can be thought of as generative MBR that searches the
entire tree space using a CYK-like algorithm.

Then, we evaluate the distillation stage of our approach, which is based on Run 1 of each model. We
observe our RNNG and URRNG follow the same trend as in previous work that RNNG may slightly
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hurt the performance, but its URNNG refinement4 yields a performance boost. It is also noted that
URNNG’s boosting effect on our approach is less significant than that on previous models, which is
reasonable because our ensemble (w/o RNNG or URNNG) has already achieved a high performance.
Overall, we achieve an F1 score of 72.8 in Row 14, being a new state of the art of unsupervised
parsing and largely bridging the gap between supervised and unsupervised constituency parsing.

We compare our ensemble-then-distill approach with union distillation (Row 10), which trains from
the union of the teachers’ first-run outputs. As expected in Section 2.4, union distillation does not
work well; its performance is worse than that of the best teacher (Run 1 of Row 8), suggesting that
multiple teachers may confuse the student and hurt the performance. Rather, our approach requires
all teachers to negotiate a most agreed tree, thus avoiding confusion during the distilling process.

Method Run 1 +RNNG +URNNG

1 Left branching 6.9 – –
2 Right branching 26.9 – –

3 Ordered Neurons 32.4 33.1 33.1
4 Neural PCFG 44.2 46.1 48.6
5 Compound PCFG 43.0 43.4 46.5
6 DIORA 35.9 42.2 44.0
7 S-DIORA 37.5 43.3 42.4
8 ConTest 38.8 46.9 47.3
9 ContexDistort 41.2 39.7 41.1

10 Selective MBR 47.4 48.4 48.5
11 Our ensemble 50.3 49.1 48.8

12 PTB-supervised – 50.1 49.8
13 SUSANNE oracle 69.8 – –

Table 3: F1 scores in the domain-shift setting
from PTB to SUSANNE. Note that all mod-
els were trained on PTB, including RNNGs
and URNNGs. Since our approach is highly
robust, we only considered the models of the
first run on PTB in this experiment.

Results on SUSANNE. Table 3 presents parsing
performance under a domain shift from PTB to SU-
SANNE. We directly ran unsupervised PTB-trained
models on the test-only SUSANNE corpus without
finetuning. This is a realistic experiment to examine
the models’ performance in an unseen low-resource
domain.

We see both selective MBR (Row 10) and our
method (Row 11) outperform all teachers (Rows 3–
9) in the domain-shift setting, and that our approach
outperforms selective MBR by 3 points. The results
are consistent with the PTB experiment.

For the ensemble-distilled RNNG and URNNG
(Row 11), the performance drops slightly, proba-
bly because the performance of our ensemble ap-
proach without RNNG/URNNG is saturating and
close to the PTB-supervised model (Row 12), whose
RNNG/URNNG distillation also yields slight per-
formance drop. Nevertheless, our RNNG and URNNG (Row 11) outperform all the baselines in
all settings. Moreover, the inference of our student model does not require querying the teachers,
and is 18x faster than the ensemble method (Appendix B.1). Thus, the ensemble-distilled model is
useful as it achieves competitive performance and high efficiency.

3.4 IN-DEPTH ANALYSIS

Denoising vs. utilizing different expertise. A curious question raised from the main results is why
our ensemble approach yields such a substantial improvement. We have two plausible hypotheses:
1) The ensemble approach merely smooths out the teachers’ noise, and 2) The ensemble approach
is able to utilize different expertise of heterogeneous teachers.

We conducted the following experiment to verify the above hypotheses. Specifically, we compare
two settings: the ensemble of three runs of the same model and the ensemble of three heterogeneous
models. We picked the runs and models such that the two settings have similar performance. This
sets up a controlled experiment, as the gain obtained by the ensemble of multiple runs suggests a
denoising effect, whereas a further gain obtained by the ensemble of heterogeneous models suggests
the effect of utilizing different expertise.

We repeated the experiment for seven groups with different choices of models and show results in
Figure 1. As seen, the ensemble of different runs always outperforms a single run, showing that the
denoising effect does play a role in the ensemble process. Moreover, the ensemble of heterogeneous
models consistently leads to a large add-on improvement compared with the ensemble of multiple
runs; the results convincingly verify that different unsupervised parsers learn different aspects of the
language structures, and that our ensemble approach is able to utilize such different expertise.

4URNNG is traditionally used as a refinement procedure following a noisily trained RNNG (Kim et al.,
2019a; Cao et al., 2020). If URNNG is trained from scratch, it does not yield meaningful performance and may
be even worse than right-branching (Kim et al., 2019b). Thus, we excluded URNNG from our teachers.
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Figure 1: Effect of denoising vs. utilizing different expertise. Results are the F1 scores on the PTB
test set. The italic blue annotation is an interpretation of the plot.

Distillation Approach Mean Entropy Std

Union distillation 11.42 0.09
Our ensemble distillation 4.93 0.12
Binarized-groundtruth distillation 2.26 0.12

Table 4: The mean and standard deviation (std) of the prediction entropy for distilled RNNGs.

Over-smoothing in multi-teacher knowledge distillation. As discussed in Section 2.4, union
distillation is prone to the over-smoothing problem, where the student learns an overly smooth,
wide-spreading distribution. This is especially severe in our setting, as our student learns from
multiple heterogeneous teachers.
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Figure 2: Ensemble performance with differ-
ent numbers of teachers. The lines are best-
performing, average, and worst-performing
combinations. These results are averaged
over five runs available in the experiments
conducted for Table 2. The gray shades are
the best and worst runs.

The over-smoothing problem can be verified by
checking the entropy, −

∑
x p(x) log p(x), of a

model’s predicted distribution p. In Table 4, we
report the mean and standard deviation of the en-
tropy5 across five runs. Results clearly show that
the union distillation leads to a very smooth distri-
bution (very high entropy), which also explains its
low performance (Table 2). On the contrary, our
ensemble-then-distill approach yields much lower
entropy, providing strong evidence of the alleviation
of the over-smoothing problem.

Analyzing the number of teachers. In our main
experiment (Table 2), we perform an ensemble of
seven popular unsupervised parsers. We would like
to analyze the performance of ensemble models with
different numbers of teachers,6 and results are shown
in Figure 2.

We see a consistent trend that more teachers lead to
higher performance. Profoundly, the top dashed line
suggests that, even if we start with a strong teacher, adding weaker teachers also improves, or at
least does not hurt, the performance. Further, the decrease in the width of gray shades (deviations
of best and worst runs) suggests that more teachers also lead to lower variance. Overall, this anal-
ysis conclusively shows that, with a growing number of teachers, our ensemble approach not only
improves performance, but also makes unsupervised parsing more robust.

Additional results. We present supplementary analyses in the appendix. B.1: Inference efficiency;
B.2: Performance by sentence lengths; and B.3: Performance by different constituency types.

5The entropy of each run is averaged over 2,412 samples. The calculation of entropy is based on the
codebase of Kim et al. (2019b), available at https://github.com/harvardnlp/urnng

6We have 27 − 1 combinations, which are tractable because our CYK algorithm is efficient.
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4 RELATED WORK

Unsupervised syntactic structure discovery carries a long history and has attracted much attention
in different ages (Klein, 2005; Shen et al., 2019; Li & Lu, 2023). Its significance lies in the potential
to help low-resource domains (Kann et al., 2019) and its important role in cognitive science, such
as understanding how children learn language (Bod, 2009). Peng et al. (2011) show unsupervised
constituency parsing methods are not limited to linguistics but can also be used to parse motion-
sensor data by treating it as a language. This approach finds an abstraction of motion data and leads
to a better understanding of the signal semantics.

Unsupervised syntactic structure discovery can be divided into different tasks: unsupervised con-
stituency parsing, which organizes the phrases of a sentence in a hierarchical manner (Chomsky,
1967); unsupervised dependency parsing (Nivre, 2010; Naseem et al., 2010; Han et al., 2020),
which determines the syntactic relation between the words in a sentence; and unsupervised chunk-
ing, which aims at segmenting a text into groups of syntactically related words in a flattened struc-
ture (Deshmukh et al., 2021; Wu et al., 2023).

Our work falls in the category of unsupervised constituency parsing. Previous work has proposed
various heuristics and indirect supervisions to tackle this task (Snyder et al., 2009; Kim et al., 2019a;
Drozdov et al., 2019; Shi et al., 2019), as mentioned in Section 1. In our work, we propose to build
an ensemble model to utilize the expertise of different unsupervised parsers.

Minimum Bayes risk (MBR) decoding minimizes a Bayes risk (i.e., expected loss) during infer-
ence (Bickel & Doksum, 2015). For example, machine translation systems may generate a set of
candidate outputs, and define the risk as the dissimilarity between one candidate output and the rest;
MBR decoding selects the lowest-risk candidate translation that is most similar to others (Kumar &
Byrne, 2004; Freitag et al., 2022). Similar approaches are applied to other decoding tasks, such as
speech recognition (Gibson & Hain, 2006), text summarization (Suzgun et al., 2023), text-to-code
translation (Shi et al., 2022), and dependency parsing (Smith & Smith, 2007). For constituency
parsing, Titov & Henderson (2006) formulate the task under the MBR framework, and Petrov &
Klein (2007) extend it to state-split PCFGs.

In this work, we develop a novel generative MBR method for ensemble constituency parsing that
searches the entire binary tree space by an efficient CYK-like dynamic programming, significantly
differing from common MBR approaches that perform selection on a candidate set.

Knowledge distillation (KD) is commonly used to train a small student model from a large teacher
model (Sun et al., 2019; Jiao et al., 2020). Evidence show that the teacher’s predicted probability
contains more knowledge than a groundtruth label and can better train the student model (Hinton
et al., 2015; Wen et al., 2023b).

Interestingly, KD is originally proposed to train a small model from an ensemble of teachers (Buciluă
et al., 2006; Hinton et al., 2015). They address simple classification tasks and use either voting or
average ensembles to train the student. A voting ensemble is similar to MBR, but only works
for classification tasks; it cannot be applied to structure prediction (e.g., sequences or trees). An
average ensemble takes the average of probabilities; thus, it resembles union distillation, which is
the predominant approach for multi-teacher distillation in recent years (Wu et al., 2021; Yang et al.,
2020). However, these approaches may suffer from the over-smoothing problem when teachers are
heterogeneous (Section 2.4). In our work, we propose a novel MBR-based ensemble method for
multi-teacher distillation, which largely alleviates the over-smoothing problem and is able to utilize
different teachers’ expertise.

5 CONCLUSION
In this work, we reveal an interesting phenomenon that different unsupervised parsers learn dif-
ferent expertise, and we propose a novel ensemble approach by introducing a new notion of “tree
averaging” to leverage such heterogeneous expertise. Further, we distill the ensemble knowledge
into a student model to improve inference efficiency; the proposed ensemble-then-distill approach
also addresses the over-smoothing problem in multi-teacher distillation. Overall, our method shows
consistent effectiveness with various teacher models and is robust in the domain-shift setting, largely
bridging the gap between supervised and unsupervised constituency parsing. We will discuss future
work in Appendix D.
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A OUR CYK VARIANT

In this appendix, we provide a step-by-step illustration of our CYK-based ensemble algorithm in-
troduced in Section 2.3.

Consider four teachers predicting the trees in the first row of Figure 3. The hit count of each span is
shown in the second row. For example, the span (w1w2) hits 3 times, namely, Teachers 1–3.

The initialization of the algorithm is to obtain the total hit count for a single word, which is simply
the same as the number of teachers because every word appears intact in every teacher’s prediction.
The initialization has five cells in a row, and is omitted in the figure to fit the page width.

For recursion, we first consider the constituents of two words, denoted by l = 2. A constituent’s
total hit count, denoted by Hb:e in Eqn. (5), inherits those of its children, plus its own hit count. In
the cell of l = 2, b = 1, for example, H1:3 = 4 + 4 + 3 = 11, where 3 is the hit count of the span
(w1w2), shown before.

For the next step of recursion, we consider three-word constituents, i.e., l = 3. For example, the
span w1w2w3 has two possible tree structures (w1(w2w3)) and ((w1w2)w3). The former leads to a

Teacher 1 Teacher 2 Teacher 3 Teacher 4

Tr
ee

✧ ✧ ✧ ✧
✧ ✧

✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5 w1 w2 w3 w4 w5 w1 w2 w3 w4 w5
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4 4 4 4 4
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2

11 11 08 11 08 11 11 08 11 09
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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Figure 3: Step-by-step illustration of our CYK algorithm, showing the dynamic changes in the H
along with the construction of the corresponding optimal binary constituency tree.
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Algorithm 1 Our CYK Variant
1: input: s, {Ti}Ki=1
2: for b← 1 to |s| do ▷ Base cases
3: Hb:b+1 = K
4: Lb:b+1 = {sb:b+1}
5: end for
6: for l← 2 to |s| do ▷Iterate over different lengths of constituents
7: for b← 1 to |s| − l + 1 do ▷ Iterate over different possible constituents of length l
8: e← b+ l
9: j∗s:b ← argmax

b<j<e
(Hb:j +Hj:e+HitCount(sb:e, {Ti(s)}Ki=1))

▷ The gray term need not be implemented as it is a constant in j
10: Hb:e ← Hb:j∗s:b

+Hj∗s:b:e
+HitCount(sb:e, {Ti(s)}Ki=1)

11: Lb:e ← Lb:j∗s:b
∪ Lj∗s:b:e

∪ {sb:e}
12: end for
13: end for
14: return L1:|s|+1

total hit count of 13, whereas the latter leads to 16. Therefore, ((w1w2)w3) is chosen, with the best
total hit count H1:4 = 16.

The process is repeated until we have the best parse tree of the whole sentence, which is l = 5 for
the 5-word sentence in Figure 3.

We provide the pseudocode for the process in Algorithm 1.

B SUPPLEMENTARY ANALYSES

B.1 INFERENCE EFFICIENCY

Inference Time (ms)
Model w/ GPU w/o GPU

Teachers
ON 35 130
Neural PCFG 610 630
Compound PCFG 560 590
DIORA 30 30
S-DIORA 110 140
ConTest 4,300 59,500
ContexDestort 1,890 11,110

Our ensemble
CYK part 6 6
Total 7,541 72,136

Student
RNNG 410 410

Table 5: Per-sample inference time (in mil-
liseconds) on the PTB test.

We propose to distill the ensemble knowledge into a
student model to increase the inference efficiency.
We conducted an analysis on the inference time
of different approaches, where we measured the
run time using 28 Intel(R) Core(TM) i9-9940X
(@3.30GHz) CPUs with or without GPU (Nvidia
RTX Titan). Table 5 reports the average time elapsed
for performing inference on one sample7 of the PTB
test set, ignoring loading models, reading inputs, and
writing outputs.

In the table, the total inference time of our ensem-
ble model is the summation of all the teachers and
the CYK algorithm. As expected, an ensemble ap-
proach is slow because it has to perform inference
for every teacher. However, our CYK-based ensem-
ble algorithm is extremely efficient and its inference
time is negligible compared with the teacher models.

The RNNG student model learns the knowledge from the cumbersome ensemble, and is able to
perform inference efficiently with an 18x and 175x speedup with and without GPU, respectively.
This shows the necessity of having knowledge distillation on top of the ensemble. Overall, RNNG
achieves comparable performance to its ensemble teacher (Tables 2 and 3) but drastically speeds up
the inference, being a useful model in practice.

7The average time was computed on 100 samples of the PTB test set, due to the slow inference of certain
teachers without GPU.
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Figure 4: Performance by sentence lengths. F1 scores are averaged over five different runs.

B.2 PERFORMANCE BY SENTENCE LENGTHS

Figure 4 illustrates the parsing performance on sentences of varying lengths. The result shows that
existing unsupervised parsers have different levels of susceptibility to long sentences. For example,
ContexDistort shows notable robustness to the length, whereas the performance of Ordered Neu-
rons drops significantly when the sentences are longer. Our ensemble method achieves both high
performance and robustness across different lengths.

B.3 PERFORMANCE BY CONSTITUENCY LABELS

In this work, we see different unsupervised parsers learn different patterns (Table 1), and their ex-
pertise can be utilized by an ensemble approach (Section 3.4). From the linguistic point of view,
we are curious about whether there is a relation between such different expertise and the linguistic
constituent labels (e.g., noun phrases and verb phrases).

With this motivation, we report in Figure 5 the breakdown performance by constituency labels,
where the most common five labels—namely, noun phrases, propositional phrases, verb phrases,
simple declarative clauses, and subordinating conjunction clauses—are considered, covering 95%
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Figure 5: Performance by constituency labels on the PTB test set. Results are measured by re-
call, because the predicted parse trees are unlabeled; thus, precision and F1 scores cannot be com-
puted (Drozdov et al., 2019). Bars and gray intervals are the mean and standard deviation, respec-
tively, over five runs.
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Teachers:
        Neural PCFG, DIORA, ContexDistort
    /\  Compound PCFG, S-DIORA, Ordered Neurons, ConTest
 /\   Our ensemble
      Groundtruth constituents⥎ It 's huge It 's huge

Figure 6: A case study, which shows that voting selects more commonly agreed structures.

Some analysts saw the payment as an effort also to dispel takeover speculation

Some analysts saw the payment as an effort also to dispel takeover speculation

Teachers:     Compound PCFG      DIORA      ConTest
/\  Agreed among all teachers

 ⥎   Groundtruth constituents
  /\    Our ensemble

Figure 7: A case study, where the ensemble outperforms all the teachers and achieves 100% recall
over the groundtruth constituents.

of the cases in the PTB test set. Notice that the predicted constituency parse trees are still unla-
beled (without tags like noun phrases), whereas the groundtruth constituency labels are used for
collecting the statistics. Consequently, only recall scores can be calculated in per-label performance
analysis (Drozdov et al., 2019; Kim et al., 2019a; Cao et al., 2020).

As seen, existing unsupervised parsers indeed exhibit variations in the performance of different
constituency labels. For example, ConTest achieves high performance of prepositional phrases,
whereas DIORA works well for clauses (including simple declarative clauses and subordinating
conjunction clauses); for noun phrases, most models perform similarly. By contrast, our ensemble
model achieves outstanding performance similar to or higher than the best teacher in each category.
This provides further evidence that our ensemble model utilizes different teachers’ expertise.

C CASE STUDIES

In this section, we present case studies to show how the ensemble improves the performance. In
particular, Figure 6 illustrates teachers’ performance, their ensemble output, and groundtruth for the
sentence “It’s huge.” This example represents how voting over local structures may result in correct
structure detection. True constituents have a higher chance to appear in the majority of the teach-
ers’ outputs. This phenomenon extends to longer sentences and more complex structures. Figure 7
presents an example where the ensemble outperforms all its teachers, hitting all the groundtruth con-
stituents, which never happens in any teacher. Note that in this example, every constituent captured
by the ensemble appears in at least two out of three teachers.

Figure 8 illustrates a more interesting behavior of the ensemble, where it recovers a true constituent
never seen in any teacher’s output, drawn in dotted purple in the bottom figure. It happens in complex
structures when teachers agree on some local structures but do not agree over the entire sentence. In
that case, the ensemble eventually picks the agreed structures and fills the gaps with the remaining
options.

D FUTURE WORK

Future work may be considered from both linguistic and machine learning perspectives. The pro-
posed ensemble method largely bridges the gap between supervised and unsupervised parsing of the
English language. A future direction is to address unsupervised linguistic structure discovery in low-
resource and multilingual settings (Shayegh et al., 2024). Regarding the machine learning aspect,
our work demonstrates the importance of addressing the over-smoothing problem in multi-teacher
distillation, and we expect our ensemble-then-distill approach can be extended to different data
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Futures traders say the S&P was signaling that the dow could fall as much as 200 points

Futures traders say the S&P was signaling that the dow could fall as much as 200 points

Teachers:
        Neural PCFG
        Ordered Neurons
        ContexDistort
/\  Agreed among all teachers

  /\    Our ensemble
 ⥎   Recovered groundtruth
 - -  Missed groundtruth
 ...  Discovered groundtruth

Figure 8: A case study, where the ensemble recovers a true constituent never seen in any teacher’s
output.

types, such as sequences and graphs, with proper design of data-specific ensemble methods (Wen
et al., 2024).
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E INVENTORY OF TEACHER MODELS

Our experiments involve seven existing unsupervised parsers as teachers, each of which has five runs
either based on authors’ checkpoints or by our replication using authors’ codebases. We show the
details in Table 6, where we also quote the mean F1 scores and, if available, max F1 scores reported
in respective papers. Overall, we have achieved similar performance to previous work, which shows
the success of our replication and establishes a solid foundation for our ensemble research.

Run Source F1

O
rd

er
ed

N
eu

ro
ns mean F1 = 47.7, max F1 = 49.4 reported in Shen et al. (2019)

1 Our replication using the original codebase8 (seed = 0017) 44.8
2 Our replication using the original codebase8 (seed = 0031) 32.9
3 Parsed data available in Kim et al. (2019a)9 50.0
4 Our replication using the original codebase8 (seed = 7214) 47.8
5 Our replication using the original codebase8 (seed = 1111) 45.9

N
eu

ra
lP

C
FG

mean F1 = 50.8, max F1 = 52.6 reported in Kim et al. (2019a)

1 Our replication using the original codebase9 (seed = 3435) 48.4
2 Parsed data available in the original codebase9 52.6
3 Our replication using the original codebase9 (seed = 1234) 52.1
4 Our replication using the original codebase9 (seed = 1313) 52.3
5 Our replication using the original codebase9 (seed = 5555) 49.8

C
om

po
un

d
PC

FG mean F1 = 50.8, max F1 = 52.6 reported in Kim et al. (2019a)

1 Parsed data available in the original codebase9 60.1
2 Our replication using the original codebase9 (seed = 3435) 53.9
3 Our replication using the original codebase9 (seed = 1234) 55.4
4 Our replication using the original codebase9 (seed = 0887) 53.2
5 Our replication using the original codebase9 (seed = 0778) 55.0

D
IO

R
A

mean F1 = 56.8 reported in Drozdov et al. (2019)

1 The mlp-softmax checkpoint available on the original codebase10 55.4
2 Our replication using the original codebase10 (seed = 0035) 59.4
3 Our replication using the original codebase10 (seed = 0074) 60.3
4 Our replication using the original codebase10 (seed = 1313) 60.5
5 Our replication using the original codebase10 (seed = 5555) 58.9

S-
D

IO
R

A

mean F1 = 57.6, max F1 = 64.0 reported in Drozdov et al. (2020)

1 Our replication using the original codebase11(seed = 1943591871) 56.3
2 Our replication using the original codebase11 (seed = 0315) 60.0
3 Our replication using the original codebase11 (seed = 0075) 58.9
4 Our replication using the original codebase11 (seed = 1313) 54.7
5 Our replication using the original codebase11 (seed = 442597220) 54.9

C
on

Te
st

mean F1 = 62.8, max F1 = 65.9 reported in Cao et al. (2020)

1 A checkpoint provided by the authors through personal email 65.9
2 Our replication using the original codebase12 (id = 0) 61.6
3 Parsed data provided by the authors through personal email 62.3
4 Our replication using the original codebase12 (id = 1) 63.0
5 Our replication using the original codebase12 (id = 2) 61.8

C
on

te
xD

is
to

rt
13

F1 = 49.0 reported in Li & Lu (2023)

1 Our replication using the original codebase14 on 10th layer of “bert-base-cased” 48.8
2 Our replication using the original codebase14 on 12th layer of “bert-base-cased” 46.6
3 Our replication using the original codebase14 on 11th layer of “bert-base-cased” 48.7
4 Our replication using the original codebase14 on 8th layer of “bert-base-cased” 46.9
5 Our replication using the original codebase14 on 9th layer of “bert-base-cased” 48.1

Table 6: F1 scores are on PTB test for different teachers in different runs. Note that the runs were
randomly shuffled for the randomized experiment.

8https://github.com/yikangshen/Ordered-Neurons
9https://github.com/harvardnlp/compound-pcfg

10https://github.com/iesl/diora
11https://github.com/iesl/s-diora
12https://github.com/stevenxcao/constituency-test-parser
13Given a pretrained language model, ContexDistort is a deterministic algorithm. Therefore, we used differ-

ent layers of the language model as runs to obtain different results.
14https://github.com/jxjessieli/contextual-distortion-parser
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