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Abstract

Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision
making on neuromorphic hardware, making them attractive for Reinforcement
Learning (RL) in resource-constrained edge devices. However, most RL algo-
rithms for continuous control are designed for Artificial Neural Networks (ANNs),
particularly the target network soft update mechanism, which conflicts with the
discrete and non-differentiable dynamics of spiking neurons. We show that this
mismatch destabilizes SNN training and degrades performance. To bridge the gap
between discrete SNNs and continuous-control algorithms, we propose a novel
proxy target framework. The proxy network introduces continuous and differen-
tiable dynamics that enable smooth target updates, stabilizing the learning process.
Since the proxy operates only during training, the deployed SNN remains fully
energy-efficient with no additional inference overhead. Extensive experiments on
continuous control benchmarks demonstrate that our framework consistently im-
proves stability and achieves up to 32% higher performance across various spiking
neuron models. Notably, to the best of our knowledge, this is the first approach
that enables SNNs with simple Leaky Integrate and Fire (LIF) neurons to surpass
their ANN counterparts in continuous control. This work highlights the importance
of SNN-tailored RL algorithms and paves the way for neuromorphic agents that
combine high performance with low power consumption. Code is available at
https://github.com/xuzijie32/Proxy-Target.

1 Introduction

Reinforcement Learning (RL), combined with Artificial Neural Networks (ANNs), has become a
cornerstone of modern artificial intelligence, achieving remarkable success in diverse domains such
as game playing [Mnih, 2013, Silver et al., 2016, Mnih et al., 2015], autonomous driving [Kiran et al.,
2021, Sallab et al., 2017, Shalev-Shwartz et al., 2016], and large language model training [Ouyang
et al., 2022, Bai et al., 2022, Shao et al., 2024]. Among these, continuous control problems have
drawn particular attention due to their close alignment with real-world robotic and embodied AI
applications [Kober et al., 2013, Gu et al., 2017, Brunke et al., 2022]. However, the high computational
cost and power demands of ANN-based RL algorithms limit their deployment on edge devices such
as drones, wearables, and IoT sensors [Abadía et al., 2021, Tang et al., 2020, Yamazaki et al., 2022].
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Figure 1: Overview of the training framework and performance comparison. (a)-(c) are different
training paradigms. (a) Actor-Critic framework in ANNs, (b) The Actor-Critic framework for SNNs,
(c) the proposed proxy target framework for SNNs. (d) Performance ratio of SNNs relative to ANNs
across five random seeds and five environments. The middle orange line denotes the median, the
box spans from the first to the third quartile, and the whiskers extend to the farthest data within 1.5
inter-quartile range from the box.

Inspired by biological neural systems, Spiking Neural Networks (SNNs) offer sparse, event-driven
computation with ultra-low latency and energy consumption on neuromorphic hardware [DeBole
et al., 2019, Davies et al., 2018]. These properties make SNNs attractive for RL applications on
resource-constrained edge devices [Yamazaki et al., 2022]. Recent works have attempted to integrate
SNNs into continuous-control RL algorithms via hybrid frameworks [Tang et al., 2020, 2021, Zhang
et al., 2024, Chen et al., 2024, Zhang et al., 2022], where a spiking actor network (SAN) is co-trained
with an ANN critic using Spatio-Temporal Backpropagation (STBP) [Wu et al., 2018, Fang et al.,
2021], as illustrated in Fig. 1(b). With well-chosen hyperparameters, such frameworks have shown
that SNNs can approach or even surpass the performance of ANNs in some tasks.

However, most of these studies simply retrofit SNNs into existing ANN-centric RL frameworks
without adapting the algorithms to SNN dynamics. Since ANNs and SNNs exhibit fundamentally
different computational characteristics, it remains unclear whether RL algorithms designed for
continuous, differentiable activations are well-suited for discrete, event-driven networks.

A key issue arises from the target network soft update mechanism, a core component widely used
in off-policy RL algorithms to stabilize training by gradually updating target networks [Sutton and
Barto, 2018, Lillicrap, 2015, Fujimoto et al., 2018, Haarnoja et al., 2017]. This mechanism relies
on continuous, smooth output changes—a property violated by the non-differentiable, binary nature
of SNN spikes. This can cause abrupt output shifts, leading to unstable optimization objective, and
oscillatory updates. Such instability not only makes the model highly sensitive to random seed
initialization but also hampers convergence and undermines reliability in real-world deployment.

To address this mismatch between discrete spikes and continuous-control updates, we propose a proxy
target framework for SNN-based RL (Fig. 1(c)). Instead of using an SNN target actor, we introduce
a differentiable proxy actor network that imitates the behavior of the online spiking actor network.
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The proxy target network can alter its output smoothly and continuously, stabilizing the learning
process and improving performance, as demonstrated in Fig. 1(d). Since the proxy target network is
only used for auxiliary training, the proposed approach retains SNN’s advantages of low-latency and
energy efficiency during inference in real world applications. Our main contributions are summarized
as follows:

• We identify a critical mismatch between discrete SNN outputs and the continuous target
network soft update mechanism used in off-policy RL, showing how this conflict destabilizes
training and degrades performance.

• We propose a proxy target framework that replaces the spiking target network with a
continuous, differentiable proxy, enabling smooth target updates and stable optimization.

• We introduce an implicit gradient-based update rule that aligns the proxy with the online
SNN, mitigating target output gaps and giving precise optimization goals.

• Extensive experiments across multiple neuron models and continuous control benchmarks
demonstrate consistent stability improvements and up to 32% higher average performance.
To the best of our knowledge, this is the first approache where SNNs with simple Leaky
Integrate-and-Fire (LIF) neurons surpass ANN performance in continuous control.

2 Related works

2.1 Learning rules of SNN-based RL

Synaptic plasticity. Inspired by the plasticity of biological synapses, several works have inte-
grated SNNs into reinforcement learning via reward-modulated spike-timing-dependent plasticity
(R-STDP) [Florian, 2007, Frémaux and Gerstner, 2016, Gerstner et al., 2018, Frémaux et al., 2013,
Yang et al., 2024]. These approaches are biologically plausible and energy-efficient, but have limited
performance on complex tasks.

ANN-SNN conversion. With the progress of ANN-based deep RL and ANN-SNN conversion
algorithms [Cao et al., 2015, Bu et al., 2022a,b], some studies [Patel et al., 2019, Tan et al., 2021,
Kumar et al., 2025] convert well-trained Deep Q-Networks (DQNs) [Mnih, 2013, Mnih et al., 2015]
into SNNs. Such conversion-based methods achieve lower energy consumption during inference, but
require ANN pre-training.

Gradient-based direct training. To avoid ANN pre-training, several works [Liu et al., 2022, Chen
et al., 2022, Qin et al., 2022, Sun et al., 2022, 2025] directly train SNNs for RL using STBP [Wu
et al., 2018], while Bellec et al. [2020] introduced e-prop with eligibility traces to learn policies
through the policy gradient algorithm [Sutton et al., 1999]. These approaches achieve competitive
results in discrete action spaces, but they cannot be extended to continuous control tasks.

2.2 Hybrid framework of spiking actor network.

In continuous-control problems where the action space is continuous, hybrid frameworks have been
extensively explored. Tang et al. [2020] first proposed an SNN-based actor co-trained with an ANN
critic in the Actor-Critic framework [Konda and Tsitsiklis, 1999]. Tang et al. [2021] demonstrated
that population encoding improves the performance of spiking actor networks. Subsequent works
enhanced these frameworks through various mechanisms, such as utilizing dynamic neurons [Zhang
et al., 2022], incorporating lateral connections [Chen et al., 2024], adding bio-plausible topologies
[Zhang et al., 2024], and integrating dynamic thresholds [Ding et al., 2022].

While these hybrid approaches report performance comparable to or exceeding their ANN counter-
parts, two key limitations remain. First, they often rely on complex neuron models (e.g., current-based
LIF or second-order dynamic neurons), increasing computational cost and training difficulty. Second,
the RL algorithms themselves are not modified to account for SNN-specific dynamics, which may
cause instability and suboptimal convergence. In contrast, our proxy target framework is tailored to
the discrete, event-driven nature of SNNs, achieving superior stability and performance with only
simple LIF neurons.
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3 Preliminaries

To avoid ambiguity, we use training steps to denote RL time steps and simulation steps to denote
internal SNN simulation time steps.

3.1 Reinforcement Learning

Reinforcement Learning (RL) involves an agent interacting with an environment. The agent observes
the current state s, performs an action a and receives a reward r, while the environment transitions to
the next state s′. The agent’s objective is to learn a policy πϕ, parameterized by ϕ, that maximizes
the expected return.

In continuous control settings, the action space is a continuous vector (e.g., torque values). Most
continuous control algorithms adopt the Actor–Critic framework with a deterministic policy [Sutton
and Barto, 2018], where the actor πϕ outputs actions a = πϕ(s) and the critic Qθ evaluates them
with parameters θ [Konda and Tsitsiklis, 1999]. The actor is updated by the deterministic policy
gradient [Silver et al., 2014]:

∇ϕJ(ϕ) = E
[
∇aQθ(s, a) |a=π(s) ∇ϕπϕ(s)

]
. (1)

The critic is updated via temporal-difference (TD) learning [Sutton, 1988] using the Bellman equa-
tion [Bellman, 1966]:

Qθ(s, a)← y, y = r + γQθ′(s′, a′), a′ = πϕ′(s′), (2)

where γ is the discount factor and (πϕ′ , Qθ′) denote target networks.

3.2 Target network soft update

The target networks (πϕ′ , Qθ′) share the same architecture as their online counterparts (πϕ, Qθ) but
are updated more slowly to provide stable learning targets. Their parameters are updated by the
Polyak function with smoothing factor τ :

ϕ′ ← τϕ+ (1− τ)ϕ′, θ′ ← τθ + (1− τ)θ′. (3)

These soft updates play a crucial role in off-policy continuous-control algorithms. As shown in
Eqs. (1, 2), the actor and critic are jointly optimized through bootstrapping, which can cause oscillatory
updates due to their mutual dependence. The target networks mitigate this by producing slowly
changing targets, thereby stabilizing training and preventing divergence.

3.3 Spiking Neural Networks

Spiking neuron model. In an SNN, each neuron integrates presynaptic spikes into its membrane
potential and emits a spike when the potential exceeds a threshold. The Leaky Integrate and Fire
(LIF) neuron [Gerstner and Kistler, 2002] is one of the most widely used models, governed by the
following dynamics:

I lt = W lSl−1
t + bl, H l

t = λV l
t−1 + I lt, (4)

Sl
t = Θ(H l

t − Vth), V l
t = (1− Sl

t)H
l
t + Sl

t · Vreset, (5)

where I is the input current, H is the accumulated membrane potential, S is the binary output spike, V
is the membrane potential after the firing process. W and b are the weights and the biases, Vth, Vreset,
and λ are the threshold voltage, the reset voltage and the membrane leakage parameter, respectively.
All subscripts (·)t and all superscripts (·)l denote simulation step t and layer l respectively. Θ(·) is
the Heaviside function.

Spiking actor network. The spiking actor network (SAN) consists of a population encoder with
Gaussian receptive fields [Tang et al., 2021], a multi-layer SNN, and a decoder that uses the membrane
potentials of non-firing neurons as continuous outputs [Chen et al., 2024]. The SAN is trained using
STBP with a surrogate gradient function. Detailed forward and backward formulations are provided
in Appendix A.2.
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4 Methodology

In this section, we propose a novel proxy target framework to address the incompatibility between
the discrete dynamics of spiking neurons and the continuous target network soft update mechanism
in RL. Section 4.1 analyzes the instability caused by discrete target outputs and introduces a proxy
target network with continuous dynamics. Section 4.2 presents an implicit imitation mechanism that
aligns the proxy network with the online SNN through gradient-based optimization. Section 4.3
summarizes the overall training procedure.
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Figure 2: Effects of different target network update mechanisms. (a)-(c) show output trajectories of
different target networks during updates, where each line denotes a normalized output dimension
within (−1, 1). (a) ANN target network exhibits smooth transitions; (b) SNN target network produces
discrete and irregular output jumps; (c) the proposed proxy target achieves continuous and stable
transitions. (d) Mean squared error between target and online networks during training in the
InvertedDoublePendulum-v4 environment.

4.1 Addressing discrete targets by proxy network

Performance degradation due to discrete target outputs. In the standard Actor–Critic framework,
the target network is updated using the Polyak function (Eq. 3), which assumes that small parameter
updates lead to smooth output transitions. This assumption holds for ANNs with continuous activation
functions but fails for SNNs, whose firing function is binary and non-differentiable. To illustrate
this effect, we construct target networks corresponding to trained online networks using identical
architectures and neuron models. The target parameters are updated according to Eq. 3 with τ = 0.005
(the most commonly used setting), while the online network is frozen. Figures 2(a)–(b) show the
target outputs during updates: the ANN target evolves smoothly, whereas the SNN target exhibits
frequent discontinuous jumps. Although both targets eventually converge to their online counterparts,
the discrete shifts in the SNN target (Fig. 2(b)) cause erratic transitions that propagate instability to the
critic’s optimization objectives, resulting in oscillatory and unreliable learning dynamics [Fujimoto
et al., 2018].

Smoothing target outputs by proxy network. As illustrated in Fig. 1(c), to restore smoothness, we
introduce a proxy target network that replaces the discrete spiking neurons of SNNs with continuous
activation functions of ANNs. As shown in Fig. 2(c), the proxy network produces gradual output
transitions during updates, effectively eliminating the discrete jumps observed in SNN targets. This
design enables stable soft updates and prevents abrupt shifts in the target outputs, thereby improving
the stability of the overall Actor–Critic learning process.

4.2 Addressing target output gaps by implicit updates

Performance degradation due to target output gaps. Although the proxy network achieves
smooth updates, directly substituting spiking neurons with continuous activations (e.g., ReLU)
introduces an output gap between the proxy and the online SNN. This discrepancy prevents the
proxy target from accurately reproducing the output of the online SNN, distorting the critic’s learning
targets and reducing overall policy performance.

Aligning proxy network by implicit updates. Since the approximation errors cannot be eliminated
by explicitly copying the weights of the online SNN, we propose an implicit proxy update method.
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Figure 3: Architecture of the proposed proxy network and the spiking actor network. The proxy actor
is updated implicitly by imitating the behavior of the online spiking actor network, ensuring stable
and accurate target updates.

As shown in Fig. 3, unlike the explicit soft update that directly averages parameters, our approach
computes updates in the output space, which gradually reduces the gap between the online SNN and
the proxy target. Let the proxy actor πProxy

ϕ′ have parameters ϕ′ and the online spiking actor πSNN
ϕ

have parameters ϕ. For each input state s, the proxy output is implicitly updated toward the SNN
actor output as:

πProxy
ϕ′ (s)← (1− τ ′) · πProxy

ϕ′ (s) + τ ′ · πSNN
ϕ (s). (6)

where τ ′ is a smoothing coefficient similar to τ in Eq. 3. Since it is difficult to directly update the
corresponding parameter according to Eq. 6, we instead perform a gradient-based optimization that
achieves a similar effect:

ϕ′ ← ϕ′ + τ
(
πSNN
ϕ (s)− πProxy

ϕ′ (s)
)
∇ϕ′πProxy

ϕ′ (s) = ϕ′ − τ

2
∇ϕ′

∥∥∥πProxy
ϕ′ (s))− πSNN

ϕ (s))
∥∥∥2
2
, (7)

where ∥ · ∥22 denotes the squared ℓ2 norm. Thus, the proxy network can be updated by gradient
descent that minimizes the proxy loss:

Lproxy =
1

N

N∑
i=1

∥∥∥πProxy
ϕ′ (si))− πSNN

ϕ (si))
∥∥∥2
2
, (8)

where N denotes the batch size, si are the states sampled from the replay buffer in RL algorithm. This
proxy update mechanism acts as a form of implicit imitation learning, aligning the proxy network
with the SNN actor while maintaining smooth output transitions, as demonstrated in Theorem 1.

Theorem 1 Let the proxy network πProxy
ϕ′ be updated by minimizing the loss Lproxy in Eq. 8. During

each update, as the proxy learning rate lrproxy → 0, the output change satisfies

∥πProxy
ϕ′

new
(s)− πProxy

ϕ′
old

(s)∥ → 0,

where ϕ′
old and ϕ′

new denote parameters before and after the update, respectively. Hence, minimizing
Lproxy ensures sufficiently small and smooth policy updates, promoting stable optimization.

Since the proxy network is a multi-layer feedforward model, a universal approximator [Hornik
et al., 1989], it can asymptotically match the SNN actor’s output by minimizing Eq. 8. To further
demonstrate this empirically, Fig. 2(d) shows the mean-squared output gap between the proxy and
the SNN actor during training. While the SNN target occasionally diverges from the online SNN, the
proxy network remains well-aligned throughout, validating that the proposed approach effectively
mitigates target output gaps and provides precise and stable optimization goals for RL training.

4.3 Overall training framework

The proposed proxy target framework is shown in Fig. 1(c). The proxy actor network contains
continuous activations of ANN that replace the discontinuous SNN target actor network. Instead of
explicitly updating network parameters, the proxy actor is implicitly optimized to imitate the behavior
of the online SNN actor by minimizing the loss in Eq. 8. During each update episode, the proxy actor
is optimized for K iterations to reliably approximate the discrete SNN outputs, compensating for
the greater representational difficulty. Meanwhile, the target critic is updated explicitly by copying
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Algorithm 1 Proxy Target framework
1: Initialize SNN actor network πSNN

ϕ (s), ANN critic network QANN
θ (s, a) with parameters ϕ, θ

2: Initialize proxy actor πProxy
ϕ′ (s) and ANN target critic QANN

θ′ (s, a) with parameters ϕ′ and θ′

3: Initialize replay buffer D
4: for each iteration do
5: Execute action a according to πSNN

ϕ (s) and store the transition (s, a, r, s′) in D
6: if proxy target update then
7: for k = 1 to K do
8: Sample a minibatch of N transitions (si, ai, ri, s′i) from D
9: Update proxy actor parameters ϕ′ by minimizing:

Lproxy =
1

N

∑
i

∥∥∥πProxy
ϕ′ (si)− πSNN

ϕ (si)
∥∥∥2
2

10: end for
11: end if
12: if ANN target update then
13: Update ANN target critic parameters θ′ by the Polyak function: θ′ ← τθ + (1− τ)θ′

14: end if
15: if ANN critic update then
16: Compute target values yi using proxy actor πProxy

ϕ′ and target critic QANN
θ′

17: Update ANN critic by minimizing: Lcritic =
1
N

∑
i

(
QANN

θ (si, ai)− yi
)2

18: end if
19: if SNN actor update then
20: Update SNN actor by maximizing: J = 1

N

∑
i Q

ANN
θ

(
si, π

SNN
ϕ (si)

)
21: end if
22: end for

weights using the Polyak function, as both the critic and target critic are conventional ANNs. The
complete training procedure is summarized in Algorithm 1.

As demonstrated in Theorem 1 and Fig. 2(c)-(d), the proxy actor not only produces smooth output
transitions but also closely tracks the SNN actor’s behavior1. The proxy target framework effectively
alleviates the instability caused by discrete and imprecise targets in traditional SNN–RL frameworks,
resulting in a more stable training process within the Actor–Critic framework.

It is worth noting that the proposed mechanism preserves the energy efficiency of SNNs, as the
proxy network and the critic network are used exclusively during training and are discarded during
deployment, introducing no additional computational overhead during deployment.

5 Experiments

5.1 Experimental setup

The proposed proxy target framework (PT) was evaluated across multiple continuous-control tasks
in the MuJoCo simulator [Todorov et al., 2012, Todorov, 2014b] using the OpenAI Gymnasium
benchmark suite [Brockman, 2016, Towers et al., 2024], including InvertedDoublePendulum-v4
(IDP) [Todorov, 2014a], Ant-v4 [Schulman et al., 2015], HalfCheetah-v4 [Wawrzyński, 2009],
Hopper-v4 [Erez et al., 2012], and Walker2d-v4. All environments follow the default configurations
without modifications.

The experiments were carried out with different spiking neuron models, such as the LIF neuron,
the current-based LIF neuron (CLIF) Tang et al. [2021], and the dynamic neuron (DN) Zhang et al.

1Minor fluctuations in the proxy network output (Fig. 2(c)) resemble the stochasticity introduced by soft
target updates with noise injection in DRL [Fujimoto et al., 2018], which can further reduce overfitting in value
estimation.
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(a) (b) (c) (d) (e)

Figure 4: Continuous control tasks of the MuJoCo environments on OpenAI Gymnasium. (a)
InvertedDoublePendulum-v4, (b) Ant-v4, (c) HalfCheetah-v4, (d) Hopper-v4, (e) Walker2d-v4.

[2022]. The LIF and CLIF neuron parameters follow Tang et al. [2021], while the DN parameters are
initialized as in Zhang et al. [2022].

We tested the proposed algorithm in conjunction with the TD3 algorithm [Fujimoto et al., 2018], all
detailed parameter settings are provided in Appendix A.4. For a fair comparison, all spiking actor
networks share the same architecture, encoding, and decoding schemes provided in Appendix A.2.
All SNNs have a simulation step of 5 unless otherwise noted. All reported data in this section are
reproduced results across five random seeds.

5.2 Results across different spiking neurons
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Figure 5: Learning curves of the proxy target framework (PT) and the vanilla Actor–Critic framework
with the LIF neuron, the CLIF neuron and the DN. AR denotes average returns, and TS denotes
training steps. The shaded region represents half a standard deviation over 5 different seeds. Curves
are uniformly smoothed for visual clarity.

Increasing performance. Fig. 5 shows the learning curves of the proposed proxy target framework
and the vanilla Actor-Critic framework with different spiking neurons. The proxy target framework
improves the performance of different spiking neurons, demonstrating its general applicability
in delivering both faster convergence and higher final returns across different neuron types and
environments.

Improving stability. Fig. 6(a) shows the performance variance (after training) of the proxy target
framework and the vanilla Actor-Critic framework with different spiking neurons. The proxy target
framework reduces the variance of different spiking neurons, demonstrating its capability to stabilize
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are uniformly smoothed for visual clarity.

training. This is crucial for real-world deployments, where retraining costs are high and consistent
behavior is required.

5.3 Exceeding state-of-the-art

To quantify relative improvements, we define the average performance gain (APG) as:

APG =

(
1

|envs|
∑

env∈envs

performance(env)
baseline(env)

− 1

)
· 100%, (9)

where |envs| denotes the total number of environments, performance(env) and baseline(env) are the
performance of the algorithm and the baseline in that particular environment. Tab.1 compares our
proxy target framework with ANN-based RL, the ANN–SNN conversion method [Bu et al., 2025]
(100 simulation steps), and other state-of-the-art SNN-based RL algorithms, including pop-SAN
[Tang et al., 2021], MDC-SAN [Zhang et al., 2022], and ILC-SAN [Chen et al., 2024]. With the
proxy network, a simple LIF-based SNN surpasses all baselines, including those using complex
neuron dynamics or connection structures, and achieves higher average returns than standard ANNs.
Although performance varies across tasks, the average gain across all environments and neurons
indicates the general applicability of the proxy target framework.

Table 1: Max average returns over 5 random seeds with different spiking neurons, and the average
performance gain against the ANN baseline, where ± denotes one standard deviation.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

ANN (TD3) 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
ANN-SNN 3859± 4440 3550± 963 8703± 658 3098± 281 4235± 354 −21.11%
Vanilla LIF 9347± 1 4294± 1170 9404± 625 3520± 94 1862± 1450 −10.54%
pop-SAN 9351± 1 4590± 1006 9594± 689 2772± 1263 3307± 1514 −6.66%
MDC-SAN 9350± 1 4800± 994 9147± 231 3446± 131 3964± 1353 0.37%
ILC-SAN 9352± 1 5584± 272 9222± 615 3403± 148 4200± 717 4.64%

PT-CLIF 9351± 1 5014± 1074 9663± 426 3526± 112 4564± 555 5.46%
PT-DN 9350± 1 5400± 277 9347± 666 3507± 144 4277± 650 5.06%
PT-LIF 9348± 1 5383± 250 10103± 607 3385± 157 4314± 423 5.84%

5.4 Simple neurons perform best

Interestingly, the simplest LIF neuron achieves the highest overall performance under the proxy target
framework. This contrasts with previous findings where complex neuron models generally perform
better. Once the SNN surpasses its ANN counterpart, the primary performance bottleneck shifts from
the neuron model to the RL algorithm itself. Hence, introducing more complex spiking dynamics
may unnecessarily increase training difficulty and even degrade performance.
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5.5 SNN-friendly design

Fig. 6(b) shows the normalized performance of ANN with and without the proxy network. The proxy
target framework cannot improve the performance in ANNs, confirming that the observed benefits
arise from addressing SNN-specific challenges rather than providing a stronger RL algorithm. This
validates the SNN-friendly design of our framework.

5.6 Energy efficiency

Finally, we evaluate inference energy consumption across models. The comparison includes a
traditional ANN-based TD3 model, a baseline spiking actor network using vanilla LIF neurons,
and our PT-LIF model. The consumption is estimated as the same way as Merolla et al. [2014],
where multiply-accumulate (MAC) operation costs 3.97pJ on modern NPUs2 [Millar et al., 2025]
and synaptic operation (SOP) costs 77fJ [Hu et al., 2021].

Table 2: Energy consumptions of different tasks per inference for the spiking actor network with LIF
neurons, where the energy unit is nano-joule (nJ).

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 Average

ANN (TD3) 72.33 295.60 283.41 274.26 283.41 281.78 (71014.4 MACs)
Vanilla LIF 8.14 11.78 15.13 7.21 18.82 12.21 (158.6× 103 SOPs)
PT-LIF 9.01 12.18 13.46 6.86 13.93 11.09 (144.0× 103 SOPs)

As shown in Tab.2, the ANN (TD3) model consumes significantly more energy, while both spiking
models demonstrate dramatically lower energy consumption. Specifically, our proposed PT-LIF
model achieves the lowest average consumption while maintaining better stability and performance.
Moreover, PT-LIF’s average firing rate (32%) is slightly lower than that of the vanilla LIF model
(33%), further improving energy efficiency. These results highlight the superior energy efficiency of
the proposed method, making it compelling for deployment on energy-constrained platforms.

6 Conclusion

In this work, we identified a critical mismatch between the discrete dynamics of SNNs and the
continuous requirement of the target network soft update mechanism in the Actor-Critic framework.
To address this, we proposed a novel proxy target framework that enables smooth target updates and
faster convergence. Experimental results demonstrate that the proxy network can stabilize training
and improve performance, enabling simple LIF neurons to surpass ANN performance in continuous
control.

In contrast to previous works which retrofit SNNs into ANN-centric RL frameworks, this work
opens a door to investigate and design SNN-friendly RL algorithms which is tailored to SNN’s
specific dynamics. In the future, more SNN-specific adjustments could be applied to SNN-based RL
algorithms to improve performance and energy efficiency in real-world, resource-constrained RL
applications.

Limitation. While this work designs a proxy target framework that is suitable for SNN-based RL, it
still remains at the simulation level. The next step may involve implementing it on edge devices and
enabling decisions-making in the real world.
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faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work dose not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: All important and original component dose not involve LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Proof of Theorem 1

Theorem 1 Let the proxy network πProxy
ϕ′ be updated by minimizing the loss Lproxy in Eq. 8. During

each update, as the proxy learning rate lrproxy → 0, the output change satisfies

∥πProxy
ϕ′

new
(s)− πProxy

ϕ′
old

(s)∥ → 0,

where ϕ′
old and ϕ′

new denote parameters before and after the update, respectively. Hence, minimizing
Lproxy ensures sufficiently small and smooth policy updates, promoting stable optimization.

Proof 1 By standard gradient descent, we have:

lim
lrproxy→0

∥(ϕ′
new − ϕ′

old)∥ = lim
lrproxy→0

∥∥∥lrproxy · ∇ϕ′
old

Lproxy

∥∥∥ = 0.

Under the assumption that πProxy
ϕ′ (s) is continuously differentiable with respect to ϕ′, we apply a

first-order Taylor expansion:

lim
lrproxy→0

∥∥∥πProxy
ϕ′
new

(s)− πProxy
ϕ′
old

(s)
∥∥∥ = lim

lrproxy→0

∥∥∥(ϕ′
new − ϕ′

old)∇ϕ′πProxy
ϕ′
old

(s)
∥∥∥ = 0.

A.2 Spiking actor network architecture

The spiking actor network (SAN) consists of a population encoder with Gaussian receptive fields, a
multi-layer SNN with population output, and a decoder with non-firing neurons.

A.2.1 Forward propagation of the SAN

In the state encoder, each input dimension consists of Nin soft reset IF neurons with different Gaussian
receptive fields with trainable parameters µ and σ. The neurons receive a stimulation AE at every
time step and outputs spikes Sin according to:

AE = exp

[
−1

2

(s− µ)2

σ2

]
, (10)

V in
t = V in

t−1 − Sin
t−1 +AE ,

Sin
t = Θ(V in

t − VE),
(11)

where VE is the threshold of the encoding populations.

The last layer of the SNN consists of Nout neurons for each action dimension, respectively. The
decoder layer is made up of non-spiking integrate neurons connected to the last layer of SNN:

V out
t = V out

t−1 +W out · SL
t + bout, (12)

where W out and bout are weights and biases. The final output action is determined by the membrane
potential in the last time step a = V out

T . The detailed forward propagation of the spiking actor
network is shown in Algo. 2.

A.2.2 Back propagation of the SAN

SAN parameters are trained by the gradient with respect to the output action ∂L
∂a , where a = V out

T .

The output decoder can be updated by:

∂L
∂W out = ∂L

∂a ·
∂V out

T

∂W out

∂L
∂bout = ∂L

∂a ·
∂V out

T

∂bout

(13)

Then, the main SNN is trained by STBP with the rectangular surrogate function defined as:

Θ′(x) =

{
1
2ω , −ω ≤ x ≤ ω
0, else , (14)
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Algorithm 2 Forward propagation of spiking actor network
1: Input: Ms-dimensional observation s
2: Compute the stimulation of input populations:

AE = exp

[
−1

2

(s− µ)2

σ2

]
3: for t=1,. . . ,T do
4: Compute the output spikes of the population encoder:

V in
t = V in

t−1 − Sin
t−1 +AE

Sin
t = Θ(V in

t − VE)

5: for l=1,. . . ,L do
6: Update neurons in layer l at timestep t
7: end for
8: Update the decoder neurons’ membrane potential:

V out
t = V out

t−1 +W out · SL
t + bout

9: end for
10: Output: Ma-dimensional action a = V out

T

where ω is the window size.

Next, the gradient of the encoder stimulation AE is written in Eq.15. Note that ∂Sin
t

∂AE
is manually set

to 1 to simplify the gradient computation.

∂L

∂AE
=

T∑
t=1

∂L

∂Sin
t

· ∂S
in
t

∂AE
=

T∑
t=1

∂L

∂Sin
t

(15)

Finally, the trainable parameters µ and σ in the encoder can be updated by:
∂L
∂µ = ∂L

∂AE
· ∂AE

∂µ = ∂L
∂AE
· s−µ

σ2 AE

∂L
∂σ = ∂L

∂AE
· ∂AE

∂σ = ∂L
∂AE
· (s−µ)2

σ3 AE

(16)

A.3 Other Spiking Neuron Models

Section 3.3 already shows the LIF neuron model, this section will show two other spiking neuron
models conducted in the experiments.

A.3.1 Current-Based LIF neuron model

In the current-based LIF (CLIF) neurons proposed in Tang et al. [2021], the input current in Eq.4 is
redefined as:

I lt = αI lt−1 +W lSl−1
t + bl, (17)

where α is the current leakage parameter. While other dynamics of CLIF neurons are the same as
those of LIF neurons.

A.3.2 Dynamic neuron model

Zhang et al. [2022] designed a second-order dynamic neurons (DN) for continuous control. The
DN consists of a membrane potential V and a resistance item U to simulate hyperpolarization. Its
dynamics is shown as follows:

dV l
t

dt
= V l

t

2 − V l
t − U l

t + I lt (18)

dU l
t

dt
= θvV

l
t − θuU

l
t (19)
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where θv and θU are the conductivities of V and U , respectively. Once firing a spike, the membrane
potential V is reset to Vreset and the resistance U is added by θs.

With a firs-order Taylor expansion, the iterative DN can be written as:

Cl
t = α · Cl

t−1 +W lSl−1
t + bl;

V l
t =

(
1− Sl

t−1

)
· V l

t−1 + Sl
t−1 · Vreset;

U l
t = U l

t−1 + Sl
t−1 · θu;

Vdelta = V l2

t − V l
t − U l

t + Cl
t;

Udelta = θv · V l
t − θu · U l

t ;
V l
t = V l

t + Vdelta ;
U l
t = U l

t + Udelta ;
Sl
t = Θ

(
V l
t − Vth

)
.

(20)

A.4 Experiment details

A.4.1 Compute Resources

We conduct the experiments on an RTX 3090 GPU and an Intel(R) Xeon(R) Platinum 8362 CPU.

A.4.2 Spiking Neuron Parameters

The LIF and CLIF neuron parameters are shown in Tab.3, which are the same as those in Tang et al.
[2021], except that the LIF neuron has no current leakage parameter. The DN parameters are shown
in Tab.4, determined by the pre-learning process proposed in Zhang et al. [2022].

Table 3: Parameters of LIF and CLIF [Tang et al., 2021] neurons

Parameter LIF CLIF [Tang et al., 2021]

Membrane leakage parameter λ 0.75 0.75
Threshold voltage Vth 0.5 0.5
Reset voltage Vreset 0 0
Current leakage parameter α - 0.5

Table 4: Parameters of the DN [Zhang et al., 2022]

Parameter Value

SNN time steps 5
Threshold voltage Vth 0.5
Current leakage parameter α 0.5
Conductivity of membrane potential θv −0.172
Conductivity of hidden state θu 0.529
Reset voltage Vreset 0.021
spike effect to hidden state θs 0.132

A.4.3 Specific Parameters for the Proxy Target Framework

Tab.5 shows hyper-parameters of the proxy target framework for different spiking neurons. To capture
the behavior of the SNN, the hidden sizes of the proxy network is set wider than that of its online
SNN. Since different spiking neurons exhibit different dynamics and learning speed, hidden sizes3

and learning rate of the proxy network vary across spiking neurons. All other hyper-parameters are
kept the same.

3Since the InvertedDoublePendulum environment is relatively easier, there is no needs for such a wide proxy
network. Thus we set the hidden size is (512, 512) specifically for that environment for the CLIF neuron.

23



Table 5: Hyper-parameters of the proxy network framework with different spiking neurons

Parameter LIF CLIF [Tang et al., 2021] DN [Zhang et al., 2022]

Proxy network architecture (512, 512) (800, 600) (512, 512)
Proxy network activation ReLU ReLU ReLU
Proxy network learning rate 1 · 10−3 3 · 10−3 3 · 10−3

Proxy network optimizer Adam Adam Adam
Proxy update iterations K 3 3 3
Proxy update batch size N 256 256 256

A.4.4 Spiking Actor Network Parameters

All hyper-parameters of the spiking actor network are shown in Tab.6. This is the same as in a wide
range of previous studies [Tang et al., 2021, Zhang et al., 2022, Chen et al., 2024].

Table 6: Hyper-parameters of the spiking actor network

Parameter Value

Encoder population per dimension Nin 10
Encoder threshold VE 0.999
Network hidden units (256, 256)
Decoder population per dimension Nout 10
Surrogate gradient window size ω 0.5

A.4.5 RL algorithm parameters

We conduct the experiment based on the TD3 algorithm [Fujimoto et al., 2018], with hyper-parameters
shown in Tab.7.

Table 7: Hyper-parameters of the implemented TD3 algorithm [Fujimoto et al., 2018]

Parameter Value

Actor learning rate 3 · 10−4

Actor regularization None
Critic learning rate 3 · 10−4

Critic regularization None
Critic architecture (256, 256)
Critic activation ReLU
Optimizer Adam
Target update rate τ 5 · 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Exploration noise N (0, σ) N (0, 0.1)
Actor update interval d 2
Target policy noise N (0, σ̃) N (0, 0.2)
Target policy noise clip c 0.5

A.4.6 Experiment environments

Fig. 4 shows various MuJoCo environments [Todorov et al., 2012, Todorov, 2014b] on OpenAI
Gymnasium benchmarks [Brockman, 2016, Towers et al., 2024], including InvertedDoublePendulum
(IDP) [Todorov, 2014a], Ant [Schulman et al., 2015], HalfCheetah [Wawrzyński, 2009], Hopper

24



[Erez et al., 2012] and Walker2d. All environment setups used the default configurations without
modifications.

It is worth noting that the state vector ranges from−∞ to∞, it is normalized to (−1, 1) by a tanh func-
tion. In addition, since the action has the minimum and maximum limits, the output of actor network
is normalized to (−1, 1) by a tanh function and then linearly scaled to (Min action,Max action).

A.5 Pseudo codes for the proposed proxy target framework in conjunction with TD3

We present the detailed pseudocode of the general proxy target framework in Algo.1, in Section
4.3. Specifically, Algo.3 shows how to implement the proxy target framework in the TD3 algorithm
[Fujimoto et al., 2018]. It is worth noting that the original TD3 algorithm updates the target actor with
delay. However, in our framework, the proxy actor is updated without delay because of its inherently
slow update pace.

Algorithm 3 Proxy target framework with TD3
1: Initialize SNN actor network πSNN

ϕ (s), ANN critic networks QANN
θ1

(s, a), QANN
θ2

(s, a) with
weights ϕ, θ1 and θ2

2: Initialize proxy actor πProxy
ϕ′ (s) and ANN target critics QANN

θ′
1

(s, a), QANN
θ′
2

(s, a) with weights ϕ′,
θ′1 and θ′2

3: Initialize replay buffer D
4: for each iteration do
5: Execute action a = πSNN

ϕ (s) + ϵ, ϵ ∼ N (0, σ) and observe reward r and next state s′

6: Store the transition (s, a, r, s′) in D
7: for k = 1 to K do
8: Sample a minibatch of N transitions (si, ai, ri, s′i) from D
9: Update proxy actor network parameters ϕ′ by minimizing the loss:

Ltarget =
1

N

∑
i

∥∥∥πProxy
ϕ′ (si)− πSNN

ϕ (si)
∥∥∥2
2

10: end for
11: yi = ri + γminj=1,2 Q

ANN
θ′
j

(si, ãi), ãi = πProxy
ϕ′ (si) + ϵ, ϵ ∼ clip (N (0, σ̃),−c, c)

12: Update ANN critics by minimizing the critic loss: Lcritic =
1
N

∑
i

(
QANN

θj
(si, ai)− yi

)2
13: if t mod d then
14: Update SNN actor by maximizing the objective function: J = 1

N

∑
i Q

ANN
θ1

(
si, π

SNN
ϕ (si)

)
15: Update ANN critic target parameters explicitly by the Polyak function: θ′j ← τθj+(1−τ)θ′j
16: end if
17: end for

A.6 Additional experiments results

A.6.1 Additional results in terms of performance

In the main text, we show that our proxy target framework can increase performance for various
spiking neurons. Fig. 7 shows the normalized learning curves of our proxy target framework for
different spiking neurons. In addition, Tab. 8, Tab. 9, and Tab .10 show the maximum average returns
and the average performance gains of the proxy network against vanilla SNN with LIF neuron, CLIF
neuron, and dynamic neuron, respectively.
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Figure 7: Normalized learning curves of the proposed proxy target framework with different spiking
neurons across all environments. The performance and training steps are normalized linearly based
on ANN performance. Curves are uniformly smoothed for visual clarity.

Table 8: Max average returns over 5 random seeds with LIF neurons.

Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla LIF 9347± 1 4294± 1170 9404± 625 3520± 94 1862± 1450
32.15%PT-LIF 9348± 1 5383± 250 10103± 607 3385± 157 4314± 423

Table 9: Max average returns over 5 random seeds with CLIF neurons.

Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla CLIF 9351± 1 4590± 1006 9594± 689 2772± 1263 3307± 1514
15.03%PT-CLIF 9351± 1 5014± 1074 9663± 426 3526± 112 4564± 555

Table 10: Max average returns over 5 random seeds with dynamic neurons.

Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla DN 9350± 1 4800± 994 9147± 231 3446± 131 3964± 1353
4.87%PT-DN 9350± 1 5400± 277 9347± 666 3507± 144 4277± 650

A.6.2 Additional results in ANN

We show the normalized learning curves of the proxy target framework with ANN in Fig. 6(b). Here,
we show the detailed learning curves and maximum average returns of 5 environments in Fig. 8 and
Tab.11, respectively.
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Figure 8: Learning curves of utilizing the proxy target framework in ANN. The PT represents the
proxy target framework, AR denotes average returns, and TS is training steps. The shaded region
represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual
clarity.
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Table 11: Max average returns over 5 random seeds with ANN (TD3).

Method IDP Ant HalfCheetah Hopper Walker2d APG

ANN 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 −8.38%PN-ANN 5653± 4540 4234± 998 10708± 773 3435± 145 4106± 366
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