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ABSTRACT

Pretraining time series foundation models across diverse datasets necessitates ef-
fective handling of varying sampling frequencies. A prevalent approach assigns
dataset-specific patch sizes based on sampling rates and employs separate MLPs
for token projection, which leads to fragmented representations across scales and
hinders alignment and transferability. In contrast, some studies enforce a fixed
patch size across datasets to ensure consistency, yet this uniformity neglects in-
herent temporal variations and often causes information loss. To address these
challenges, we propose a scale-aware token alignment mechanism that treats the
patch size used during input segmentation as an explicit notion of scale. By in-
corporating contrastive learning across scales, our approach aligns the represen-
tation spaces induced by different MLPs while preserving their distinct modeling
capacities. On top of this aligned representation, we introduce a hybrid mask-
ing strategy that enables multi-scale temporal understanding at the token level.
By combining random and contiguous masking, the model learns to recover both
fine-grained patterns and long-range temporal structures during pretraining. Ex-
periments on benchmark datasets show that our approach consistently improves
forecasting performance, highlighting the benefits of scale-aware token alignment
and multi-scale understanding in time series model pretraining.

1 INTRODUCTION

The recent emergence of foundation models has significantly advanced various domains such as
natural language processing (Brown et al., 2020; Dubey et al., 2024), computer vision (Oquab et al.,
2023; Radford et al., 2021), and speech understanding (Baevski et al., 2020; Radford et al., 2023).
Inspired by their success, growing efforts have been devoted to developing foundation models for
time series, aiming to produce general-purpose representations transferable across diverse down-
stream tasks. An early line of work adapts pretrained language models to time series tasks, lever-
aging their sequence modeling capabilities in hopes of achieving strong generalization (Cao et al.,
2023; Jin et al., 2023; Pan et al., 2024). However, the modality gap often hinders their performance
on temporally structured data, resulting in suboptimal generalization across diverse time series tasks.
Moreover, their black-box nature further exacerbates the issue, raising concerns about interpretabil-
ity and the lack of alignment with intrinsic temporal characteristics (Tan et al., 2024). To address
these challenges, a second line of work has emerged that trains foundation models from scratch
on large-scale, heterogeneous time series datasets (Shi et al., 2024; Woo et al., 2024; Ansari et al.,
2024). These models aim to capture universal temporal dynamics in a data-driven and domain-
adaptive manner, thereby enhancing robustness to distribution shifts and improving transferability
across domains with varying sampling rates, modalities, and sequence lengths (e.g., finance, health-
care, meteorology, IoT).

Despite the promise of the latter direction, it presents unique challenges—particularly in how to
effectively segment and tokenize continuous signals for cross-dataset pretraining. Unlike language,
where discrete word units naturally serve as stable tokens (Sennrich et al., 2016), or vision, where
uniform patch sizes are viable due to consistent spatial resolution and semantic robustness (Touvron
et al., 2021; Dosovitskiy et al., 2020), time series data exhibit irregular sampling and variable se-
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Figure 1: (a) Dataset-specific patch sizes and independent MLPs for varying sampling rates lead to
fragmented token spaces. (b) Using a unified patch size and MLP risks information bottlenecks and
misaligned local dynamics. (c) SATS adopts dataset-specific patch sizes and enforces scale-aware
alignment across MLP-projected spaces, yielding semantically rich and consistent representations.

quence lengths, making fixed-size downsampling ineffective. These characteristics necessitate the
use of small, adaptive patch sizes to preserve fine-grained temporal patterns.

As shown in Figure 1, recent studies have explored two main strategies for time series tokenization,
each with inherent limitations. (1) Dataset-specific patching adopts variable patch sizes tailored
to local sampling rates, combined with independent MLPs for token projection (Zhang et al., 2024;
Woo et al., 2024). While this design aligns well with the granularity of each dataset, it results in
fragmented token spaces that hinder the learning of generalizable temporal patterns and compromise
training stability. (2) Uniform patching enforces a globally small patch size across datasets to pro-
mote representational consistency (Wang et al., 2025; Liu et al., 2024b). However, this strategy in-
troduces information bottlenecks and often misaligns local dynamics, as it fails to accommodate the
diverse temporal structures inherent in different datasets. Both strategies, therefore, face a trade-off
between dataset adaptability and representational generality, limiting their effectiveness in scalable
pretraining.

To bridge the gap between fragmented token spaces introduced by adaptive patching and the repre-
sentational rigidity of fixed segmentation, we propose a scale-aware token alignment mechanism tai-
lored for time series pretraining. By treating the patch size as an explicit notion of scale, our method
aligns the representation spaces induced by scale-specific MLPs. This is achieved by minimizing
the distance between mean token embeddings across scales to encourage semantic alignment, while
simultaneously maximizing the distance between their maximal embeddings to preserve the scale-
specific modeling capacity. The resulting token space offers a unified yet expressive foundation for
downstream tasks.

Building on this aligned representation space, a remaining challenge lies in the diverse temporal
structures inherent to different datasets. Even with aligned embeddings, temporal variations may
manifest within individual tokens or span across multiple tokens, depending on the dynamics of
the underlying sequence. To capture such variability, we introduce a hybrid masking strategy that
enhances multi-scale temporal modeling during masked reconstruction. This strategy combines ran-
dom masking, which promotes fine-grained inference, with contiguous masking, which facilitates
the modeling of long-range dependencies. By jointly optimizing across these complementary pat-
terns, the model learns to recover temporal structures at varying resolutions, improving its robustness
and generalization.

Our main contributions are summarized as follows:

• We propose SATS, a Scale-Aware foundation model for Time Series, which achieves su-
perior generalization across diverse datasets.

• We introduce a scale-aware alignment mechanism based on scale-specific MLPs, unifying
token spaces across patch scales while preserving scale-specific expressiveness.
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• We design a hybrid masking strategy that enables the model to capture both fine-grained
and long-range temporal dependencies across multiple resolutions.

• Extensive experiments demonstrate the effectiveness of SATS in both zero-shot and in-
distribution forecasting settings, establishing its potential as a strong pretraining paradigm
for time series foundation models.

2 RELATED WORK

Time Series Foundation Models Large language models (LLMs) have recently been introduced
into time series forecasting through prompt tuning or direct fine-tuning (Pan et al., 2024; Cao et al.,
2023; Zhou et al., 2023). While these methods leverage pretrained knowledge, they often face chal-
lenges such as domain mismatch, limited token expressiveness, and modality entanglement (Liu
et al., 2024a; Jin et al., 2023). These issues not only hinder effective representation learning but also
obscure the mechanisms by which LLMs capture temporal dependencies (Tan et al., 2024). More-
over, their reliance on dataset-specific training limits robustness under distribution shifts, prompting
increasing interest in pretraining-based time series models.

In response, a new line of research has focused on pretraining time series foundation models na-
tively on large-scale temporal data, aiming to learn general-purpose representations without relying
on language-centric priors or external modalities. Owing to the inherent characteristics of forecast-
ing tasks—such as unidirectional temporal dependency, variable-length prediction horizons, and
strong autoregressive inductive biases—decoder-based architectures have garnered increasing atten-
tion. For instance, decoder-only models such as Timer (Liu et al., 2024c) and Lag-Llama (Rasul
et al., 2023) adopt causal architectures tailored for forecasting, with the latter incorporating lagged
covariates for improved accuracy. Sparse MoE variants like Time-MoE (Shi et al., 2024) and Moirai-
MoE (Liu et al., 2024b) further enhance scalability. In contrast, encoder-decoder models like Light-
GTS (Wang et al., 2025) and Chronos (Ansari et al., 2024) leverage parallel decoding and discretized
training objectives to capture temporal patterns. In contrast, encoder-only architectures remain a rel-
atively underexplored branch in the context of time series foundation models. The design of effective
pretraining tasks for such models is still unsettled (Woo et al., 2024; Goswami et al., 2024). No-
tably, recent theoretical analyses (Yao et al., 2024) suggest that encoder-only models exhibit higher
power-law scaling exponents, indicating stronger representational capacity under limited compute.
These findings highlight the untapped potential of encoder-only backbones, motivating further in-
vestigation into their architecture and pretraining strategies in the temporal domain.

Contrastive Learning in Pretraining Contrastive learning has emerged as a powerful paradigm
in large-scale pretraining across various domains. In NLP, methods such as SimCSE (Gao et al.,
2021) leverage contrastive objectives to learn semantically meaningful sentence embeddings without
supervision. In computer vision, CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) jointly
embed images and texts by maximizing the similarity of paired modalities while contrasting un-
paired ones, achieving impressive zero-shot performance. While contrastive learning in time series
remains relatively underexplored, recent works like TS-TCC (Eldele et al., 2021) and CoST (Woo
et al., 2022) demonstrate its potential in learning transferable representations by aligning augmented
views of temporal data. A key advantage of contrastive learning lies in its ability to preserve embed-
ding diversity—by pulling semantically similar instances closer and pushing dissimilar ones apart, it
structures the latent space in a discriminative and robust manner. Inspired by contrastive learning’s
structured divergence, we adopt an InfoNCE-motivated objective to enhance distinctiveness among
multi-scale features—without explicit negative samples—thus inheriting its regularization benefits.

3 METHODOLOGY

Problem Formulation Let S = {(X(i),C(i))}Ni=1 denote a dataset of multivariate time series,
where X(i) ∈ Rdx×Ti are target sequences and C(i) ∈ Rdc×Ti are associated covariates. Given
the unmasked observations Xobs and the corresponding covariates C, the objective is to learn model
parameters θ such that the model fθ predicts the distribution parameters ψ̂ for the masked subset
XM of the target sequence.

3
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This leads to the following optimization problem:

min
θ

E(X,C)∼p(S) EM∼p(T |S)

[
Lnll

(
XM, ψ̂

)]
s.t. ψ̂ = fθ(Xobs,C) (1)

Here, Lnll denotes the negative log-likelihood loss:

Lnll(XM, ψ̂) = − log p(XM | ψ̂) (2)

where p(S) is the data-generating distribution over time series instances (X,C), and p(T | S) de-
fines the task sampling distribution that governs the selection of masked positions M ⊂ {1, . . . , T}
for prediction. Classical forecasting corresponds to the special case where the masked region M is
located at the end of the sequence.

3.1 MODEL ARCHITECTURE

Input Multi-MLPs

Scale-aware Alignment

Hybrid Masking

Transformer Encoder

Distribution Output 

Monthly Daily Minutely

Mean Pooling

Max Pooling

Promote
Proximity

Enforce 
Separation

Random Masking

Continuous Masking

Figure 2: Overview of the SATS framework. Tokens from multiple patch sizes are projected via
separate MLPs. SATS employs Scale-aware Alignment mechanism to promote proximity of mean-
pooled representations within each scale, while enforcing separation of max-pooled representations
across scales—balancing consistency and scale-specific expressiveness. Hybrid masking strat-
egy, integrating Random Masking and Continuous Masking, is further applied to capture both fine-
grained and long-range temporal dependencies.

As shown in Figure 2, SATS adopts a non-overlapping patch-based, encoder-only Transformer (Nie
et al., 2022). The multivariate time series is first flattened and, following Moirai (Woo et al., 2024),
mapped into patches of varying sizes based on the dataset. To improve efficiency, we adopt packing
as a default setting (Krell et al., 2021; Dubey et al., 2024), enabling tokens with different patch
sizes from multiple datasets to be packed into a single sequence. This multi-scale design introduces
inconsistencies in the token space; while packing is not the direct cause, it is an indispensable
component of modern scalable training, making it both practical and necessary to develop solutions
within this paradigm.

To mitigate such inconsistencies while embracing the packing paradigm, SATS employs a scale-
aware alignment mechanism: it pulls closer the mean-pooled representations within the same scale,
while pushing apart the max-pooled ones across scales, ensuring consistency while preserving scale-
specific expressiveness. Based on this aligned space, a hybrid masking strategy combining random
and contiguous patterns is applied to capture both fine-grained and long-range dependencies.

Although not shown, the encoder incorporates key techniques from foundational model pretrain-
ing—such as RoPE (Su et al., 2021), SwiGLU (Shazeer, 2020), and RMSNorm (Zhang & Sennrich,
2019)—as well as inductive biases specific to time-series pretraining, including Any-Variate Bias,
Mixture Distribution Output (Woo et al., 2024) and RevIN (Kim et al., 2021) for modeling inter-
variable dependencies and normalization under distribution shifts.

Scale-aware Alignment To enhance the effectiveness of temporal modeling, especially when
dealing with subsequences of varying scales, it is crucial to design an effective alignment strat-
egy. Given token sequences I ∈ RL×D, where L represents the maximum input length during
training and D is the hidden layer dimension of the encoder, the challenge arises from the coexis-
tence of tokens originating from n ≤ N different patch sizes, where N denotes the total number
of distinct patch sizes. A direct approach could be to minimize the feature space distance, such as
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cosine similarity, between subsequences, encouraging their proximity. However, this approach faces
several challenges: first, the varying lengths of subsequences make it difficult to quantify alignment;
second, different samples within the same batch may contain different numbers of subsequences,
complicating the application of proximity constraints both within and across samples. Furthermore,
to avoid feature collapse, a structured information constraint is necessary, as it prevents the model
from mapping features into a low-rank subspace, thus maintaining the richness of temporal repre-
sentations.

In response to these challenges, we propose the Scale-aware Alignment method, which integrates
two key components. First, we introduce a pooling mechanism to address the issues of variable
subsequence lengths and differing numbers of subsequences across samples. Specifically, we pool
the samples based on their patch sizes to generate the embedding representation Y ∈ RN×D. In
cases where a patch size is absent in a given sample, the corresponding embedding position Yi is set
to zero (i ≤ N ), thereby preventing gradient propagation from this missing patch. Second, inspired
by the principles of contrastive learning, we design a structured information constraint: the mean
embeddings from different patch sizes are pulled closer to establish neighboring centers in the token
space, while the maximal embeddings are repelled to encode scale-specific information, ensuring
richer and more diverse token semantics. More theoretical analysis is provided in Appendix A.
To operationalize this constraint, we adopt the InfoNCE framework, as detailed in Equation 3 and
Equation 4, where cos(·) denotes the cosine similarity function and τ is the temperature parameter.

Lclose = −E

[
log

(∑
j ̸=i exp (cos(Yi · Yj)/τ)∑N
j=1 exp (cos(Yi · Yj)/τ)

)]
(3)

Lfar = −E

1− log

 N∑
j=1

exp (cos(Yi · Yj)/τ)

 (4)

In practice, Yi ∈ Y mean is sequentially substituted into Equation 3, while Yi ∈ Y max is substituted
into Equation 4. Although both equations follow the InfoNCE form, they do not involve true negative
samples. We therefore combine these two losses to form the final scale-aware alignment constraint
in Equation 5. This design provides structured regularization that aligns feature representations
across different patch sizes, enhancing cross-scale consistency while preventing representation col-
lapse. The hyperparameter β controls the relative weight of the maximal embedding pull-away term,
balancing the overall objective.

Lsaa = Lclose + βLfar (5)

Hybrid Masking Strategy On top of the aligned token space, the intrinsic heterogeneity and com-
plexity of temporal dynamics across datasets continue to challenge effective representation learning.
Although alignment mitigates certain variations, temporal dependencies inherently span multiple
scales: some manifest as fine-grained, localized fluctuations within individual tokens, while oth-
ers emerge as extended, structured patterns across contiguous token segments. To comprehensively
capture these diverse temporal scales and improve the robustness of learned representations, we
therefore propose a hybrid masking strategy that synergistically combines random masking with
contiguous masking during pretraining.

Concretely, given each token subsequence Ij ∈ RLj×D extracted from the full sequence I, where
Lj denotes the length of the j-th subsequence,a masking ratio r ∈ [0.15, 0.5] is applied. For each
subsequence, a predefined probability p ∈ [0, 1] determines whether random or contiguous masking
is used. With probability p, random masking uniformly selects mj token positions, where mj =

⌈r · Lj⌉, producing a binary mask M(j)
r :

M(j)
r (i) =

{
1, if token i is randomly selected
0, otherwise

s.t.
Lj−1∑
i=0

M(j)
r (i) = mj . (6)

Alternatively, with probability 1− p, contiguous masking is applied by sampling a start index sj ∈
{0, . . . , Lj −mj}, masking a continuous block of tokens:

M(j)
c (i) =

{
1, sj ≤ i < sj +mj

0, otherwise.
(7)

5
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The final mask M(j) applied to each subsequence Ij is sampled as

M(j) =

{
M(j)

r , with probability p

M(j)
c , with probability 1− p.

(8)

By guiding the model to recover masked tokens across both randomly distributed and contiguous
spans, this probabilistic hybrid masking balances fine-grained local inference and long-range depen-
dency learning. Consequently, it enhances the robustness and generalizability of learned representa-
tions for diverse temporal modeling tasks.

3.2 MODEL TRAINING

Unified Learning Objective Both the Scale-aware Alignment and the Hybrid Masking Strategy
are parameter-free, which not only simplifies their integration but also allows them to be seamlessly
combined into a unified learning objective without introducing additional model complexity. In
practice, the mask M obtained from Equation 8 is applied to Equation 2 to compute the primary
training loss. Simultaneously, Equation 5 is employed as an auxiliary training loss to enforce the
Scale-aware Alignment. We combine them into the total loss function as follows:

L = Lnll + αLsaa (9)

where α is a weighting coefficient balancing the two objectives.

Table 1: Key parameter details of SATS model sizes.

Layers dmodel dff Heads Params
SATSS 6 384 1536 6 14M
SATSB 9 768 3072 12 70M

SATS Setup We pretrain the SATS mod-
els on the LOTSA dataset (Woo et al.,
2024) in two configurations—small and
base—with detailed model specifications
provided in Table 1. The small model is
trained for 100,000 steps with a batch size
of 128, while the base model is trained for 200,000 steps with a batch size of 64. Both configura-
tions employ the AdamW optimizer and follow a learning rate schedule consisting of 10,000 linear
warmup steps followed by cosine annealing. The initial learning rate is set to 1e-3 and the weight
decay to 1e-1. Further details on hyperparameters and implementation are provided in Appendix B.

4 EXPERIMENTS

4.1 BENCHMARKING SETUP

Baselines We conduct extensive comparisons with widely adopted foundation models for time
series, including Timer-XL (Liu et al., 2025), Time-MoE (Shi et al., 2024), Moirai (Woo et al.,
2024), Chronos (Ansari et al., 2024), Moment (Goswami et al., 2024), TimesFM (Das et al., 2024)
and LLMTime (Gruver et al., 2024). In response to Bergmeir, we further expand our evaluation
under the in-distribution setting by incorporating a broader range of baselines, including classical
methods such as Naive, ETS (Hyndman et al., 2008), and DeepAR (Salinas et al., 2019).

Evaluation Setup To ensure a fair comparison, all baselines are implemented following their orig-
inal settings as reported in the respective papers to reproduce their best performance. Following
Moirai (Woo et al., 2024), we configure SATS by selecting context lengths from {1000, 2000, 3000,
4000, 5000} and determining patch sizes based on frequency. Detailed evaluation protocols and
error bars are provided in Appendix B.4.

4.2 ZERO-SHOT FORECASTING

Setup We start by conducting out-of-distribution evaluations on five widely-used benchmark
datasets that are not included in LOTSA. Following standard practice, we consider four predic-
tion horizons {96, 192, 336, 720} and adopt MSE and MAE as evaluation metrics. To ensure fair
comparison, for models with multiple variants, we exclude those with more than 1B parameters and
report results from the variant with the best average performance.
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Table 2: Full results of zero-shot forecasting across all evaluated models. Lower values of MSE and
MAE indicate superior performance. As TimesFM incorporates Weather data during pretraining, it
is excluded from evaluation on this dataset (denoted by “–”). Red highlights the best result, while
Blue marks the second best. More results and the rationale for dataset selection can be found in
Appendix C.1.

Models SATSS SATSB Timer-XL Time-MoEB MoiraiB ChronosL Moment TimesFM
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.375 0.393 0.360 0.387 0.369 0.391 0.357 0.381 0.383 0.402 0.441 0.390 0.688 0.557 0.414 0.404
192 0.412 0.415 0.395 0.409 0.405 0.413 0.384 0.404 0.425 0.429 0.502 0.424 0.688 0.560 0.465 0.434
336 0.423 0.425 0.413 0.422 0.418 0.423 0.411 0.434 0.456 0.450 0.576 0.467 0.675 0.563 0.503 0.456
720 0.418 0.441 0.413 0.438 0.423 0.441 0.449 0.477 0.470 0.473 0.835 0.583 0.683 0.585 0.511 0.481

AVG 0.407 0.418 0.395 0.414 0.404 0.417 0.400 0.424 0.433 0.438 0.589 0.466 0.684 0.566 0.473 0.444

E
T

T
h2

96 0.283 0.328 0.273 0.331 0.283 0.342 0.305 0.359 0.277 0.327 0.320 0.345 0.342 0.396 0.315 0.349
192 0.343 0.369 0.330 0.372 0.340 0.379 0.351 0.386 0.340 0.374 0.406 0.399 0.354 0.402 0.388 0.395
336 0.365 0.391 0.353 0.396 0.366 0.400 0.391 0.418 0.371 0.401 0.492 0.453 0.356 0.407 0.422 0.427
720 0.404 0.424 0.380 0.409 0.397 0.431 0.419 0.454 0.394 0.426 0.603 0.511 0.395 0.434 0.443 0.454

AVG 0.349 0.378 0.334 0.377 0.347 0.388 0.367 0.404 0.345 0.382 0.455 0.427 0.362 0.410 0.392 0.406

E
T

T
m

1

96 0.325 0.353 0.323 0.345 0.317 0.356 0.338 0.368 0.396 0.382 0.457 0.403 0.654 0.527 0.361 0.370
192 0.352 0.372 0.352 0.364 0.358 0.381 0.353 0.388 0.425 0.402 0.530 0.450 0.662 0.532 0.414 0.405
336 0.372 0.387 0.371 0.379 0.386 0.401 0.381 0.413 0.452 0.415 0.577 0.481 0.672 0.537 0.445 0.429
720 0.405 0.410 0.401 0.403 0.430 0.431 0.504 0.493 0.477 0.431 0.660 0.526 0.692 0.551 0.512 0.471

AVG 0.364 0.380 0.362 0.373 0.373 0.392 0.394 0.416 0.437 0.407 0.556 0.465 0.670 0.537 0.433 0.419

E
T

T
m

2

96 0.172 0.255 0.167 0.251 0.189 0.277 0.201 0.291 0.195 0.269 0.197 0.271 0.260 0.335 0.202 0.270
192 0.226 0.292 0.222 0.290 0.241 0.315 0.258 0.334 0.247 0.303 0.254 0.314 0.289 0.350 0.289 0.321
336 0.279 0.327 0.269 0.323 0.286 0.348 0.324 0.373 0.291 0.333 0.313 0.353 0.324 0.369 0.360 0.366
720 0.369 0.385 0.343 0.374 0.375 0.402 0.488 0.464 0.355 0.377 0.416 0.415 0.394 0.409 0.462 0.430

AVG 0.262 0.315 0.250 0.309 0.273 0.336 0.318 0.366 0.272 0.321 0.295 0.338 0.317 0.366 0.328 0.347

W
ea

th
er

96 0.180 0.236 0.162 0.217 0.171 0.225 0.160 0.214 0.176 0.210 0.194 0.235 0.243 0.255 - -
192 0.226 0.280 0.210 0.265 0.221 0.271 0.210 0.260 0.218 0.251 0.249 0.285 0.278 0.329 - -
336 0.274 0.316 0.258 0.302 0.274 0.311 0.274 0.309 0.267 0.288 0.302 0.327 0.306 0.346 - -
720 0.341 0.363 0.325 0.349 0.356 0.370 0.418 0.405 0.338 0.338 0.372 0.378 0.350 0.374 - -

AVG 0.255 0.299 0.239 0.283 0.256 0.294 0.266 0.297 0.250 0.271 0.279 0.306 0.294 0.326 - -
Average 0.327 0.358 0.316 0.351 0.330 0.365 0.349 0.381 0.348 0.364 0.435 0.401 0.465 0.441 - -
1st Count 4 36 1 6 5 0 0 0

Result The detailed zero-shot results are presented in Table 2, where SATSB consistently achieves
state-of-the-art performance. Compared to MoiraiB, the strongest encoder-only baseline, SATSB
achieves a 9.2% improvement in MSE. It also outperforms Timer-XL (decoder-only) and ChronosL
(encoder-decoder) with MSE improvements of 4.2% and 27.4%, respectively. Notably, SATSB
contains only 70M parameters, which is substantially fewer than those of the compared baselines.
Moreover, even the lightweight SATSS with 14M parameters surpasses all other baselines in overall
average performance, highlighting its efficiency.

4.3 IN-DISTRIBUTION FORECASTING
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Figure 3: In-distribution forecasting performance evaluated on 29 datasets from the Monash bench-
mark (Godahewa et al., 2021). Methods trained with access to these evaluation datasets during
pretraining are denoted with asterisks (*). Results are normalized using the naive forecast and sum-
marized with the geometric mean. The detailed results are listed in Appendix C.2.

Setup We conduct an in-distribution evaluation on 29 datasets sourced from the Monash bench-
mark (Godahewa et al., 2021), where only the training portions are included in LOTSA and the test
sets are reserved for evaluation. We report the normalized MAE, calculated by dividing each model’s
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MAE by that of a naive forecast, and aggregate the results using the geometric mean across datasets,
providing a concise yet comprehensive assessment of in-distribution forecasting performance.

Result As shown in Figure 3, SATS consistently outperforms all competing methods. Compared
to MoiraiL, the best baseline trained on clean data, SATSB achieves a 6.9% improvement while
using only 22.6% of its parameters. Similarly, against ChronosS, the strongest baseline under data
contamination, SATSS achieves superior performance with just 30.4% of its parameter count. No-
tably, the gain from SATSS to SATSB is modest, likely because in-distribution forecasting involves
limited temporal complexity, where increasing model size yields diminishing returns.

4.4 ABLATION STUDIES

Table 3: Ablation study under the zero-shot evaluation
setup. The averaged MSE and MAE are reported.

Model variants MSE MAE
SATSB 0.316 0.351

w/o Scale-aware Alignment 0.321 0.355
w/o Continuous Masking 0.338 0.362

w/o Random Masking 0.332 0.355

Module Design We begin by conduct-
ing ablation studies on the modules within
SATSB to validate their effectiveness. As
shown in Table 8, removing the Scale-
aware Alignment leads to suboptimal per-
formance, while discarding any compo-
nent of the Hybrid Masking strategy re-
sults in further degradation. These results
highlight the fundamental role of Hybrid
Masking in enhancing the training efficacy of encoder-only architectures, enabling the model to ef-
fectively capture diverse temporal scales. The Scale-aware Alignment offers additional performance
improvements and complements this effect. Full results are provided in Appendix C.3.1.

Alignment Mechanism The key design of Scale-aware Alignment is to minimize the distance
between mean embeddings while maximizing the distance between maximal embeddings, thereby
achieving alignment while preventing feature collapse. We further explore its mechanism by varying
the pooling strategies involved, thereby offering empirical evidence for the selection of pooling
methods. As shown in Table 9, removing the repulsion term between maximal embeddings leads
to a significant performance drop, which is expected due to feature collapse. We then alter the
pooling strategy used to define the embeddings whose distances are maximized: both min pooling
and random pooling result in degraded performance, which indicates that maximal embeddings can
more effectively encode scale-specific information in practice. Furthermore, applying alignment
solely by minimizing the distance between maximal embeddings yields similarly suboptimal results
to completely removing the alignment objective, suggesting that such a constraint is too weak to be
effective. Full results are provided in Appendix C.3.2.

Table 4: Ablation study under the zero-shot evaluation setup. The averaged MSE and MAE are
reported. “–” indicates that the corresponding training objective is removed.

SATSB ETTh1 ETTh2 ETTm1 ETTm2 Weather Average
Close Far MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Mean Max 0.395 0.414 0.334 0.377 0.362 0.373 0.250 0.309 0.239 0.283 0.316 0.351
Mean - 0.409 0.423 0.367 0.397 0.393 0.390 0.312 0.345 0.269 0.294 0.350 0.370
Mean Min 0.415 0.426 0.357 0.402 0.390 0.390 0.274 0.332 0.248 0.287 0.337 0.367
Mean Random 0.400 0.416 0.344 0.390 0.356 0.375 0.268 0.328 0.243 0.288 0.322 0.359
Max - 0.399 0.417 0.337 0.379 0.376 0.381 0.255 0.315 0.237 0.277 0.321 0.354

- - 0.397 0.416 0.343 0.391 0.359 0.374 0.263 0.313 0.244 0.281 0.321 0.355

4.5 MODEL ANALYSIS

T-SNE Visualization We visualize the token distributions of SATS and its without Scale-aware
Alignment variant using t-SNE, as illustrated in Figure 4. Compared to the variant, SATS con-
sistently exhibits superior token mapping, with a highly structured token space that yields clearly
defined clusters in the t-SNE visualization. Notably, even in the second comparative setting where
tokens from patch size 8 are extremely scarce, SATS still demonstrates robust scale-aware mapping.
In contrast, although the without Scale-aware Alignment variant learns partially structured token
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SATS w/o Scale-aware Alignment SATS w/o Scale-aware Alignment

Sufficient Scale Case Scarce Scale Case

Figure 4: T-SNE visualization of token distributions under two regimes: Sufficient Scale Case,
where each patch size retains a reasonable number of tokens, and Scarce Scale Case, where one or
more patch sizes are extremely underrepresented. Colors indicate token origins from different patch
sizes.

representations under large-scale training, it suffers from evident confusion between tokens from
patch sizes 16 and 32, indicating a fragmented semantic space. Furthermore, when the number of
tokens from patch size 8 is limited, these tokens are nearly overwhelmed, suggesting a complete
loss of scale semantics during mapping. These empirical observations collectively underscore the
effectiveness of the Scale-aware Alignment, which provides principled guidance for token genera-
tion. By ensuring semantic consistency across tokens, it enables the Transformer encoder to process
more coherent representations, thereby enhancing the quality of model pretraining.

SATSS SATSB Timer-XL MoiraiB Time MoEB Moment ChronosL
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Figure 5: Model efficiency comparison based on a
score defined as the inverse of MSE multiplied by
the logarithm of parameter count. Higher values
indicate better trade-offs between accuracy and
model size. The MSE used here is the average
reported in the zero-shot setting.

Model Efficiency Although the preceding
discussions rarely highlight this aspect, both
core techniques employed by SATS are
parameter-free. This design choice enables
SATS to achieve state-of-the-art performance
with virtually no additional computational
overhead. To more comprehensively reflect
both predictive performance and resource us-
age, we introduce a model efficiency metric de-
fined as the inverse of the product between the
zero-shot error and the logarithm of model size.
As illustrated in Figure 5, SATS demonstrates
remarkable model efficiency. SATSB not only
achieves SOTA accuracy but also surpasses the
runner-up model, Timer-XL, by 8.9% in effi-
ciency. While SATSS achieves only slightly
better performance than Timer-XL, it delivers
a striking 70.1% improvement in model effi-
ciency. These results highlight the practical advantages of SATS—offering a compelling bal-
ance between accuracy and efficiency, making it particularly suitable for deployment in resource-
constrained or real-time environments.

5 CONCLUSION

This paper presents SATS, a Scale-Aware foundation model for Time Series that addresses the
challenge of fragmented token spaces and misaligned representations in time series pretraining.
A scale-aware alignment mechanism is introduced to unify representations across patch sizes by
jointly minimizing inter-scale embedding discrepancies and preserving scale-specific modeling ca-
pacity. Furthermore, a hybrid masking strategy combines random and contiguous masking to cap-
ture temporal dependencies at multiple resolutions. Extensive experiments demonstrate that SATS
achieves superior generalization and robustness-—while remaining highly efficient due to its en-
tirely parameter-free design.
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6 ETHICS STATEMENT

Our work focuses on the pre-training of foundation models for time series forecasting, and therefore
involves no potential ethical risks.

7 REPRODUCIBILITY STATEMENT

We provide a rigorous formulation of the model architecture in the main text, while deferring de-
tailed implementation aspects—such as evaluation metrics, model specifications, and experimental
setups—to the Appendix. To support reproducibility, we have submitted checkpoints of SATSS to-
gether with testing code for rapid validation. The full training code will be released publicly upon
acceptance of the paper.
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A THEORETICAL ANALYSIS OF MEAN VS. MAX STATISTICS

Setup. Consider a time series decomposed as

x[n] = ℓ[n] + h[n], (10)

where (i) ℓ[n] is the low-frequency component satisfying a Lipschitz condition |ℓ[n] − ℓ[m]| ≤
K|n−m|, and (ii) h[n] is the high-frequency component with zero mean and variance σ2

h. We focus
on two statistics over a patch of length L:

µL =
1

L

L∑
n=1

x[n], ML = max
1≤n≤L

x[n]. (11)

A.1 MEAN STATISTIC: CROSS-PATCH CONSISTENCY

Proposition A1 (Low-pass property). The mean operator µL is equivalent to convolution with a
rectangular kernel, i.e.

µL[n] = (x ∗ wL)[n], wL[k] =
1
L1{0,...,L−1}(k), (12)

with frequency response

|HL(e
jω)| =

∣∣∣∣∣ sin(ωL/2)L sin(ω/2)

∣∣∣∣∣. (13)

Hence µL behaves as a low-pass filter, preserving the trend ℓ[n] while suppressing high-frequency
variations h[n].

Proposition A2 (Variance decay). We can decompose

µL =
1

L

∑
ℓ[n] +

1

L

∑
h[n]. (14)

Since h[n] is zero-mean with variance σ2
h, one obtains

Var(µL) ≤
Cσ2

h

L
. (15)

Thus the variance of µL vanishes at rate O(1/L), ensuring stability as patch length increases.

Proposition A3 (Cross-scale expectation bound). For two patches with lengths L1, L2, the Lip-
schitz condition yields ∣∣E[µL1 ]− E[µL2 ]

∣∣ ≤ K
2 |L1 − L2|. (16)

Therefore, the mean statistic exhibits bounded deviation across scales.

Remark. Combining A2 and A3, the mean statistic µL is consistent across patches: expectation
differences are small, variance decays with L, and the operator preserves low-frequency trends.

A.2 MAX STATISTIC: CROSS-PATCH DISCRIMINABILITY

Proposition B1 (High-frequency amplification). The max statistic can be written as

ML = max
n≤L

{ℓ[n] + h[n]} ≈ ℓ[n∗] + max
n≤L

h[n], (17)

where n∗ = argmaxx[n]. The high-frequency component dominates the fluctuation of ML. Clas-
sical extreme value theory implies

E
[
max
n≤L

h[n]
]
≍ σh

√
2 logL, (18)

indicating that ML grows with
√
logL and is highly sensitive to high-frequency variation.
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Proposition B2 (Cross-scale separation). For two patch lengths L1, L2, one can approximate

E[ML1
]− E[ML2

] ≈ ℓ(n∗
1)− ℓ(n∗

2) + σh

(√
2 logL1 −

√
2 logL2

)
. (19)

Hence cross-patch differences are amplified by the high-frequency component, scaling with
√
logL.

Remark. The max statistic is discriminative: it accentuates local high-frequency peaks, leading to
pronounced separation between patches of different lengths or positions.

A.3 SUMMARY

Mean achieves cross-patch consistency by suppressing high-frequency variation (O(1/L) vari-
ance decay), while max achieves discriminability by amplifying high-frequency differences (scale-
dependent

√
logL growth).

B EXPERIMENTAL DETAILS

B.1 HARDWARE AND SOFTWARE CONFIGURATION

All variants of the SATS model were trained and evaluated on a single NVIDIA L40 GPU with
48 GB of VRAM. The system is powered by an Intel(R) Xeon(R) Platinum 8468V CPU and runs
Ubuntu 20.04 LTS. The software stack includes Python 3.10 (managed via Miniconda) and Py-
Torch (Paszke et al., 2019) version 2.4.1.

Training was conducted using TensorFloat-32 (TF32) precision for applicable operations, in accor-
dance with the default behavior of PyTorch on Ampere-generation GPUs.

B.2 HYPERPARAMETER SETTINGS

All experiments use the following fixed hyperparameters unless otherwise specified:

• Optimizer: AdamW with learning rate 1 × 10−3, weight decay 1 × 10−1, β1 = 0.9,
β2 = 0.98.

• Scale-aware Alignment: Temperature τmean = 0.1 (Eq. 3), τmax = 0.2 (Eq. 4).
• Hybrid Masking Strategy: Masking probability p = 0.5 for balanced random and con-

tiguous masking.
• Loss Weights: Primary objective weight α = 0.1, auxiliary objective weight β = 0.3.

Due to limited computational resources and empirical evidence suggesting that large-scale language
model pretraining is relatively robust to hyperparameter choices within reasonable ranges — as
performance is primarily governed by scale rather than fine-tuned hyperparameters (Liu et al., 2019;
Kaplan et al., 2020) — no further hyperparameter tuning was performed beyond the values listed
above. Replacing empirical assumptions with rigorous empirical evidence is a necessary step for
future work — we encourage systematic validation of these hyperparameter settings.

B.3 EVALUATION METRICS

B.3.1 ZERO-SHOT FORECASTING

Following standard experimental protocols, we adopt Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE) as our primary evaluation metrics. These metrics are formulated as follows:
[formulas to be inserted here].

MSE =
1

H

H∑
h=1

(
Yh − Ỹh

)2
, (20)

MAE =
1

H

H∑
h=1

∣∣∣Yh − Ỹh

∣∣∣ , (21)
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Here, Yh and Ỹh denote the h-th ground truth and predicted values, respectively, where h ∈
1, 2, ..., H

B.3.2 IN-DISTRIBUTION FORECASTING

We evaluate model performance on in-distribution forecasting using the Monash Time Series Fore-
casting Archive Godahewa et al. (2021). Due to the high variance in prediction scales across
datasets, we follow the normalization protocol proposed by Woo et al., where the MAE is nor-
malized using a naive forecast and then aggregated using the geometric mean. This procedure can
be formalized as follows:

N-MAEi =
MAEi

MAEnaive
i

(22)

Result =

(
N∏
i=1

N-MAEi

)1/N

(23)

where MAEi and MAEnaive
i denote the MAE of the evaluated model and the naive baseline on the

i-th dataset, respectively, and N is the number of datasets.

B.3.3 MODEL EFFICIENCY

Existing efficiency comparisons of pretrained models typically emphasize inference speed and run-
time resource usage Wang et al. (2025); Liu et al. (2024b; 2025). While important, such evaluations
often neglect training costs, which constitute a substantial portion of overall resource consumption.
To provide a more comprehensive assessment, we propose an efficiency metric that integrates both
resource usage (training + inference) and model generalization:

Efficiency =
1

MSEzero-shot × log(Params)
(24)

Here, MSEzero-shot denotes the average mean squared error in zero-shot settings, and Params is the
number of model parameters (in millions).

Using parameter count accounts for deployment cost, and applying a logarithmic scale moderates
the effect of parameter size, emphasizing efficiency improvements that stem from architectural in-
novations rather than mere scale. We consider this a preliminary yet meaningful step toward more
holistic evaluation of pretrained models.

B.4 EVALUATION PROTOCOL AND ERROR BARS

Following Moirai, as described in the main text, we perform hyperparameter search over lookback
window lengths {1000, 2000, 3000, 4000, 5000}, and over patch sizes determined by the dataset-
specific mapping protocol proposed by Woo et al., which adapts patch sizes to the intrinsic sampling
frequency of each dataset:

• Yearly, Quarterly: 8

• Monthly: 8, 16, 32

• Weekly, Daily: 16, 32

• Hourly: 32, 64

• Minute-level: 32, 64, 128

• Second-level: 64, 128

Although this protocol provides a range of hyperparameter options, we empirically choose the
largest feasible patch sizes and lookback windows of at least 3000, as this tends to improve evalua-
tion performance.
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All reported results are based on 100 samples drawn from the predictive distribution, where we
report the better of the mean and median for evaluation.

Some may suspect that searching input lengths only for SATS is unfair. However, pretrained models
typically impose strict constraints on admissible input lengths. For instance, Time-MoE (Shi et al.,
2024) requires the input length to be exactly four times the output length, while Timer-XL (Liu et al.,
2025) selects the optimal input length depending on the dataset. Applying the same search protocol
to these models would therefore be suboptimal. To ensure fairness, we adopt their original configu-
rations and report their best results, thereby constructing a sufficiently competitive benchmark.

C DETAILED EXPERIMENTAL RESULTS

C.1 ZERO-SHOT FORECASTING

We present the complete zero-shot forecasting results to complement the main text. Specifically,
we construct the zero-shot benchmark based on five widely used datasets: ETTh1, ETTh2, ETTm1,
ETTm2, and Weather. Two other datasets, ECL and Traffic, which are popular choices in small-
scale model evaluations, are excluded here since they are already included in most pre-training
corpora, and their usage would thus compromise the fairness of a comprehensive leaderboard.
Overall, adopting these five datasets strikes a balance and serves as the greatest common ground for
zero-shot evaluation. As shown in Table 5, all SATS variants consistently outperform their competi-
tors, demonstrating superior generalization ability and robust performance across diverse datasets.
In addition, SATS exhibits a clear performance gain as model size increases, revealing strong scala-
bility. This trend contrasts with models such as Time-MoE (Shi et al., 2024) and Moirai (Woo et al.,
2024), whose performance plateaus or even degrades with larger model configurations.

Table 5: Full results of zero-shot forecasting across all evaluated models. Lower values of MSE and
MAE indicate superior performance. As TimesFM incorporates Weather data during pretraining, it
is excluded from evaluation on this dataset (denoted by “–”).

Models SATSS SATSB Timer-XL Time-MoEL Time-MoEB MoiraiL MoiraiB MoiraiS ChronosL ChronosB ChronosS Moment TimesFM
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.375 0.393 0.360 0.387 0.369 0.391 0.350 0.382 0.357 0.381 0.381 0.398 0.383 0.402 0.375 0.402 0.441 0.390 0.440 0.393 0.466 0.409 0.688 0.557 0.414 0.404
192 0.412 0.415 0.395 0.409 0.405 0.413 0.388 0.412 0.384 0.404 0.428 0.427 0.425 0.429 0.399 0.419 0.502 0.424 0.492 0.426 0.530 0.450 0.688 0.560 0.465 0.434
336 0.423 0.425 0.413 0.422 0.418 0.423 0.411 0.430 0.411 0.434 0.458 0.445 0.456 0.450 0.412 0.429 0.576 0.467 0.550 0.462 0.570 0.486 0.675 0.563 0.503 0.456
720 0.418 0.441 0.413 0.438 0.423 0.441 0.427 0.455 0.449 0.477 0.502 0.477 0.470 0.473 0.413 0.444 0.835 0.583 0.882 0.591 0.615 0.543 0.683 0.585 0.511 0.481

AVG 0.407 0.418 0.395 0.414 0.404 0.417 0.394 0.420 0.400 0.424 0.442 0.437 0.433 0.438 0.400 0.424 0.589 0.466 0.591 0.468 0.545 0.472 0.684 0.566 0.473 0.444

E
T

T
h2

96 0.283 0.328 0.273 0.331 0.283 0.342 0.302 0.354 0.305 0.359 0.287 0.329 0.277 0.327 0.281 0.334 0.320 0.345 0.308 0.343 0.307 0.356 0.342 0.396 0.315 0.349
192 0.343 0.369 0.330 0.372 0.340 0.379 0.364 0.385 0.351 0.386 0.349 0.372 0.340 0.374 0.340 0.373 0.406 0.399 0.384 0.392 0.376 0.401 0.354 0.402 0.388 0.395
336 0.365 0.391 0.353 0.396 0.366 0.400 0.417 0.425 0.391 0.418 0.372 0.392 0.371 0.401 0.362 0.393 0.492 0.453 0.429 0.430 0.408 0.431 0.356 0.407 0.422 0.427
720 0.404 0.424 0.380 0.409 0.397 0.431 0.537 0.496 0.419 0.454 0.403 0.423 0.394 0.426 0.380 0.416 0.603 0.511 0.501 0.477 0.604 0.533 0.395 0.434 0.443 0.454

AVG 0.349 0.378 0.334 0.377 0.347 0.388 0.405 0.415 0.367 0.404 0.353 0.379 0.345 0.382 0.341 0.379 0.455 0.427 0.406 0.411 0.424 0.430 0.362 0.410 0.392 0.406

E
T

T
m

1

96 0.325 0.353 0.323 0.345 0.317 0.356 0.309 0.357 0.338 0.368 0.612 0.444 0.396 0.382 0.495 0.409 0.457 0.403 0.454 0.408 0.511 0.423 0.654 0.527 0.361 0.370
192 0.352 0.372 0.352 0.364 0.358 0.381 0.346 0.381 0.353 0.388 0.593 0.446 0.425 0.402 0.548 0.431 0.530 0.450 0.567 0.477 0.618 0.485 0.662 0.532 0.414 0.405
336 0.372 0.387 0.371 0.379 0.386 0.401 0.373 0.408 0.381 0.413 0.591 0.454 0.452 0.415 0.577 0.445 0.577 0.481 0.662 0.525 0.683 0.524 0.672 0.537 0.445 0.429
720 0.405 0.410 0.401 0.403 0.430 0.431 0.475 0.477 0.504 0.493 0.596 0.468 0.477 0.431 0.586 0.457 0.660 0.526 0.900 0.591 0.748 0.566 0.692 0.551 0.512 0.471

AVG 0.364 0.380 0.362 0.373 0.373 0.392 0.376 0.406 0.394 0.416 0.598 0.453 0.437 0.407 0.551 0.436 0.556 0.465 0.646 0.500 0.640 0.500 0.670 0.537 0.433 0.419

E
T

T
m

2

96 0.172 0.255 0.167 0.251 0.189 0.277 0.197 0.286 0.201 0.291 0.189 0.260 0.195 0.269 0.211 0.290 0.197 0.271 0.199 0.274 0.209 0.291 0.260 0.335 0.202 0.270
192 0.226 0.292 0.222 0.290 0.241 0.315 0.250 0.322 0.258 0.334 0.247 0.300 0.247 0.303 0.264 0.325 0.254 0.314 0.261 0.322 0.280 0.341 0.289 0.350 0.289 0.321
336 0.279 0.327 0.269 0.323 0.286 0.348 0.337 0.375 0.324 0.373 0.295 0.334 0.291 0.333 0.312 0.356 0.313 0.353 0.326 0.366 0.354 0.390 0.324 0.369 0.360 0.366
720 0.369 0.385 0.343 0.374 0.375 0.402 0.480 0.461 0.488 0.464 0.372 0.386 0.355 0.377 0.395 0.405 0.416 0.415 0.455 0.439 0.553 0.499 0.394 0.409 0.462 0.430

AVG 0.262 0.315 0.250 0.309 0.273 0.336 0.316 0.361 0.318 0.366 0.276 0.320 0.272 0.321 0.295 0.344 0.295 0.338 0.310 0.350 0.349 0.380 0.317 0.366 0.328 0.347

W
ea

th
er

96 0.180 0.236 0.162 0.217 0.171 0.225 0.159 0.213 0.160 0.214 0.174 0.204 0.176 0.210 0.173 0.212 0.194 0.235 0.203 0.238 0.211 0.243 0.243 0.255 - -
192 0.226 0.280 0.210 0.265 0.221 0.271 0.215 0.266 0.210 0.260 0.221 0.248 0.218 0.251 0.216 0.250 0.249 0.285 0.256 0.290 0.263 0.294 0.278 0.329 - -
336 0.274 0.316 0.258 0.302 0.274 0.311 0.291 0.322 0.274 0.309 0.271 0.287 0.267 0.288 0.260 0.282 0.302 0.327 0.314 0.336 0.321 0.339 0.306 0.346 - -
720 0.341 0.363 0.325 0.349 0.356 0.370 0.415 0.400 0.418 0.405 0.340 0.332 0.338 0.338 0.320 0.322 0.372 0.378 0.397 0.396 0.404 0.397 0.350 0.374 - -

AVG 0.255 0.299 0.239 0.283 0.256 0.294 0.270 0.300 0.266 0.297 0.251 0.268 0.250 0.271 0.242 0.267 0.279 0.306 0.293 0.315 0.300 0.318 0.294 0.326 - -
Average 0.327 0.358 0.316 0.351 0.330 0.365 0.352 0.380 0.349 0.381 0.384 0.371 0.348 0.364 0.366 0.370 0.435 0.401 0.449 0.409 0.452 0.420 0.465 0.441 - -

C.2 IN-DISTRIBUTION FORECASTING

We present the detailed results of all foundation models and baselines on the Monash benchmark Go-
dahewa et al. (2021). As shown in Tables 6 and 7, we report the performance on each individual
dataset, including the normalized MAE and the aggregated GEOMEAN adopted in the main text.
Given the wide heterogeneity across the Monash datasets, we focus on comparing the final ag-
gregated metrics. The results demonstrate that all variants of SATS consistently outperform the
competing methods.
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Table 6: Full in-distribution forecasting results of foundation models on the Monash benchmark Go-
dahewa et al. (2021). NMAE-N denotes the MAE normalized by the naive forecast, and GEOMEAN
represents the geometric mean across all series.

Model SATSS SATSB MoiraiS MoiraiB MoiraiL ChronosS ChronosB ChronosL LLMTime TimesFM Naive
Metrics MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE

M1 Monthly 1950.16 0.72 2072.65 0.77 2082.26 0.77 2068.63 0.76 1983.18 0.73 1797.78 0.66 1637.68 0.60 1627.11 0.60 2562.84 0.95 1673.60 0.62 2707.75
M3 Monthly 686.47 0.82 668.78 0.80 713.41 0.85 658.17 0.79 664.03 0.79 644.38 0.77 622.27 0.74 619.79 0.74 877.97 1.05 653.57 0.78 837.14

M3 Other 230.95 0.83 205.19 0.74 263.54 0.95 198.62 0.71 202.41 0.73 196.59 0.71 191.80 0.69 205.93 0.74 300.30 1.08 207.23 0.74 278.43
M4 Monthly 596.94 0.89 587.60 0.88 597.60 0.89 592.09 0.88 584.36 0.87 592.85 0.88 598.46 0.89 584.78 0.87 728.27 1.08 580.20 0.86 671.27
M4 Weekly 323.21 0.93 322.21 0.93 339.76 0.98 328.08 0.94 301.52 0.87 264.56 0.76 252.26 0.72 248.89 0.72 518.44 1.49 285.89 0.82 347.99
M4 Daily 173.44 0.96 185.84 1.03 189.10 1.05 192.66 1.07 189.78 1.05 169.91 0.94 177.49 0.98 168.41 0.93 266.52 1.47 172.98 0.96 180.83

M4 Hourly 190.61 0.16 242.96 0.20 268.04 0.22 209.87 0.17 197.79 0.16 214.18 0.18 230.70 0.19 201.14 0.17 576.06 0.47 196.20 0.16 1218.06
Tourism Quarterly 7853.84 0.50 8618.77 0.54 18352.44 1.16 17196.86 1.09 15820.02 1.00 7823.27 0.49 8835.52 0.56 8521.70 0.54 16918.86 1.07 10568.92 0.67 15845.10
Tourism Monthly 2710.72 0.48 2579.48 0.46 3569.85 0.63 2862.06 0.51 2688.55 0.48 2465.10 0.44 2358.67 0.42 2140.73 0.38 5608.61 0.99 2422.01 0.43 5636.83

CIF 2016 504502.50 0.87 521981.25 0.90 655888.58 1.13 539222.03 0.93 695156.92 1.20 649110.99 1.12 604088.54 1.04 728981.15 1.26 599313.84 1.04 819922.44 1.42 578596.53
Aus. Elec. Demand 264.91 0.40 235.27 0.36 266.57 0.40 201.39 0.31 177.68 0.27 267.18 0.41 236.27 0.36 330.04 0.50 760.81 1.15 525.73 0.80 659.60

Bitcoin 8.20E+17 1.05 7.61E+17 0.98 1.76E+18 2.26 1.62E+18 2.08 1.87E+18 2.40 2.34E+18 3.01 2.27E+18 2.92 1.88E+18 2.42 1.74E+18 2.236503856 7.78E+17 1.00 7.78E+17
Pedestrian Counts 48.94 0.29 47.85 0.28 54.88 0.32 54.08 0.32 41.66 0.24 29.77 0.17 27.34 0.16 26.95 0.16 97.77 0.57 45.03 0.26 170.88

Vehicle Trips 20.20 0.64 20.79 0.66 24.46 0.78 23.17 0.74 21.85 0.70 19.38 0.62 19.25 0.61 19.19 0.61 31.48 1.00 21.93 0.70 31.42
KDD cup 38.69 0.92 37.00 0.88 39.81 0.94 38.66 0.92 39.09 0.93 38.60 0.92 42.36 1.01 38.83 0.92 42.72 1.01 40.86 0.97 42.13
Weather 1.89 0.80 1.89 0.80 1.96 0.83 1.80 0.76 1.75 0.74 1.96 0.83 1.84 0.78 1.85 0.78 2.17 0.92 2.07 0.88 2.36

NN5 Daily 4.06 0.49 3.91 0.47 5.37 0.65 4.26 0.52 3.77 0.46 3.83 0.46 3.67 0.44 3.53 0.43 7.10 0.86 3.85 0.47 8.26
NN5 Weekly 14.63 0.88 14.72 0.88 15.07 0.90 16.42 0.98 15.30 0.92 15.03 0.90 15.12 0.90 15.09 0.90 15.76 0.94 15.09 0.90 16.71

Carparts 0.45 0.69 0.45 0.70 0.53 0.82 0.47 0.72 0.49 0.75 0.52 0.80 0.54 0.83 0.53 0.82 0.44 0.68 0.50 0.77 0.65
FRED-MD 2474.34 0.88 1511.46 0.53 2568.48 0.91 2679.29 0.95 2792.55 0.99 938.46 0.33 1036.67 0.37 863.99 0.31 2804.64 0.99 2237.63 0.79 2825.67

Traffic Hourly 0.02 0.51 0.01 0.50 0.02 0.67 0.02 0.67 0.01 0.33 0.01 0.43 0.01 0.40 0.01 0.33 0.03 1.00 0.01 0.30 0.03
Traffic Weekly 1.13 0.95 1.13 0.95 1.17 0.98 1.14 0.96 1.13 0.95 1.14 0.96 1.12 0.94 1.12 0.94 1.15 0.97 1.06 0.89 1.19

Rideshare 1.48 0.23 1.14 0.18 1.35 0.21 1.39 0.22 1.29 0.21 1.27 0.20 1.33 0.21 1.30 0.21 6.28 1.00 1.36 0.22 6.29
Hospital 19.64 0.82 18.57 0.77 23.00 0.96 19.40 0.81 19.44 0.81 19.74 0.82 19.75 0.82 19.88 0.83 25.68 1.07 18.54 0.77 24.07

COVID Deaths 98.28 0.28 118.60 0.34 124.32 0.35 126.11 0.36 117.11 0.33 207.47 0.59 118.26 0.33 190.01 0.54 653.31 1.85 623.47 1.76 353.71
Temperature Rain 5.21 0.55 5.24 0.56 5.30 0.56 5.08 0.54 5.27 0.56 5.35 0.57 5.17 0.55 5.19 0.55 6.37 0.68 5.27 0.56 9.39

Sunspot 0.09 0.02 0.12 0.03 0.11 0.03 0.08 0.02 0.13 0.03 0.20 0.05 2.45 0.62 3.45 0.88 5.07 1.29 1.07 0.27 3.93
Saugeen River Flow 22.52 1.05 20.59 0.96 24.07 1.12 24.40 1.13 24.76 1.15 23.57 1.10 25.54 1.19 26.25 1.22 34.84 1.62 25.16 1.17 21.50

US Births 466.23 0.40 507.99 0.44 872.51 0.76 624.30 0.54 476.50 0.41 432.14 0.37 420.08 0.36 432.14 0.37 1374.99 1.19 461.58 0.40 1152.67
GEOMEAN 199.95 0.55 197.66 0.54 239.80 0.66 218.28 0.60 210.24 0.58 204.67 0.56 217.23 0.60 220.03 0.60 380.04 1.04 235.10 0.64 365.08

Table 7: Full in-distribution forecasting results of baselines on the Monash benchmark Godahewa
et al. (2021). NMAE-N denotes the MAE normalized by the naive forecast, and GEOMEAN repre-
sents the geometric mean across all series.

Model SES Theta TBATS ETS (DHR-)ARIMA PR CatBoost FFNN DeepAR N-BEATS WaveNet Transformer Naive
Metrics MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE NMAE-N MAE

M1 Monthly 2259.04 0.83 2166.18 0.80 2237.50 0.83 1905.28 0.70 2080.13 0.77 2088.25 0.77 2052.32 0.76 2162.58 0.80 1860.81 0.69 1820.37 0.67 2184.42 0.81 2723.88 1.01 2707.75
M3 Monthly 743.41 0.89 623.71 0.75 630.59 0.75 626.46 0.75 654.80 0.78 692.97 0.83 732.00 0.87 692.48 0.83 728.81 0.87 648.60 0.77 699.30 0.84 798.38 0.95 837.14

M3 Other 277.83 1.00 215.35 0.77 189.42 0.68 194.98 0.70 193.02 0.69 234.43 0.84 318.13 1.14 240.17 0.86 247.56 0.89 221.85 0.80 245.29 0.88 239.24 0.86 278.43
M4 Monthly 625.24 0.93 563.58 0.84 589.52 0.88 582.60 0.87 575.36 0.86 596.19 0.89 611.69 0.91 612.52 0.91 615.22 0.92 578.48 0.86 655.51 0.98 780.47 1.16 671.27
M4 Weekly 336.82 0.97 333.32 0.96 296.15 0.85 335.66 0.96 321.61 0.92 293.21 0.84 364.65 1.05 338.37 0.97 351.78 1.01 277.73 0.80 359.46 1.03 378.89 1.09 347.99
M4 Daily 178.27 0.99 178.86 0.99 176.60 0.98 193.26 1.07 179.67 0.99 181.92 1.01 231.36 1.28 177.91 0.98 299.79 1.66 190.44 1.05 189.47 1.05 201.08 1.11 180.83

M4 Hourly 1218.06 1.00 1220.97 1.00 386.27 0.32 3358.10 2.76 1310.85 1.08 257.39 0.21 285.35 0.23 385.49 0.32 886.02 0.73 425.75 0.35 393.63 0.32 320.54 0.26 1218.06
Tourism Quarterly 15014.19 0.95 7656.49 0.48 9972.42 0.63 8925.52 0.56 10475.47 0.66 9092.58 0.57 10267.97 0.65 8981.04 0.57 9511.37 0.60 8640.56 0.55 9137.12 0.58 9521.67 0.60 15845.10
Tourism Monthly 5302.10 0.94 2069.96 0.37 2940.08 0.52 2004.51 0.36 2536.77 0.45 2187.28 0.39 2537.04 0.45 2022.21 0.36 1871.69 0.33 2003.02 0.36 2095.13 0.37 2146.98 0.38 5636.83

CIF 2016 581875.97 1.01 714818.58 1.24 855578.40 1.48 642421.42 1.11 469059.49 0.81 563205.57 0.97 603551.30 1.04 1495923.44 2.59 3200418.00 5.53 679034.80 1.17 5998224.62 10.37 4057973.00 7.01 578596.53
Aus. Elec. Demand 659.60 1.00 665.04 1.01 370.74 0.56 1282.99 1.95 1045.92 1.59 247.18 0.37 241.77 0.37 258.76 0.39 302.41 0.46 213.83 0.32 227.50 0.34 231.45 0.35 659.60

Bitcoin 5.33E+18 6.85 5.33E+18 6.85 9.90E+17 1.27 1.10E+18 1.41 3.62E+18 4.65 6.66E+17 0.86 1.93E+18 2.48 1.45E+18 1.86 1.95E+18 2.51 1.06E+18 1.36 2.46E+18 3.16 2.61E+18 3.35 7.78E+17
Pedestrian Counts 170.87 1.00 170.94 1.00 222.38 1.30 216.50 1.27 635.16 3.72 44.18 0.26 43.41 0.25 46.41 0.27 44.78 0.26 66.84 0.39 46.46 0.27 47.29 0.28 170.88

Vehicle Trips 29.98 0.95 30.76 0.98 21.21 0.68 30.95 0.99 30.07 0.96 27.24 0.87 22.61 0.72 22.93 0.73 22.00 0.70 28.16 0.90 24.15 0.77 28.01 0.89 31.42
KDD cup 42.04 1.00 42.06 1.00 39.20 0.93 44.88 1.07 52.20 1.24 36.85 0.87 34.82 0.83 37.16 0.88 48.98 1.16 49.10 1.17 37.08 0.88 44.46 1.06 42.13
Weather 2.24 0.95 2.51 1.06 2.30 0.97 2.35 1.00 2.45 1.04 8.17 3.46 2.51 1.06 2.09 0.89 2.02 0.86 2.34 0.99 2.29 0.97 2.03 0.86 2.36

NN5 Daily 6.63 0.80 3.80 0.46 3.70 0.45 3.72 0.45 4.41 0.53 5.47 0.66 4.22 0.51 4.06 0.49 3.94 0.48 4.92 0.60 3.97 0.48 4.16 0.50 8.26
NN5 Weekly 15.66 0.94 15.30 0.92 14.98 0.90 15.70 0.94 15.38 0.92 14.94 0.89 15.29 0.92 15.02 0.90 14.69 0.88 14.19 0.85 19.34 1.16 20.34 1.22 16.71

Carparts 0.55 0.85 0.53 0.82 0.58 0.89 0.56 0.86 0.56 0.86 0.41 0.63 0.53 0.82 0.39 0.60 0.39 0.60 0.98 1.51 0.40 0.62 0.39 0.60 0.65
FRED-MD 2798.22 0.99 3492.84 1.24 1989.97 0.70 2041.42 0.72 2957.11 1.05 8921.94 3.16 2475.68 0.88 2339.57 0.83 4264.36 1.51 2557.80 0.91 2508.40 0.89 4666.04 1.65 2825.67

Traffic Hourly 0.03 1.00 0.03 1.00 0.04 1.33 0.03 1.00 0.04 1.33 0.02 0.67 0.02 0.67 0.01 0.33 0.01 0.33 0.02 0.67 0.02 0.67 0.01 0.33 0.03
Traffic Weekly 1.12 0.94 1.13 0.95 1.17 0.98 1.14 0.96 1.22 1.03 1.13 0.95 1.17 0.98 1.15 0.97 1.18 0.99 1.11 0.93 1.20 1.01 1.42 1.19 1.19

Rideshare 6.29 1.00 7.62 1.21 6.45 1.03 6.29 1.00 3.37 0.54 6.30 1.00 6.07 0.97 6.59 1.05 6.28 1.00 5.55 0.88 2.75 0.44 6.29 1.00 6.29
Hospital 21.76 0.90 18.54 0.77 17.43 0.72 17.97 0.75 19.60 0.81 19.24 0.80 19.17 0.80 22.86 0.95 18.25 0.76 20.18 0.84 19.35 0.80 36.19 1.50 24.07

COVID Deaths 353.71 1.00 321.32 0.91 96.29 0.27 85.59 0.24 85.77 0.24 347.98 0.98 475.15 1.34 144.14 0.41 201.98 0.57 158.81 0.45 1049.48 2.97 408.66 1.16 353.71
Temperature Rain 8.18 0.87 8.22 0.88 7.14 0.76 8.21 0.87 7.19 0.77 6.13 0.65 6.76 0.72 5.56 0.59 5.37 0.57 7.28 0.78 5.81 0.62 5.24 0.56 9.39

Sunspot 4.93 1.25 4.93 1.25 2.57 0.65 4.93 1.25 2.57 0.65 3.83 0.97 2.27 0.58 7.97 2.03 0.77 0.20 14.47 3.68 0.17 0.04 0.13 0.03 3.93
Saugeen River Flow 21.50 1.00 21.49 1.00 22.26 1.04 30.69 1.43 22.38 1.04 25.24 1.17 21.28 0.99 22.98 1.07 23.51 1.09 27.92 1.30 22.17 1.03 28.06 1.31 21.50

US Births 1192.20 1.03 586.93 0.51 399.00 0.35 419.73 0.36 526.33 0.46 574.93 0.50 441.70 0.38 557.87 0.48 424.93 0.37 422.00 0.37 504.40 0.44 452.87 0.39 1152.67
GEOMEAN 375.20 1.03 338.38 0.93 276.70 0.76 318.52 0.87 327.75 0.90 286.48 0.78 277.29 0.76 270.47 0.74 277.10 0.76 285.82 0.78 273.30 0.75 281.16 0.77 365.08

C.3 ABLATION STUDIES

C.3.1 MODULE DESIGN

We conduct module-wise ablation studies under the zero-shot setting. Specifically, w/o SA de-
notes the removal of the entire Scale-aware Alignment module, w/o CM indicates the exclusion of
Continuous Masking, and w/o RM refers to the removal of Random Masking. The results, summa-
rized in Table 8, demonstrate that the proposed Hybrid Masking strategy provides a robust training
mechanism for encoder-only models, where the combination of the two masking approaches yields
consistent performance improvements. Moreover, the incorporation of Scale-aware Alignment of-
fers additional gains. A closer inspection reveals an interesting trend: Random Masking is more
effective for short-term forecasting (prediction lengths of 96 and 192), while Continuous Masking
contributes more to long-term forecasting (lengths of 336 and 720). In real-world scenarios where
long-term forecasting is not required, adopting only Random Masking may serve as a more aggres-
sive and efficient choice for maximizing model performance.
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Table 8: Ablation results under the zero-shot setting. ”w/o SA” denotes the removal of the entire
Scale-aware Alignment module, ”w/o CM” indicates the exclusion of Continuous Masking, and
”w/o RM” refers to the removal of Random Masking.

Models SATS w/o SA w/o CM w/o RM
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.360 0.387 0.362 0.389 0.383 0.395 0.380 0.392
192 0.395 0.409 0.398 0.411 0.427 0.422 0.414 0.412
336 0.413 0.422 0.413 0.423 0.450 0.440 0.427 0.423
720 0.413 0.438 0.414 0.441 0.487 0.485 0.415 0.436

AVG 0.395 0.414 0.397 0.416 0.437 0.435 0.409 0.416

E
T

T
h2

96 0.273 0.331 0.275 0.337 0.283 0.327 0.279 0.328
192 0.330 0.372 0.334 0.380 0.351 0.370 0.342 0.373
336 0.353 0.396 0.361 0.403 0.375 0.394 0.375 0.400
720 0.380 0.409 0.404 0.442 0.425 0.440 0.415 0.435

AVG 0.334 0.377 0.343 0.391 0.358 0.383 0.353 0.384

E
T

T
m

1

96 0.323 0.345 0.319 0.345 0.303 0.338 0.320 0.346
192 0.352 0.364 0.346 0.366 0.333 0.361 0.353 0.368
336 0.371 0.379 0.368 0.382 0.359 0.378 0.370 0.382
720 0.401 0.403 0.404 0.403 0.411 0.409 0.400 0.405

AVG 0.362 0.373 0.359 0.374 0.351 0.372 0.361 0.375

E
T

T
m

2

96 0.167 0.251 0.185 0.258 0.187 0.266 0.203 0.277
192 0.222 0.290 0.235 0.295 0.244 0.306 0.257 0.313
336 0.269 0.323 0.280 0.326 0.297 0.340 0.306 0.346
720 0.343 0.374 0.351 0.374 0.399 0.403 0.377 0.393

AVG 0.250 0.309 0.263 0.313 0.282 0.329 0.286 0.332

W
ea

th
er

96 0.162 0.217 0.172 0.220 0.172 0.220 0.180 0.212
192 0.210 0.265 0.218 0.265 0.226 0.271 0.224 0.253
336 0.258 0.302 0.262 0.297 0.275 0.309 0.269 0.286
720 0.325 0.349 0.323 0.341 0.362 0.373 0.333 0.327

AVG 0.239 0.283 0.244 0.281 0.259 0.293 0.251 0.269
Average 0.316 0.351 0.321 0.355 0.338 0.362 0.332 0.355
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C.3.2 ALIGNMENT MECHANISM

In Table 9, we provide more detailed experimental results to further investigate the mechanism be-
hind Scale-aware Alignment. This module is designed to simultaneously minimize the distance
between mean embeddings and maximize the distance between maximal embeddings, thereby pro-
moting alignment while mitigating feature collapse. To assess the impact of pooling strategies in-
volved in this design, we conduct a series of ablation studies. Removing the repulsion component
between maximal embeddings leads to a notable degradation in performance, which aligns with
expectations due to the collapse of representation diversity. Additionally, substituting max pooling
with min pooling or random pooling when defining the push-away objective consistently impairs
performance, corroborating the intuition that maximal values encode the most informative features.
Lastly, applying the alignment constraint solely via minimal distance between maximal embeddings
proves insufficient, yielding results close to those without any alignment objective.

Table 9: Ablation study under the zero-shot setting. “w/o far” denotes the complete removal of the
push-away (far) objective. “w minFar” uses the embedding derived from min pooling as the push-
away target. “w randomFar” adopts a randomly pooled embedding as the push-away target. “w
maxClose” replaces the push-away objective with a pull-close (near) objective, where the embedding
is obtained via max pooling.

Models SATS w/o far w minFar w randomFar w maxClose
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.360 0.387 0.386 0.406 0.394 0.405 0.363 0.390 0.370 0.395
192 0.395 0.409 0.411 0.418 0.422 0.423 0.401 0.412 0.403 0.414
336 0.413 0.422 0.418 0.424 0.425 0.430 0.418 0.423 0.413 0.423
720 0.413 0.438 0.422 0.443 0.421 0.446 0.419 0.440 0.410 0.435

AVG 0.395 0.414 0.409 0.423 0.415 0.426 0.400 0.416 0.399 0.417

E
T

T
h2

96 0.273 0.331 0.288 0.346 0.283 0.348 0.273 0.336 0.271 0.332
192 0.330 0.372 0.341 0.380 0.343 0.389 0.333 0.379 0.328 0.373
336 0.353 0.396 0.388 0.412 0.375 0.415 0.366 0.406 0.357 0.397
720 0.380 0.409 0.449 0.452 0.425 0.458 0.405 0.438 0.391 0.415

AVG 0.334 0.377 0.367 0.397 0.357 0.402 0.344 0.390 0.337 0.379

E
T

T
m

1

96 0.323 0.345 0.401 0.386 0.370 0.368 0.315 0.345 0.345 0.356
192 0.352 0.364 0.372 0.376 0.381 0.382 0.347 0.367 0.367 0.373
336 0.371 0.379 0.386 0.388 0.393 0.394 0.367 0.383 0.382 0.387
720 0.401 0.403 0.414 0.410 0.418 0.415 0.396 0.406 0.411 0.409

AVG 0.362 0.373 0.393 0.390 0.390 0.390 0.356 0.375 0.376 0.381

E
T

T
m

2

96 0.167 0.251 0.262 0.291 0.183 0.269 0.185 0.272 0.171 0.259
192 0.222 0.290 0.307 0.322 0.237 0.309 0.239 0.308 0.224 0.295
336 0.269 0.323 0.304 0.362 0.296 0.348 0.288 0.341 0.272 0.327
720 0.343 0.374 0.377 0.408 0.381 0.400 0.361 0.390 0.352 0.380

AVG 0.250 0.309 0.312 0.345 0.274 0.332 0.268 0.328 0.255 0.315

W
ea

th
er

96 0.162 0.217 0.206 0.250 0.179 0.231 0.170 0.224 0.168 0.220
192 0.210 0.265 0.241 0.277 0.223 0.272 0.219 0.273 0.213 0.261
336 0.258 0.302 0.281 0.306 0.266 0.303 0.262 0.306 0.257 0.294
720 0.325 0.349 0.349 0.345 0.324 0.343 0.320 0.348 0.312 0.333

AVG 0.239 0.283 0.269 0.294 0.248 0.287 0.243 0.288 0.237 0.277
Average 0.316 0.351 0.350 0.370 0.337 0.367 0.322 0.359 0.321 0.354

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models were used solely to assist or polish the writing to improve
clarity and presentation, and did not participate in any research design or literature review.
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