
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHAIN-OF-THOUGHT PROVABLY ENABLES LEARNING
THE (OTHERWISE) UNLEARNABLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern language models have demonstrated remarkable reasoning capabilities
by using chain-of-thought (CoT). One hypothesis about the inner workings of
CoT is that it breaks down originally complex tasks into smaller subtasks that are
more amenable to learning. We formalize this notion by showing possibility and
impossibility results of learning from in-context demonstrations with and without
CoT. In particular, with CoT, we examine a family of learning algorithms that
learn a task step-by-step, capable of composing simpler functions from individual
reasoning steps to form an overall complex function. This process reduces the
difficulty of learning a task to that of the hardest reasoning step in the chain.
Moreover, we prove Transformers can express this algorithm and thus they can
efficiently in-context learn arbitrary tasks as long as these tasks can be decomposed
into a finite number of subtasks, each of which are efficiently learnable. In contrast,
without CoT, we demonstrate that there exist tasks that are inherently unlearnable
by the same algorithm. Overall, our results suggest several provably effective ways
for decomposing target problems to instantiate CoT. Empirically, we demonstrate
our proposed CoT construction significantly enhances the reasoning capabilities
of real-world LLMs in solving challenging arithmetic reasoning tasks, including
learning polynomials and Boolean formulas.

1 INTRODUCTION

Complex problem solving often involves breaking down an originally challenging task into smaller,
more manageable subtasks, learning from these subtasks, and then composing the acquired skills
to address the overall task — a strategy that reflects how humans naturally solve problems. One
empirically-successful method that mimics this process is called Chain-of-Thought (CoT) (Wei
et al., 2022; Reynolds & McDonell, 2021; Nye et al., 2021), whereby a model is provided with
demonstrations involving detailed reasoning steps and subsequently instructed to generate thoughts
step-by-step before yielding the final answer. Modern language models rely on CoT or variants
thereof (Yao et al., 2024; Besta et al., 2024) to tackle complex tasks ranging from commonsense
reasoning to mathematical proofs (Cobbe et al., 2021; Rae et al., 2021; Srivastava et al., 2022),
sometimes even exceeding the capabilities of human experts.

Despite the empirical success of CoT, theoretical investigation thus far has remained relatively sparse.
Some previous efforts have made strides from the perspective of Transformer expressiveness (Li
et al., 2024; Feng et al., 2024) or through case studies of in-context learning MLPs (Li et al., 2023b).
However, these works either focus on mostly generic cases without specifying concrete/actionable
ways of actually decomposing a task, or involve quite restricted scenarios where both the task and
the CoT are predetermined. Since in practice not all intermediate steps in CoT are equally useful,
e.g. Zhang et al. (2022); Press et al. (2022), and the target tasks are typically diverse, there still exists
a considerable gap between current theory and practical scenarios. In targeting this gap, we ask the
following core question:

How do task decompositions affect the ability of a model to learn complex reasoning tasks,
and what principles can guide the corresponding optimal CoT design?

One possible explanation for the efficacy of CoT is that it reduces the difficulty of learning a complex
task to the level of learning a series of subtasks. The implication here is simply that, assuming these

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Learner Input Output
w/o
CoT

w/
CoT

Input Step 2Step 1 Output

Hardness of learning (Thm. 4 & Cor. 5)Learn Step-by-Step (Alg. 1) Expressible by Transformer? (Lem. 1)

The hardest subtask is efficiently learnable
 The overall task is efficiently learnable

Step

How to form effective CoT? (Experiments)

? ?
?(Bottleneck)

(Lem. 2 & Thm. 3)

Figure 1: An overview of our analysis. Arrow length indicates the difficulty of learning a step.

subtasks are suitably designed and orchestrated, then the necessary skills acquired at the subtask level
through CoT will suffice to outperform attempts at learning directly from the overall task. In this
work, we formalize these intuitions in a mathematically rigorous way, and take initial steps towards
quantifying the benefits of different task decomposition schemes.

Problem Setup. To define a notion of learnability in the context of language modeling, we extend
the classic PAC learnability (Valiant, 1984) to the setting in which the learner is associated with a
parametric model — a setting known as in-context learning (Brown et al., 2020; Garg et al., 2022).
Unlike conventional supervised learning, the learning considered here occurs during test time, which
a highly useful feature enabling the model to adapt to new tasks that were not explicitly seen in
pre-training. Concretely, we say a task is in-context learnable by a parametric modelM if there
exists a parameter configuration θ such that, for arbitrary distribution from the task, the model can,
upon receiving a set of i.i.d. demonstrations/samples D and a query/test sample x, output a prediction
for the query, i.e. Mθ(D,x), that is close to the ground-truth y with high probability. A learning
algorithm A is implicit in this process, which takes D as input and outputs a predictor or hypothesis
hD : X → Y . The relation between the algorithm and the modelMθ can be written as

Mθ(D,x) = A(D)(x) = hD(x). (1)

To account for the effects of CoT, we also formalize the notion of ‘task decomposition’ as transforming
the distribution from which D is generated into a sequence of distributions that generate D with
detailed intermediate steps. (Section 2)

1.1 CONTRIBUTIONS

Main Results. To formally answer whether or not CoT can help a model learn complex reasoning
tasks, we investigate the in-context learnability of tasks w.r.t. different decomposition schemes. We
find the answer is often affirmative depending on the task decomposition and summarize our findings
via the following two informal statements:

1. Regardless of how complex a reasoning task is, it can be efficiently learned by Transformers
in-context as long as it can be decomposed into a finite number of reasoning steps, each of
which is efficiently learnable by a learner Transformers can perform. (Section 3)

2. There exist inherently hard tasks that are not learnable without CoT regardless of the sample
size, and yet nonetheless become learnable by using CoT with specific decomposition
schemes we introduce. (Section 4)

In aggregate, our results suggest a broad range of scenarios where CoT can indeed effectively reduce
the hardness of learning, from that of the overall task to that of the hardest reasoning step in the chain,
or even from an unlearnable level to the learnable level. These results also suggest several actionable
ways to form effective intermediate steps of CoT.

To obtain the above results, we introduce a class of learning algorithmsACoT enabled by CoT, dubbed
step-by-step learning. This class of algorithms takes as input CoT examples, and outputs a complex
predictor hD by composing predictors {hi}i∈[k] obtained from k individual algorithms, where k
is the number of reasoning steps (Algorithm 1). Given a fixed k, the expected overall prediction
error made by hD can be upper bounded by the individual errors made by predictors {hi}i∈[k] on
their respective reasoning steps (Lemma 2). Leveraging this fact, we prove that the difficulty of
learning the overall task can be reduced to that of the hardest constituent step of CoT, since the sample
complexity of this step determines the sample complexity of learning the overall task (Theorem 3).

Furthermore, we establish that the capabilities of ACoT described above can be achieved by Trans-
formers — the de facto parametric modelM used in language modeling. Specifically, we show

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that a linear depth (w.r.t. k) and constant embedding size Transformer is sufficient to express ACoT

in an end-to-end manner, if the individual algorithms for learning each step are instantiated as
kernel gradient descent that produces a predictor hi : x 7→ Wϕ(x) with a non-linear feature map
ϕ(·) (Lemma 1). Combining these results suggests that a reasoning task is efficiently learnable by
Transformers in-context as long as each subtask is efficiently learnable by these individual algorithms.

Within the same analytical framework, we further present impossibility results illustrating the hardness
of learning without CoT. Particularly, we consider the task of learning a Boolean function class called
sparse parity. Without CoT, this task is impossible to learn by the variant of algorithm ACoT with
k = 1 due to limited approximation power of the hypothesis class that is used to learn a single step,
whereas if we enable CoT with specific intermediate reasoning steps, the task becomes learnable with
guarantees of smaller errors (Theorem 4 & Corallary 5).

Experiments. For empirical verification, we consider new arithmetic reasoning tasks and test if
the decomposition schemes from our analysis are practically effective (Section 5). Specifically,
we propose to construct complex reasoning tasks with varying overall hardness and hardness of
subtasks. We observe that the performance of real-world LLMs improve significantly as the difficulty
of the hardest step in the CoT reduces, regardless of the overall task complexity. Additionally, on
learning two inherently hard Boolean functions, we demonstrate that our introduced CoT significantly
enhances reasoning performance, sometimes improving accuracy from nearly random guessing to
nearly perfect.

1.2 RELATED WORK

Few-shot CoT (Wei et al., 2022; Reynolds & McDonell, 2021; Nye et al., 2021) augments demon-
strations with intermediate steps. Despite its effectiveness in various reasoning tasks (Kojima et al.,
2022; Yao et al., 2024; Lanchantin et al., 2024), theoretical analyses are relatively scarce with scope
that differs from ours. For example, CoT has been analyzed through the lens of the expressiveness of
finite-precision Transformers Feng et al. (2024); Li et al. (2024) . In particular, Feng et al. (2024)
proves CoT can enable Transformers to solve some specific tasks such as basic arithmetic and linear
equations, while Li et al. (2024) proves that increasing the step number in the CoT allows them to
emulate circuits of increasing depth. More closely related to ours, Li et al. (2023b) studies a scenario
in which the intermediate steps of CoT are intermediate layers of an MLP, showing that Transformers
can in-context learn the MLP. We also note that there are many recent papers that empirically analyze
CoT, e.g. (Wang et al., 2022; Fu et al., 2023b; Madaan & Yazdanbakhsh, 2022; Turpin et al., 2024;
Prabhakar et al., 2024) among others, which we do not discuss in detail due to space limitations.
However, previous works are generally limited in one of two ways: 1) either the problem setting
is overly restricted, focusing on fixed tasks and specific forms of decomposition, such as solving
arithmetic equations (Feng et al., 2024) or learning MLPs (Li et al., 2023b), 2) or in a more complex
regime (Li et al., 2024), where though the possibility for improvement is shown, the effects of specific
intermediate steps are not quantified. In contrast, our work introduces a new setting, one which is
general enough to encompass learning all distribution families, while also explicitly accounting for the
effects of specific decomposition schemes. Our contribution is also related to a recent line of work on
ICL (Akyürek et al., 2023; Von Oswald et al., 2023; Dai et al., 2023; von Oswald et al., 2023; Cheng
et al., 2024; Li et al., 2023a), particularly demonstrations of how Transformers with certain weight
constructions perform ICL similarly to optimization algorithms like gradient descent (Von Oswald
et al., 2023) or its variants (Giannou et al., 2024; Fu et al., 2023a). Notably, Cheng et al. (2024)
proves that Transformers could implement kernel gradient descent, which is closely related to ours.

2 PRELIMINARIES

Chain-of-Thought (CoT) (Wei et al., 2022). We follow the commonly-adopted few-shot CoT
setting, where demonstrations are augmented with intermediate steps and the prediction is also in the
format of CoT. In particular, for k reasoning steps, we denote each demonstration as

e = (x, z1, · · · , zk−1, y) ∈ X × Z1 · · · Zk−1 × Y (2)
where zt ∈ Zt represents the t-th intermediate reasoning step. For convenience, we also let z0 = x

and zk = y. Let d(Zi) be the dimension of Zi, and d =
∑k

i=0 d(Zi).

In-Context Learning (ICL) (Garg et al., 2022). In ICL, the base model is provided with N
demonstrations or in-context examples e(i) = (x(i), y(i)) for i ∈ [N] where x ∈ X and y =

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

f(x) ∈ Y . We denote a learning algorithm or learner as A : (X × Y)N → H, which takes a set of
demonstrations as input and outputs a predictor or hypothesis h : X → Y from a hypothesis classH.
Given a set of demonstrations and a query x(N+1) (which we assume is from the same distribution
as the demonstrations), the goal of the base model is to learn a predictor h and use this predictor to
make predictions on the query x(N+1). If the base model is a well-trained Transformer, denoted as
TFθ(·) with parameters θ, we have

TFθ({(x(i), y(i)) : i ∈ [N]}, x(N+1)) = A({(x(i), y(i)) : i ∈ [N]})(x(N+1)) = h(x(N+1)). (3)

Transformers. Let E = {e(i) : i ∈ [N]} ∈ Rd×N be the concatenation of samples, and
let e(N+1) = (x(N+1), 0) ∈ Rd whose dimension aligns with other examples. Following prior
work (Von Oswald et al., 2023; Ahn et al., 2023; Cheng et al., 2024; Zhang et al., 2023), a single-head
self-attention layer with weights WK ,WQ,WV ∈ θ updates e(N+1) as

e(N+1) ← e(N+1) +WV Eσ(E⊤W⊤
KWQe

(N+1)), (4)
where σ is non-linearity that could be specified as Softmax, ReLU or some kernel functions,
e.g. (Choromanski et al., 2021; Katharopoulos et al., 2020; Wang et al., 2020; Peng et al., 2021).
Stacking multiple self-attention layers (with or without an MLP module applied between each self-
attention layer) gives us the Transformer considered in this paper. Following (Von Oswald et al.,
2023), and for subtle technical reasons related to the construction in Sec 3.2, we exclude the query
token when computing the attention.

Our Setup. We are now ready to formally define the problem setup. Let D be a distribution over
X , and f : X → Y a target function. An input distribution and target function pair (f,D) defines the
generating process of in-context examples, namely examples are drawn based on x ∼ D, y = f(x).
Let P be a family of distributions defined as a set of (f,D) pairs, representing a certain task a model
aims to solve. For instance, the target functions in P could be defined as all polynomials, Boolean
functions, etc. The following error quantifies how successfully an algorithm can learn the task:

∆(P,A) ≜ max
(f,D)∈P

Ex∼D [l (h(x), f(x))] (5)

where l is the squared loss (which could be extended to other convex loss functions), h is the predictor
given by a learner A on N i.i.d. examples from (f,D). Minimizing this error guarantees successful
learning of all target functions within the family P .
Definition 1 (In-Context Learnability). We say a parametric modelM : θ 7→ Mθ (i.e. a functional
mapping from parameter space to function space) can learn task P if there exists a learning algorithm
A and a function NA : (0, 1)2 → N, such that for any confidence and accuracy parameters
δ, ϵ ∈ (0, 1):

1. Under a certain parameter choice θ, we haveMθ(·, x) = A(·)(x) for any query x.
2. Given NA(δ, ϵ) i.i.d. examples, the algorithm A returns a predictor h such that with

probability of at least 1− δ, ∆(P,A) ≤ ϵ.

Moreover, we say P can be efficiently in-context learned byM if both the running time of A and
the sample size NA(δ, ϵ) are polynomial in δ−1 and ϵ−1. Note that the notion of learnability here is
different from the classic PAC learnability (Shalev-Shwartz & Ben-David, 2014) in the sense that,
per in our definition, the model itself acts not as a predictor, but a learner. This is a highly desirable
property for modern language models as it allows them to meta-learn out-of-distribution tasks that
were not available during pre-training (Brown et al., 2020). In the rest of this paper, we stipulate the
model as a Transformer TFθ as defined via (4), unless otherwise stated.

Moving forward, we focus on whether or not CoT can improve the in-context learnability of different
reasoning tasks. In principle this can be studied from multiple vantage points, such as the the effect of
CoT on the sample efficiency NA(δ, ϵ), or the existence of cases where a task is initially not learnable
but becomes so once CoT is enabled, etc. Notably, addressing these issues depends critically on the
specific forms of intermediate CoT steps involved. To accommodate this aspect, we next formalize
the notion of a task decomposition.
Definition 2 (Task Decomposition). A decomposition operator T is such that, for every (f,D) ∈ P ,
a target function can be decomposed as T (f) = (f2, f1) subject to f = f2 ◦ f1, where f1 : X → Z
and f2 : Z → Y for another space Z . This operation induces two new distribution families

P1 = {{(f1,D) : (f2 ◦ f1,D) ∈ P}} and P2 = {{(f2,D′) : (f2 ◦ f1,D) ∈ P}} (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where {{·}} is multiset allowing repeating elements, and D′ : Z → R is determined by f1 and D.

The decomposition always exists and is not unique (e.g. f1 can be arbitrary bijection). Particularly
when f1 is specified as the identity mapping, we have P2 = P , in which case CoT is unlikely to work.
For each decomposition, we can associate it with the generating process of demonstrations (denoted
as z), i.e. x ∼ D, z = f1(x), y = f2(z). This affects how examples are generated in Definition 1,
and thus could impact the learnability of a task. Note that this definition can be generalized to CoT
with k > 2 steps by sequentially applying the decomposition.

3 IMPROVED LEARNABILITY BY TASK DECOMPOSITION

To demonstrate how CoT improves learnability by task decomposition, we will first define a learning
algorithm ACoT (Sec 3.1) and prove that it can be expressed by Transformers with linear depth
(Sec 3.2). Then, we derive an upper bound for the overall error, which allows us to show CoT can
adjust the learnability of a complex task to the learnability of simpler subtasks (Sec 3.3).

3.1 LEARNING ALGORITHMS ENABLED BY CHAIN-OF-THOUGHTS

Consider a class of learning algorithms ACoT enabled by CoT, which involves several individual
algorithms {Ai}ki=1 and learns increasingly complex compositional functions with more CoT steps:

Algorithm 1: Step-by-Step Learning with CoT (ACoT)

Input: Demonstrations {(z(j)0 , z
(j)
1 , · · · , z(j)k)}Nj=1, individual learning algorithms {Ai}ki=1.

Output: Predictor h : X → Y
for i = 1, · · · , k do

hi ← Ai({(z(j)i−1, z
(j)
i)}Nj=1)

h← hk ◦ · · · ◦ h2 ◦ h1

This class of algorithms take as input a set of demonstrations, where each demonstration contains
k reasoning steps, and outputs a predictor h : X → Y . The learning is performed in a step-by-step
manner; that is, for each reasoning step i ∈ [k], an individual algorithmAi is used to learn a predictor
hi : Zi → Zi−1 ∈ Hi. The learned predictors h1, h2, · · · , hk are then composed to obtain the
desired overall predictor. Note that the algorithm can be naturally extended to scenarios where each
step is a function of all preceding steps, by redefining zi in the algorithm as a concatenation of
{zj}j≤i in the initial CoT. Therefore, without loss of generality, we assume that the CoT satisfies the
Markov property, meaning that each step is conditionally dependent only on the last step.

3.2 EXPRESSIVENESS OF TRANSFORMERS

Next, we demonstrate parameter choices θ that connect Transformers TFθ and algorithm ACoT

instantiated in a certain way.

Instantiation of ACoT. While the algorithm could have many different instantiations, in this paper,
we define Ai as empirical risk minimization: using gradient descent to minimize a squared loss Li

over in-context examples to learn a predictor from a hypothesis classHi, which is defined as a linear
model on fixed non-linear features. Specifically,

Li =
1

2

N∑
j=1

∥hi(z
(j)
i−1)− z

(j)
i ∥

2
2, hi ∈ Hi = {zi−1 7→Wiϕi(zi−1) : ∥Wi∥2 ≤ B}, (7)

where ϕi : Zi−1 → RK is a non-linear feature map to a K-dimensional space, and Wi ∈ Rd(Zi)×K

are learnable weights initialized to zero and subsequently with norm bounded by B. Therefore, the
overall predictor h obtained from this composition can be written as a stacked sequence of multiple
non-linearities and linear transformations, i.e.

h = Wkϕk(· · · (W2ϕ2(W1ϕ1(x)))) ∈ H = Hk ◦ · · · ◦ H2 ◦ H1. (8)
For example, if ϕ1 is specified as the identity mapping, whereas ϕi for i ̸= 1 are conventional
activation functions, (8) could represent a k-layer deep neural network. And beyond this, for generic
feature maps, h could represent more powerful functions. As the step number k increases, the
predictor h also becomes more complex. Below, we connect the algorithm with Transformers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lemma 1 (Transformers Learn Step-by-Step). Given a set of CoT demonstrations with k reasoning
steps as per (2) and a query x(N+1), Transformers with linear depth kt and constant embedding size
2d can express ACoT, where Ai is t steps of GD on a squared loss and Hi is the hypothesis class
defined in (7) whose feature map aligns with the attention as is specified in the Appendix A.1.

Proof Sketch. The proof extends from a recent line of work connecting self-attention layers and the
dynamics of gradient descent (GD) optimization (Akyürek et al., 2023; Von Oswald et al., 2023; Dai
et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; von Oswald et al., 2023; Zhang et al., 2023;
Cheng et al., 2024). Consider a simplified case k = 1. The loss isL =

∑
i∈[N] ∥Wϕ(x(i))−y(i)∥22/2,

and GD with a fixed step size updates the weights as W ←W − η∇WL. This process also induces
dynamics in function space, i.e. the evolution of the learned predictor h as the weights update. For
query x(N+1), the function-space dynamics could be written as (see derivation in the proof)

(GD Dynamics) h(x(N+1))← h(x(N+1)) + η (Y − Ŷ) ϕ(X)⊤ϕ(x(N+1)), (9)
Kernel FunctionResidualsPredictions

where Y = [y(i)]Ni=1 ∈ Rd(Y)×N , Ŷ = [h(x(i))]Ni=1, ϕ(X) = [ϕ(x(i))]Ni=1 ∈ RK×N . The residuals
Y − Ŷ are equivalent to Y at initialization as the weights are initialized to zero. The last term
represents a kernel function w.r.t. the feature map ϕ, quantifying the similarity between the test (i.e.
query) and training examples (i.e. demonstrations).

For comparison, we also rewrite the self-attention layer, where e(i) is reinterpreted as a concatenation
of input and the residual (x(i), y(i) − h(x(i))), which at initialization is equivalent to (x(i), y(i)):

(Transformer Layer) e(N+1) ← e(N+1) + WV E σ(E⊤W⊤
KWQe

(N+1))), (10)
Attention ModuleEmbeddingSkip Connection

where the last term is the attention module. As is specified in Appendix A.1, with simple choices
of WV ,WK ,WQ ∈ θ, one can show (10) subsumes (9); that is, Transformers can perform kernel
regression in their forward pass. The key here is the connection between the kernel function and the
attention matrix, which has been widely studied in previous literature, e.g. (Tsai et al., 2019; Wright
& Gonzalez, 2021; Chen et al., 2024; Choromanski et al., 2021; Katharopoulos et al., 2020; Wang
et al., 2020; Peng et al., 2021) and also discussed in the setting of ICL (Von Oswald et al., 2023;
Cheng et al., 2024; Guo et al., 2024). In Appendix B, we provide a comprehensive discussion of their
connections and how the feature map ϕ is related to Transformer parameter and architectural choices.

Extension to k > 1. To extend this result to CoT, we define k loss functions {Li}i∈[k] associated
with k reasoning steps. Each loss function is convex w.r.t. the weights of the corresponding predictor.
In the forward pass, similar with (9), Transformers implement (kernel) GD dynamics in function
space to minimize these loss functions. One challenge of retaining the connection between (9) and
(10) while further incorporating CoT is that, for compositional non-linear predictors h in (8), updating
weights in a prior-step predictors (e.g. W1 in h1) could introduce non-linear dynamics in the final
prediction h(x) from (8). We show that this issue can be circumvented if the learning is done in a
step-by-step manner as in ACoT, namely Transformers first learn a preceding reasoning step using t
layers, then proceed to learn the next step using t layers. This results in a total of kt layers for k steps.
Note that the construction here is not unique and similar conclusions could be drawn from other
setups, such as recurrently making k predictions (Li et al., 2023b) in k forward passes, which would
additionally require the Transformer to perform the so-called filtering process but could potentially
reduce the depth requirement to a constant.

3.3 EFFECTS OF TASK DECOMPOSITION

We now proceed to answer when and how CoT improves the learnability of a task by studying the
in-context learnability of a distribution family P w.r.t. different task decomposition schemes. Before
presenting the main result, we analyze how well can the predictor h generalizes to unseen queries.
This is accomplished by studying the final error ∆(P,A) made by the learning algorithm ACoT and
its relation with individual errors made by individual algorithms at each step.

Consider a fixed number of steps k. According to Definition 2, applying a sequence of decomposition
operators {Ti}i∈[k−1] on P produces k new distribution families {Pi}i∈[k], where Pi is the induced

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

distribution family that generates the i-th reasoning step. As per equation (5), ∆(Pi,Ai) refers to the
error of learning Pi using the individual algorithm Ai. The following lemma upper bounds the final
error ∆(P,A) by the individual errors.
Lemma 2 (Error Upper Bound). Fix k > 1. Then for any distribution family P and any decomposition
operators {Ti}i∈[k−1] applied on P , the predictor returned by ACoT has an error upper bound

∆(P,A) ≤ ck

k∑
i=1

∆(Pi,Ai), ck = 2max
j

k∏
i=j+1

2B2 Lip(ϕi)
2 (11)

where ck is a constant depending on the hypothesis classHi and the step number k.

Note that this result does not rely on the specific individual algorithm we choose in ACoT as long as
the predictor for each step has a Lipschitz constant and the loss function is convex. The upper bound
suggests that, to minimize ∆(P,A), it suffices for each individual algorithm to minimize the error
made at its corresponding step. In fact, it actually suffices to minimize the largest error made at the
hardest reasoning step argmaxi {∆(Pi,Ai)}, as is revealed by the following result.
Theorem 3 (Improved Learnability with CoT). With CoT, any distribution family P is efficiently
in-context learnable by the Transformer in Lemma 1, if there exists a finite sequence of decomposition
operators {Ti}i∈[k−1] such that each induced Pi if efficiently PAC learnable by the individual
algorithm Ai. Particularly, the sample complexity is NA(ϵ, δ) = maxi∈[k] NAi (δ/k, ϵ/ck) where
NAi is the sample complexity for learning Pi by Ai.

Theoretical / Practical Implications. This result indicates that, regardless of how complex the
original reasoning task P is, in order for a Transformer to efficiently learn this task, it is sufficient to
make each subtask Pi efficiently learnable. In other words, CoT can reduce the difficulty of learning
a task to the difficulty of learning the hardest subtask in the chain; here, the hardest step refers to the
least sample-efficient one. This result also leads to a simple practical lesson for designing CoT: an
effective way to form a CoT is by decomposing the hardest reasoning step into smaller steps that are
easier to learn. Such a result aligns with existing empirical practices of decomposing challenging
tasks, e.g. (Zhou et al., 2022; Khot et al., 2022; Zhang et al., 2022), and will be validated in greater
depth by new experiments in Section 5.1.

To understand this result, notice that in ACoT each subtask shares the same sample size, and thus one
has to choose this size based on the hardest step to ensure each individual step can be successfully
learned so that the overall task can be successful learned. Another way to view this is through the
lens of error (Lemma 2): in the limit of large sample size N , the individual error at the step with the
worst rate will dominate the overall error, regardless of the constant coefficient associated with each
∆(PT,i, hi); therefore, the hardest step becomes the bottleneck.

Compounding Error Issue. Nevertheless, we note one caveat of Lemma 2 is that it is not asymp-
totic in k which has been treated as a constant. Therefore, the result in this section does not hold if k
scales up, in which case errors could accumulate over reasoning steps and grow exponentially in the
horizon. This implies a trade-off between the step number and hardness of subtasks: decomposing the
hardest subtask improves the learnability, but also introduces the risk of compounding error, which
renders scaling up k a practical challenge despite the theoretical merit. Aligned with our theory,
the compounding error issue has indeed been widely observed in practice, and approaches such
as self-correction or refinement have been proposed to mitigate this issue, e.g. (Wang et al., 2023;
Yao et al., 2024; Madaan et al., 2024). From our experiments in Section 5.1, we also find when the
hardness of each reasoning step is approximately the same, increasing k could hurt performance, in
contrary with the conventional wisdom that longer CoT is always better.

4 HARDNESS OF LEARNING WITHOUT CHAIN-OF-THOUGHT

In this section, we will present impossibility results demonstrating that there exist inherently hard
tasks that are not learnable without CoT but learnable after being decomposed.

4.1 LOWER BOUND

We begin by presenting a general lower bound on the error ∆(P,A). This bound applies to both the
case where there is no CoT (k = 1), and the case of CoT with one intermediate step (k = 2) — each

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

demonstration is in the form of (x, z, y). The proof is based on the limited power of the hypothesis
classH to approximate the target functions in P (see Appendix A.4).

Theorem 4 (Error Lower Bound). For any distribution family P and decomposition operator T ,
suppose ACoT returns a first-step predictor h1 from a finite setH′

1 ⊆ H1. Then the overall error has
a lower bound given by1

∆(P,A) ≥ 1

2
−B

√
K|H′

1|Var(P), (12)

where B and K are constants depending on the definition of the hypothesis class as per (7). Var(P)
is a certain variable depending on P , we defer its definition to Appendix A.4.

We discuss the implications of this theorem in two separate cases: when CoT is used and not used.

w/ CoT. In this case, the bound is generally loose or even uninformative, because the term |H′
1|

is typically expected to be large. This makes sense since when CoT is used, the hypothesis class
H = H2 ◦ H1 per equation (8) can potentially approximate a wide range of functions analogous to
what a two-layer neural network can approximate. Despite this, the bound is still useful to identify
cases where the CoT is suboptimal. For instance, consider a dummy CoT where the first step is
the identity mapping (i.e., x = z), and assume the learner has successfully learned this step, which
indicates that h1 is also an identity mapping, and hence |H′

1| = 1. In this case, the lower bound
would increase and potentially become positive depending on Var(P) which will be discussed below,
suggesting this dummy CoT is suboptimal.

w/o CoT. A more interesting scenario is when there is no CoT. In this case the lower bound from
(12) reduces to 1/2−B

√
K Var(P) (Malach & Shalev-Shwartz, 2022), quantifying how hard it is

to approximate P using the hypothesis class H = {x 7→ Wϕ(x) : ∥W∥2 ≤ B} per definition in
(7). The key quantity in the lower bound is Var(P), which indicates the intrinsic complexity of the
task; the more complex P is, the smaller Var(P) is. In the next subsection, we will discuss learning
a specific family of Boolean functions called parities; these functions underpin a concrete scenario
whereby the task is unlearnable without CoT but becomes learnable when CoT is used.

4.2 ILLUSTRATIVE EXAMPLE: LEARNING PARITIES

Boolean functions are mappings from an input space X = {±1}n of n binary bits to an output
space Y = {±1}. In particular, parities are a family of functions that compute the exclusive-or
(XOR) of bits at some predefined positions in the input, which are notoriously hard to learn (Kearns,
1998; Shalev-Shwartz et al., 2017; Daniely & Malach, 2020). The specific form of a parity function
is determined by a subset S ⊆ [n]. For each S, the corresponding parity function is defined as
χS(x) =

∏
i∈S x[i] where x[i] is the i-th bit of the input. The distribution family is defined as

PXOR(n) ≜ {(χS ,D) : S ⊆ [n]} (13)

where D is a fixed input distribution uniform over {±1}n. Particularly, applying the lower bound to
learning parities, we have the following result:

Corollary 5 (Learning Parities). For any hypothesis class defined in (7), there exists some sufficiently
large n ∈ N such that PXOR(n) is not learnable by the corresponding algorithm ACoT when k = 1,
but learnable after using the following decomposition to form the CoT (k = 2):

1st Step: z[i] = χ1,S(x)[i] =

{
x[i] for i ∈ S
1 for i /∈ S

, 2nd Step: y = χ2,S(z) =
∏
i

z[i]. (14)

where the first step χ1,S(x) learns to select relevant features from x while masking irrelevant ones,
and the second step χ2,S(z) computes XOR of all bits in z.

The proof is deferred to Appendix A.5. Intuitively, parities are hard to learn without CoT because
the 2n target functions in the family form an orthogonal basis for the space of all Boolean functions.
Consequently, a linear function class with a fixed feature space dimension K can not approxi-
mate all parities, as this is as hard as approximating all Boolean functions. Concretely, we have
Var(PXOR(n)) = 2−n and thus the lower bound will become positive for sufficiently large n; this

1Note that in the case of no CoT, by default |H′
1| = 1 and the bound still applies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

97 -- -- -- -- -- -- --

92 35 -- -- -- -- -- --

90 31 18 -- -- -- -- --

88 22 16 6 -- -- -- --

82 21 12 9 3 -- -- --

71 27 12 6 5 1 -- --

69 23 6 4 1 0 0 --

56 16 4 3 1 1 1 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

65 -- -- -- -- -- -- --

43 27 -- -- -- -- -- --

34 17 15 -- -- -- -- --

45 24 14 7 -- -- -- --

35 13 8 4 3 -- -- --

30 9 6 2 6 1 -- --

15 12 5 4 3 1 1 --

13 5 2 1 0 2 1 1
0

20

40

60

80

100

Success Rate (%
)

(b) GPT-3.5-turbo

Figure 2: Success rate of GPT-4o and GPT-3.5-turbo for learning compositional functions. H denotes
the number of elementary functions used to construct the target function; Hmax denotes the maximal
number of elementary functions to construct a reasoning step.

implies there always exists at least one target function in PXOR(n) and some ϵ0 > 0 such that ϵ ≥ ϵ0
holds true, and thus the task is not learnable per definition in Section 2 regardless of the sample size.
CoT resolves this issue, since the first-step predictor with learnable weights can adapt to the relevant
bits in the input x (determined by S), such that the second-step only needs to learn a fixed XOR
function. In particular, with CoT, both steps or subtasks become learnable by a linear function class
with a fixed feature space dimension. Therefore, we have illustrated such a setting where successful
learning is impossible without CoT. The effectiveness of the designed CoT is verified in Section 5.2.

5 EXPERIMENTS

As empirical verification, we consider new arithmetic reasoning tasks and evaluate the performance
of real-world LLMs, including GPT-4o and GPT-3.5-turbo. Sec 5.1 studies the connection between
the hardest step and the overall reasoning performance. Sec 5.2 tests whether the specific forms of
CoT we introduced can improve the performance. See detailed experimental setups in Appendix C.

5.1 INCREASINGLY COMPLEX FUNCTIONS

Since benchmarks are lacking where one can precisely control the hardness of tasks and CoT steps,
we first present a method to construct such tasks by incrementally building upon challenging subtasks.

Constructing Highly Challenging Tasks. Let us consider a class of elementary functionsFe where
each function maps from the input space X to itself. In general, these elementary functions should be
considered equally easy to learn. Then, we sample a sequence of these functions f1, f2, . . . , fT ∼ Fe;
composing them gives us a target function f = fT ◦ · · · ◦ f2 ◦ f1 : X → X whose complexity
increases as H increases. We consider an instantiation by defining the input space as the space of
two integers x ∈ Z2. The elementary functions are defined as choosing one integer and using it to
perform a basic arithmetic operation (drawn from +, − or ×) with another number. Therefore, Fe

consists of

z[0]← z[0] + z[1], z[0]← z[0]− z[1], z[0]← z[0]× z[1],

z[1]← z[1] + z[0], z[1]← z[1]− z[0], z[1]← z[1]× z[0].
(15)

While each elementary function in (15) is simple, the overall target function f can become highly
complex, possibly representing polynomial functions on z[0] and z[1] up to an arbitrary order and
number of terms. Moreover, to quantify the hardest step, we do not reveal all intermediate steps of f
in the demonstrations provided to LLMs. Instead, we stipulate that there exists at least one step i ∈ [k]
where the function from zi−1 to zi is constructed from Hmax elementary functions, whereas all other
steps use fewer of them. For example, given H = 3 elementary functions f1 : z[0] ← z[0] + z[1],
f2 : z[1]← z[1]× z[0] and f3 : z[1]← z[1]− z[0], the hardest step can be expressed as f3 ◦ f2 ◦ f1 :{

zi[0] = zi−1[0] + zi−1[1]
zi[1] = (zi−1[0] + zi−1[1]) (zi−1[1]− 1)

(16)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(n, k)-Parities (10,1) (10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9) (10,10)

GPT-4o w/o CoT 87 69 63 54 51 48 50 52 47 51
GPT-4o w CoT 92 95 97 94 87 73 66 58 62 50

GPT-3.5-turbo w/o CoT 75 62 60 47 59 58 51 56 55 54
GPT-3.5-turbo w CoT 80 76 72 74 75 69 57 63 57 57

Table 1: Success rate (%) of GPT-4o and GPT-3.5-turbo of learning (n,k)-parities.
3-Term DNF Width 3 Width 4 Width 5 Width 6 Width 7 Width 8 Width 9 Width 10

GPT-4o w/o CoT 85 81 77 73 68 66 62 74
GPT-4o w CoT 96 87 86 88 81 80 80 84
GPT-3.5-turbo w/o CoT 74 68 67 62 55 58 64 53
GPT-3.5-turbo w CoT 90 78 87 81 65 73 70 73

Table 2: Success rate (%) of GPT-4o and GPT-3.5-turbo of learning 3-term DNF.

Results. We test the performance of real-world LLMs on the reasoning task described above with
respect to different overall hardness H and the hardest step Hmax. We report their success rates
across 100 i.i.d. sampled target functions for each H and Hmax. And for each target function, the
LLMs are provided with 10 demonstrations and asked to infer the computation process and apply it
to derive the output for an unseen input. As shown in Fig. 2 (and more results in Appendix C.1), the
success rate of LLMs quickly drops as Hmax increases. In particular, GPT-4o can successfully learn
the target function in most cases when H = 1; however, it performs significantly worse as Hmax

increases from 1 to 4, then fails as Hmax becomes even larger. These phenomena corroborate our
result that reducing the complexity of the hardest step is critical to successfully handle the task.

5.2 CANONICAL BOOLEAN FUNCTIONS

We further evaluate LLMs on two families of Boolean functions: parities and disjunctive normal form
(DNF), which are known hard to learn (Daniely & Vardi, 2021; Malach & Shalev-Shwartz, 2022).

Task Descriptions. An (n, k)-parity function computes the XOR (⊕) of a subset of k variables
from a total of n input binary bits (n is 10 in our experiments). It outputs 1 if an odd number of the k
relevant variables are 1, and 0 otherwise. Meanwhile, a DNF function is a disjunction (logical OR) of
conjunctions (logical ANDs) of literals; and in the experiments, we consider a family of 3-term DNFs
f(x) = ∨3i=1 ∧wj=1 (xij ∨mij) where w is the width and m ∈ {±1}3w is a latent variable whose
value determines the target function (i.e. mij = 1 invalidates xij).

Results. For each k in parities and w in DNFs, we similarly i.i.d. sample 100 target functions.2 For
each function, we provide LLMs with 100 in-context examples, ask them to find patterns in these
examples, and return the output for each query. Tables 1 and 2 report the success rates. Particularly n
terms of parities, we find even GPT-4o generally performs no better than random guessing (with an
expected accuracy of 50%) when k > 3. Then, we provide LLMs CoT examples with intermediate
steps that are provably effective by applying our results derived in Section 4: for parities, the
intermediate step is defined as z[i] = x[i] if i ∈ S otherwise 0; for DNFs, z[i, j] = x[i, j] if
m[i, j] = 0 otherwise 1. Results in Tables 1 and 2 clearly demonstrate the designed CoT significantly
improves the performance, e.g. GPT-4o achieves an almost perfect success rate of 94 on (10, 4)-parity,
while without CoT the success rate is 54, which is close to random guessing.

6 CONCLUSION AND DISCUSSION

In this paper, we quantify the benefits of task decompositions within the setting of learning tasks in-
context by Transformers. We note that a limitation of our work thus far is that, despite quantifying the
potential for a Transformer to efficiently learn a complex task by CoT, it nonetheless remains unclear
on a case-by-case basis whether real-world LLMs will actually achieve success in practice. This is
because of confounding issues related to model training procedures, including dataset properties, the
actual optimization process, and fine-tuning. Hence an interesting future direction is to delve more
deeply into these issues.

2For parities, we sample from a uniform distribution; for DNF, we sample from a non-uniform distribution to
ensure the label (0/1) is balanced for w ≥ 3.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. arXiv preprint arXiv:2306.00297, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. International Conference on
Learning Representations, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yingyi Chen, Qinghua Tao, Francesco Tonin, and Johan Suykens. Primal-attention: Self-attention
through asymmetric kernel svd in primal representation. Advances in Neural Information Process-
ing Systems, 36, 2024.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. International Conference on Machine Learning, 2024.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. International Conference on Learning Representations, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
gpt learn in-context? language models secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 4005–4019, 2023.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356–20365, 2020.

Amit Daniely and Gal Vardi. From local pseudorandom generators to hardness of learning. In
Conference on Learning Theory, pp. 1358–1394. PMLR, 2021.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. arXiv preprint arXiv:2310.17086,
2023a.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2023b.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D Lee. How well
can transformers emulate in-context newton’s method? arXiv preprint arXiv:2403.03183, 2024.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. International Conference on Learning Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983–1006, 1998.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: Nonconvex mean-field
dynamics on the attention landscape. International conference on machine learning, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Jack Lanchantin, Shubham Toshniwal, Jason Weston, Sainbayar Sukhbaatar, et al. Learning to reason
and memorize with self-notes. Advances in Neural Information Processing Systems, 36, 2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023a.

Yingcong Li, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and Samet Oymak.
Dissecting chain-of-thought: A study on compositional in-context learning of mlps. arXiv preprint
arXiv:2305.18869, 2023b.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. International Conference on Learning Representations, 2024.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango. arXiv preprint arXiv:2209.07686, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Eran Malach and Shai Shalev-Shwartz. When hardness of approximation meets hardness of learning.
Journal of Machine Learning Research, 23(91):1–24, 2022.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Akshara Prabhakar, Thomas L Griffiths, and R Thomas McCoy. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memorization, and noisy reasoning. arXiv preprint
arXiv:2407.01687, 2024.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In International Conference on Machine Learning, pp. 3067–3075. PMLR, 2017.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: An unified understanding for transformer’s attention via the lens of
kernel. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
2019.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36, 2024.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Matthew A Wright and Joseph E Gonzalez. Transformers are deep infinite-dimensional non-mercer
binary kernel machines. arXiv preprint arXiv:2106.01506, 2021.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Advances in Neural Information Processing Systems, 2023.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Contributions . 2

1.2 Related Work . 3

2 Preliminaries 3

3 Improved Learnability by Task Decomposition 5

3.1 Learning Algorithms Enabled by Chain-of-Thoughts 5

3.2 Expressiveness of Transformers . 5

3.3 Effects of Task Decomposition . 6

4 Hardness of Learning without Chain-of-Thought 7

4.1 Lower Bound . 7

4.2 Illustrative Example: Learning Parities . 8

5 Experiments 9

5.1 Increasingly Complex Functions . 9

5.2 Canonical Boolean Functions . 10

6 Conclusion and Discussion 10

A Proofs 15

A.1 Lemma 1: Expressiveness of Transformers . 15

A.2 Lemma 2: Upper Bound . 16

A.3 Theorem 3: CoT Improves Learnability . 18

A.4 Theorem 4: Lower Bound . 19

A.5 Corollary 5: Learning Parities . 20

B Background: Connection between Attention and Kernel 21

C Experimental Details and Additional Results 23

C.1 Increasingly Complex Functions . 23

C.2 Canonical Boolean Functions . 26

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 LEMMA 1: EXPRESSIVENESS OF TRANSFORMERS

Given demonstrations {(z(j)0 , z
(j)
1 , · · · , z(j)k−1, z

(j)
k)}Nj=1, we could create k training sets, each of

which defines a loss function quantifying the error of a particular predictor hi. These loss functions
are {

Li =
1

2

N∑
j=1

∥∥∥hi(z
(j)
i−1)− z

(j)
i

∥∥∥2
2
: i ∈ [k]

}
. (17)

Note that while the overall predictor

h = hk ◦ · · · ◦ h2 ◦ h1 = Wkϕk(· · · (W2ϕ2(W1ϕ1(x)))) (18)

is a non-linear function, loss functions in (17) are convex with respective to the weights of their
corresponding linear predictors {Wi : i ∈ [k]}. Let us also denote h≤k′ = hk′ ◦ · · · ◦ h2 ◦ h1 for
k′ ≤ k. Using gradient descent to minimize Li with fixed step size η induces the following training
dynamics in weight space

Wi ←Wi − η∇Wi
Li = Wi + η (Zi − hi(Zi−1))ϕi(Zi−1)

⊤ (19)

where hi(Zi−1) = [hi(z
(j)
i−1)]j∈[N] ∈ Rd(Zi)×N , ϕi(Zi−1) = [ϕi(z

(j)
i−1)]j∈[N] ∈ RK×N . Note that

difference between our setup and the conventional supervised learning setup is that, the latter is
interested in the variation of output with different weights, while in this paper, we are also interested
in the dynamics of intermediate steps. Particularly:

• For i′ < i, the dynamics of intermediate steps induced by GD is

h≤i′(x
(N+1))← h≤i′(x

(N+1)), (20)

namely the variation of upper layer weights does not affect lower layer representations (i.e. interme-
diate steps).

• For i′ = i, the dynamics is

h≤i(x
(N+1)) = Wiϕi(h≤i−1(x

(N+1)))

← (Wi − η∇WiLi)ϕi(h≤i−1(x
(N+1)))

= h≤i(x
(N+1)) + η (Zi − hi(Zi−1))ϕi(Zi−1)

⊤ϕi(h≤i−1(x
(N+1))).

(21)

Let κi be the kernel function defined by the feature map ϕi, we have

h≤i(x
(N+1))← h≤i(x

(N+1)) + η (Zi − hi(Zi−1))κi(Zi−1, h≤i−1(x
(N+1))). (22)

• For i′ > i, the dynamics is

h≤i′(x
(N+1)) = hi ◦ · · · ◦ hi′+1 ◦ h≤i′(x

(N+1))

← hi ◦ · · · ◦ hi′+1

(
h≤i(x

(N+1)) + η (Zi − hi(Zi−1))κi(Zi−1, h≤i−1(x
(N+1)))

)
(23)

which in general intractable since hi ◦ · · · ◦ hi′+1 is non-linear. However, if upper layer weights in
hi, · · · , hi′+1 are 0, h≤i′(x

(N+1)) will become 0 as well and thus we can circumvent (23).

Recall also that based on the definition in Section 2, the self-attention layer can be written as

(Self-Attention) e(N+1) ← e(N+1) +WV Eσ
(
E⊤W⊤

KWQe
(N+1)

)
. (24)

where e = (x, z1, · · · , zk−1, zk) ∈ Rd at the input layer, d =
∑k

i=0 d(Zi).

In the following construction, we show that in the forward pass of Transformer, (24) could express
dynamics of all intermediate steps, including (20), (22) and (23), based on a certain order in which
minimization of losses in (17) is performed. Particularly, in our construction, Transformer will

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

sequentially minimize loss functions in (17). In other words, the lower layers of the Transformer
learn prior reasoning steps, while upper layers of the Transformer learn later reasoning steps.

We begin by constructing a projection matrix P that projects e onto an expanded space

P =



Id(Z0) 0 · · · · · · 0
0 Id(Z1) · · · · · · 0
0 Id(Z1) · · · · · · 0
0 0 Id(Z2) · · · 0
0 0 Id(Z2) · · · 0
...

...
...

. . .
...

0 0 0 · · · Id(Zk)


(25)

which copies certain dimensions in the initial embedding and transforms it into

e = (x, z1 − h1(x), z1, · · · , zk−1 − hk−1(zk−2), zk−1, zk − hk(zk−1)) ∈ Rd′
(26)

where d′ = 2d− d(X)− d(Zk) and hi(zi−1) = 0 for i ∈ [k] at initialization. For the query input,
that is defined as

e(N+1) =
(
x(N+1),−h1(x

(N+1)), 0, · · · ,−h≤k−1(x
(N+1)), 0,−h≤k(x

(N+1))
)
∈ Rd′

(27)

where h≤i(x
(N+1)) = 0 at initialization, h≤k is exactly the final prediction h we desire.

For layers that minimize the i-th step’s loss function Li, we construct Transformer weights in the
corresponding self-attention layer as:

WV =

0dl(i) 0 0
0 −ηId(Zi) 0
0 0 0dr(i)

 (28)

where dl(i) = 2
∑i−1

j=0 d(Zj)− d(X), dr(i) = 2
∑k

j=i d(Zj)− d(Zk)− d(Zi), selecting residuals
in the embedding.

W⊤
KWQ =

0d′
l(i)

0 0
0 Id(Zi−1) 0
0 0 0d′

r(i)

 (29)

where d′l(i) = 2
∑i−1

j=0 d(Zj)−d(X)−d(Zi−1), d′r(i) = 2
∑k

j=i d(Zj)−d(Zk), selecting interme-
diate steps (or inputs) for computing the attention matrix. Stacking t self-attention layers minimizes
the loss function for t steps. For i ∈ [k], apply this procedure to sequentially minimize loss functions
in (17) gives us the desired result. The output includes prediction for all intermediate steps and the
final prediction. It is not hard to verify linear/kernel regression in Von Oswald et al. (2023); Cheng
et al. (2024) are special cases of our construction.

Refer also to Appendix B for understanding the connection between kernel and attention.

A.2 LEMMA 2: UPPER BOUND

Given a target function f and an input distribution D(x), the algorithm A returns a predictor h based
on N i.i.d. samples, whose expected error is defined as Ex∼D[l(h(x), f(x))]. Let us first consider a
single step of task decomposition.
Lemma 6. For any distribution family P and decomposition operator T , the predictor returned by
ACoT on demonstrations sampled from the corresponding distributions in P1 and P2 has an error
upper bound

∆(P,A) ≤ 2max{1, cB,ϕ}(∆(P1,A1) + ∆(P2,A2)) (30)

where cB,ϕ = B2 Lip(ϕ)2 is a constant determined by the hypothesis classH in (7).

Proof. For a family of distributions P , the error is defined as

∆(P,A) ≜ max
(f,D)∈P

Ex∼D [l (h(x), f(x))] , (31)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where we slightly abuse notation here as h is also dependent on the distribution (f,D) and the
learning algorithm. For a certain decomposition operator T , the target function can be expressed as
f = f2 ◦ f1 and the predictor h = h2 ◦ h1. We have

∆(P,A) = max
(f,D)∈P

Ex∼D

[
1

2
((h2 ◦ h1)(x)− (h2 ◦ f1)(x) + (h2 ◦ f1)(x)− f(x))

2

]
(32)

Suppose the feature map ϕ(x) for h2 has Lipschitz constant

Lip(ϕ) = sup
x ̸=x′

∥ϕ(x)− ϕ (x′)∥2
∥x− x′∥2

, (33)

and by Jensen’s inequality, we have

∆(P,A) ≤ max
(f,D)∈P

Ex∼D

[
((h2 ◦ h1)(x)− (h2 ◦ f1)(x))2 + ((h2 ◦ f1)(x)− f(x))

2
]

(34)

≤ max
(f,D)∈P

Ex∼D

[
B2 Lip(ϕ)2∥h1(x)− f1(x)∥22 + (h2(z)− f2(z))

2
]

(35)

≤ B2 Lip(ϕ)2 max
(f,D)∈P

Ex∼D
[
∥h1(x)− f1(x)∥22

]
+ max

(f,D)∈P
Ex∼D

[
(h2(z)− f2(z))

2
]

(36)

where B2 Lip(ϕ)2 is a constant determined by the definition of hypothesis class. Given decomposition
operator T , the distribution family can be decomposed into P1 and P2. It follows that

∆(P,A) ≤ 2B2 Lip(ϕ)2∆(P1,A1) + 2∆(P2,A2) (37)

Let cB,ϕ = max{1, B2 Lip(ϕ)2}, we get the desired upper bound.

To extend this lemma to the case where there are more reasoning steps, i.e. k > 2, let

Individual Error: ∆(Pi,Ai) = ∆i = max
(f,D)∈Pi

Ezi−1∼D[l (hi(zi−1)− zi)]

Accumulated Error: ∆̇(P, {Aj}j∈[i]) = ∆̇i = max
(f,D)∈P

Ex∼D [l ((hi ◦ · · · ◦ h1)(x)− zi)] .

(38)

∆i is the error of learning an individual reasoning step i, which is consistent with its definition in
Section 2, ∆̇i is the accumulated error from the first step to step i. Note that we slightly abuse the
notation here since ∆(P,A) is actually equivalent to ∆̇k. We also have ∆̇1 = ∆1. Therefore

∆̇k = max
(f,D)∈P

Ex∼D

[
1

2
∥(hi ◦ · · · ◦ h1)(x)− zi∥22

]
(39)

= max
(f,D)∈P

Ex∼D

[
1

2
∥(hi ◦ · · · ◦ h1)(x)− hi(zi−1) + hi(zi−1)− zi∥22

]
(40)

≤ 2B2 Lip(ϕk)
2 · ∆̇k−1 + 2∆k (41)

≤ · · ·

≤ 2

k∑
j=1

 k∏
i=j+1

2B2 Lip(ϕi)
2

∆j (42)

We use the lemma from (40) to (41). Therefore, we have the following upper bound

∆(P,A) = ∆̇k ≤ ck

k∑
i=1

∆(Pi,Ai) (43)

where ck = 2maxj
∏k

i=j+1 2B
2 Lip(ϕi)

2 is a constant depending on the hypothesis classHi and k.

Note that in the derivation, we could remove max(f,D)∈P and directly analyze the expected error
Ex∼D[l(h(x), f(x))], which will give us a similar result: the final error is upper bounded by the sum
of individual errors up to a constant.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 THEOREM 3: COT IMPROVES LEARNABILITY

Recall the definition of in-context learnability: we say a parametric modelM can learn task P if
there exists a learning algorithm A and a function N : (0, 1)2 → N, such that for any confidence and
accuracy parameters δ, ϵ ∈ (0, 1):

1. Under a certain parameter choice θ, we haveMθ(·, x) = A(·)(x) for any query x.
2. Given NA(δ, ϵ) i.i.d. examples, the learning algorithm A returns a predictor h such that

with probability of at least 1− δ, ∆(P,A) ≤ ϵ.

Moreover, we say P can be efficiently in-context learned byM if both the running time of A and the
sample size NA(δ, ϵ) are polynomial in δ−1 and ϵ−1.

To see how it can be reduced to the learnability of subtasks after using CoT, recall the definition of
PAC learnability:
Definition 3. We say a subtask Pi can be efficiently learned by an algorithm Ai if its sample
complexity and time complexity scale as poly(δ−1

i , ϵ−1
i), where δi and ϵi are confidence and accuracy

parameter for the subtask.

Since by Lemma 1, we know there exists such a parameter choice such that TFθ(·, x) = ACoT(·)(x),
our goal is then to show: if every subtask Pi is efficiently learnable by its corresponding individual
algorithm Ai, the overall task is also efficiently learnable by ACoT.

By Lemma 2, we know that for fixed k, the accuracy parameter ϵ of the overall task is upper bounded
by the sum of the accuracy parameters of subtasks {ϵi}ki=1 up to a constant coefficient. Additionally,
notice that, given n (not necessarily independent) events A1,A2, . . . ,An, each occurring with
probability P (Ai) = 1− δi, we have

P

(
n⋂

i=1

Ai

)
≥ max

(
0, 1−

n∑
i=1

δi

)
. (44)

This means the confidence parameter of the overall task δ is also upper bounded by the sum of
confidence parameters of all subtasks {δi}ki=1. Namely

ϵ ≤ ck

k∑
i=1

ϵi, δ ≤
k∑

i=1

δi (45)

In terms of the time complexity ofACoT, since each individual algorithmAi runs in time polynomial
in δ−1

i and ϵ−1
i , we have Time(Ai) = poly(δ−1

i , ϵ−1
i). Moreover, one can choose δ1 = δ2 = · · · =

δk = δ′, ϵ1 = ϵ2 = · · · = ϵk = ϵ′, correspondingly we have δ′ ≥ δ/k and ϵ′ ≥ ϵ/ck. Since ACoT is
a simple combination of all individual algorithms {Ai}ki=1, we have

Time(ACoT) =

k∑
i=1

Time(Ai) ≤ poly(δ−1, ϵ−1), (46)

meaning the learning algorithm is also computationally efficient.

In terms of the sample complexity of ACoT, we also let δ1 = δ2 = · · · = δk = δ′ ≥ δ/k and
ϵ1 = ϵ2 = · · · = ϵk = ϵ′ ≥ ϵ/ck. Note that in the case of CoT, all individual algorithms use the same
number of samples as the algorithm ACoT. To show the algorithm is sample-efficient, we can simply
choose NA(δ, ϵ) to be the largest among {NAi(δ

′, ϵ′)}ki=1, i.e.

NA(δ, ϵ) = max
i∈[k]

NAi
(δ′, ϵ′) (47)

which ensures that ACoT can achieve high accuracy with high probability. Since any NAi(δi, ϵi) is
polynomial in δ′−1 and ϵ′−1, it holds that NA(δ, ϵ) is also polynomial in δ−1 and ϵ−1. However, if
NA(δ, ϵ) < maxi∈[k] NAi(δ

′, ϵ′), we have no guarantee that each step can successfully learn their
corresponding reasoning step. From here, we also proved that the sample efficiency of the overall
step is that of the hardest step in the CoT.

Since ACoT can efficiently learn P , and Transformer with linear depth and constant embedding size
can express ACoT, we complete the proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.4 THEOREM 4: LOWER BOUND

The in-context learning error has approximation error lower bound, that is the minimum error
achievable by a predictor in the hypothesis classH = {h2 ◦ h1 : h1 ∈ H′

1, h2 ∈ H2}

max
(f,D)∈P

Ex∼D [l (h(x), f(x))] ≥ max
(f,D)∈P

min
(h1,h2)∈H′

1×H2

Ex∼D [l (h(x), f(x))] . (48)

Thus it suffices to lower bound the approximation error.

To do so, notice that the learned first-step predictor h1 is from finite function class H′
1, which is a

subset of the initial hypothesis classH1. We show the approximation power of h(x) with finite-sized
H′

1 is lower bounded by a linear class whose size depends onH′
1. In particular, suppose the hypothesis

class is

H′
1 = {h1,1, h1,2, · · · , h1,|H′

1|}, (49)

and based on the index of h1 inH′
1, the predictor h(x) can be re-written as

h(x, j) ≜ W2(ϕ ◦ h1,j)(x) =

K∑
i=1

W2,iϕi,j(x) (50)

=

K∑
i=1

|H′
1|∑

i′=1

Ui,i′ϕi,i′(x) (51)

where ϕi,j = ϕi ◦ h1,j and Ui,i′ = W2,i if i′ = j otherwise 0. As (51) is an inner product of weight
vector U ∈ RK|H′

1| and feature vector ϕ(x) ∈ {±1}K|H′
1| in an expanded space, h(x, j) reduces to

a linear function.

Since the squared loss l(h(x, j), f(x)) is convex w.r.t. U for arbitrary x and j, its expectation
Lf,D(h) ≜ Ex∼D [l (h(x, j), f(x))] is also convex w.r.t. U . Moreover, h(x, j) = 0 when W2 or U
goes to 0. Therefore, given any (f,D) ∈ P and any predictor h with fixed W2 and j (and thus fixed
U), by first-order condition, we have

Lf,D(h) ≥ Lf,D(0) + ⟨U − 0,∇ULf,D(h)|U=0⟩ (52)

≥ 1

2
− ∥U∥2 ∥∇ULf,D(h)|U=0∥2 (53)

where the last equation uses the fact Lf,D(0) = Ex∼D [l (0, f(x))] = 1
2 and inequality ⟨v, u⟩ ≥

−∥u∥2∥v∥2.

Notice U has the same norm as W2 and thus ∥U∥2 ≤ B. Moreover, we have

∇(f,D) ≜ ∥∇ULf,D(h)|U=0∥22 = ∥∇UEx∼D [l (h(x, j), f(x))] |U=0∥22 (54)

= ∥Ex∼D [∇U l (h(x, j), f(x)) |U=0]∥22 (55)

=

∥∥∥∥Ex∼D

[
∇U

1

2
(⟨U, ϕ(x)⟩ − f(x))2|U=0

]∥∥∥∥2
2

(56)

= ∥Ex∼D [ϕ(x)f(x)]∥22 (57)

=

K∑
i=1

|H′
1|∑

j=1

Ex∼D [ϕi,j(x)f(x)]
2 (58)

Subjecting it to (53) gives us that, for any (f,D) ∈ P and any predictor h(x) obtained from in-context
learning, i.e.

min
(h1,h2)∈H′

1×H2

Lf,D(h) ≥
1

2
−B · ∇(f,D) 1

2 (59)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Following from (48), the in-context learning error has lower bound
∆(P,A) ≥ max

(f,D)∈P
min

(h1,h2)∈H′
1×H2

Lf,D(h) (60)

≥ max
(f,D)∈P

[
1

2
−B · ∇(f,D) 1

2

]
(61)

≥ E(f,D)∈P

[
1

2
−B · ∇(f,D) 1

2

]
(62)

=
1

2
−B · E(f,D)∈P

[
∇(f,D) 1

2

]
(63)

By noting E[X 1
2] ≤ E[X]

1
2 , we have

∆(P,A) ≥ 1

2
−B · E(f,D)∈P [∇(f,D)]

1
2 (64)

=
1

2
−B · E(f,D)∈P

 K∑
i=1

|H′
1|∑

j=1

Ex∼D [ϕi,j(x)f(x)]
2

 1
2

(65)

Let
Var(P) ≜ sup

ϕ
E(f,D)∈P

[
Ex∼D [ϕ(x)f(x)]

2
]
, (66)

which is determined by target functions and distributions in P , and could be understood as the
intrinsic complexity of the distribution family (i.e. the more complex P is, the smaller Var(P) is). It
follows that,

∆(P,A) ≥ 1

2
−B

√√√√√ K∑
i=1

|H′
1|∑

j=1

E(f,D)∈P

[
Ex∼D [ϕi,j(x)f(x)]

2
]

(67)

≥ 1

2
−B

√
K|H′

1|Var(P), (68)

completing the proof.

A.5 COROLLARY 5: LEARNING PARITIES

w/o CoT. The distribution family of parities with input size n is defined as

PXOR(n) ≜ {(χS ,D) : S ⊆ [n]} where χS(x) =
∏
i∈S

x[i]. (69)

Based on (66), we can derive an upper bound on Var(P) for parities, i.e.
Var(PXOR(n)) = sup

ϕ
E(χ,D)∈PXOR(n)

[
Ex∼D[ϕ(x)χ(x)]

2
]

(70)

= sup
ϕ

1

|PXOR(n)|
∑
S⊆[n]

Ex∼D[ϕ(x)χS(x)]
2 (71)

where |PXOR(n)| = 2n and 2[n] is the power set of [n]. Note that {χS : S ⊆ [n]} forms a Fourier
basis of Boolean functions, meaning that for any pair of different subsets S1, S2 ⊆ [n], we have

Ex∼D[χS1(x)χS2(x)] = 0. (72)
Therefore Ex∼D[ϕ(x)χS(x)] is exactly the Fourier coefficient of Boolean function ϕ(x) correspond-
ing to S, which we denote as ϕ̂(S). Therefore

Var(PXOR(n)) =
1

2n

∑
S⊆[n]

ϕ̂(S)2 =
1

2n
. (73)

Since, when there is no CoT, the error lower bound is

∆(Var(PXOR(n)), h) ≥
1

2
−B

√
K Var(PXOR(n)) =

1

2
−B

√
K

2n
, (74)

we can choose n > 2 + log2 B
2K such that this lower bound is always positive (regardless of the

sample size).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

w/ CoT. Consider the following CoT

1st Step: z[i] = χ1,S(x)[i] =

{
x[i] for i ∈ S
1 for i /∈ S

, 2nd Step: y = χ2,S(z) =
∏
i

z[i], (75)

we show each step can be approximated by the hypothesis class defined in (7)

Hi = {zi−1 7→Wiϕi(zi−1) : ∥Wi∥2 ≤ B} (76)

where ϕi : Zi−1 → RK is a non-linear feature map to a K-dimensional space, and Wi ∈ Rd(Zi)×K

are learnable weights. We do this by construction. For the first-step predictor χ1,S(x), we let ϕ1(x) =
(x, 1) be the connection of x and 1; for the second-step predictor χ2,S(x), we let ϕ2(z) =

∏
i z[i].

With these features, both steps can be learned by a simple linear model Wx, which also means the
expected error could be arbitrarily small with sufficiently large sample size. The sample complexity
follows the standard analysis for linear regression.

In contrast, when there is no CoT, ∆(P,A) has a positive lower bound, meaning there always exists
at least one (f,D) ∈ P such that the expected error is greater than the lower bound.

B BACKGROUND: CONNECTION BETWEEN ATTENTION AND KERNEL

As the background knowledge for understanding the construction of Transformers in Lemma 1,
here we provide a non-exhaustive summary of the connections between the attention matrix in
Transformers and the kernel method from previous works (Von Oswald et al., 2023; Cheng et al.,
2024; Guo et al., 2024; Tsai et al., 2019; Wright & Gonzalez, 2021; Chen et al., 2024). We rewrite
the kernel gradient descent dynamics and the Transformer layer here for reference

(GD Dynamics) h(x(N+1))← h(x(N+1)) + η (Y − Ŷ) ϕ(X)⊤ϕ(x(N+1)), (77)
Kernel FunctionResidualsPredictions

(Transformer Layer) e(N+1) ← e(N+1) + WV E σ(E⊤W⊤
KWQe

(N+1))), (78)
Attention ModuleEmbeddingSkip Connection

Here, the kernel is induced by κ(x, y) = ϕ(x)⊤ϕ(y). The definition of σ could be flexibly chosen
depending on the practical implementation of Transformers.

In-Context Learning. Von Oswald et al. (2023) (Proposition 1) demonstrates in the most simple
case where both the non-linearity in Transformer σ and the feature map ϕ are identity mappings, the
weight constructions WV =

(
0d(X) 0

0 −ηId(Y)

)
and W⊤

KWQ =
(

Id(X) 0
0 0d(Y)

)
yields

E⊤W⊤
KWQe

(N+1) = X⊤xN+1, WV E = −η(0d(X), Y − Ŷ). (79)

In this case, κ(x, y) = x⊤y is the inner product kernel. Their Proposition 2 further discusses the case
which accommodates the role of the MLP module in the Transformer architecture. Specifically the
MLP module transforms the token e as MLPθ(e), and thus with the same WV , WK , WQ and identty
mapping σ, the kernel is

κ(x, y) = MLPθ(x)
⊤ MLPθ(y). (80)

Guo et al. (2024) also leverages the representation power of MLP and considers the case where
ϕ : Rd → RK is a fixed representation function, which can in principle be chosen arbitrarily as long
as the features can be represented by a MLP. Theorem 1 in this paper provides a construction where
σ is chosen to be the normalized ReLU and proves that Transformers can perform in-context ridge
regression. Following this work, more recently Kim & Suzuki (2024) similarly concluded that MLP
layer can extend the class of learnable functions of ICL to the Barron space.

Cheng et al. (2024) considers the case where σ is non-linear, and their Proposition 1 proves if the
non-linearity σ matches the kernel κ, the Transformers can perform functional (kernel) gradient

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

descent regression w.r.t. the reproducing kernel Hilbert space metric of this kernel; the proof is
exactly based on the relation between (77) and (78). For example, they demonstrate that the Softmax
attention corresponds to the exponential kernel

κ(x, y) = exp

(
− 1

σ2
x⊤y

)
. (81)

One caveat here is that the attention matrix in this case is asymmetric; to address this, one could
treat the normalization term as pre-conditioner of the optimization algorithm, and the construction of
Transformers should be modified accordingly. We refer the readers to more discussions in their paper.

General Discussions. Even before ICL, the connection between kernel and attention is a topic that
has been widely discussed (e.g. (Tsai et al., 2019; Wright & Gonzalez, 2021; Chen et al., 2024) etc.)
and references therein). For instance, Wright & Gonzalez (2021) proves that the standard attention
matrix is a reproducing kernel for a reproducing kernel Banach space and gives explicit formulation
of the feature maps (Proposition 1). Their Theorem 2 further demonstrates that Transformers can
learn any binary non-Mercer reproducing kernel Banach space pair.

In practice, variants of Transformers with kernelized attentions (e.g. (Choromanski et al., 2021;
Katharopoulos et al., 2020; Wang et al., 2020; Peng et al., 2021) etc.) such as those relying on random
Fourier features are very popular and effective. These implementations are often considered for
efficiency considerations, since once the attention is kernelized, one can switch the order of matrix
multiplication to accelerate the computation and reduce the time complexity from quadratic to linear
w.r.t. the input length.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 INCREASINGLY COMPLEX FUNCTIONS

Sampling. For this task, we sample a sequence of functions from a set of elementary functions with
the following probabilities:

P (z[0]← z[0] + z[1]) =
1

8
, P (z[0]← z[0]− z[1]) =

1

8
, P (z[0]← z[0]× z[1]) =

1

4
,

P (z[1]← z[1] + z[0]) =
1

8
, P (z[1]← z[1]− z[0]) =

1

8
, P (z[1]← z[1]× z[0]) =

1

4
.

Here, the multiplication operation is more likely to be sampled than addition or subtraction. For
the input values, we uniformly select two unique integers from the set {2, 3, . . . , 10}. This range is
chosen to avoid excessively large numbers, which are difficult to handle, and trivial cases, such as
when x[0] = x[1], which could result in zero values that are easily predictable by LLMs. For this
task, we explicitly ensure that each sample is unique to prevent repeated samples in training and
testing. This is done to avoid scenarios where LLMs could simply memorize the results from the
demonstrations and use them to answer the query.

CoT Prompting. Given a certain Hmax, namely the maximal number of elementary functions to
construct a reasoning step, we implement it by randomly masking H − 1 consecutive intermediate
steps. For example, when T = 6 and H = 3, an example prompt is given as follows:

Given two numbers, sequentially apply predefined arithmetic
operations (addition, subtraction, multiplication) to
transform them. Each step involves a specific predefined
operation on one of the numbers. If any operations or
intermediate results are missing, deduce these to complete the
transformation and arrive at the final output.

↪→

↪→

↪→

↪→

↪→

Input: 7, 5
Step1: 7, -2
Step2: 5, -2
Step3: missing
Step4: missing
Step5: 5, 75
Output: -70, 75

Input: 2, 3
Step1: 2, 1
Step2: 3, 1
Step3: missing
Step4: missing
Step5: 3, 36
Output: -33, 36

...

Input: 5, 8
What is the output? Your answer should end in the format 'Step1:

?, Step2: ?, ..., Output:?'.↪→

Note that the missing steps are consistent for one trial. We test 100 times to compute the success rate.

Additional Results. In addition to reporting the success rate of LLMs for predicting the final output
as presented in Section 5, we also evaluate their success rate for predicting intermediate steps. This
provides a more comprehensive assessment of the LLMs’ performance, as even they might fail to
predict the final step but could still succeed in predicting the intermediate steps.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

97 -- -- -- -- -- -- --

92 35 -- -- -- -- -- --

90 31 18 -- -- -- -- --

88 22 16 6 -- -- -- --

82 21 12 9 3 -- -- --

71 27 12 6 5 1 -- --

69 23 6 4 1 0 0 --

56 16 4 3 1 1 1 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

65 -- -- -- -- -- -- --

43 27 -- -- -- -- -- --

34 17 15 -- -- -- -- --

45 24 14 7 -- -- -- --

35 13 8 4 3 -- -- --

30 9 6 2 6 1 -- --

15 12 5 4 3 1 1 --

13 5 2 1 0 2 1 1
0

20

40

60

80

100
Success Rate (%

)

(b) GPT-3.5-turbo

Figure 3: Success rate for predicting the last step (i.e. namely the output).

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

98 3 -- -- -- -- -- --

91 15 2 -- -- -- -- --

89 18 11 1 -- -- -- --

89 17 10 7 0 -- -- --

81 20 8 3 3 1 -- --

73 20 3 3 0 0 0 --

78 14 4 2 1 1 0 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

31 14 -- -- -- -- -- --

25 16 0 -- -- -- -- --

38 18 8 3 -- -- -- --

36 10 7 5 1 -- -- --

33 6 6 1 5 0 -- --

20 9 3 2 2 0 0 --

16 7 0 1 1 0 0 0
0

20

40

60

80

100

Success Rate (%
)

(b) GPT-3.5-turbo

Figure 4: Success rate for predicting the second to last step.

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

94 56 0 -- -- -- -- --

92 46 10 0 -- -- -- --

93 34 5 1 1 -- -- --

87 29 13 4 2 0 -- --

80 33 8 3 0 0 0 --

74 21 5 2 1 1 0 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

33 24 3 -- -- -- -- --

35 26 0 1 -- -- -- --

38 16 5 0 0 -- -- --

37 12 5 0 1 0 -- --

26 17 6 2 4 0 0 --

21 10 0 1 1 0 1 0
0

20

40

60

80

100

Success Rate (%
)

(b) GPT-3.5-turbo

Figure 5: Success rate for predicting the third to last step.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

100 75 54 0 -- -- -- --

95 54 32 6 0 -- -- --

90 46 41 5 5 0 -- --

90 49 31 4 1 1 0 --

84 32 17 5 1 0 0 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

43 23 24 3 -- -- -- --

39 20 9 1 0 -- -- --

37 18 10 1 0 0 -- --

34 17 10 2 0 0 0 --

25 15 3 0 2 0 2 0
0

20

40

60

80

100
Success Rate (%

)

(b) GPT-3.5-turbo

Figure 6: Success rate for predicting the fourth to last step.

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

97 76 66 48 2 -- -- --

94 62 58 35 12 1 -- --

93 57 42 20 0 2 0 --

86 51 32 22 0 0 0 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

40 32 31 19 1 -- -- --

41 19 8 11 0 0 -- --

30 23 12 9 0 1 0 --

29 17 11 4 1 0 0 0
0

20

40

60

80

100

Success Rate (%
)

(b) GPT-3.5-turbo

Figure 7: Success rate for predicting the fifth to last step.

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

98 77 76 68 62 2 -- --

93 73 54 52 35 2 0 --

92 56 50 36 13 3 1 0
0

20

40

60

80

100

Success Rate (%
)

(a) GPT-4o

H
max=1

H
max=2

H
max=3

H
max=4

H
max=5

H
max=6

H
max=7

H
max=8

H=1

H=2

H=3

H=4

H=5

H=6

H=7

H=8

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

-- -- -- -- -- -- -- --

41 29 23 33 24 0 -- --

34 21 18 19 8 0 0 --

31 24 14 11 8 1 0 0
0

20

40

60

80

100

Success Rate (%
)

(b) GPT-3.5-turbo

Figure 8: Success rate for predicting the sixth to last step.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.2 CANONICAL BOOLEAN FUNCTIONS

Examples of standard and CoT prompts for (10, 4)-parity and DNF with width 6 are given as follows:

• Standard prompt for parity:

Predict the output based on a pattern in the input binary string.

Input: 1010101100
Output: 0

Input: 0100000011
Output: 0

Input: 0110010000
Output: 1

Input: 1010100001
Output: 0

Input: 1010100001
Output: 0

...

Input: 1011000111
What is the output? Directly answer the question in the format

'Output:'.↪→

• CoT prompt for parity:

Replace some bits located at specific predefined positions in the
binary string with 0 to form a new string. Then, based on some
patterns in the new string to predict the output.

↪→

↪→

Input: 1000010001
New string: 0000010001
Output: 0

Input: 0100110111
New string: 0000110001
Output: 1

Input: 0101001000
New string: 0001000000
Output: 1

Input: 0100000010
New string: 0000000000
Output: 0

Input: 1011010000
New string: 0001010000
Output: 0

...

Input: 0100100110
What is the output? Directly answer the question in the format

'New string:, Output:'.↪→

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Standard prompt for DNF:

Predict the output based on a pattern in the input binary string.

Input: 001010 000001 010011
Output: 1

Input: 100111 011001 010111
Output: 1

Input: 010010 011010 101011
Output: 1

Input: 010101 001101 001001
Output: 1

Input: 111110 011001 010111
Output: 1

...

Input: 010001 110101 011011
What is the output? Directly answer the question in the format

'Output:'.↪→

• CoT prompt for DNF:

Replace some bits located at specific predefined positions in the
binary string with 1 to form a new string. Then, based on some
patterns in the new string to predict the output.

↪→

↪→

Input: 000101 011111 011010
New string: 100111 111111 011111
Output: 1

Input: 001101 100111 000101
New string: 101111 110111 000101
Output: 0

Input: 100001 011001 001010
New string: 100011 111011 001111
Output: 0

Input: 001100 010100 101011
New string: 101111 110110 101111
Output: 0

Input: 010101 111011 100101
New string: 110111 111011 100101
Output: 0

...

Input: 000100 011110 100000
What is the output? Directly answer the question in the format

'New string:, Output:'.↪→

27

	Introduction
	Contributions
	Related Work

	Preliminaries
	Improved Learnability by Task Decomposition
	Learning Algorithms Enabled by Chain-of-Thoughts
	Expressiveness of Transformers
	Effects of Task Decomposition

	Hardness of Learning without Chain-of-Thought
	Lower Bound
	Illustrative Example: Learning Parities

	Experiments
	Increasingly Complex Functions
	Canonical Boolean Functions

	Conclusion and Discussion
	Proofs
	Lemma 1: Expressiveness of Transformers
	Lemma 2: Upper Bound
	Theorem 3: CoT Improves Learnability
	Theorem 4: Lower Bound
	Corollary 5: Learning Parities

	Background: Connection between Attention and Kernel
	Experimental Details and Additional Results
	Increasingly Complex Functions
	Canonical Boolean Functions

