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ABSTRACT

Pretraining time series foundation models across diverse datasets necessitates ef-
fective handling of varying sampling frequencies. A prevalent approach assigns
dataset-specific patch sizes based on sampling rates and employs separate MLPs
for token projection, which leads to fragmented representations across scales and
hinders alignment and transferability. In contrast, some studies enforce a fixed
patch size across datasets to ensure consistency, yet this uniformity neglects in-
herent temporal variations and often causes information loss. To address these
challenges, we propose a scale-aware token alignment mechanism that treats the
patch size used during input segmentation as an explicit notion of scale. By in-
corporating contrastive learning across scales, our approach aligns the represen-
tation spaces induced by different MLPs while preserving their distinct modeling
capacities. On top of this aligned representation, we introduce a hybrid mask-
ing strategy that enables multi-scale temporal understanding at the token level.
By combining random and contiguous masking, the model learns to recover both
fine-grained patterns and long-range temporal structures during pretraining. Ex-
periments on benchmark datasets show that our approach consistently improves
forecasting performance, highlighting the benefits of scale-aware token alignment
and multi-scale understanding in time series model pretraining.

1 INTRODUCTION

The recent emergence of foundation models has significantly advanced various domains such as
natural language processing (Brown et al.,|2020; Dubey et al.,2024), computer vision (Oquab et al.,
2023}; [Radford et al., 2021)), and speech understanding (Baevski et al.| [2020; Radford et al., [2023).
Inspired by their success, growing efforts have been devoted to developing foundation models for
time series, aiming to produce general-purpose representations transferable across diverse down-
stream tasks. An early line of work adapts pretrained language models to time series tasks, lever-
aging their sequence modeling capabilities in hopes of achieving strong generalization (Cao et al.,
2023} Jin et al., 2023} |Pan et al., |2024). However, the modality gap often hinders their performance
on temporally structured data, resulting in suboptimal generalization across diverse time series tasks.
Moreover, their black-box nature further exacerbates the issue, raising concerns about interpretabil-
ity and the lack of alignment with intrinsic temporal characteristics (Tan et al., 2024). To address
these challenges, a second line of work has emerged that trains foundation models from scratch
on large-scale, heterogeneous time series datasets (Shi et al., 2024} [Woo et al., [2024} |Ansar1 et al.}
2024). These models aim to capture universal temporal dynamics in a data-driven and domain-
adaptive manner, thereby enhancing robustness to distribution shifts and improving transferability
across domains with varying sampling rates, modalities, and sequence lengths (e.g., finance, health-
care, meteorology, IoT).

Despite the promise of the latter direction, it presents unique challenges—particularly in how to
effectively segment and tokenize continuous signals for cross-dataset pretraining. Unlike language,
where discrete word units naturally serve as stable tokens (Sennrich et al.l [2016), or vision, where
uniform patch sizes are viable due to consistent spatial resolution and semantic robustness (Touvron
et al., 2021} |Dosovitskiy et al., 2020), time series data exhibit irregular sampling and variable se-
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Figure 1: (a) Dataset-specific patch sizes and independent MLPs for varying sampling rates lead to
fragmented token spaces. (b) Using a unified patch size and MLP risks information bottlenecks and
misaligned local dynamics. (c) SATS adopts dataset-specific patch sizes and enforces scale-aware
alignment across MLP-projected spaces, yielding semantically rich and consistent representations.

quence lengths, making fixed-size downsampling ineffective. These characteristics necessitate the
use of small, adaptive patch sizes to preserve fine-grained temporal patterns.

As shown in Figure[] recent studies have explored two main strategies for time series tokenization,
each with inherent limitations. (1) Dataset-specific patching adopts variable patch sizes tailored
to local sampling rates, combined with independent MLPs for token projection (Zhang et al., 2024;
Woo et al., |2024). While this design aligns well with the granularity of each dataset, it results in
fragmented token spaces that hinder the learning of generalizable temporal patterns and compromise
training stability. (2) Uniform patching enforces a globally small patch size across datasets to pro-
mote representational consistency (Wang et al., 2025} [Liu et al., |2024b). However, this strategy in-
troduces information bottlenecks and often misaligns local dynamics, as it fails to accommodate the
diverse temporal structures inherent in different datasets. Both strategies, therefore, face a trade-off
between dataset adaptability and representational generality, limiting their effectiveness in scalable
pretraining.

To bridge the gap between fragmented token spaces introduced by adaptive patching and the repre-
sentational rigidity of fixed segmentation, we propose a scale-aware token alignment mechanism tai-
lored for time series pretraining. By treating the patch size as an explicit notion of scale, our method
aligns the representation spaces induced by scale-specific MLPs. This is achieved by minimizing
the distance between mean token embeddings across scales to encourage semantic alignment, while
simultaneously maximizing the distance between their maximal embeddings to preserve the scale-
specific modeling capacity. The resulting token space offers a unified yet expressive foundation for
downstream tasks.

Building on this aligned representation space, a remaining challenge lies in the diverse temporal
structures inherent to different datasets. Even with aligned embeddings, temporal variations may
manifest within individual tokens or span across multiple tokens, depending on the dynamics of
the underlying sequence. To capture such variability, we introduce a hybrid masking strategy that
enhances multi-scale temporal modeling during masked reconstruction. This strategy combines ran-
dom masking, which promotes fine-grained inference, with contiguous masking, which facilitates
the modeling of long-range dependencies. By jointly optimizing across these complementary pat-
terns, the model learns to recover temporal structures at varying resolutions, improving its robustness
and generalization.

Our main contributions are summarized as follows:
* We propose SATS, a Scale-Aware foundation model for Time Series, which achieves su-

perior generalization across diverse datasets.

* We introduce a scale-aware alignment mechanism based on scale-specific MLPs, unifying
token spaces across patch scales while preserving scale-specific expressiveness.
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* We design a hybrid masking strategy that enables the model to capture both fine-grained
and long-range temporal dependencies across multiple resolutions.

» Extensive experiments demonstrate the effectiveness of SATS in both zero-shot and in-
distribution forecasting settings, establishing its potential as a strong pretraining paradigm
for time series foundation models.

2 RELATED WORK

Time Series Foundation Models Large language models (LLLMs) have recently been introduced
into time series forecasting through prompt tuning or direct fine-tuning (Pan et al., |2024; |Cao et al.,
2023 |Zhou et al.| [2023). While these methods leverage pretrained knowledge, they often face chal-
lenges such as domain mismatch, limited token expressiveness, and modality entanglement (Liu
et al.,|2024a} Jin et al.|[2023). These issues not only hinder effective representation learning but also
obscure the mechanisms by which LLMs capture temporal dependencies (Tan et al.| [2024). More-
over, their reliance on dataset-specific training limits robustness under distribution shifts, prompting
increasing interest in pretraining-based time series models.

In response, a new line of research has focused on pretraining time series foundation models na-
tively on large-scale temporal data, aiming to learn general-purpose representations without relying
on language-centric priors or external modalities. Owing to the inherent characteristics of forecast-
ing tasks—such as unidirectional temporal dependency, variable-length prediction horizons, and
strong autoregressive inductive biases—decoder-based architectures have garnered increasing atten-
tion. For instance, decoder-only models such as Timer (Liu et al., 2024c) and Lag-Llama (Rasul
et al., 2023 adopt causal architectures tailored for forecasting, with the latter incorporating lagged
covariates for improved accuracy. Sparse MoE variants like Time-MoE (Shi et al.,|2024) and Moirai-
MoE (Liu et al.}2024b) further enhance scalability. In contrast, encoder-decoder models like Light-
GTS (Wang et al., 2025) and Chronos (Ansari et al.,[2024) leverage parallel decoding and discretized
training objectives to capture temporal patterns. In contrast, encoder-only architectures remain a rel-
atively underexplored branch in the context of time series foundation models. The design of effective
pretraining tasks for such models is still unsettled (Woo et al.| [2024}; |Goswami et al., 2024). No-
tably, recent theoretical analyses (Yao et al.,|2024) suggest that encoder-only models exhibit higher
power-law scaling exponents, indicating stronger representational capacity under limited compute.
These findings highlight the untapped potential of encoder-only backbones, motivating further in-
vestigation into their architecture and pretraining strategies in the temporal domain.

Contrastive Learning in Pretraining Contrastive learning has emerged as a powerful paradigm
in large-scale pretraining across various domains. In NLP, methods such as SimCSE (Gao et al.,
2021)) leverage contrastive objectives to learn semantically meaningful sentence embeddings without
supervision. In computer vision, CLIP (Radford et al.l [2021)) and ALIGN (Jia et al., 2021) jointly
embed images and texts by maximizing the similarity of paired modalities while contrasting un-
paired ones, achieving impressive zero-shot performance. While contrastive learning in time series
remains relatively underexplored, recent works like TS-TCC (Eldele et al., [2021) and CoST (Woo
et al.,|2022) demonstrate its potential in learning transferable representations by aligning augmented
views of temporal data. A key advantage of contrastive learning lies in its ability to preserve embed-
ding diversity—by pulling semantically similar instances closer and pushing dissimilar ones apart, it
structures the latent space in a discriminative and robust manner. Inspired by contrastive learning’s
structured divergence, we adopt an InfoNCE-motivated objective to enhance distinctiveness among
multi-scale features—without explicit negative samples—thus inheriting its regularization benefits.

3 METHODOLOGY

Problem Formulation Let S = {(X() C®)}N denote a dataset of multivariate time series,
where X9 € R%*T: are target sequences and C(?) € R%*T: are associated covariates. Given
the unmasked observations X,y and the corresponding covariates C, the objective is to learn model

parameters 6 such that the model fy predicts the distribution parameters 1/3 for the masked subset
X a of the target sequence.
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This leads to the following optimization problem:
Inein ]E(X,C)Np(S) EMNp(TIS) |:£n11 (XM7 121)} S.t. ’I,ZJ = fo (Xob57 C) (D
Here, L, denotes the negative log-likelihood loss:

Lan(Xpt, ) = —log p(Xaq | ) )

where p(S) is the data-generating distribution over time series instances (X, C), and p(7 | S) de-
fines the task sampling distribution that governs the selection of masked positions M C {1,...,T}
for prediction. Classical forecasting corresponds to the special case where the masked region M is
located at the end of the sequence.

3.1 MODEL ARCHITECTURE
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Figure 2: Overview of the SATS framework. Tokens from multiple patch sizes are projected via
separate MLPs. SATS employs Scale-aware Alignment mechanism to promote proximity of mean-
pooled representations within each scale, while enforcing separation of max-pooled representations
across scales—balancing consistency and scale-specific expressiveness. Hybrid masking strat-
egy, integrating Random Masking and Continuous Masking, is further applied to capture both fine-
grained and long-range temporal dependencies.

As shown in Figure[2] SATS adopts a non-overlapping patch-based, encoder-only Transformer (Nie
et al.| [2022)). The multivariate time series is first flattened and, following Moirai (Woo et al.,|2024),
mapped into patches of varying sizes based on the dataset. To improve efficiency, we adopt packing
as a default setting (Krell et al. 2021} [Dubey et al., |2024), enabling tokens with different patch
sizes from multiple datasets to be packed into a single sequence. This multi-scale design introduces
inconsistencies in the token space; while packing is not the direct cause, it is an indispensable
component of modern scalable training, making it both practical and necessary to develop solutions
within this paradigm.

To mitigate such inconsistencies while embracing the packing paradigm, SATS employs a scale-
aware alignment mechanism: it pulls closer the mean-pooled representations within the same scale,
while pushing apart the max-pooled ones across scales, ensuring consistency while preserving scale-
specific expressiveness. Based on this aligned space, a hybrid masking strategy combining random
and contiguous patterns is applied to capture both fine-grained and long-range dependencies.

Although not shown, the encoder incorporates key techniques from foundational model pretrain-
ing—such as RoPE (Su et al., 2021), SwiGLU (Shazeer, 2020), and RMSNorm (Zhang & Sennrich)
2019)—as well as inductive biases specific to time-series pretraining, including Any-Variate Bias,
Mixture Distribution Output (Woo et al., [2024) and RevIN (Kim et al., 2021) for modeling inter-
variable dependencies and normalization under distribution shifts.

Scale-aware Alignment To enhance the effectiveness of temporal modeling, especially when
dealing with subsequences of varying scales, it is crucial to design an effective alignment strat-
egy. Given token sequences Z € RU*P where L represents the maximum input length during
training and D is the hidden layer dimension of the encoder, the challenge arises from the coexis-
tence of tokens originating from n < N different patch sizes, where /N denotes the total number
of distinct patch sizes. A direct approach could be to minimize the feature space distance, such as
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cosine similarity, between subsequences, encouraging their proximity. However, this approach faces
several challenges: first, the varying lengths of subsequences make it difficult to quantify alignment;
second, different samples within the same batch may contain different numbers of subsequences,
complicating the application of proximity constraints both within and across samples. Furthermore,
to avoid feature collapse, a structured information constraint is necessary, as it prevents the model
from mapping features into a low-rank subspace, thus maintaining the richness of temporal repre-
sentations.

In response to these challenges, we propose the Scale-aware Alignment method, which integrates
two key components. First, we introduce a pooling mechanism to address the issues of variable
subsequence lengths and differing numbers of subsequences across samples. Specifically, we pool
the samples based on their patch sizes to generate the embedding representation Y € RV*P In
cases where a patch size is absent in a given sample, the corresponding embedding position Y; is set
to zero (1 < N), thereby preventing gradient propagation from this missing patch. Second, inspired
by the principles of contrastive learning, we design a structured information constraint: the mean
embeddings from different patch sizes are pulled closer to establish neighboring centers in the token
space, while the maximal embeddings are repelled to encode scale-specific information, ensuring
richer and more diverse token semantics. More theoretical analysis is provided in Appendix
To operationalize this constraint, we adopt the InfoNCE framework, as detailed in Equation [3] and
Equation E} where cos(-) denotes the cosine similarity function and 7 is the temperature parameter.

i exp (cos(Y; - Y5)/7) )
['c ose — —E |lo ;
1 [ ° (Zj«vzl exp (cos(Y; - Y;)/7) ) | (3)

N
Lty =—E |1—log Zexp (cos(Y; - Y;)/T) 4)

j=1

In practice, Y; € Y™ is sequentially substituted into Equation [3| while Y; € Y™ is substituted
into Equationfd] Although both equations follow the InfoNCE form, they do not involve true negative
samples. We therefore combine these two losses to form the final scale-aware alignment constraint
in Equation [5] This design provides structured regularization that aligns feature representations
across different patch sizes, enhancing cross-scale consistency while preventing representation col-
lapse. The hyperparameter 3 controls the relative weight of the maximal embedding pull-away term,
balancing the overall objective.

Lsaa = £close + /Bl:far &)

Hybrid Masking Strategy On top of the aligned token space, the intrinsic heterogeneity and com-
plexity of temporal dynamics across datasets continue to challenge effective representation learning.
Although alignment mitigates certain variations, temporal dependencies inherently span multiple
scales: some manifest as fine-grained, localized fluctuations within individual tokens, while oth-
ers emerge as extended, structured patterns across contiguous token segments. To comprehensively
capture these diverse temporal scales and improve the robustness of learned representations, we
therefore propose a hybrid masking strategy that synergistically combines random masking with
contiguous masking during pretraining.

Concretely, given each token subsequence Z; € R %P extracted from the full sequence Z, where

L; denotes the length of the j-th subsequence,a masking ratio » € [0.15,0.5] is applied. For each
subsequence, a predefined probability p € [0, 1] determines whether random or contiguous masking
is used. With probability p, random masking uniformly selects m; token positions, where m; =

[r - L;], producing a binary mask MY

1, if token ¢ is randomly selected
0, otherwise

L—1

MWD (i) = { sty M (i) = m;. (6)
i=0

Alternatively, with probability 1 — p, contiguous masking is applied by sampling a start index s; €

{0,...,L; —m;}, masking a continuous block of tokens:

1, sj§i<sj+mj
0, otherwise.

M) (i) = { (7)
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The final mask M) applied to each subsequence Z; is sampled as
M) — MY with probability p ®)
MY, with probability 1 — p.

By guiding the model to recover masked tokens across both randomly distributed and contiguous
spans, this probabilistic hybrid masking balances fine-grained local inference and long-range depen-
dency learning. Consequently, it enhances the robustness and generalizability of learned representa-
tions for diverse temporal modeling tasks.

3.2 MODEL TRAINING

Unified Learning Objective Both the Scale-aware Alignment and the Hybrid Masking Strategy
are parameter-free, which not only simplifies their integration but also allows them to be seamlessly
combined into a unified learning objective without introducing additional model complexity. In
practice, the mask M obtained from Equation [8]is applied to Equation [2] to compute the primary
training loss. Simultaneously, Equation [5]is employed as an auxiliary training loss to enforce the
Scale-aware Alignment. We combine them into the total loss function as follows:

L= Loy + oL, ©)

where « is a weighting coefficient balancing the two objectives.

SATS Setup We pretrain the SATS mod-

els on the LOTSA dataset (Woo et all Table 1: Key parameter details of SATS model sizes.

2024) in two configurations—small and Layers dmoer  dy  Heads Params
base—with detailed model specifications SATSs 6 384 1536 6 14M
provided in Table [[, The small model is SATSg ? 768 3072 12 70M

trained for 100,000 steps with a batch size

of 128, while the base model is trained for 200,000 steps with a batch size of 64. Both configura-
tions employ the AdamW optimizer and follow a learning rate schedule consisting of 10,000 linear
warmup steps followed by cosine annealing. The initial learning rate is set to le-3 and the weight
decay to le-1. Further details on hyperparameters and implementation are provided in Appendix B}

4 EXPERIMENTS

4.1 BENCHMARKING SETUP

Baselines We conduct extensive comparisons with widely adopted foundation models for time
series, including Timer-XL (Liu et al.l [2025), Time-MoE (Shi et al., [2024), Moirai (Woo et al.,
2024])), Chronos (Ansari et al., [2024), Moment (Goswami et al.| 2024}, TimesFM (Das et al., 2024)
and LLMTime (Gruver et al} |[2024). In response to Bergmeir, we further expand our evaluation
under the in-distribution setting by incorporating a broader range of baselines, including classical
methods such as Naive, ETS (Hyndman et al.| 2008)), and DeepAR (Salinas et al.| 2019).

Evaluation Setup To ensure a fair comparison, all baselines are implemented following their orig-
inal settings as reported in the respective papers to reproduce their best performance. Following
Moirai (Woo et al.,[2024), we configure SATS by selecting context lengths from {1000, 2000, 3000,
4000, 5000} and determining patch sizes based on frequency. Detailed evaluation protocols and
error bars are provided in Appendix

4.2 7ZERO-SHOT FORECASTING

Setup We start by conducting out-of-distribution evaluations on five widely-used benchmark
datasets that are not included in LOTSA. Following standard practice, we consider four predic-
tion horizons {96, 192, 336, 720} and adopt MSE and MAE as evaluation metrics. To ensure fair
comparison, for models with multiple variants, we exclude those with more than 1B parameters and
report results from the variant with the best average performance.
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Table 2: Full results of zero-shot forecasting across all evaluated models. Lower values of MSE and
MAE indicate superior performance. As TimesFM incorporates Weather data during pretraining, it
is excluded from evaluation on this dataset (denoted by “~"). Red highlights the best result, while
Blue marks the second best. More results and the rationale for dataset selection can be found in

Appendix [C.T}
Models SATSs SATSg Timer-XL Time-MoEg Moiraig Chronosy, Moment TimesFM
Metrics | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 [ 0.375 0.393 0.360 0.387 0369 0391 0.357 0.381 0.383 0402 0.441 0390 0.688 0.557 0.414 0.404
= | 192 | 0412 0415 0395 0409 0405 0413 0384 0404 0425 0429 0502 0424 0688 0.560 0465 0434
g 336 | 0423 0425 0413 0422 0418 0423 0411 0434 0456 0450 0576 0467 0.675 0.563 0.503 0.456
m| 720 | 0418 0441 0413 0438 0423 0441 0449 0477 0470 0473 0835 0.583 0.683 0.585 0.511 0.481
AVG | 0407 0418 0.395 0.414 0404 0417 0400 0424 0433 0438 0.589 0466 0.684 0.566 0473 0.444
96 | 0.283 0.328 0.273 0331 0.283 0.342 0.305 0.359 0.277 0.327 0320 0.345 0342 0396 0315 0.349
Q| 192 10343 0369 0330 0372 0340 0379 0351 0386 0340 0374 0406 0399 0354 0402 0383 0.395
E 336 | 0.365 0.391 0.353 0396 0366 0.400 0.391 0418 0371 0401 0492 0453 0.356 0407 0422 0427
m| 720 | 0404 0424 0.380 0.409 0.397 0431 0419 0454 0394 0426 0.603 0511 0.395 0434 0443 0454
AVG | 0.349 0.378 0.334 0.377 0.347 0388 0367 0.404 0.345 0.382 0455 0427 0362 0410 0392 0.406
96 | 0325 0.353 0.323 0.345 0.317 0356 0.338 0.368 0396 0382 0457 0403 0.654 0527 0361 0.370
‘é‘ 192 | 0.352 0.372 0.352 0.364 0358 0.381 0.353 0.388 0425 0402 0530 0450 0.662 0.532 0414 0.405
= 336 | 0372 0.387 0371 0.379 0386 0.401 0.381 0413 0452 0415 0577 0481 0.672 0.537 0445 0.429
o | 720 | 0405 0410 0.401 0.403 0430 0431 0.504 0493 0477 0431 0.660 0.526 0.692 0.551 0.512 0471
AVG | 0.364 0.380 0.362 0.373 0373 0392 0394 0416 0437 0407 0.556 0465 0.670 0.537 0433 0419
96 [ 0.172 0.255 0.167 0.251 0.189 0277 0201 0.291 0.195 0.269 0.197 0271 0260 0335 0.202 0.270
%‘ 192 | 0226 0.292 0.222 0.290 0.241 0.315 0.258 0.334 0.247 0303 0254 0314 0.289 0.350 0.289 0.321
= | 336 | 0279 0327 0.269 0.323 0.286 0.348 0.324 0373 0.291 0333 0313 0353 0.324 0.369 0.360 0.366
E 720 | 0.369 0.385 0.343 0.374 0375 0.402 0488 0464 0.355 0377 0416 0415 0.394 0409 0462 0430
AVG | 0.262 0.315 0.250 0.309 0273 0336 0318 0.366 0.272 0321 0.295 0338 0317 0366 0.328 0.347
96 [ 0.180 0.236 0.162 0217 0.171 0225 0.160 0.214 0.176 0.210 0.194 0235 0243 0.255 - -
§ | 192 | 0226 0280 0.210 0265 0221 0271 0.210 0260 0.218 0.251 0249 0285 0.278 0.329 - -
S| 336 | 0274 0316 0258 0302 0274 0311 0274 0309 0267 0288 0302 0327 0306 0346 - -
§ 720 | 0.341 0363 0.325 0349 0356 0.370 0418 0405 0.338 0.338 0372 0378 0.350 0.374 - -
AVG | 0255 0299 0.239 0.283 0.256 0.294 0.266 0.297 0.250 0.271 0.279 0306 0.294 0.326 - -
Average | 0.327 0.358 0.316 0.351 0330 0.365 0.349 0.381 0.348 0364 0435 0401 0465 0441 - -
157 Count 4 36 1 6 5 0 0 0

Result The detailed zero-shot results are presented in Table 2} where SATSg consistently achieves
state-of-the-art performance. Compared to Moiraig, the strongest encoder-only baseline, SATSg
achieves a 9.2% improvement in MSE. It also outperforms Timer-XL (decoder-only) and Chronosy
(encoder-decoder) with MSE improvements of 4.2% and 27.4%, respectively. Notably, SATSp
contains only 70M parameters, which is substantially fewer than those of the compared baselines.
Moreover, even the lightweight SATSg with 14M parameters surpasses all other baselines in overall
average performance, highlighting its efficiency.

4.3 IN-DISTRIBUTION FORECASTING

12
Baseline
Foundation Models
SATS

Normalized MAE
o =
o o

°
o

066 64
0.60_ 0.60_ 0.60
058
’—‘ ’0-_56‘ 0.55 54
0.4 T T T T T T T T |:|
N I S o A
& & S F N & < S ¢ ® IS ¥ @ S @ oo v @ oo £ <
<§5> €@ B4 4$§p < Q§P <§§9 & & & d§p ¢§9 © ¢§9 F X
s ¥ 3 ¢ ~ <& s & o

Figure 3: In-distribution forecasting performance evaluated on 29 datasets from the Monash bench-
mark (Godahewa et al 2021). Methods trained with access to these evaluation datasets during
pretraining are denoted with asterisks (*). Results are normalized using the naive forecast and sum-
marized with the geometric mean. The detailed results are listed in Appendix [C.2}

Setup We conduct an in-distribution evaluation on 29 datasets sourced from the Monash bench-
mark (Godahewa et al, 2021)), where only the training portions are included in LOTSA and the test
sets are reserved for evaluation. We report the normalized MAE, calculated by dividing each model’s
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MAE by that of a naive forecast, and aggregate the results using the geometric mean across datasets,
providing a concise yet comprehensive assessment of in-distribution forecasting performance.

Result As shown in Figure [3] SATS consistently outperforms all competing methods. Compared
to Moirai, the best baseline trained on clean data, SATSy achieves a 6.9% improvement while
using only 22.6% of its parameters. Similarly, against Chronosg, the strongest baseline under data
contamination, SATSgs achieves superior performance with just 30.4% of its parameter count. No-
tably, the gain from SATSgs to SATSg is modest, likely because in-distribution forecasting involves
limited temporal complexity, where increasing model size yields diminishing returns.

4.4 ABLATION STUDIES

Module Design We begin by conduct-
ing ablation studies on the modules within
SATSg to validate their effectiveness. As
shown in Table [§] removing the Scale- Model variants MSE MAE
aware Alignment leads to suboptimal per- SATSp ] 0.316  0.351
formance, while discarding any compo- wi gvlsocg(ljlgzmirgu?hl\/%:g:ﬁ; % %

nent of the Hybrid Masking strategy re- ) . ’ :

sults in furtherydegradation. gThese rge);ults wlo Random Masking  0.332  0.355
highlight the fundamental role of Hybrid

Masking in enhancing the training efficacy of encoder-only architectures, enabling the model to ef-
fectively capture diverse temporal scales. The Scale-aware Alignment offers additional performance
improvements and complements this effect. Full results are provided in Appendix [C.3.1]

Table 3: Ablation study under the zero-shot evaluation
setup. The averaged MSE and MAE are reported.

Alignment Mechanism The key design of Scale-aware Alignment is to minimize the distance
between mean embeddings while maximizing the distance between maximal embeddings, thereby
achieving alignment while preventing feature collapse. We further explore its mechanism by varying
the pooling strategies involved, thereby offering empirical evidence for the selection of pooling
methods. As shown in Table [0 removing the repulsion term between maximal embeddings leads
to a significant performance drop, which is expected due to feature collapse. We then alter the
pooling strategy used to define the embeddings whose distances are maximized: both min pooling
and random pooling result in degraded performance, which indicates that maximal embeddings can
more effectively encode scale-specific information in practice. Furthermore, applying alignment
solely by minimizing the distance between maximal embeddings yields similarly suboptimal results
to completely removing the alignment objective, suggesting that such a constraint is too weak to be
effective. Full results are provided in Appendix [C.3.2]

Table 4: Ablation study under the zero-shot evaluation setup. The averaged MSE and MAE are
reported. “~” indicates that the corresponding training objective is removed.

SATSg ETThl ETTh2 ETTml ETTm2 Weather Average
Close Far MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Mean Max 0395 0414 0334 0377 0362 0373 0250 0309 0239 0.283 0.316 0.351
Mean - 0.409 0.423 0367 0397 0393 0390 0312 0345 0269 0.294 0.350 0.370
Mean Min 0.415 0426 0357 0402 0390 0.390 0274 0332 0248 0.287 0337 0.367
Mean Random | 0.400 0.416 0344 0.390 0.356 0.375 0.268 0.328 0.243 0.288 0.322 0.359
Max - 0.399 0417 0337 0379 0376 0381 0.255 0.315 0237 0.277 0.321 0.354

- - 0397 0416 0343 0.391 0359 0374 0263 0313 0244 0.281 0.321 0.355

4.5 MODEL ANALYSIS

T-SNE Visualization We visualize the token distributions of SATS and its without Scale-aware
Alignment variant using t-SNE, as illustrated in Figure [} Compared to the variant, SATS con-
sistently exhibits superior token mapping, with a highly structured token space that yields clearly
defined clusters in the t-SNE visualization. Notably, even in the second comparative setting where
tokens from patch size 8 are extremely scarce, SATS still demonstrates robust scale-aware mapping.
In contrast, although the without Scale-aware Alignment variant learns partially structured token
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SATS w/o Scale-aware Alignment w/o Scale-aware Alignment

[ Sufficient Scale Case ] [ Scarce Scale Case ]

Figure 4: T-SNE visualization of token distributions under two regimes: Sufficient Scale Case,
where each patch size retains a reasonable number of tokens, and Scarce Scale Case, where one or
more patch sizes are extremely underrepresented. Colors indicate token origins from different patch
sizes.

representations under large-scale training, it suffers from evident confusion between tokens from
patch sizes 16 and 32, indicating a fragmented semantic space. Furthermore, when the number of
tokens from patch size 8 is limited, these tokens are nearly overwhelmed, suggesting a complete
loss of scale semantics during mapping. These empirical observations collectively underscore the
effectiveness of the Scale-aware Alignment, which provides principled guidance for token genera-
tion. By ensuring semantic consistency across tokens, it enables the Transformer encoder to process
more coherent representations, thereby enhancing the quality of model pretraining.

Model Efficiency Although the preceding
discussions rarely highlight this aspect, both =
core techniques employed by SATS are 25
parameter-free. This design choice enables
SATS to achieve state-of-the-art performance
with virtually no additional computational
overhead. To more comprehensively reflect

2.0

Efficiency

1.08

both predictive performance and resource us- Lo 05 om
age, we introduce a model efficiency metric de-

. 0.5 —
ﬁned as the inverse Of the product between the SATSs SATSy  TimerXL  Moiraig Time — MoEs Moment  Chronos,

zero-shot error and the logarithm of model size.

As illustrated in Figure 5] SATS demonstrates Figure 5: Model efficiency comparison based on a
remarkable model efficiency. SATSg not only score defined as the inverse of MSE multiplied by
achieves SOTA accuracy but also surpasses the the logarithm of parameter count. Higher values
runner-up model, Timer-XL, by 8.9% in effi- indicate better trade-offs between accuracy and
ciency. While SATSg achieves only slightly model size. The MSE used here is the average
better performance than Timer-XL, it delivers reported in the zero-shot setting.

a striking 70.1% improvement in model effi-

ciency. These results highlight the practical advantages of SATS—offering a compelling bal-
ance between accuracy and efficiency, making it particularly suitable for deployment in resource-
constrained or real-time environments.

5 CONCLUSION

This paper presents SATS, a Scale-Aware foundation model for Time Series that addresses the
challenge of fragmented token spaces and misaligned representations in time series pretraining.
A scale-aware alignment mechanism is introduced to unify representations across patch sizes by
jointly minimizing inter-scale embedding discrepancies and preserving scale-specific modeling ca-
pacity. Furthermore, a hybrid masking strategy combines random and contiguous masking to cap-
ture temporal dependencies at multiple resolutions. Extensive experiments demonstrate that SATS
achieves superior generalization and robustness-—while remaining highly efficient due to its en-
tirely parameter-free design.
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6 ETHICS STATEMENT

Our work focuses on the pre-training of foundation models for time series forecasting, and therefore
involves no potential ethical risks.

7 REPRODUCIBILITY STATEMENT

We provide a rigorous formulation of the model architecture in the main text, while deferring de-
tailed implementation aspects—such as evaluation metrics, model specifications, and experimental
setups—to the Appendix. To support reproducibility, we have submitted checkpoints of SATSg to-
gether with testing code for rapid validation. The full training code will be released publicly upon
acceptance of the paper.
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A THEORETICAL ANALYSIS OF MEAN VS. MAX STATISTICS

Setup. Consider a time series decomposed as
x[n] = £[n] + h[n], (10)

where (i) £[n] is the low-frequency component satisfying a Lipschitz condition [£[n] — £[m]| <
K|n—ml|, and (ii) h[n] is the high-frequency component with zero mean and variance o;. We focus
on two statistics over a patch of length L:

il

L
1
KL = ;x[n], My = IISDT?%(LI[TL]. (11)

A.1 MEAN STATISTIC: CROSS-PATCH CONSISTENCY

Proposition A1 (Low-pass property). The mean operator py, is equivalent to convolution with a
rectangular kernel, i.e.

prln] = (x*xwr)n], wplk]l = 140, -1y (k), (12)
with frequency response
| — sin(wL/2)
L) = | Tt | 13

Hence (7, behaves as a low-pass filter, preserving the trend ¢[n] while suppressing high-frequency
variations h[n].

Proposition A2 (Variance decay). We can decompose

1 1
pr =7 E n] + I E hln]. (14
Since h[n] is zero-mean with variance o7, one obtains
C 2
Var(ur) < %. (15)

Thus the variance of g, vanishes at rate O(1/L), ensuring stability as patch length increases.

Proposition A3 (Cross-scale expectation bound). For two patches with lengths L1, Lo, the Lip-
schitz condition yields
[Elpr,] = Elpr,]| < §1L1 — La|. (16)

Therefore, the mean statistic exhibits bounded deviation across scales.

Remark. Combining A2 and A3, the mean statistic py, is consistent across patches: expectation
differences are small, variance decays with L, and the operator preserves low-frequency trends.

A.2 MAX STATISTIC: CROSS-PATCH DISCRIMINABILITY
Proposition B1 (High-frequency amplification). The max statistic can be written as

My, = max{fn] + hln]} & £[n"] + ma hln, a7)

where n* = arg max z[n]. The high-frequency component dominates the fluctuation of M7,. Clas-
sical extreme value theory implies

E{maxh[n}] = op\/2log L, (18)

n<L

indicating that M, grows with /log L and is highly sensitive to high-frequency variation.
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Proposition B2 (Cross-scale separation). For two patch lengths Ly, Ly, one can approximate
E[Mp,] — E[My,] ~ £(n}) — £(n3) + o, (\/2log L1 — \/21og Ls). (19)
Hence cross-patch differences are amplified by the high-frequency component, scaling with v/log L.

Remark. The max statistic is discriminative: it accentuates local high-frequency peaks, leading to
pronounced separation between patches of different lengths or positions.

A.3 SUMMARY

Mean achieves cross-patch consistency by suppressing high-frequency variation (O(1/L) vari-
ance decay), while max achieves discriminability by amplifying high-frequency differences (scale-

dependent /log L growth).

B EXPERIMENTAL DETAILS

B.1 HARDWARE AND SOFTWARE CONFIGURATION

All variants of the SATS model were trained and evaluated on a single NVIDIA L40 GPU with
48 GB of VRAM. The system is powered by an Intel(R) Xeon(R) Platinum 8468V CPU and runs
Ubuntu 20.04 LTS. The software stack includes Python 3.10 (managed via Miniconda) and Py-
Torch (Paszke et al., 2019) version 2.4.1.

Training was conducted using TensorFloat-32 (TF32) precision for applicable operations, in accor-
dance with the default behavior of PyTorch on Ampere-generation GPUs.

B.2 HYPERPARAMETER SETTINGS
All experiments use the following fixed hyperparameters unless otherwise specified:

+ Optimizer: AdamW with learning rate 1 x 1073, weight decay 1 x 10~', 31 = 0.9,
B2 = 0.98.

* Scale-aware Alignment: Temperature Tiean = 0.1 (Eq.[3), Tmax = 0.2 (Eq. ).

* Hybrid Masking Strategy: Masking probability p = 0.5 for balanced random and con-
tiguous masking.

* Loss Weights: Primary objective weight a = 0.1, auxiliary objective weight 8 = 0.3.

Due to limited computational resources and empirical evidence suggesting that large-scale language
model pretraining is relatively robust to hyperparameter choices within reasonable ranges — as
performance is primarily governed by scale rather than fine-tuned hyperparameters (Liu et al.L[2019}
Kaplan et al., [2020) — no further hyperparameter tuning was performed beyond the values listed
above. Replacing empirical assumptions with rigorous empirical evidence is a necessary step for
future work — we encourage systematic validation of these hyperparameter settings.

B.3 EVALUATION METRICS

B.3.1 ZERO-SHOT FORECASTING

Following standard experimental protocols, we adopt Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE) as our primary evaluation metrics. These metrics are formulated as follows:
[formulas to be inserted here].

H

MSE = Il{h (Yh - ?h)Z, (20)

H
1 ~
MAE = — h§_1j ’Yh — v, 21)
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Here, Y}, and Y, denote the h-th ground truth and predicted values, respectively, where h €
1,2,...,.H

B.3.2 IN-DISTRIBUTION FORECASTING

We evaluate model performance on in-distribution forecasting using the Monash Time Series Fore-
casting Archive |Godahewa et al.| (2021). Due to the high variance in prediction scales across
datasets, we follow the normalization protocol proposed by [Woo et al., where the MAE is nor-
malized using a naive forecast and then aggregated using the geometric mean. This procedure can
be formalized as follows:

MAE;
N-MAE;, = ———— (22)
MAEI;AIVC
N 1/N
Result = <H N—MAEi> (23)
=1

where MAE; and MAE** denote the MAE of the evaluated model and the naive baseline on the
i-th dataset, respectively, and N is the number of datasets.

B.3.3 MODEL EFFICIENCY

Existing efficiency comparisons of pretrained models typically emphasize inference speed and run-
time resource usage |Wang et al.| (2025)); Liu et al.|(2024bj |2025). While important, such evaluations
often neglect training costs, which constitute a substantial portion of overall resource consumption.
To provide a more comprehensive assessment, we propose an efficiency metric that integrates both
resource usage (training + inference) and model generalization:

1

Effici =
clency MSE j¢r0-shot X log(Params)

(24)
Here, MSE,¢;0.shot denotes the average mean squared error in zero-shot settings, and Params is the
number of model parameters (in millions).

Using parameter count accounts for deployment cost, and applying a logarithmic scale moderates
the effect of parameter size, emphasizing efficiency improvements that stem from architectural in-
novations rather than mere scale. We consider this a preliminary yet meaningful step toward more
holistic evaluation of pretrained models.

B.4 EVALUATION PROTOCOL AND ERROR BARS

Following Moirai, as described in the main text, we perform hyperparameter search over lookback
window lengths {1000, 2000, 3000, 4000, 5000}, and over patch sizes determined by the dataset-
specific mapping protocol proposed by [Woo et al., which adapts patch sizes to the intrinsic sampling
frequency of each dataset:

* Yearly, Quarterly: 8

* Monthly: 8, 16, 32

* Weekly, Daily: 16, 32

* Hourly: 32, 64

¢ Minute-level: 32, 64, 128

¢ Second-level: 64, 128
Although this protocol provides a range of hyperparameter options, we empirically choose the

largest feasible patch sizes and lookback windows of at least 3000, as this tends to improve evalua-
tion performance.
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All reported results are based on 100 samples drawn from the predictive distribution, where we
report the better of the mean and median for evaluation.

Some may suspect that searching input lengths only for SATS is unfair. However, pretrained models
typically impose strict constraints on admissible input lengths. For instance, Time-MoE (Shi et al.,
2024) requires the input length to be exactly four times the output length, while Timer-XL (Liu et al.,
2025)) selects the optimal input length depending on the dataset. Applying the same search protocol
to these models would therefore be suboptimal. To ensure fairness, we adopt their original configu-
rations and report their best results, thereby constructing a sufficiently competitive benchmark.

C DETAILED EXPERIMENTAL RESULTS

C.1 ZERO-SHOT FORECASTING

We present the complete zero-shot forecasting results to complement the main text. Specifically,
we construct the zero-shot benchmark based on five widely used datasets: ETTh1, ETTh2, ETTml,
ETTm?2, and Weather. Two other datasets, ECL and Traffic, which are popular choices in small-
scale model evaluations, are excluded here since they are already included in most pre-training
corpora, and their usage would thus compromise the fairness of a comprehensive leaderboard.
Overall, adopting these five datasets strikes a balance and serves as the greatest common ground for
zero-shot evaluation. As shown in Table[5] all SATS variants consistently outperform their competi-
tors, demonstrating superior generalization ability and robust performance across diverse datasets.
In addition, SATS exhibits a clear performance gain as model size increases, revealing strong scala-
bility. This trend contrasts with models such as Time-MoE (Shi et al.,|2024)) and Moirai (Woo et al.|
2024])), whose performance plateaus or even degrades with larger model configurations.

Table 5: Full results of zero-shot forecasting across all evaluated models. Lower values of MSE and
MAE indicate superior performance. As TimesFM incorporates Weather data during pretraining, it
is excluded from evaluation on this dataset (denoted by “-7).

Models SATSs SATSy Timer-XL Time-MoE, __ Time-MoEg Moirair Moiraig Moirais Chronos,_ Chronosg Chronoss Moment TimesFM
Metrics | MSE_MAE__MSE__MAE | MSE_MAE_MSE_MAE_MSE_MAE_MSE_MAE _MSE_MAE _MSE_MAE_MSE _MAE _MSE MAE MSE_MAE MSE _MAE MSE _MAE
96 [ 0375 0393 0360 0387 [ 0369 0391 0350 0382 0357 0381 0381 0398 0383 0402 0375 0402 0441 0390 0440 0393 0466 0409 0688 0557 0414 0.404
192 | 0412 0415 0395 0409 | 0405 0413 0388 0412 0384 0404 0428 0427 0425 0429 0399 0419 0502 0424 0492 0426 0530 0450 0.688 0560 0465 0434
336 | 0423 0425 0413 0422 | 0418 0423 0411 0430 0411 0434 0458 0445 0456 0450 0412 0429 0576 0467 0550 0462 0570 0486 0675 0563 0503 0.456
720 | 0.418 0441 0413 0438 | 0423 0441 0427 0455 0449 0477 0502 0477 0470 0473 0413 0444 0835 0583 0882 0591 0615 0543 0683 0585 0511 0481
AVG | 0407 0418 0395 0414 | 0404 0417 0394 0420 0400 0424 0442 0437 0433 0438 0400 0424 0589 0466 0591 0468 0545 0472 0.684 0.566 0473 0.444
96 [ 0283 0328 0273 0331 [ 0283 0342 0302 0354 0305 0359 0287 0329 0277 0327 0281 0334 0320 0345 0308 0343 0307 0356 0342 039 0315 0.349

ETThI

192 | 0343 0369 0330 0372 | 0340 0379 0364 0385 0351 0386 0349 0372 0340 0374 0340 0373 0406 0399 0384 0392 0376 0401 0354 0402 0388 0.395
336 | 0365 0391 0353 0396 | 0.366 0400 0417 0425 0391 0418 0372 0392 0371 0401 0362 0393 0492 0453 0429 0430 0408 0431 0356 0407 0422 0427
720 | 0.404 0.424 0380 0409 | 0.397 0431 0537 0496 0419 0454 0403 0423 0394 0426 0380 0416 0603 0511 0501 0477 0.604 0533 0395 0434 0443 0454
AVG | 0349 0378 0334 0377 | 0.347 0388 0405 0415 0367 0404 0353 0379 0345 0382 0341 0379 0455 0427 0406 0411 0424 0430 0362 0410 0392 0.406
96 | 0325 0353 0323 0345 | 0317 0356 0309 0357 0338 0368 0612 0444 0396 0382 0495 0409 0457 0403 0454 0408 0511 0423 0.654 0527 0361 0.370
192 | 0352 0372 0352 0364 | 0358 0381 0346 0.381 0.353 0388 0.593 0446 0425 0402 0548 0431 0530 0450 0567 0477 0618 0485 0662 0532 0414 0405
336 | 0372 0387 0371 0379 | 0.386 0401 0373 0408 0381 0413 0591 0454 0452 0415 0577 0445 0577 0481 0662 0525 0.683 0524 0672 0537 0445 0429
720 | 0.405 0.410 0401 0403 | 0430 0431 0475 0477 0504 0493 0596 0468 0477 0431 0586 0457 0.660 0526 0900 0591 0748 0566 0.692 0551 0512 0471
AVG | 0364 0380 0362 0373 | 0373 0392 0376 0406 0394 0416 0598 0453 0437 0407 0551 0436 0556 0465 0.646 0500 0.640 0500 0.670 0537 0433 0419
96 [ 0.172 0255 0.167 0251 [ 0.189 0277 0.197 0286 0201 0291 0.189 0260 0.195 0269 0211 0290 0.197 0271 0.199 0274 0209 0291 0260 0335 0202 0.270
192 [ 0226 0292 0222 0290 | 0.241 0315 0250 0322 0258 0334 0247 0300 0247 0303 0264 0325 0254 0314 0261 0322 0280 0341 0289 0350 0289 0321
336 | 0279 0327 0269 0323 | 0286 0348 0337 0375 0324 0373 0295 0334 0291 0333 0312 0356 0313 0353 0326 0366 0354 0390 0324 0369 0360 0366
720 | 0369 0385 0343 0374 | 0375 0402 0480 0461 0488 0464 0372 0386 0355 0377 0395 0405 0416 0415 0455 0439 0553 0499 0394 0409 0462 0430
AVG | 0262 0315 0250 0309 | 0.273 0336 0316 0361 0318 0366 0276 0320 0272 0321 0295 0344 0295 0338 0310 0350 0349 0380 0317 0366 0328 0.347
96 | 0.180 0236 0.162 0217 | 0.171 0225 0159 02[3 0.160 0214 0174 0204 0.176 0210 0.073 0212 0.94 0235 0203 0238 0211 0243 0243 0255 - B
192 1 0226 0280 0210 0265 | 0.221 0271 0215 0266 0210 0260 0221 0248 0218 0251 0216 0250 0249 0285 0256 0290 0263 0294 0278 0329
336 | 0274 0316 0258 0302 | 0.274 0311 0291 0322 0274 0309 0271 0287 0267 0288 0260 0282 0302 0327 0314 0336 0321 0339 0306 0.346
720 | 0341 0363 0325 0.349 | 0.356 0370 0415 0400 0418 0405 0340 0332 0338 0338 0320 0322 0372 0378 0397 039 0404 0397 0350 0.374
AVG | 0255 0299 0239 0.283 | 0.256 0.294 0270 0300 0.266 0.297 0251 0268 0250 0271 0242 0267 0279 0306 0293 0315 0300 0318 0294 0.326
Average | 0327 0358 0316 0351 [ 0330 0365 0352 0380 0349 0381 0384 0371 0348 0364 0366 0370 0435 0401 0449 0409 0452 0420 0465 0.441

ETTh2

ETTml

ETTm2

Weather

C.2 IN-DISTRIBUTION FORECASTING

We present the detailed results of all foundation models and baselines on the Monash benchmark |Go-
dahewa et al. (2021). As shown in Tables |§| and [/} we report the performance on each individual
dataset, including the normalized MAE and the aggregated GEOMEAN adopted in the main text.
Given the wide heterogeneity across the Monash datasets, we focus on comparing the final ag-
gregated metrics. The results demonstrate that all variants of SATS consistently outperform the
competing methods.
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Table 6: Full in-distribution forecasting results of foundation models on the Monash benchmark
dahewa et al.|(2021). NMAE-N denotes the MAE normalized by the naive forecast, and GEOMEAN
represents the geometric mean across all series.

Miodel SATSs SATS, oty orraiy. NMotrai; Chionoss Chionos, Chronos, TLMTime TimesFM Naive
Metrics MAE___NVMAEN _MAE__ NMAEN | MAE __NMAEN _ MAE _ NMAEN _MAE _ NMAEN _MAE _ NMAEN _MAE _ NMAEN _MAE__NMAEN _MAE __ NMAEN MAE _ NMAEN _ MAE
MT Monthly 5006 072 207265 077 206863 076 OS50S 073 TIO778 066 T63768 060 T627.1T 060 256287 095 67560 062 20705
M3 Monthly 68647 082 66878 080 085 658.17 079 664.03 079 64438 077 62227 074 619.79 074 877.97 105 65357 078 83714
M3 Other 23095 083 205.19 074 095 198,62 071 20241 073 196,59 071 191,80 069 20593 074 30030 108 207.23 074 27843
M# Monthly 59694 0.89 587.60 088 089 592,00 088 58436 087 59285 088 59846 089 58478 087 72827 108 58020 086 671.27
M4 Weekly 32321 0.93 32201 0.93 0.98 32808 0.04 30152 087 26456 076 25226 07 24889 072 51844 149 28589 082 347.99
M4 Daily 17344 0.96 18584 103 105 192,66 107 189.78 105 16991 094 177.49 098 168.41 093 266.52 147 17208 0.96 180.83
M4 Hourly 190,61 016 24296 020 022 20987 017 197.79 016 21418 018 230,70 019 20114 017 576.06 047 196.20 016 121806
Tourism Quarterly | 785384 050 861877 054 LI6 1719686 109 1582002 100 782327 049 883552 056 852170 054 1691886 107 1056892 067 1584510
Tourism Monthly | 271072 048 257948 046 063 286206 051 268855 048 246510 044 235867 042 214073 038 560861 099 242201 043 563683
F2016 50450250 087 52198125 0.90 LI3 53922203 093 69515692 120 64911099 112 60408854 104 72898115 126 59931384 104 81992244 142 578596.53
Aus. Elec. Demand | 26491 0.40 23527 036 0.40 20139 031 177.68 021 2 041 27 036 050 76081 LIs 2573 0.80 659.60
Bitcoin 820E+17 105 T6IE:17 098 226 L&E+I8 208 LSTE+IS 240 23Esl8 301 227E+I8 292 LSSE+I8 242 174E+I8 2236503856 778E:17 100 TISE+IT
Pedestrian Counts | 48.94 029 4785 028 032 5408 032 41.66 024 27 017 3 016 269 016 97.77 057 45.03 026 17088
Vehicle Trips 2020 0.64 2079 0.66 078 2317 074 2185 070 1938 062 1925 061 19.19 0.61 3148 100 2193 070 3142
DD cup 3860 092 37.00 088 0.94 3866 092 3909 093 38.60 092 4236 101 3883 092 270 101 4086 097 .13
Weather 189 0.80 189 0.80 083 180 076 175 074 1.96 083 184 078 1.85 078 217 092 201 0.8 236
NNS Daily 406 049 391 047 065 426 052 377 0.46 383 0.46 367 044 353 043 7.10 086 385 047 826
NNS Weekly 1463 088 1472 088 0.90 1642 098 15.30 092 15.03 0.90 1512 090 1500 090 1576 094 15.00 090 1671
45 0.69 045 070 082 047 072 049 075 052 080 083 53 082 044 068 050 077 065
247434 088 151146 053 091 267929 095 279255 099 938.46 033 103667 037 86399 031 2804.64 099 23763 079 282567
Hourly 0.02 051 001 0.50 0.67 0.02 067 o1 033 001 043 040 0.01 033 003 1.00 001 030
ly L13 095 113 095 0.98 L14 0.96 L13 095 114 0.96 L2 0.94 L12 094 115 097 106 089 L19
Rideshare 148 023 114 018 021 1 022 1 021 127 020 133 021 130 021 628 100 1.36 022 629
Hospital 19.64 082 18.57 077 0.96 19.40 081 19.44 081 19.74 082 1975 082 19.88 083 25.68 107 18.54 077 2407
COVID Deaths 98.28 028 11860 034 035 126.11 036 7.1 033 20747 059 118.26 033 190.01 054 65331 185 62347 176 353,71
Temperature Rain 521 055 524 0.56 0.56 508 054 52 0.56 3 057 17 055 5.1 055 068 7 0.56 9.39
Sunspot 0.09 0.02 012 0.03 0.03 0.08 002 013 0.03 020 005 245 062 345 0.88 507 129 107 027 393
Saugeen River Flow | 22.52 105 20.59 0.96 L12 24.40 113 2476 LIS 2357 110 2554 119 2625 122 3484 162 25.16 117 2150
US Births 466.23 040 507.99 044 076 624.30 054 476.50 041 43214 037 42008 036 432,14 037 1374.99 19 46158 0 115267
T GEOMEAN | 19995 055 19766 053 | 23980 066 21828 060 21028 058 20967 056 2723 060 22008 060 38007 TOT 755.10 06T 36508

o SES T Caoo
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C.3 ABLATION STUDIES
C.3.1 MODULE DESIGN

We conduct module-wise ablation studies under the zero-shot setting. Specifically, w/o SA de-
notes the removal of the entire Scale-aware Alignment module, w/o CM indicates the exclusion of
Continuous Masking, and w/o RM refers to the removal of Random Masking. The results, summa-
rized in Table 8] demonstrate that the proposed Hybrid Masking strategy provides a robust training
mechanism for encoder-only models, where the combination of the two masking approaches yields
consistent performance improvements. Moreover, the incorporation of Scale-aware Alignment of-
fers additional gains. A closer inspection reveals an interesting trend: Random Masking is more
effective for short-term forecasting (prediction lengths of 96 and 192), while Continuous Masking
contributes more to long-term forecasting (lengths of 336 and 720). In real-world scenarios where
long-term forecasting is not required, adopting only Random Masking may serve as a more aggres-
sive and efficient choice for maximizing model performance.

17



Under review as a conference paper at ICLR 2026

Table 8: Ablation results under the zero-shot setting. "w/o SA” denotes the removal of the entire
Scale-aware Alignment module, "w/o CM” indicates the exclusion of Continuous Masking, and
”w/o RM” refers to the removal of Random Masking.

Models SATS w/o SA w/o CM w/o RM
Metrics MSE MAE MSE MAE MSE MAE MSE MAE
96 0.360 0.387 0.362 0.389 0.383 0.395 0.380 0.392
= 192 | 0.395 0409 0.398 0411 0427 0422 0414 0412
E 336 | 0413 0422 0413 0423 0450 0440 0427 0423
m| 720 | 0413 0438 0414 0441 0487 0485 0415 0.436
AVG | 0.395 0414 0.397 0416 0437 0435 0409 0.416
96 0.273 0331 0.275 0.337 0.283 0.327 0.279 0.328
Q 192 | 0.330 0.372 0.334 0.380 0.351 0.370 0.342 0.373
E 336 | 0.353 0396 0.361 0403 0375 0.394 0.375 0.400
m | 720 | 0.380 0.409 0404 0442 0425 0440 0415 0.435
AVG | 0.334 0.377 0.343 0.391 0.358 0.383 0.353 0.384
96 0.323 0345 0.319 0.345 0303 0.338 0.320 0.346
E 192 | 0.352 0364 0.346 0.366 0.333 0.361 0.353 0.368
= | 336 | 0.371 0.379 0.368 0.382 0.359 0.378 0.370 0.382
E 720 | 0401 0403 0404 0403 0411 0409 0400 0.405
AVG | 0.362 0.373 0359 0374 0.351 0.372 0361 0.375
96 0.167 0.251 0.185 0.258 0.187 0.266 0.203 0.277
%‘ 192 | 0.222 0.290 0.235 0.295 0.244 0.306 0.257 0.313
= | 336 | 0269 0.323 0.280 0.326 0.297 0.340 0.306 0.346
E 720 | 0.343 0374 0351 0.374 0399 0403 0.377 0.393
AVG | 0.250 0.309 0.263 0.313 0.282 0329 0.286 0.332
96 0.162 0.217 0.172 0.220 0.172 0.220 0.180 0.212
g 192 | 0.210 0.265 0.218 0.265 0.226 0.271 0.224 0.253
= | 336 | 0.258 0.302 0.262 0.297 0.275 0.309 0.269 0.286
é) 720 | 0.325 0.349 0.323 0341 0362 0373 0.333  0.327
AVG | 0.239 0.283 0.244 0.281 0.259 0.293 0.251 0.269
Average | 0.316 0.351 0.321 0.355 0.338 0.362 0.332 0.355
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C.3.2 ALIGNMENT MECHANISM

In Table 0] we provide more detailed experimental results to further investigate the mechanism be-
hind Scale-aware Alignment. This module is designed to simultaneously minimize the distance
between mean embeddings and maximize the distance between maximal embeddings, thereby pro-
moting alignment while mitigating feature collapse. To assess the impact of pooling strategies in-
volved in this design, we conduct a series of ablation studies. Removing the repulsion component
between maximal embeddings leads to a notable degradation in performance, which aligns with
expectations due to the collapse of representation diversity. Additionally, substituting max pooling
with min pooling or random pooling when defining the push-away objective consistently impairs
performance, corroborating the intuition that maximal values encode the most informative features.
Lastly, applying the alignment constraint solely via minimal distance between maximal embeddings
proves insufficient, yielding results close to those without any alignment objective.

Table 9: Ablation study under the zero-shot setting. “w/o far” denotes the complete removal of the
push-away (far) objective. “w minFar” uses the embedding derived from min pooling as the push-
away target. “w randomFar” adopts a randomly pooled embedding as the push-away target. “w
maxClose” replaces the push-away objective with a pull-close (near) objective, where the embedding

is obtained via max pooling.

Models SATS w/o far w minFar w randomFar w maxClose
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.360 0.387 0386 0406 0.394 0405 0.363 0390 0370 0.395
= 192 | 0.395 0.409 0411 0418 0422 0423 0401 0412 0403 0414
g 336 | 0413 0422 0418 0424 0425 0430 0418 0423 0413 0.423
m| 720 | 0.413 0438 0422 0443 0421 0446 0419 0440 0.410 0.435
AVG | 0395 0414 0409 0423 0415 0426 0400 0416 0.399 0417
96 0.273 0331 0288 0346 0.283 0.348 0.273 0.336 0.271 0.332

Q 192 | 0.330 0372 0341 0380 0.343 0.389 0.333 0.379 0.328 0.373
E 336 | 0.353 0.396 0.388 0.412 0.375 0415 0366 0406 0357 0.397
m| 720 | 0.380 0.409 0449 0452 0425 0458 0405 0.438 0.391 0.415
AVG | 0334 0377 0367 0.397 0.357 0.402 0.344 0390 0.337 0.379
96 0.323 0345 0401 038 0370 0.368 0.315 0.345 0.345 0.356

E 192 | 0.352 0.364 0372 0376 0381 0382 0347 0.367 0.367 0.373
= | 336 | 0.371 0379 038 0388 0.393 0.394 0.367 0.383 0.382 0.387
E 720 | 0.401 0403 0414 0410 0418 0415 0396 0406 0411 0.409
AVG | 0362 0373 0393 0390 0.390 0.390 0.356 0.375 0.376 0.381

96 0.167 0.251 0.262 0291 0.183 0269 0.185 0272 0.171 0.259

%‘ 192 | 0.222 0.290 0.307 0.322 0.237 0.309 0.239 0.308 0.224 0.295
= | 336 | 0.269 0.323 0304 0362 0296 0.348 0.288 0.341 0.272 0.327
E 720 | 0.343 0374 0377 0408 0.381 0.400 0.361 0.390 0.352 0.380
AVG | 0.250 0309 0312 0345 0274 0332 0268 0.328 0.255 0.315
96 0.162 0.217 0206 0250 0.179 0.231 0.170 0.224 0.168 0.220

9_=‘3 192 | 0.210 0.265 0.241 0.277 0223 0.272 0219 0273 0213 0.261
= | 336 | 0.258 0302 0281 0306 0266 0303 0262 0306 0257 0.294
§ 720 | 0.325 0349 0349 0345 0.324 0.343 0.320 0.348 0312 0.333
AVG | 0.239 0.283 0269 0.294 0.248 0.287 0.243 0.288 0.237 0.277
Average | 0.316 0.351 0.350 0.370 0.337 0367 0.322 0.359 0.321 0.354

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models were used solely to assist or polish the writing to improve
clarity and presentation, and did not participate in any research design or literature review.
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