Enhancing UV Spectral Prediction through Auxiliary
Task, Curriculum Learning, and Curvature Limitation

Hajime Shinohara Akihiro Kishimoto Hiroshi Kajino
IBM Research — Tokyo IBM Research — Tokyo IBM Research — Tokyo
Abstract

Accurate UV spectral prediction is challenging for machine learning. UV spectra
exhibit broad absorption bands characterized by the peak positions, band shapes,
and curvature profiles. However, current models fail to capture these characteristics.
We present Peak Position Awareness (PPA), Curriculum Learning for Interpolated
Abstracted Spectra (CLIAS), and Spectrum Curvature Limitation (SCL) to handle
the above characteristics, showing consistent improvements over diverse models.

1 Introduction

The successful development of accurate machine learning models for chemical or physical properties
can lead to effective design of materials of interest. Despite numerous attempts to advance machine
learning research in materials discovery [4} [L8]], predicting UV spectrum of an organic molecule
remains an open problem. While training neural networks (NNs) is one way to predict UV spectra,
effective training is pressed by limited data due to the difficulties and inaccuracies in both experimental
measurements and theoretical calculations [1,[14] as well as limited experimental resources.

An essential challenge closely related to UV spectroscopy is also raised. A UV spectrum is char-
acterized by (1) peak positions that are the wavelengths showing (local) maximum absorbance, (2)
band shapes that are the wavelength ranges characterizing absorbance including intensities, and (3)
curvature profiles that determine spectral curves. Although these basic characteristics are established
as typical ones for qualitative and quantitative molecular analysis in UV spectroscopy [3]], state-of-
the-art methods fail to capture these characteristics, thus suffering from accuracy and physical realism
(20, 28]

We present three methods to capture the above characteristics: PPA predicts peak positions as an
auxiliary classification task; CLIAS progressively trains on interpolated data through curriculum
learning [3] to effectively learn band shapes; and SCL introduces second-derivative limitation for
realistic curvatures. With the standard benchmark [28]], we show that a careful combination of
our methods successfully improves the performance across different models. We also demonstrate
predicted spectra that clearly illustrate the success of our methods and room for further improvement.

1.1 UV Spectral Prediction Task and Spectral Generation Model

We follow the setting of Urbina et al. 28] where UV range spectra are observed. For fixed range
[w,w 4+ N — 1] nm of the wavelengths in the entire dataset, where w and N are integers, a training
example for spectrum 4 consists of a pair (m;, S;), where m; is a molecule in SMILES format [31]]
and S; is a spectrum to learn. S; is a sequence y; 0 — ¥;;1 — - — Yi,N—1, Where y; ; is a real
value in [0, 1]. Semantically, y; ; is an absorption rate of wavelength (w + j) nm irradiated to m;.

As is investigated in [28]], a spectral generation model receives fixed-sized input on a molecular
structure and yields the absorption rates for corresponding wavelengths as output. The spectral

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al for Accelerated
Materials Design (Al4Mat).



generation model is implemented either as a multi-output regression NN model, e.g., multi-layer
perceptron (MLP), or as a sequence generation model, e.g., RNN or Transformer [29]]. Our methods
are easily incorporated into these cases to enhance the performance of the spectral generation model.

2 Related Work

Spectroscopic knowledge is promising in other spectroscopic areas. For example, McGill et al. [19]]
predicted IR spectra directly from SMILES using message passing neural networks. Chen et al. [6]
used absorption bands for energy applications. Applying their methods to our task remains open due
to different spectral characteristics.

Machine learning has been recently applied to UV spectral prediction. Several works focused on
optical peak prediction [15, [10]], while Urbina et al. [28]] developed UV-adVISor, an attention-based
recurrent NN for full spectra that performed best in their performance evaluation. In principle, our
methods can be combined with UV-adVISor. However, as the source code is not publicly released, an
empirical comparison remains future work. McNaughton ef al. [20] used 3D molecular geometries
and TD-DFT calculations as input, but cannot be directly compared with our 2D SMILES-string-based
approach.

Curriculum learning [3] progressively exposes models to increasing task complexity and has been
applied to many tasks including computer vision and natural language [30] with various strategies [24]].
Attempts have also been made to apply curriculum learning to scientific domains. In these attempts,
physical constraints have been incorporated into various scientific domains through theory-guided
data science [16l], physical property regularization [[13]], and physics-informed NNs [7]. However,
how to introduce such physical constraints to UV spectral prediction still remains unresolved.

3 Our Enhancements to UV Spectral Prediction

We give details of our methods motivated by the fundamental principles behind UV spectroscopy.

3.1 PPA

As peaks are a reliable feature in UV spectroscopy, PPA introduces a peak classification model (PCM)
that addresses an auxiliary task of peak classification. For wavelength range [w, w + N — 1] nm,
the PCM receives fixed sized input on molecular structure m and predicts peak locations as a binary
vector pv = (vg, v1,- -+ ,Un—1), Where v; € {0, 1} indicates whether wavelength (w + j) nm is a
peak position. The spectral generation model is extended to receive an input concatenated m with pv,
aiming at more accurate predictions with this enriched input.

PCM needs a training dataset on pv. For sufficiently large thresholds on height hpe,x, distance
dpeak and width wpeax peak positions are calculated by an algorithm to find local maxima, which is
based on simple comparisons of neighboring values and implemented in the scikit-learn library [23].
Additionally, peak positions are not apriori knowledge on the target molecule. For the test dataset,
the spectral generation model receives pv predicted by the PCM. In contrast, pv is available in our
augmented training dataset. The spectral generation model is trained with such available pv.

3.2 CLIAS

Existing domains where curriculum learning has been applied have clear heuristic criteria to effectively
order training examples, e.g., the sequence length in natural language [25,127]]. In contrast, the spectral
generation model always receives a fixed-sized input, and a clear criterion of the curriculum is needed.
The curriculum of CLIAS captures broad bands of UV spectra. For [N] := {0,1,--- ,N — 1},
CLIAS selects a subset P C [N] to satisfy that (1) P includes all indices for peak positions and
indices 0 and N — 1, and (2) the difference in wavelengths between two adjacent indices in P are
identical among all located between closest peak positions, or index 0 or N — 1. After training is
complete with a new dataset based on P, CLIAS trains the model with the original dataset. CLIAS
can also train with k, subsets Py C P, C --- C Py, = [N], progressing from A; towards Ay, .

While P conveys dominant, abstract band shapes, | P| can be inconsistent with the input size IV of the
spectral generation model. To ensure the consistent input size of NV, CLIAS calculates interpolated



Table 1: RMSE values. P=PPA, C=CLIAS and S=SCL. Standard deviations are shown in the
parentheses. See underline and bold numbers for the best case of each architecture and of all models.

Model | Baseline | P | P+C | All | P+C—P+S

MLP 0.12130 (0.0038) | 0.10870 (0.0069) | 0.10570 (0.0017) | 0.10490 (0.0048) |0.10100 (0.0041)
Transformer || 0.14160 (0.0033) |0.11600 (0.0023) | 0.10980 (0.0035) | 0.11000 (0.0027) | 0.10860 (0.0036)
BiLSTM _ ||0.11750 (0.0063) |0.10810 (0.0089) | 0.10380 (0.0047) | 0.10610 (0.0066) | 0.10030 (0.0036)

absorption rates for the unselected wavelengths. For spectrum ¢ and two adjacent indices j, j+ L € P,
we define an interpolated absorption rate for unselected wavelength (w+j+k) nm (i.e. j+k ¢ P) for
abstract spectrum 4 is defined as ((L — k)y; j + kyi j+1)/L, where y; ; and y; ;1 1, are the absorption
rates in its corresponding original spectrum.

3.3 SCL

Peak curvature in UV spectra is physically constrained by natural line broadening mechanisms. SCL
enforces realistic curvatures by penalizing excessive curvature rarely observed in practice. For point j
in spectrum ¢ in the training data, let detme’i, j and d? Ypred,i,j b€ respectively the true and predicted
curvature values calculated as the second derivative approximation: dzyi, R Y1 — 2Yi 5+ Yi -1
Using standard deviation o of d?y¢yye,;,; for all i and j, SCL regards predicted point j in spectrum i
that satisfies |d*yprea,i,j| > o as an unrealistic one to be penalized. For unrealistic pairs (i,5) € V
and the original loss function £(Ypred, Ytrue)» SCL defines the loss function Lscr, (Ypred, Ytrue) aS:

Lscr (ypred; ytrue) = £(ypred7 ytrue) + Acur Z (d2ypred,i,j - bcur)2
(i,5)eV

where Ay, is a hyperparameter that controls the strength of the constraint, and b.,,, is a hyperparameter
that controls the penalty for each violated curvature.

4 Performance Evaluation
This section performs empirical evaluations of our methods and discusses the results.

4.1 Setup

While two smaller datasets obtained by physical experimental measurements were prepared in
[28], we attempted to increase the size, merging these datasets into one with common wavelength
ranges. The resulting dataset comprised 3,170 UV spectra (after removing 2 invalid SMILES) with
absorption rates in the 230-400 nm range at 1 nm resolution (171 data points per spectrum), relevant
to pharmaceutical development, organic electronics, and photocatalytic materials. The dataset was
randomly split into training:validation:test = 7:1.5:1.5.

We aim at elucidating the behavior of our enhancements with diverse models. We implemented the
following architectures in Python with the PyTorch library and trained them on NVIDIA H100 80GB
GPUs: (1) MLP that generates a multi-output, (2) BILSTM [11]] that generates a sequence, and (3)
Transformer that successfully leverages attention mechanisms [29]]. The peak prediction model was
implemented as an MLP. See Appendix [A|for the other detailed configurations and implementations.
As the most common evaluation metric used in machine learning, we report RMSE values averaged
over three independent runs with different random seeds (42, 123 and 456). The standard deviations
shown in parentheses in Table [T] are calculated across these three runs to assess the stability and
reproducibility of each model configuration.

4.2 Results and Discussion

Table[T|shows the performance of each model when each method is added one by one, highlighting
only important cases. When including SCL as a final enhancement, we investigated two strategies.
All trains a model by incorporating PPA, CLIAS and SCL all at once. P+C — P + S further tunes
the model with PPA and SCL with additional 30 epochs, after initially trained with PPA and CLIAS.
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Figure 1: Spectra generated by baseline (red), P+C (green), and P+C—P+S (blue) and compared
against ground truth (black).

PPA provided most fundamental benefits. This significant improvement is consistent with the
importance of the peaks for deeper analysis in UV spectroscopy, where peak positions are the
primary principle that directly encodes the energy gap between molecular orbitals through E = he/ .
In contrast, baseline Transformer performed poorly to predict UV spectra. Since it receives the
identical, repeated input on molecular structure, the positional encoder is the only factor that can
differentiate the keys and values and queries of Transformer’s self-attentions. This could be one
reason Transformer failed to capture the relations between different wavelengths effectively.

PPA with CLIAS (P+C) yielded additional improvements to PPA roughly by 5.6% in the best case,
which was still essential for more accurate spectral prediction. CLIAS focuses on band shapes that are
a secondary feature and less crucial than peak positions. The fact that the performance improvement
with P+C was modest consistently mirrors the physical reality of UV spectroscopy, such as vibrational
structure and solvent effects through the Franck-Condon principle [2, 18].

P+C—P+S allowed P+C to first establish a stable solution for peak positions and an overall shape and
provided P+S room with a better initialization point for curvature refinement, achieving at least a 10%
improvement over each baseline model. P+C—P+S is consistent with UV spectroscopic analysis
based on natural line broadening mechanisms, considered as a tertiary approach after peaks and
band shapes are established. On the other hand, combining all three methods at one time tended to
underperform P+C. The underperformed results of the naive integration are attributed to the fact that
the capability of SCL penalizing sharp shapes cannot effectively work when basic spectral patterns
have not been learned yet, such as in an early training phase.

Figure|l|shows two representative spectra that contain single peaks. While their predictability differed
drastically, the optimized BiLSTM model (i.e., P+C—P+S) generated better shapes for both cases.
For the left spectrum, irrespective of with or without PPA, both models accurately predicted the
peak at 230 nm. We found that the training dataset tended to contain high absorption rates for 230
nm. The models accurately predicted these high absorption rates, resulting in easily identifying the
peak. Compared to the baseline model, P+C—P+S obtained the performance gain by reducing the
absorption rates for the other part, clearly demonstrating the superiority of CLIAS and SCL. For the
right spectrum, BiLSTM failed to correctly locate the 310 nm peak, while PPA helped accurately
identify peak position. P+C—P+S further increased the peak absorption rate to be closer to the true
value, demonstrating its effectiveness to address challenging cases even if molecular characteristics
deviate from typical patterns. On the other hand, all models incorrectly generated high values at 230
nm caused by the characteristics of the training data, making it difficult to correct the shapes.

5 Conclusions and Future Work

As an initial step to developing an accurate spectral generation model, we introduced PPA, CLIAS
and SCL, which embody fundamental physical principles. With the dataset obtained by the physical
experiments [28], we showed that P+C— P+S achieved at least a 10% improvement over the
best baseline. There are numerous approaches to explore as future work. For example, more
comprehensive understanding to the behavior of these methods is necessary, including a comparison
and integration with the state-of-the-art UV-adVISor model.

Extending the dataset size is clearly of importance, and opens up opportunities to develop better
theoretical and experimental methods in UV spectroscopy as well as new approaches that allow to
train with the dataset comprising both theoretical and experimental spectra that might have non-
negligible gaps. New machine learning algorithms that leverage partially observed spectra also help
effectively train models with extended data.
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A Detailed Setups for Performance Evaluation

The NN architectures of our baseline models are summarized as follows:

* MLP with 4 hidden layers sized 1024, 512, 256 and 128, activated by ReLU [22]
* BiLSTM [11] with 256 hidden units
* Transformer [29] simplified with 4 attention heads and 256-dimensional embeddings

The peak prediction model consists of a 3-layer MLP with each hidden layer size 2048, 1024, 512,
and 256, followed by 171 outputs with a sigmoid operation to calculate a probability that each
absorption rate is a peak.

There are several choices to encode the molecular structure, e.g., fingerprint [21] and recent pretrained
NNs [9} [12]]. We employ the approach of Urbina et al. [28]], which partitions a SMILES string of a
molecule to a sequence of tokens such as atoms and bonds. Paddings are added to the end of the
sequence to create a fixed-sized vector passed as input to the spectral generation model.

A molecule is encoded as SMILES string at most with 150 characters, tokenized by common chemical
vocabularies. The padded tokens are embedded to a vector of size 256, which is then passed to the
input of each NN. When PPA is combined, another embedded vector of size 256 is created from the
peak-value vector of size 171, concatenated with the embedded vector on the molecule.

We performed preliminary experiments with the validation set and grid search, and set hyperparame-
ters Acur = 0.1, beyr = 0.1, Rpeak = 0.2, dpeak = 40 and wpeare = 40.

In model training, we set early stopping with a patience of 30 epochs and the Adam optimizer [[17]]
with optimized learning rates: 1073 for MLP, 10~ for Transformer, and 5.0 x 10~* for the others.
Dropout (rate=0.2) [26] was applied between fully connected layers.

For the peak prediction model, after training the model for 50 epochs, we set a threshold to 0.2, peak
distance to 40 nm and peak width to 40nm to determine if a value is a peak.

For CLIAS, in our preliminary evaluation, we set k, to at most 3 and tested three combinations of
abstraction sizes: [43,171], [86,171], and [43,86,171]. The best-performing configurations were [43,
86, 171] for MLP and BiLSTM, and [43, 171] for Transformer.

Each phase except the final phase used early stopping (patience=20) and learning rate decay of 0.8
between phases, while the final phase used patience=7.

The MSE loss was used for training all the spectral generation models, with additional terms when
SCL was incorporated. Using the peak one-hot vectors as binary labels, the binary cross entropy loss
was used to train the peak classification model.
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