
Learning Markov Networks with Bounded Inference Complexity

Ujjwal Das Gupta ujjwal@ualberta.ca
Sriram Srinivasan ssriram@ualberta.ca
Sanjeev Sharma sanjeev1@ualberta.ca
Russell Greiner rgreiner@ualberta.ca

Department of Computing Science, University of Alberta

Abstract

In this paper, we study the problem of
learning the structure of Markov Networks
that permit efficient inference. We formu-
late structure learning as an optimization
problem that maximizes the likelihood of the
model such that the inference complexity on
the resulting structure is bounded. The infer-
ence complexity is measured with respect to
any chosen algorithm (either exact or approx-
imate), or a distribution over any marginal or
conditional query. We relate our work to pre-
vious approaches for learning bounded tree-
width models and arithmetic circuits. The
main contribution of our work is to isolate the
inference penalty from the incremental struc-
ture building process. Our algorithm can be
used to learn networks which bound the in-
ference time of both exact and approximate
algorithms. Further, we show that bound-
ing inference time for approximate inference
results in networks that exhibit less approxi-
mation error.

1. Introduction

Undirected probabilistic graphical models, such as
Markov Random Fields (MRFs), are an important tool
for modeling the joint probability density of a set of
random variables. As the graph represents the inde-
pendencies between the variables, it can be exploited
to perform inference efficiently. These are extensively
used in the domains such as, computer vision, robotics,
computational biology, and natural language process-
ing. Despite being a powerful tool, the application of
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Markov networks suffers from some problems.

First, exact inference in MRFs is intractable in general,
and the complexity of inference algorithms increases
exponentially with the tree-width of the graph (Koller
& Friedman, 2009). Approximate methods, such as
Loopy Belief Propagation (Murphy et al., 1999), are
widely used when the network is complex. However,
the approximation error induced due to such methods
is not well understood for arbitrary graphs. Second,
learning the structure of an MRF from data is hard,
especially when the knowledge about the dependen-
cies between the variables is limited. An exponential
number of undirected graphs can be constructed over
a set of random variables. The best structure is com-
monly chosen based on a criterion similar to the Min-
imum Description Length (MDL) principle, which de-
termines a trade-off between likelihood of the training
data and the complexity of the model (Buntine, 1996).
Complex models may fit the training data better, but
they are prone to over-fitting. Also, inference on such
models requires more time.

The structure learning problem can be formulated as
a convex optimization problem of maximizing the like-
lihood of a completely connected Markov Network
with an ℓ1-regularization on the parameters of the
model. This is a convex relaxation of the non-convex
ℓ0 penalty on the parameters imposed by the MDL.
However, optimizing this criterion is still hard, as com-
puting the gradient involves performing inference over
the network, which is NP-hard in general. To solve this
problem, one approach (Lee et al., 2006) used approxi-
mate inference techniques for computing the gradient,
while using a greedy heuristic for choosing the order of
parameters to activate during optimization. Although
the objective is convex, the use of approximate infer-
ence makes the final objective value dependent on the
order of activation. Another approach (Schmidt et al.,
2008) used a pseudo-likelihood approximation of the
likelihood, which does not involve inference calls for
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computing the gradient. As the sample size goes to
infinity, the pseudo-likelihood estimates converge to
likelihood estimates.

While ℓ1-regularization methods reduce the risk of
over-fitting, they do not guarantee efficient inference
on the network, because the penalty drives a number
of parameters to zero, regardless of the structure of
the resulting graph. On complex graphs, approximate
inference algorithms need to be used, which negate the
benefit of learning a high likelihood model, as even an
accurate model may result in inaccurate answers due
to errors in approximate inference.

Methods that can learn structures permitting efficient
exact inference have been studied previously. A tree
structured graph allows polynomial time inference,
and the best tree structured network can be learned
efficiently (Chow & Liu, 1968). However, tree struc-
tured graphs are not expressive enough for many appli-
cations. In thin junction trees (Bach & Jordan, 2001),
the inference complexity is penalized by bounding the
tree-width of the triangulated network, and a heuris-
tic algorithm is employed to construct the network.
Another approach (Lowd & Domingos, 2008) for pe-
nalizing inference complexity is to directly learn an
arithmetic circuit, which is equivalent to a Bayesian
Network. A score for structure learning is formulated
by penalizing the log likelihood by the number of edges
in the arithmetic circuit, which is proportional to the
complexity of inference in the arithmetic circuit. Sum
product networks (Poon & Domingos, 2011) are an-
other architecture that represent the marginal queries
of a probability distribution compactly, and permit ef-
ficient exact inference.

All these approaches penalize or bound the complexity
of inference as defined in a particular way. However,
exact inference, using junction trees or arithmetic cir-
cuits, is not the only method for performing inference
in an MRF. If approximate inference is going to be
used over the resultant model, the tree-width or the
arithmetic circuit size is not a good estimate of infer-
ence complexity. Further, the application may depend
on the performance of a specific inference query, which
is not adequately measured by these estimates.

We propose an algorithm that learns networks that
permit fast inference, where the inference complexity
can be specified as the time complexity of executing
any combination of valid inference queries. The bound
on the inference complexity can either be specified in
terms of a complexity estimate that is specific to the
algorithm used (for example, the maximum number
of iterations during Loopy Belief Propagation), or, if
such knowledge about the algorithm does not exist, the

time used by the inference procedure can be bounded.
We exploit the fact that optimizing the parameters of
a MRF requires inference, and such an estimate can
be made during this process. In case the application
depends on a known distribution of queries, each of
which is conditioned on a different set of variables,
we can bound the complexity of such queries too, al-
though this requires extra computation apart from the
gradient calculation step. The incremental addition of
structure in the Markov Network is combined with pa-
rameter optimization in the form of a stage-wise gradi-
ent descent algorithm, similar to the grafting approach
to feature selection (Perkins et al., 2003).

Like the previous work on thin junction trees and
arithmetic circuits, our approach is greedy and may
find a locally-optimal solution. However, we general-
ize the principle behind these approaches to work with
any inference procedure.

2. Preliminaries

Let X = {X1, X2, ..., XN} be a set of discrete-valued
random variables. The set of random variables can
be represented as nodes in an MRF. The lack of an
edge between two nodes denotes a pairwise indepen-
dency between the two. MRFs can be represented us-
ing the framework of log-linear models. A log-linear
model is represented using a set of feature functions
fi(X ), each of which is a function that returns a bi-
nary value for each assignment to some subset Xi ⊂ X .
The model is parameterized by a vector of weights
Θ = {θ1, θ2, ..., θn}, where each feature is associated
with a weight θi. The corresponding Markov network
has an edge between any two variables that appear
together in some Xi corresponding to a feature. The
probability of a particular assignment to X is given by

P (X|Θ) =
1

Z(Θ)
exp

(
n∑

i=1

θifi(X )

)
where Z(Θ) is a partition function that normalizes the
distribution.

2.1. Parameter Learning

The parameter learning for Markov Networks (MRFs)
is posed as follows. Given a set of IID training in-
stances D = {x1, x2, .., xm}, each being a complete as-
signment of values to variables, learn the parameters
Θ that maximize the likelihood of D. Equivalently, we
can maximize the log-likelihood, given by

ℓ(Θ;D) =

 m∑
j=1

n∑
i=1

θifi(xj)

−m logZ(Θ)
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An iterative procedure to maximize the log-likelihood
requires computing the gradient, given by

1

m

∂ℓ(Θ;D)
∂Θk

=
1

m

m∑
j=1

fk(xj)− EΘ[fk(X )],

which is the difference between the observed and ex-
pected means of the features. To compute the ex-
pected feature counts, we must perform inference over
the learned model.

3. Structure Learning with Bounded
Inference Complexity

3.1. Optimization Problem Formulation

The problem of learning the best structure with a
bound on inference complexity can be expressed as

maximize
Θ

ℓ(Θ, η;D)

subject to R(Θ, η) ≤ τ

where η is the structure of the underlying Markov
Network, and R(Θ, η) is a function that represents
the inference complexity over the chosen distribution
of queries corresponding to the chosen inference al-
gorithm. This is similar to a score based structure
learning criterion like the Bayesian Information Crite-
rion, with the model complexity penalty replaced by
the inference complexity bound. Note that, while Θ
is a vector of all possible parameters of the log linear
model, only the ones corresponding to cliques present
in η are active, and the others can be set to zero with-
out changing the log likelihood expression. R(Θ, η)
can be defined in many ways, including:

• Inference time (as measured by cpu clock cycles)
of the inference algorithm. (This is a generic mea-
sure that can work with any algorithm.)

• Tree-width of the triangulated Markov network
(This is an estimate of the exact inference time
when using the Junction Tree algorithm, and re-
sults in a bounded tree-width model.)

• Number of iterations of the loopy-belief propaga-
tion algorithm. (This is an estimate of the infer-
ence time of LBP.)

• Number of iterations of the Tree-Reweighted Be-
lief Propagation algorithm (TRBP) (Wainwright
et al., 2003). (This is an estimate of the inference
time of TRBP.)

• Size of the arithmetic circuit representing the net-
work. (This is an estimate for the exact inference
time after compiling the network to an arithmetic
circuit (Darwiche, 2003), which is faster than the
Junction Tree algorithm when there are many
context specific independencies.)

While ℓ(Θ, η) is a convex function of Θ, R(Θ, η) is non-
convex and non-smooth under all of these definitions.

3.2. Algorithm

For the sake of simplicity, we first describe an al-
gorithm which can learn pairwise Markov networks
(MRFs restricted to two types of features: node fea-
tures that depend only on a single random variable,
and edge features that each depend on a specific pair
of variables). Later, we show how this can be extended
to general log-linear models, and how context specific
independencies can be handled.

Algorithm 1 Structure Learning for Pairwise
Markov Networks with Bounded Inference
Complexity

Input: data D of size m× n
V ← {1, 2, .., n}
E ← ∅
η ← {V,E}
Ecand ← {⟨ u, v ⟩|∀ u ∈ V, v ∈ V, u ̸= v }
ℓ(Θ, η;D) is the log likelihood of the data
Let ΘE ⊂ Θ be the parameters of edges E
Let ΘV ⊂ Θ be the parameters of nodes V
ΘV ← argmax

ΘV

ℓ(Θ, η;D)

ΘE ← 0
repeat

e← argmax
e∈Ecand

∥∇Θ{e}ℓ(Θ, η;D)∥2

subject to R(Θ, {V,E ∪ {e}}) ≤ τ
E ← E ∪ {e}
Ecand ← Ecand − {e}
{ΘV ,ΘE} ← argmax

ΘV ,ΘE

ℓ(Θ, η;D)

until e = ∅

In Algorithm 1, the graph is initialized to an empty
structure, and all possible edges are marked as inac-
tive and added to the list of candidate edges. The
network parameters Θ are divided into two sets, ΘV

and ΘE , where ΘV and ΘE belong to the active set,
corresponding to the node features and the features for
the active edges, respectively. The remaining parame-
ters are inactive and are incrementally introduced into
the model. Similar to the grafting approach (Perkins
et al., 2003), the features are introduced in a greedy
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manner, based on maximum increase of the objective
function. Activating an edge activates multiple param-
eters in the model (one for each possible assignment to
the pair of variables), and the increase of the objective
with respect to an edge is measured as the ℓ2 norm of
the gradient with respect to the edge parameters.

As the algorithm needs to perform inference to com-
pute the gradient, the evaluation of R(Θ, η) need not
significantly alter the complexity of the algorithm. If
the inference query for which R is defined is a part
of the gradient computation step, R can be computed
and stored in that step.

To extend this approach beyond pairwise models, we
need to search among all candidate cliques that have
not been added to the model, which are far more than
the candidate edges alone. To reduce the search space,
the hierarchical log-linear model can be used, in which
a clique C may be added only if all cliques that are
a subset of C are present in the model. A detailed
analysis of how to optimize the active set for such a
model has been conducted in past research (Schmidt
& Murphy, 2010).

3.3. Regularization

We can add a regularization term like an ℓ1 or ℓ2 norm
on the weight vector to the objective function without
changing the algorithm. Adding an ℓ1 norm would in-
deed lead to greater sparsity in the model. However,
the constraint on R(Θ, η) acts as a regularizer by act-
ing as the stopping condition for our greedy feature
induction procedure. The grafting process has close
connections to boosting, and the solutions obtained
by boosting on each iteration are known to approx-
imately follow the ℓ1-regularized path (Rosset et al.,
2004).

4. Experiments

To test the effectiveness of this algorithm, we ran ex-
periments on learning a pairwise Markov Network from
synthetic data. The graph was generated by randomly
selecting each possible edge between 30 vertices with
a probability of 0.5. A pairwise Markov Network was
then generated by sampling the the feature weights
from a standard normal distribution. This network
was then sampled exactly to generate training and
testing data, with 500 instances of each.

We compared our structure learning algorithm against
a state-of-the-art ℓ1-regularized structure learning al-
gorithm (Schmidt et al., 2008). For comparison,
two metrics were used: The Negative Log Likelihood
(NLL) of the test data, and the Negative Conditional

Marginal Log Likelihood (NCMLL) which has been
used in the comparison of other structure learning al-
gorithms as a measure of query specific performance
(Lee et al., 2006).

For computing NCMLL, we divided the ran-
dom variables into two groups xhidden and
xobserved. For each test instance x[m], we compute
NCMLL = −

∑
x∈xhidden[m] log(P (x|xobserved[m])).

This is summed over all test instances, and averaged
over 5 random partitions of the variables into the two
groups.

Figures 1 to 4 show the comparisons of likelihood ver-
sus inference time for the two algorithms. Figures 1
and 2 use R(Θ, η) set to the tree-width. Figures 3 and
4 use R(Θ, η) equal to the inference time of the TRBP
algorithm, where the inference queries under consider-
ation is the set of all possible unconditional marginal
queries of size 1 or 2 (that is, the set of all queries
of the form P (Xi) or P (Xi, Xj), where Xi and Xj

are random variables). In all cases, the likelihood is
measured by exact inference, as it is a measure of the
accuracy of the model. The y-axis represents inference
time during testing. It is again measured as the time
to compute all possible unconditional marginal queries
of size 1 or 2, and we use the Junction Tree exact in-
ference algorithm in Figure 1 and 2, and the TRBP
algorithm in Figure 3 and 4.

It can be seen that in both our algorithm and ℓ1-
regularization, having a structure with higher infer-
ence time (a more complex structure) increases the
likelihood of the test data, as a more accurate model
is learned. However, this comes at the cost of inference
complexity in both cases. If we compare two models
in the graph, we see that Algorithm 1 can learn higher
likelihood models, while having the same (or lower)
inference cost as compared to ℓ1-regularization.

Figure 5 shows the comparison of likelihood versus
the approximation error of the TRBP algorithm. For
Algorithm 1, R(Θ, η) is equal to the inference time
of the TRBP algorithm. The approximation error is
set to be equal to the percentage error of calculating
log(Z) using approximation inference. For both Al-
gorithm 1 and ℓ1-regularization, complex, higher like-
lihood models have higher approximation error, how-
ever Algorithm 1 outperforms ℓ1-regularization for the
same likelihood.

5. Discussion

We presented a generic algorithm for learning the
structure under an inference complexity bound, and
showed preliminary results that indicate that this can
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L1 Structure Learning
Algorithm 1

Figure 1. Negative log-likelihood of the test data vs. the
inference time, for ℓ1-regularized structure learning and our
algorithm with R(Θ, η) set to tree-width
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L1 Structure Learning
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Figure 2. Negative conditional marginal log-likelihood of
the test data vs. the inference time, for ℓ1-regularized
structure learning and our algorithm with R(Θ, η) set to
tree-width

learn higher likelihood and more accurate MRFs with
a lower inference cost than the ℓ1-regularized algo-
rithms. We also showed that this approach can be
used to learn bounded tree-width or low arithmetic
circuit complexity networks under a unified setting.

By isolating the inference penalty and the feature in-
duction mechanism, this algorithm allows many pos-
sible combinations to be made which have not been
studied so far. Many feature selection mechanisms
similar to Grafting exist (Zhu et al., 2010) and could
be compared for their effectiveness in this setting.

To extend this approach to context specific inde-
pendencies, we can activate parameters individually,
rather than grouping them by edges. If an arithmetic
circuit is going to be used to perform inference on
such a model, there exist methods (Lowd & Domingos,
2008) to incrementally build the arithmetic circuit for
computing R(Θ, η).
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Figure 3. Negative log-likelihood of the test data vs. the
inference time, for ℓ1-regularized structure learning and our
algorithm with R(Θ, η) set to inference time of the TRBP
algorithm

4735 4740 4745 4750 4755 4760 4765 4770 4775 4780
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Negative Conditional Marginal Log Likelihood

In
fe

re
nc

e 
tim

e 
of

 T
R

B
P

 (
In

 s
ec

on
ds

)

 

 
L1 Structure Learning
Algorithm 1

Figure 4. Negative conditional marginal log-likelihood of
the test data vs. the inference time, for ℓ1-regularized
structure learning and our algorithm with R(Θ, η) set to
inference time of the TRBP algorithm

Our results show that bounding the inference time of
approximation algorithms also results in lower approx-
imation error, when compared to models of similar
likelihood learned with ℓ1-regularization. If low ap-
proximation error is the objective, instead of low infer-
ence time, it would be better to define R(Θ, η) as a di-
rect measure of the approximation error. A simple way
to do this would be to define R(Θ, η) as a cost func-
tion representing the difference between the value of
the query under consideration, as computed by exact
and approximate inference. A future research direc-
tion would be to develop a more sophisticated measure
that does not require an exact inference computation
step at each iteration of the algorithm.
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Figure 5. Negative log-likelihood of the test data vs. the er-
ror in approximating log(Z) with the TRBP algorithm, for
ℓ1-regularized structure learning and our algorithm with
R(Θ, η) set to inference time of the TRBP algorithm
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