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ABSTRACT

Real-time learning of the decay trajectory in Higgs bosons as they interact in the
Higgs Field is the key to understanding and furthering of the mass providing mech-
anism and particle interaction mechanism beyond the Standard model in particle
physics. We propose a novel machine learning architecture called reservoir-in-
reservoir (R-i-R), to learn this complex high dimensional weak and electromag-
netic interaction model involving a large number of arbitrary parameters whose
full understanding remains elusive to physicists, making it harder to handcraft
features or represent in a closed-form equation. Reservoir-in-reservoir is a reser-
voir computing (RC) approach, where we built a large reservoir using a pool of
small reservoirs that are individually specialized to learn patterns from discrete
time samples of decay trajectory without any prior knowledge. Each small reser-
voir consists of a paired primary and secondary reservoir of recurrently-connected
neurons, known as learner and generator, respectively, with a readout connected
to the head. During the training phase, we activate the learner-generator pairs
within the pool. Then we excite each learners with an unit impulse and individual
time windows of the incoming system. We train the internal recurrent connec-
tions and readouts using a recursive least squares-based First-Order and Reduced
Control Error (FORCE) algorithm. To enhance adaptability and performance, we
implement a time-varying forgetting factor optimization during training. This op-
timization helps control the fading and adaptation of the covariance matrix based
on variations in the incoming decay trajectory and patterns. This comprehensive
training strategy aims to guarantee that the entire reservoir pool evolves in har-
mony with the desired output dynamics. We optimize hyper-parameters such as
the number of learner-generator pairs within the pool, their network sizes, batch
sizes, and the number of training trials. During testing, we excite the generators
in the pool, with only an unit impulse, to mimic the dynamic system. We fa-
cilitate real-time learning by re-triggering the training process involving learner-
generator pairs whenever the error rate exceeds a predefined threshold. We evalu-
ate our reservoir-in-reservoir architecture using Higgs boson decay trajectories as
detected in the Compact Muon Solenoid (CMS) detector of CERN’s Large Hadron
Collider (LHC). The reservoir pool is used to model the dynamics of momentum
components (and transverse momentum) as Higgs boson decays into photons and
leptons (electrons and muons) with invariant masses between 120-130 GeV. Our
results indicate that reservoir-in-reservoir architecture is a well suited machine
learning paradigm in learning dynamical systems real time, with network size be-
low state-of-the-art architectures and greater adaptability to aperiodic behavior.

1 INTRODUCTION

The study and emulation of systems dynamically evolving over space and time have been long-
standing concerns in physics, engineering, and applied mathematics. Efficient control and repli-
cation of such nonlinear systems solely from observational data are essential endeavors. Machine
learning (ML) systems have emerged to decipher intricate and adaptable structures. However, ex-
isting techniques for system identification typically rely on predefined model dynamics, frequently
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leading to linear approximations that restrict their applicability to minor perturbations around equi-
librium points within the dynamics limiting their effectiveness to small amplitude transient pertur-
bations around a fixed point of the dynamics Nelles & Nelles (2020); Billings (2013). The discovery
of the Higgs boson in 2012 Aad et al. (2012), crucial in particle physics, is one such space-time
varying dynamic phenomenon, generated and studied through collisions rather than being found in
isolation. Its subsequent decay into detectable particles are studied in detectors to understand the
Higgs boson’s interactions, seeking its role in the universe’s formation, its mass generation mech-
anism, and its potential connections to dark matter and new particles Collaboration et al. (2012);
Carpenter et al. (2014). But even the primary discovery of the particle required two and a half
times more data than usual,to ensure Higgs boson had been discovered cms-publication-committee-
chair@ cern. ch (2022). Reservoir Computing was proposed by Maass et al. (2002) as a human
brain inspired computational paradigm to its preceding Turing Machines, with less resource con-
straints and easier training capabilities. They represent a pivotal advance in ML, addressing the
complexities encountered in training traditional feed-forward networks. In contrast to layered ar-
chitectures that necessitate intricate weight adjustments of every neuron across multiple layers, RC
introduces a special form of Recurrent Neural Networks (RNN) with feedback mechanisms. While
RNNs offer enhanced computational capabilities, their full training remains challenging due to back-
propagation through time requiring entire sequence recalling, making it biologically inefficient as
shown in Schmidt et al. (2019); Lillicrap & Santoro (2019); Hinton (2022). RC streamlines RNN
training by introducing a fixed reservoir that requires no adjustment. This reservoir acts as parallel
spatiotemporal filters applied to input signals, projecting nonlinear features into a high-dimensional
space. The subsequent task of separating these features becomes a simplified linear process. Despite
its apparent simplicity, RC-trained RNNs have demonstrated remarkable robustness across diverse
applications, including data classification, systems control, time-series prediction, and the eluci-
dation of linguistic and speech features. RC architectures are task-independent, utilizing property
of high-dimensional dynamical systems (DS), statistical learning theory, and generic recurrent cir-
cuitry Maass et al. (2002); Seoane (2019); Lukoševičius & Jaeger (2009); Gauthier et al. (2021);
Lukoševičius (2012).RC architectures Tanaka et al. (2019); Zhong et al. (2021); Moon et al. (2019);
Abreu Araujo et al. (2020) have been explored to learn dynamically evolving systems, like temporal
signals, electrical waves and more, for their adaptability to learn using less data and faster con-
vergence. a) Echo state networks (ESN), exhibit the distinctive echo state property Jaeger (2002);
Lukoševičius (2012), where solely the output weights undergo training, enabling rapid acquisition of
temporal patterns. b)FORCE Architecture: The First Order Reduced Controlled Error based reser-
voirs are well-suited for temporal tasks capitalizing on the intrinsic spiking dynamics of neurons to
acquire proficiency in processing sequential dataSussillo & Abbott (2009); Yada et al. (2021). c)
Full-FORCE architecture extends the FORCE dynamics by amalgamating the spiking neuron dy-
namics with feedback connections, enhancing its aptitude for learning and controlling dynamical
systems DePasquale et al. (2018). However, they face challenges of prior assumptions about the DS,
large reservoir sizes, and slow convergence. They are stochastic, lack adaptability for aperiodic sys-
tems, and are primarily supervised. In response to these challenges, we present a real-time learning
paradigm for system identification that eschews reliance on predefined equations. Our architecture,
called ’reservoir-in-reservoir’ is a reservoir pool consisting of small learner a dynamically adjusts
to evolving system dynamics, systematically reducing cost function through real time learning. This
framework optimizes system attributes by considering input a-periodicity, concurrently keeping net-
work sizes minimal to expedite convergence and enhance energy efficiency. Empirical validation un-
derscores the competitiveness of our approach in learning aperiodic nonlinear systems. Our method
demonstrates superior convergence capabilities with much reduced network dimensions.

1.1 THE HIGGS BOSON DECAY

The unification of two of the four fundamental forces which are the weak force and the electromag-
netic force forms the basis of the Standard Model of particle physicsCowan (2012). It implies that
electricity, magnetism, light and some types of radioactivity can be potential manifestations of a
single underlying force known as the electroweak force. This unification of forces theory describes
the electroweak force and its relationship with force-carrying particles, the photon, and the W and
Z bosons McMahon (2008). Although photons emerge without a mass, W and Z have 100 times
the mass of a proton. The Brout-Englert-Higgs mechanism gives a mass to the W and Z when they
interact with an invisible field, called the “Higgs field”, first proposed by Peter Higgs and later dis-
covered in Aad et al. (2012). Following the Big Bang, as the universe cooled and its temperature
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Figure 1: Left: An event display for the CMS experiment showing collision of particles occurring inside the
detector. Right : the momentum trajectory of a single lepton in x,y,z plane visualized in 3 dimensions. The
yellow, blue and green suggests the momentum variation on their respective planes of xy, yz and xz respectively.

dropped below a critical threshold, the Higgs field Bezrukov (2013) underwent continuous expan-
sion, endowing particles with mass through their interactions. This process is mediated by the Higgs
boson, which serves as the visible manifestation of the Higgs field and acts as the force carrier re-
sponsible for imparting mass to other fundamental particles.Extensive research that underwent by
the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC) Brüning et al. (2012) has
been in characterising the properties of the Higgs boson, and unfolding all of the diverse ways in
which this particle can decay. Being highly unstable, the particle decays into other subparticles and
understanding this decay is of particular interest in the particle physics community. The most exten-
sive but experimentally challenging is the Higgs decay to b-quarks : H → bb and the extremely rare
decay is into four leptons (electrons or muons) :

H → ZZ∗ → 4l (1)

Another rarest evidence is of the Higgs boson decaying to two leptons (either an electron or muon
pair with opposite charge) and a photon. More information on the Higgs Boson decay equations
are available in the Appendix. In our experiments we use equation 1 where the Higgs Boson decays
into four leptons.
Dataset Description : For this study we used the Higgs candidate event database McCauley (2014)
which provides a selection of Higgs candidate events. These events consist of an invariant mass
falling within the range of 120-130 GeV, as made available by CMS. These events were selected
and validated by the CMS Higgs Physics Analysis Group. The dataset comprises 10 gamma-gamma
events, one 2e2mu event, one 4mu event, and one 4e event. Our dataset contained 3 Higgs candi-
date events (invariant mass between 120-130 GeV), where Higgs decays to four leptons. As input
we provide the components of the momentum of the lepton (GeV) (px, py and pz variables) to the
reservoir pool to learn and track the trajectory of a lepton Jomhari (2014).
Related Work : Higgs Boson decay using classical Machine learning (ML) has been studied in
Jung et al. (2022); Cepeda et al. (2022) for probing exotic decay purpose. ML based methods have
gained traction in processing data at particle colliders. With online filtering of streaming detector
measurements,and offline analysis of data once it has been recorded Denby (1999); Sadowski et al.
(2014). The ML Classifiers learn to distinguish between different types of collision events by train-
ing on simulated data from sophisticated Monte Carlo programs.Most of the existing state-of-the-art
attempts have been to detect and classify the decay signals with respect to back ground signals using
classical machine learning and quantum annealing Mott et al. (2017) techniques. In Sadowski et al.
(2014) leverage the power of DNNs to provide the analyses of particle collider data, by learning
high-level features from the data increasing the statistical power more than the common high-level
features handcrafted by physicists. Non linear system identification using data driven methods is
being studied rigorously since the discovery by Dzeroski & Todorovski (1995) for reproduction of
underlying dynamics geometries and state space properties when there is absence of data by Brunton
et al. (2016); Rudy et al. (2017); Sahoo et al. (2018); Sun et al. (2022). But sparsity explorations
necessitates carefully defined candidate function library, prior system knowledge. Moreover, a lin-
ear combination of candidate functions may be insufficient for recovering complex mathematical
expressions, especially aperiodic systems. As the library size increases, it empirically faces chal-
lenges in adhering to the sparsity constraint (Sun et al. (2022)). For Tree search methods in domains
with high branching factors and deep search graphs, applying Monte Carlo Tree Search (MCTS) or
any standard search algorithm becomes becomes challenging for real-time control, where an orga-
nized method to integrate knowledge becomes essential to limit the search to a manageable subtree
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Figure 2: The Reservoir-in-Reservoir training phase : a)shows the decay from gluon to Higgs particle that
decays further into 4 leptons.b)Each lepton decays further, whose momentum gets tracked in this dataset in
x,y,z,direction in 3D space. c) The momentum p shown in x(red) y(green) and z (lavender) plane. d) The three
individual matrices of momentum p(x), p(y), p(z) provided to three l-g pairs. e) The reservoir pool receives an
input step impulse, the inputs from d) and trains the generators to produce the output from the readout, which
is an union of the outputs from each l-g pair

(Browne et al. (2012)). Another complication arises when simulations demand significant CPU re-
sources, and MCTS faces learning from a limited number of samples. Learning DS using RNNs
have been proposed in Roweis & Ghahramani (2001); Lu et al. (2017); Duncker et al. (2019) based
on inferring posterior over latent trajectories given a time sequence, but are harder to train, high
memory intensive and exhibit minimal attractor tuning in case of aperiodically evolving DS. In
the following sections, we describe the datasets used to learn the lepton momentum trajectory from
Higgs Boson decay candidate events, provide a comprehensive architectural overview of a novel
real-time learning and optimization approach in RC tailored to address the challenges posed by the
modeling of unknown, data-driven aperiodic nonlinear systems. We follow it by discussing the
results obtained and the observations we make with our rationale for the same.

2 METHODS

2.0.1 TRAINING THE RESERVOIR POOL :

We first introduce the initialization and training procedure of the reservoir pool, for which we must
focus on the architecture of Figure 2. We conduct a search space exploration to find the optimal
reservoir size inside the pool, the window size each learner-generator pair must process for optimal
performance among other parameters using Algorithm 3, described in the Appendix section. Impor-
tant to note here is that the pool can be initialized to any number of learner-generator pairs inside
it, given the task we are opting to learn. In our case the optimal number of learner-generator pairs
obtained by the architecture exploration were three. Each pair received three time windows each of
length 2000 steps for training each time. Once the reservoir architecture search yields the system-
specific optimal window length, reservoir size for the learner generator pairs, appropriate forgetting
factor for specific time windows, the reservoir pool is initialized with an architecture similar to part
e) of Figure 2. The activities of the pairs are given by 3. As shown in part e) of Figure 2 the reservoir
pool is initialized with learner-generator (l-g) pairs of Li, where i = 1, 2, 3 and ’n’ in Figure 2 stands
for 3 in our experiments (based on our architecture space exploration). The learners in each pair are
initialized using equation 11 in ]1The reservoir pool is excited by a unit impulse. This unit impulse
uin coupled with input weights win excites each reservoir in each pair. It is important to note here
that this is the only excitation that the generator reservoir receives, but that is not the case for the
learner reservoir in the pair. The learner reservoir obtains a secondary input , which is the time
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window of the system we are trying to learn. In our case this is the x-y-z trajectory of the lepton mo-
mentum (part d in 2). Instead of a single value each time step, the learner receives three values p(x),
p(y) and p(z) each timestep. This delivers the ground truth into the pool through a vector of weights
wout. The components of both input weights are chosen from a uniform distribution between -1
and 1. Unlike state-of-the-art reservoir architectures where the ground truth is provided in the form
of closed form equations (Sussillo & Abbott (2009); DePasquale et al. (2018); Lu et al. (2017);
Lukoševičius et al. (2012)), in our case this is completely data driven, with no prior knowledge of
the system dynamics. Hence this becomes a black box mimicking task or system identification by
the reservoir pool, a much less explored area in RC. For the incoming aperiodic momentum trajec-
tory of the lepton, our task is to train the reservoir pool to learn the changes in pattern in real time as
shown in Figure 3b) and then mimic the system behavior with a single input impulse. Eventually the
generator aims to merge its recurrent activity dynamics with signals representing the ground truth,
which can be subsequently extracted by a linear readout in the form of :

p′(t) = wT
readout(t)tanh(XGn)(t) (2)

where p′(t) denotes the output momentum at time t. The generator convergence : The neurons
inside a reservoir exhibits the chaotic activity given by 15 :

τ
dXG(t)

dt
= −XG(t) + CG(tanh(XG)) + winuin(t), (3)

where CG is the N-unit connectivity matrix representing the sparse connections inside the reservoir.
It’s output is given by :

Z(t) = w
T
readout(tanh(XG)(t)) (4)

Given our objective is to generate activity such that z(t) ≡ p(t) , at time t during training, before
weight update, the error is given by :

e−(t) = CG(t − ∆t)(tanh(XGn) − CL(tanh(XL)) − woutp(t), (5)

Post weight update this error becomes :
e+(t) = CG(t)(tanh(XGn) − CL(tanh(XL)) − woutp(t), (6)

As t− > ∞, ideally e+(t)/e−(t)− > 1 at the end of training. And this is achieved by updating the
connectivity matrix inside the generator reservoir by the delta rule Stone et al. (1986):

CG(t) = CG(t − ∆t) − e(t)P (t)(tanh(XL)), (7)

where the P provides multiple learning rates to the presynaptic activity firing rates (tanh(XL) in
each weight update by the following equation :

P (t) = Λ
−1

(P (t − ∆t) −
P (t − ∆t)tanh(XLn(t)tanh(XLn)

T (t)P (t − ∆t)

Λ + tanh(XLn(t)TP (t − ∆t)tanh(XLn(t)
). (8)

where

Λ =


λ1 0 · · · 0
0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λN

 (9)

It is to be noted here that p(t) is our desired output momentum trajectory and P(t) (NXN matrix)
is the running estimate of the inverse of the correlation matrix of the reservoir network activity
rates scaled with the diagonal matrix of the forgetting factors, which can be expressed as : P =
(tr(t)r

T (t) + ΛI)−1 Sussillo & Abbott (2009) Hence 6 can be expressed as :

e+(t) = e−(t)(1 − (tanh(XG)
T
(t)P (t)tan(XG)(t)) (10)

In order to achieve convergence, or end of training, (1− (tanh(XG)
T (t)P (t)tan(XG)(t)) → 1

For low aperiodicty of incoming system, the subtrahend variable above may undergo a temporal
evolution, initially closely approximating 1 and gradually converging asymptotically to 0 and re-
mains consistently positive throughout the learning process. This behavior signifies a systematic
reduction in error magnitude facilitated by weight updates, aligning with the intended learning ob-
jective. Ultimately, the ratio lim e+(t)

e−(t) tends towards 1. Λ is a critical factor in this process and
requires meticulous adjustment based on the specific characteristics of the target function. For
lower excitation a value closer to 1 enhances the performance of the estimator (Fortescue et al.
(1981)). While in case of high aperiodicity such as this, higher frequency and rapid changes of
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Figure 3: The Reservoir-in-Reservoir testing phase

Table 1: Model comparison: Mean squared error observed for different network sizes when comparing our
architecture to state-of-the-art architectures

Reservoir Size ESN FORCE full-FORCE Reservoir-in-Reservoir
100 15.02 13.38 2.8 2.07
500 12.3 12.5 2.56 0.8
1000 10.8 14.98 2.54 1.98

target function need lower values to promote rapid learning but may introduce instability due to ex-
cessively swift weight adjustments. Hence, precise calibration of the forgetting factor is essential to
achieve both stability and convergence in the learning processVahidi et al. (2005); Sussillo & Abbott
(2009). High aperiodicity of target function increases the activity firing rate. Hence, the variable
(tanh(XG)

T (t)P (t)tan(XG)(t) in 10 can stray away from 0, leading to divergence from target
function. Moreover, a very large reservoir size leads to higher instability in such scenarios because
of high firing rate due to chaotic reservoir activity. This is where the efficacy of RiR lies in adaptabil-
ity to incoming system dynamics, learning fewer timesteps at a time, adjusting the forgetting factor
to facilitate efficient learning and re-triggering training for a learner-generator pair whenever the
output and target diverge beyond threshold as shown in 2. This ensures a system specific data-driven
approach to learning. Our objective lies in adjusting the recurrent connectivity matrix CG of each
generator reservoir to internally generate signals equivalent to the ground truth time window pro-
vided to its respective learner in the pair (20, matching the mixing observed in its learner counterpart
when exposed to an external p(t) input. We aim to align the combination of internal and external
signals of the learner Li as CLi tanh(XLn(t) + woutpi(t), with the internally generated signal in
the generator reservoir Gi , CGitanh(XGn. This alignment is achieved by minimizing a designated
cost function given in Equation 18 in 1. Fundamentally this minimization differs from the classi-
cal Recursive Least Squares (RLS) method in the approach to updating the covariance matrix P(t)
(Equation 21). Within the classical RLS methodology, the covariance gradually converges to zero
over time, leading to a loss in its capacity to adeptly capture alterations in parameters. Conversely,
as depicted in Equation 21, the covariance matrix is subjected to division by a factor denoted as λ
(where 0.1 ≤ λ ≤ 1.0) during each update. This deliberate division process effectively mitigates
the rapid dissipation of the covariance matrix. And the value of λ is not arbitrarily selected but cho-
sen by the system during the reservoir architecture search mentioned earlier (3 in Appendix). The
stepwise learning is provided in 1.

2.0.2 TRAJECTORY PATTERN GENERATION IN REAL TIME:

In the testing phase, the reservoir pool gets the unit impulse uin coupled with input weights win as
the only input trigger to start generating the momentum trajectory. As described in Algorithm 2, now
the learner reservoirs are inactive and the generators are initialized with the recurrent connectivity
matrix CG learnt using 20 during the training phase using RLS with forgetting. Given only an unit
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Figure 4: The normalized eigenvalues before and after learning occurs. a) b) and c) representing generators
1,2 and 3 respectively. The blue lines show the stabilizing eigenvalues of the recurrent connectivity.y axis is
normalized eigen value and x axis is recurrent nodes.

Figure 5: d) showing the trajectory prediction in testing phase post which in e) re-training is triggered re
initializing a learner generator pair but with pre-learned weights, making it stabilize faster than before

impulse, each generator reservoir generates an output in the form given in Equation 2. Given a set
of optimal number of trials determined during the reservoir architecture search the NE and MSE is
monitored over time. The pool now gets tested on its ability to generate patterns in the time windows
assigned to each of them. The whole output is the union of the individual outputs generated by the
individual l-g pairs. In our case we defined our threshold > 1. Upon exceeding this threshold the
pool initiates an l-g pair to learn the new incoming system following the same steps of 1, except
that instead of all l-g pairs being activated, only a single is activated. This keeps the re-training
computation simple and less resource heavy. The detailed process to re-trigger training when total
error exceeds threshold is available in Algorithm 2.

Reservoir-pair Architecture search and optimization : In our neural architecture search, we con-
ducted experiments to find the optimal network size for learner-generator pairs in the reservoir pool,
ranging from 100 to 1000 while maintaining a fixed window size. Our main objective was to balance
network size and achieve state-of-the-art results, imposing a maximum network size constraint of
1000. Additionally, we explored the impact of forgetting factors (0.1 to 1.0), batch sizes (10 to 50),
and the number of trials (10 to 50), enabling us to configure the reservoir pool with suitable net-
work sizes and pairs tailored to specific patterns within a given window. This approach facilitated
intelligent selection of the best-performing learner-generator pair during training, allowing real-time
retraining, maintaining a compact network size, and enabling effective learning of previously unseen
patterns without excessive computational costs or time delays.
Model Comparison : Our study evaluated the proposed architecture to SOTA reservoir architectures
like ESN, FORCE, and full-FORCE. To ensure a fair comparison, we applied consistent evaluation
criteria, testing all architectures with three sets of reservoir network sizes (100,500,1000 neurons)
(1). Another reservoir size exploration (500, 650, and 1000 neurons) across 20 trials is presented
in the Appendix (4). Training each model for 20,000 timesteps on momentum trajectory data for a
single lepton, we then evaluated their performance on a separate unseen dataset of 10,000 timesteps
of unseen trajectory data, while maintaining a forgetting factor of 0.1 in our R-i-R architecture to
enhance learning dynamics and adaptability. We also experiment how varying forgetting factor af-
fects the error rate for different reservoir sizes shown in 3 in Appendix. We have used the python 3
to program our learning architecture, the experiments have been run on Google Colab with a 51.0
GB System RAM, the model comparison to system identification algorithm baseline models have
been made using the symbolic physics learner repository on Sun et al. (2023).
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Algorithm 1: Training Learner-Generator reservoirs algorithm
Input: Incoming time series sequence from t0...tT divided into n windows of (1)p1(t)(from time

t0...ta), (2)p2(t)(from time ta+1...tb), ...(n)pn(t)(from time ty+1...tz)
Initialize reservoir pool with n reservoirs (L1, L2, ...Ln)
Requirement :
Parameters = (Reservoir size=s,
Reservoir time step=dt, forgetting factor =λ, batch size =b,trials each batch=trials)
for i=1,2,,, n do

Li = Initialize each learner reservoir in the pool by the following equation

τ
dXLi(t)

dt
= −XLi + CLi(tanh(XLi)) + winuin(t), (11)

end
Begin Parallel Training
Step 1 : Instantiate learners by providing input impulse and momentum signal with internal connections
C = CL

τ
dXL1(t)

dt
= −XL1(t) + CL1(tanh(XL1)) + winuin(t) + woutp1(t), (12)

τ
dXL2(t)

dt
= −XL2(t) + CL2(tanh(XL2)) + winuin(t) + woutp2(t), ... (13)

τ
dXLn(t)

dt
= −XLn(t) + CLn(tanh(XLn)) + winuin(t) + woutpn(t), (14)

Step 2 : Instantiate generators in the pool by providing input impulse only with internal connections
C = CG

τ
dXG1(t)

dt
= −XG1(t) + CG1(tanh(XG1)) + winuin(t), (15)

τ
dXG2(t)

dt
= −XG2(t) + CG2(tanh(XG2)(t)) + winuin(t), ... (16)

τ
dXGn(t)

dt
= −XGn(t) + CGn(tanh(XGn)) + winuin(t), (17)

Step 3 : Minimize Cost Function with forgetting factor for each of the above generator reservoir using
following equations:

V (t) =
1

2

t∑
i=1

λ
t−i

((CGn(tanh(XGn)) − CLn(tanh(XLn))) − pt)
2
, (18)

e(t) = CGn(t − ∆t)(tanh(XGn) − CLn(tanh(XLn)) − woutpn(t), (19)

CGn(t) = CGn(t − ∆t) − e(t)P (t)(tanh(XLn)), (20)

P (t) =
1

λ
(P (t − ∆t) −

P (t − ∆t)tanh(XLn(t)tanh(XLn)
T (t)P (t − ∆t)

λ + tanh(XLn(t)TP (t − ∆t)tanh(XLn(t)
) (21)

3 RESULTS AND DISCUSSION

Table 1 shows the comparison between our proposed R-i-R architecture to existing reservoir archi-
tectures ESN, FORCE, full-FORCE. Our architecture outperforms existing reservoir architectures
in MSE evaluated for all three reservoir sizes. While ESN, FORCE and full-FORCE tend to per-
form better only with larger network sizes, R-i-R is designed to process an incoming system in
parts, shared by its consisting l-g pairs. Hence for a given window length and its aperiodicity,
R-i-R finds a sweet spot to perform optimally with adaptable forgetting. Larger network sizes in
turn increase firing rate activities mentioned in the Methods section. It is to be noted here that
our architecture is designed with the objective to reduce computation cost, keep network size to
the minimal and yet achieve SOTA results. Table 2 shows the comparison with some SOTA sys-
tem identification algorithms namely pySindy, GPLearn and MCTS.While pySindy outperforms
GPLearn and MCTS, our architecture outperforms all the three. This performance improvement
as a data driven approach for system identification, can be partly attributed to its little dependence
on prior knowledge of the dynamics of particle decay. Additionally, the re-trigerring of training
the l-g pairs with adapatable forgetting depending on changing aperiodicity and firing rates of the
recurrent connectivity help keep the overall error rate low. The values of MSE reported are af-
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Algorithm 2: Generating dynamic system pattern real time algorithm
Begin Testing
Step 4 : Generate outputs from each reservoir in the pool
groundtruth = p(t...T ),totalerror = 0,totaloutput = 0,error = 0,V ariance = 0,
totalV ariance = 0,Window = Wi = 0,Threshold = threshold,timelength = tl
for i=1,2,,, n do

for trials=1,... trials do
p
′
i(t) = w

T
readout(tanh(XGn)(t)) (22)

error = error + (p
′
i(t) − pi(t))

T
(p

′
i(t) − pi(t)) (23)

V ariance = V ariance + pi(t)
T
pi(t) (24)

end
NEi = error/V ariance
Wi = Wi ∪ pi(t0...tl)

end
totaloutput = Wi

totalerror = totalerror + (totaloutput − groundtruth)T (totaloutput − groundtruth))

totalV ariance = totalV ariance + groundtruthT groundtruth
NE = totalerror/V ariance
if NE > Threshold then

Load LkGk Learner-Generator reservoir pair
k is determined based on which generator (Gk) obtains lowest NE in previous steps of testing
call Training

end

ter 10 trials each. This goes on to establish that this architecture shows promise in adapative real
time system identification with a much lower memory requirement than a library driven or tree
search based approach. In Figure 4, the transformations in the recurrent connectivity matrix (CG)
within the generator reservoirs are observed before and after training, with a focus on its original
form (CL). Initially, the eigenvalues of CL are predominantly clustered within a wide region of
-4 to 2. After training, they converge within a smaller region of -2 and 1, with fewer than 500
recurrent nodes. Learner reservoirs with real parts initially exceeding 1 tend to gravitate towards
real parts closer to 0 during the learning process, consistent with the earlier mentioned stabiliza-
tion attribute. In testing phase, no alterations in the internal connectivity of the generator reservoirs
takes place and only upon exceeding an error threshold, l-g pair is reactivated. This results in alter-
ations to the existing eigenvalues, as depicted in subplot e) in Figure 5, but the convergence occurs
much earlier, with approximately 350 recurrent nodes, ensuring comprehensive real-time stability.

Table 2: Mean Squared Error obtained from bench-
marking with state-of-the-art system identification al-
gorithms. Each metric obtained by 10 trials

Algorithm MSE

Reservoir-in-Reservoir (Ours) 0.87
pySindy Brunton et al. (2016) 71.99
GPlearn Ferreira et al. (2019) 72.014
Monte Carlo Tree Search Sun et al. (2022) 72.009

4 CONCLUSION

Our novel RC paradigm representing an
ML driven particle physics system iden-
tification, to elucidate Higgs Boson de-
cay phenomena reveals that conventional
RLS-driven loss function minimization
may have limitations in achieving real-
time adaptability to space-time varying
nonlinear dynamic systems. We intro-
duce a vector forgetting-based covariance
matrix update tailored to mitigate covari-
ance wind-up. Our R-i-R architecture
pioneers real-time adaptability in data
driven black-box learning context, offering significant network size reduction and enhanced perfor-
mance. Upon acceptance, we will open-source our code-base for reproducibility, facilitating further
insights and exploration of complex decay trajectories and parameters beyond lepton momentum.
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Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural Networks: Tricks
of the Trade: Second Edition, pp. 659–686. Springer, 2012.
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Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. Reservoir computing trends. KI-
Künstliche Intelligenz, 26:365–371, 2012.

Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002. doi: 10.1162/089976602760407955.

Thomas McCauley. Higgs candidate events for use in education and outreach, 2014. URL https:
//doi.org/10.7483/OPENDATA.CMS.N9MJ.QEEC.

David McMahon. Quantum field theory demystified. New York, 2008.

John Moon, Wen Ma, Jong Hoon Shin, Fuxi Cai, Chao Du, Seung Hwan Lee, and Wei D Lu.
Temporal data classification and forecasting using a memristor-based reservoir computing system.
Nature Electronics, 2(10):480–487, 2019.

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria Spiropulu. Solving a higgs
optimization problem with quantum annealing for machine learning. Nature, 550(7676):375–
379, 2017.

Oliver Nelles and Oliver Nelles. Nonlinear dynamic system identification. Springer, 2020.

Constantin Paleologu, Jacob Benesty, and Silviu Ciochina. A robust variable forgetting factor re-
cursive least-squares algorithm for system identification. IEEE Signal Processing Letters, 15:
597–600, 2008.

Sam Roweis and Zoubin Ghahramani. Learning nonlinear dynamical systems using the expectation–
maximization algorithm. Kalman filtering and neural networks, pp. 175–220, 2001.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017.

11

https://github.com/cms-opendata-analyses/HiggsExample20112012
https://github.com/cms-opendata-analyses/HiggsExample20112012
https://doi.org/10.7483/OPENDATA.CMS.N9MJ.QEEC
https://doi.org/10.7483/OPENDATA.CMS.N9MJ.QEEC


Under review as a conference paper at ICLR 2024

Peter J Sadowski, Daniel Whiteson, and Pierre Baldi. Searching for higgs boson decay modes with
deep learning. Advances in neural information processing systems, 27, 2014.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018.

Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, and Daniel Durstewitz.
Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies.
arXiv preprint arXiv:1910.03471, 2019.

Luı́s F Seoane. Evolutionary aspects of reservoir computing. Philosophical Transactions of the
Royal Society B, 374(1774):20180377, 2019.

Gregory O Stone et al. An analysis of the delta rule and the learning of statistical associations.
Parallel distributed processing: Explorations in the microstructure of cognition, 1:444–459, 1986.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. arXiv preprint arXiv:2205.13134, 2022.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discov-
ering governing equations via monte carlo tree search. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
ZTK3SefE8_Z.

David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic neural
networks. Neuron, 63(4):544–557, 2009.

Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa, Seiji
Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical reser-
voir computing: A review. Neural Networks, 115:100–123, 2019.

Ardalan Vahidi, Anna Stefanopoulou, and Huei Peng. Recursive least squares with forgetting for
online estimation of vehicle mass and road grade: theory and experiments. Vehicle System Dy-
namics, 43(1):31–55, 2005.

Yuichiro Yada, Shusaku Yasuda, and Hirokazu Takahashi. Physical reservoir computing with force
learning in a living neuronal culture. Applied Physics Letters, 119(17), 2021.

Yanan Zhong, Jianshi Tang, Xinyi Li, Bin Gao, He Qian, and Huaqiang Wu. Dynamic memristor-
based reservoir computing for high-efficiency temporal signal processing. Nature communica-
tions, 12(1):408, 2021.

A APPENDIX

A.1 HIGGS PARTICLE DECAY

There are three principle ways the Higgs boson particle is known to decay to a lepton pair and a
photon: the leptons can be produced via an intermediate Z boson :

H → Zγ → llγ (25)

or a virtual photon :

H → γ∗γ → llγ (26)

or the Higgs boson can decay to two leptons :

(H → ll) (27)

with one lepton radiating a final-state photon.

Reservoir architecture search and optimization
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Algorithm 3: Optimization Algorithm during training
Input: Incoming time series sequence from t0...tT
Requirement :
Window Length= wl = [1000, 2000, 3000, 4000, 5000]
Network size =s
for i=0,1,,, 4 do

n = (wl[i])
for λ = 0.1,,,0.9 do

for s=100,,,1500 do
Call Training loop in Algorithm 1
error = Compute NE

end
end

end

Figure 6: Our reservoir architecture search experiments. Row 1 (top) shows relationship between NE and for-
getting factor for reservoir sizes 650,850,1250 (left to right). For a given set of unseen aperiodic incoming
system, regardless of the recurrent connectivity network size of the l-g pairs we observe a jump in the normal-
ized error rates as forgetting factor gets closer to 1. Row 2 (bottom) shows the momentum trajectory (a)-c)) of
ground truth(black) vs predicted (colored) for 600 timesteps for each reservoir (a) reservoir 1, b) reservoir 2,
c)reservoir 3. Each reservoir consists of 650 neurons in this row.

A.2 EIGENVALUES OF THE RESERVOIR CONNECTIVITY BEFORE AND AFTER LEARNING :

Eigenvalues of the reservoir connectivity before and after learning :In the realm of eigenvalue
analysis, we delved into the transformations that transpired within the recurrent connectivity matrix
inside the generator reservoirs, CG, before and after training, emphasizing on its original form, CL.
The eigenvalues of CL are initially observed to predominantly cluster within a wide region of -4
to 2 and post training the eigenvalues cluster within a smaller region of -2 and 1, converging with
recurrent nodes as less as 500 as graphically depicted in Fig. 4. This is a particularly intriguing
observation within each reservoir in the pool pertaining to eigenvalues. Each learner reservoir
who originally possessed real parts much exceeding 1 exhibited a tendency to gravitate towards
real parts closer to 0 during the learning process, a phenomenon consistent with the stabilization
attribute earlier mentioned. During the testing phase there are no altercations made to the internal
connectivity of the generator reservoirs, but upon exceeding error rate threshold (in our case 1.5
NE), a learner-generator pair gets reactivated to learn the new incoming pattern. This results in
alteration of the already existing eigenvalues, but at a much smaller time as shown in subplot e) in
Fig. 5. This time the convergence occurs much earlier, with 350 recurrent nodes approximately.
This ensures comprehensive stability real-time. This gives reservoir-in-reservoir architecture the
unique capability to harness the inherent expressive potential of a strongly connected pool of
recurrent neural networks. Simultaneously, it performs the valuable function of pruning superfluous
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Reservoir Size Trials λ NE
1250 10 0.1 2.8

20 2.6
50 2.05

1250 10 0.2 3.4
20 3.1
50 2.89

850 10 0.1 1.98
20 1.81
50 1.03

850 10 0.2 2.12
20 1.9
50 1.7

650 10 0.1 0.87
20 0.63
50 0.6

650 10 0.2 0.97
20 0.85
50 0.83

450 10 0.1 2.97
20 2.21
50 2.09

450 10 0.2 3.45
20 2.94
50 2.7

Table 3: Error rates: Normalized error rates
of Proposed Reservoir-in-Reservoir architecture
with forgetting factor λ and reservoir size varia-
tion.

Architecture Reservoir
Size

MSE

ESN 1000 10.8

650 11.69

500 12.3

FORCE 1000 14.98

650 11.9

500 12.5

full-FORCE 1000 2.54

650 2.4

500 2.56

Reservoir-in 1000 1.98
Reservoir 650 0.75
(Ours) 500 0.8

Table 4: Model comparison: Mean squared error
observed for different network sizes when com-
paring our architecture to state-of-the-art architec-
tures.

Table 5: Training steps, reservoir pool size variation and effect on MSE

Training steps MSE
5k 2.6
10k 0.9
20k 0.87
50k 0.87

Number of l-g pairs in pool
1 2.5
2 1.18
3 0.87
4 0.87
5 0.87

and potentially detrimental modes from the network’s dynamic repertoire.

A.3 ABLATION STUDY

We conducted an experiment to access how the reservoir pool performance varies over difference
in length of training steps and difference in number of learner and generator pairs inside the pool
shown in 5. While small amount of data (5k training steps) obtains a lower MSE, the system similar
performance for 20k and 50k training steps.The ablation study based on amount of data has been
tested on 3 l-g pairs with a forgetting factor of 0.2. Similarly we obtained same error rates beyond 3
l-g pairs with the lowest obtained for 1 pair in the pool only. Each of these cases in the number of
pairs ablation study has been conducted with 20k training steps and forgetting factor of 0.2.

A.4 RESERVOIR SIZE, FORGETTING FACTOR AND ERROR RATE, THE RELATIONSHIP :

Table 3 presents the key findings from our evaluation of the reservoir-in-reservoir architecture under
varying conditions, encompassing reservoir size, trial counts, and forgetting factor selection. Our
neural architecture search and optimization process guided us to a reservoir size of 650 neurons, with
λ = 0.1 identified as the most effective choice for real-time estimation.Our observations highlight
that in scenarios characterized by increased aperiodicity within time windows, higher trial numbers,
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and the utilization of smaller forgetting factors, the architecture demonstrates superior performance,
especially when deployed with a more compact network configuration. Notably, this contradicts the
conventional approach seen in state-of-the-art reservoir architectures, which often advocate larger
network sizes for tackling complex tasks DePasquale et al. (2018). Our reservoir-in-reservoir opti-
mization learning framework demonstrates its ability to achieve NE < 1.0, even with a relatively
modest reservoir size of 650 neurons and the adoption of forgetting factors set at 0.1 and 0.2.The
RLS with forgetting mechanism has found application in parameter and system estimation across
signal processing and engineering domainsPaleologu et al. (2008). Sub-optimal excitation can lead
to covariance wind-up, causing loss of historical information, minimal integration of new data, and
exponential growth of the covariance matrix, resulting in a sensitive estimator susceptible to nu-
merical and computational errors. This issue becomes evident in scenarios involving the estimation
of multiple parameters with varying rates of change, as in our mass and velocity estimation case,
where a single forgetting algorithm is inadequate for tracking parameters with distinct variation
rates. Therefore, the allocation of distinct forgetting factors to individual parameters becomes ad-
vantageous. Our vector-type forgetting or selective forgetting, introduced in Vahidi et al. (2005)is
typically implemented in the covariance matrix update (refer to algorithm1 eqn. 21). Instead of uni-
formly dividing all elements by a single scalar λ, the covariance matrix P is adjusted by a diagonal
matrix of forgetting factors. A critical departure from classical least squares methods relying on
update mechanism for the covariance matrix P(t) which tends to zero over time, resulting in the loss
of the ability to effectively track parameter changes. Our learning incorporates division by λ < 1
every update, mitigating the rapid attenuation of the covariance matrix. This adaptation enables
exponential convergence, as substantiated in relevant academic literature.

Our findings suggest that the implementation of unique forgetting factors for each parameter offers
a feasible strategy to address wind-up, allowing for effective real-time learning and adaptability in
scenarios with varying levels of aperiodicity while maintaining a compact network size.

A.5 DIFFERENCE BETWEEN EXISTING ARCHITECTURES AND RESERVOIR-IN-RESERVOIR :

ESNs offer more straightforward training algorithms when compared to other reserviir architectures.
The training process primarily revolves only around updating the output readout weights in the fol-
lowing manner in addition to state update : y(n) = fout(wreadout(u(n), x(n), y(n − 1))) where
u(n) is input units , x(n) is hidden units ,and y(n) is output units at time step n and fout are the ac-
tivation function of output units. The architecture avoids training recurrent connectivity and, while
it mitigates the vanishing gradient issue in RNNs Hochreiter (1998) more effectively, it introduces
instability and high variance due to randomly assigned connections within the reservoir, hindering
the learning of complex, time-varying systems such as momentum trajectories in the xyz plane. In
Table 4 we observe that ESN performs best for 1000 neuron reservoir size compared to FORCE and
full-FORCE architecture which perform better for 650 neuron size. For learnic complex aperiodic
trajectory, larger network sizes will be required to utilize ESNs. Our proposed architecture trains
the learner-generator pairs during training using a specialized variation of the RLS based FORCE
algorithm. The advantages of which are observed in Tables 3 and 4. Assuming perfect matching
between learner and generator network activities and highly ideal generator outputs, akin to the orig-
inal FORCE algorithm’s proposed behavior, contrasts with practical scenarios where such perfect
matches are rare. These discrepancies are most notable in principal component spaces, account-
ing for minimal recurrent activity variance, where even slight deviations between tanh(xL) and
tanh(xG) substantially differentiate CL from CG, affecting the stabilization of fluctuations. Both
the original FORCE and full-FORCE architectures exhibit limited adaptability to real-time system
changes, particularly aperiodic system learning, which constitutes their primary limitations. The
limitations inherent in both the original FORCE and full-FORCE architectures primarily stem from
their limited adaptability in the face of system changes real time, rendering them less suitable for
aperiodic system learning. Reliance on the fundamental form of RLS for cost function minimization
introduces significant performance reduction when dealing with dynamic environments evolving in
both space and time, such as the momentum trajectory of the leptons.
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