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Abstract

Smoke segmentation is of great importance in precisely identifying the smoke
location, enabling timely fire rescue and gas leak detection. However, due to the
visual diversity and blurry edges of the non-grid smoke, noisy labels are almost
inevitable in large-scale pixel-level smoke datasets. Noisy labels significantly
impact the robustness of the model and may lead to serious accidents. Nevertheless,
currently, there are no specific methods for addressing noisy labels in smoke seg-
mentation. Smoke differs from regular objects as its transparency varies, causing
inconsistent features in the noisy labels. In this paper, we propose a conditional
sample weighting (CoSW). CoSW utilizes a multi-prototype framework, where
prototypes serve as prior information to apply different weighting criteria to the
different feature clusters. A novel regularized within-prototype entropy (RWE) is
introduced to achieve CoSW and stable prototype update. The experiments show
that our approach achieves SOTA performance on both real-world and synthetic
noisy smoke segmentation datasets.

1 Introduction

Smoke segmentation holds significant research value as it enables precise localization of smoke.
In wildlife, smoke serves as a vital indicator of fire, and smoke segmentation allows for rapid
identification of the source of fire, facilitating prompt rescue [22, 56]. In industrial production, smoke
segmentation can identify gas leakage thereby preventing further spread [16]. There have been
numerous methods developed for smoke segmentation, ranging from traditional approaches based on
color [19, 48] and smoke morphology [11] to deep learning techniques that involve expanding the
receptive field [22, 28, 54, 55].

However, to the best of our knowledge, there is no specific work for smoke segmentation with label
noise. Noisy labels are almost inevitable in smoke segmentation. Unlike regular objects with clear
and concise edges, which are easy to annotate, smoke annotation poses two main challenges: 1)
Smoke edges are complex and blurry [53, 55], making it hard to distinguish smoke and background.
2) Smoke is non-rigid [23, 51] and lacks a fixed shape, making it difficult for annotators to become
proficient through practice with the same shape.

The noisy labels can have a large impact on the robustness of the model due to their strong memoriza-
tion power [1, 58]. Given that smoke segmentation is related to safety problems, errors stemming from
the instability can lead to significant disasters, resulting in extensive casualties and property losses.
Therefore, it is crucial to develop robust training to mitigate the noisy labels in smoke segmentation.
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Figure 1: (a) presents the noisy labels in smoke segmentation (blue for noisy labels, and red for
clean). (b) shows the pixel features extracted by the encoder of SAM [25]. Noisy labels are variably
distributed, with some located along class boundaries and others spread across different regions
within the smoke. Additionally, the features demonstrate a polycentric distribution, making them
well-suited for prototype-based modeling. In (c), CoSW assigns sample weights that effectively
identify regions with noisy labels and reduce their weights. (d) shows the intuition of CoSW.

However, most existing methods primarily focus on noisy labels in classification tasks. Even if a few
methods [60, 63] for segmentation, they directly apply classification methods and assume that the
noise at the pixel level is also i.i.d. (independent and identically distributed).

This assumption is not realistic in smoke segmentation, primarily due to the issue of variable
transparency in smoke. As depicted in Fig. 1, this problem is ubiquitous in smoke images, mainly
caused by the density, size of smoke particles, and lighting conditions, resulting in inconsistent
features of noisy labels. Noisy labels in the high transparency regions exhibit similarities to the
surrounding clean labels, while in the opaque regions, they differ significantly. Treating both types of
noisy labels using the same criteria would reduce the accuracy of identifying noisy labels. Moreover,
areas with high transparency are more prone to noisy labels and require refined criteria.

In this paper, we propose a conditional sample weighting (CoSW), which employs different weighting
criteria in different feature clusters to address the problem of feature inconsistency. As illustrated in
Fig. 1d, CoSW is built upon a multi-prototype framework and regards prototype as prior information
for determining the weighting criteria to obtain finer distinctions between samples. Pixel features
matching to the same prototype are a feature cluster. Prototype learning is intuitive and concise,
with its roots tracing back to the nearest neighbor algorithm [6]. Importantly, by utilizing multiple
prototypes, we can establish a polycentric pattern that structures and covers embedding space [4, 62],
including both highly transparent and low transparent features.

Under the framework of multi-prototype, CoSW needs to tackle two problems: ① How to determine
the sample weight through prototypes. ② How to update prototypes under noisy labels. The most
related method is CleanNet [27], which identifies noisy labels based on the similarity between
prototypes and samples. However, it only utilizes a single prototype for each class and solely
considers individual samples, neglecting the holistic information. As a consequence, it can not
dynamically adjust the weighting.

In order to obtain comprehensive information of the samples, a regularized within-prototype entropy
(RWE) is proposed to address these two problems in a unified manner. Entropy can be used for
uncertainty measurement and the maximum entropy principle (MaxEnt) allows for the consideration
of the entire probability distribution function (PDF) with minimal empirical risk, rather than focusing
solely on individual samples. RWE uses prototypes as anchors to build a separate noisy-level
evaluation system for each feature cluster. By maximizing RWE, we can consider the information
between all pixels that matched the given prototype and obtain adaptive sample weights (for ①).
Furthermore, by calculating the expectation of weighting samples, stable prototypes can be obtained
(for ②).

To demonstrate the robustness of our approach, we conduct experiments on both real-world (Smoke-
Seg [53] and SMOKE5K [51]) and a synthetic (NS-1K) noisy smoke segmentation dataset. Methods
from different fields (semantic segmentation, smoke segmentation, segmentation with label noise,
and sample weighting) are compared to demonstrate the superiority of our approach.

Our main contributions can be summarized as follows:
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• To the best of our knowledge, we are the first to investigate noisy labels in smoke segmenta-
tion.

• We propose a CoSW that serves prototypes as prior information to apply different weighting
criteria to the different feature clusters.

• A novel RWE is introduced to implement CoSW, which achieves adaptive sample weighting
and stable prototype update in a concise and unified way.

• Our approach achieves SOTA results on real-world and synthetic noisy smoke datasets.

2 Related Work

2.1 Smoke Segmentation

Traditional smoke segmentation approaches mainly concentrate on extracting color and texture
features, including color channel analysis [48] and color enhancement [19]. Additionally, vision-based
techniques like morphological operations [11], transmission estimation [30], and region growing [44]
have been also widely utilized. Deep-learning-based smoke segmentation methods tackle various
challenges related to smoke diversity and ambiguous edges. These approaches encompass multiple
aspects, such as 1) fusion of high and low-level features [49, 54, 55], 2) expanding the receptive
field [22, 28], and 3) employing coarse-to-fine strategies [56, 59]. 4) uncertainty estimation [51].
However, to the best of our knowledge, there is no work that addresses noisy labels in smoke
segmentation.

2.2 Sample Importance Weighting

The sample importance weighting (SIW) assigns low weights to potentially mislabeled samples
and high weights to potentially confident samples [20, 33, 38]. CleanNet [27] introduces prototype
learning for SIW, but it solely relies on the similarity between individual samples and prototypes,
neglecting the information from other samples. And it employs only one prototype for each class.
There are other techniques like Meta-learning [36, 37, 46], teacher-student architecture [21], itera-
tively training [50], and transfer learning [29] for SIW. Nevertheless, these methods are all targeted at
image-level classification, failing to address the issue of inconsistent features in smoke segmentation
with noisy labels.

2.3 Prototype Learning

The pioneer of prototype learning is the nearest neighbor algorithm [6]. Building upon this, many
nonparametric classification methods have been proposed, including learning vector quantization
(LVQ) [26], and neighborhood component analysis (NCA) [12]. In recent years, the concept of
prototype learning has also been incorporated into deep learning as it effectively structures and
covers the embedding space using a polycentric pattern. Research fields include supervised [31],
unsupervised [45], and self-supervised learning [4]. In image segmentation, prototype learning also
gains significant attention [9, 43, 62]. However, prototypes are less investigated in the field of noisy
labels, and how to update prototypes in a noisy dataset remains an unresolved issue.

2.4 Metric Learning

Metric learning maps raw data to an embedding space where similar features are pulled close while
dissimilar ones are pushed away. Metric learning and prototype learning can be naturally linked.
Some cluster-based methods are using one [24, 32] or multiple [34, 64] learnable prototypes to
represent the entire class information. They achieve such mapping through a specific loss function
such as contrastive loss [3, 14] and triplet loss [35, 42]. However, employing metric learning without
regularization can be detrimental under noisy labels [2, 58].
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3 Conditional Sample Weighting (CoSW)

3.1 Intuition and Overview

Previous research on learning with noisy labels primarily targets classification, with scant attention to
segmentation, often presuming noise to be i.i.d. However, the noisy labels in smoke segmentation are
different due to the variable transparency, resulting in inconsistent features within the noisy labels.
The objective of CoSW is to apply different weighting criteria to different feature clusters. We achieve
CoSW by introducing a regularized within-prototype entropy (RWE). In this section, we first review
the concepts of entropy and then introduce a within-prototype entropy (WE) and its regularized form,
RWE. Finally, the specific formulation of CoSW is presented and illustrated by a toy demo.

3.2 Preliminary: Entropy and MaxEnt

The concept of entropy originates in the realm of thermodynamics, but Shannon has a broader its
meaning to the information theory. Entropy can be utilized for measuring uncertainty. For a probability
distribution Π = (π1, π2, ..., πN ) of N random variables {x1, x2, ..., xN}, Shannon measures the
uncertainty for this distribution by T (Π) = −

∑N
i=1 πi lnπi, with the constrain

∑N
i=1 πi = 1.

There is an infinity of probability distributions satisfying the constraint. While maximum entropy
theory (MaxEnt) [18] states that, under a given set of constraints, the probability distribution with
maximum entropy is the most representative of the current knowledge of a system. Specifically,
MaxEnt allows for the consideration of the entire probability distribution with minimal empirical
risk, rather than focusing solely on individual samples.

3.3 Within-proto & Between-proto Entropy

Intuition. Only use probability do not take prototype information into account. Hence, we derive a
generalized entropy for prototype information.

Detail. Each class ω ∈ {ω1, ω2, · · · , ωΩ} is represented by K prototypes [pk]Kk=1 and thus we
have ΩK prototypes in total. We give each pixel feature xk

n ∈ RD a likelihood value vkn and
let

∑Nk

n=1 v
k
n = Nk and

∑ΩK
k=1

∑Nk

n=1 v
k
n =

∑ΩK
k=1 N

k = N . Since
∑Nk

n=1 v
k
n/N

k = 1 and∑ΩK
k=1

∑Nk

n=1 v
k
n/N = 1, we can define the following entropy based on the Shannon entropy:

Total Entropy:

T = −
ΩK∑
k=1

Nk∑
n=1

vkn
N

ln
vkn
N

, (1)

Within-prototype Entropy (WE):

Tw = −
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

), (2)

Between-prototype Entropy:

Tb = −
ΩK∑
k=1

Nk

N
ln

Nk

N
, (3)

It can be proven that T = Tw + Tb. Additionally, we also provide the WE derived from different
entropies (Burg’s entropy and Kapur’s entropy) as the basis.

3.4 Regularized Within-prototype Entropy (RWE)

Intuition. Without adding additional constraints, the within-prototype entropy is maximized when
all pixel features have the same likelihood value (i.e., vkn = 1). To tackle the issue of noisy labels,
we integrate M-estimation [17] into within-prototype entropy, assigning low weights to noisy labels.
The key of original M-estimation is to estimate the mean vector under the noise data. However, in
deep learning, obtaining the overall mean of samples becomes challenging due to mini-batch training.
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Figure 2: Architecture illustration of CoSW for smoke segmentation during the training process.

Nevertheless, we observe a resemblance between this idea and the concept of prototype learning,
where prototypes act as feature representations.

Detail. We substituted the mean vector with prototypes to form the constraints:

p̂M (xk
n) = argmin

p

Nk∑
n

q(xk
n − pk)

vkn
Nk

, (4)

where pk represents the corresponding prototype of xk
n, and q(·) denotes the penalty function that

measures the influence of the residual error xk
n − pk. By incorporating this constraint, we can

maximize the following objective function in conjunction with the within-prototype entropy:

max
P,V

J(P, V ) = −
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

)− γ

ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk
∥xk

n − pk∥2, (5)

with the constraint
∑Nk

n=1 v
k
n = Nk, where Nk denotes the number of pixel features belonging to

ω. The penalty function q(·) employs the L2 norm. The γ ∈ [0, 1] is a regularization parameter
which controls the degree of punishment. The function J(P, V ) in Eq. 5 is called regularized
within-prototype entropy (RWE).

Convergence of the RWE. The Eq. 5 can be enlarged by:

J(P, V ) ≤ −
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

) ≤ 1

N

ΩK∑
k=1

Nk lnNk, (6)

This proves RWE has an upper bound. According to Cauchy’s convergence rule, the RWE is
convergent.

3.5 Conditional Sample Weighting (CoSW)

The CoSW can be obtained by solving Eq. 5, and the likelihood vkn is regarded as the weighting of
the sample. We can transform the Eq. 5 to incorporate constraints by Lagrange multipliers and obtain
the CoSW vkn of each sample and the objective values p̂k for prototype update:

vkn = Nk exp(−γ∥xk
n − pk∥2)∑Nk

n=1 exp(−γ∥xk
n − pk∥2)

, (7)

p̂k =

∑Nk

n=1 x
k
n exp(−γ∥xk

n − pk∥2)∑Nk

n=1 exp(−γ∥xk
n − pk∥2)

, (8)

The derivation can be found in the Appendix A.

Toy Demo. We provide a toy demo to demonstrate CoSW clearly. Let X1 = {1, 1, 1, 1, 5} and
X2 = {−1,−1,−1,−1, 0} be two feature clusters that match to the prototype p1 = {1} and
p2 = {−1}, respectively. Assume X1 contains an obvious noisy label {5} and X2 contains an
covert noisy label {0}. For normal sample weighting approaches (such as CleanNet), the weights are
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calculated by comparing each sample with the center ({0.5}) of two clusters. The weight of the two
noisy labels can be calculated as v(5) = 0.0282 and v(0) = 1.5409, respectively. This method assigns
an excessively high weight to the noisy label {0}. When we use CoSW, which involves using two
prototypes to weigh the importance of each feature separately, we can calculate the vp1

(5) = 0.0228

and vp2

(0) = 0.4211 through Eq. 7. The noticeable decrease in the weight of the noisy label {0}. For
prototype updating, in the case of X1, if CoSW is not applied and only the mean is used for updating,
the new prototype p

′

1 = {1.8}, which differs from the original value of {1}. When CoSW is applied
and the noisy label {5} is given a weight, the new prototype is p

′

1 = {1.0067} (cf. Eq. 8), indicating
minimal impact on its origin value.

4 CoSW for Smoke Segmentation

In this section, we introduce how to apply CoSW to smoke segmentation, including pixel-proto
matching, loss design, prototype updating, and regularized scatter metric learning. The entire process
is illustrated in Fig. 2.

4.1 Pixel-Prototype Matching

Intuition. For multi-prototype methods, a crucial task is to match pixels to prototypes. The simplest
approach is adopting the nearest neighbors principle. However, this can lead to a large number of
pixels being assigned to the same prototype, while the remaining prototypes are left without any
matching pixels. Therefore, we apply additional constraints to the original optimization problem to
prevent the occurrence of trivial solutions. This part refers to the matching process in ProtoSeg [62]
and SwAV [4].

Detail. The goal is to match the pixel features Xω to one of the prototypes in class ω. The
matching strategy is denoted as Mω ∈ RK×Nω

. The Mω is optimized by minimizing the overall
distance between each pixel feature (i.e., Xω ∈ RD×Nω

= [xn]
N
n=1) and its matched prototype (i.e.,

P ω ∈ RD×K = [pω
k ]

K
k=1):

min
Mω

Tr(Mω⊤Cω),

s.t. Mω∈{0, 1}K×Nω

, Mω⊤1K = 1Nω

,Mω1Nω

=
Nω

K
1K ,

(9)

where 1K and 1Nω

denote all-one vectors. Mω⊤1K = 1Nω

is a unique matching constrain which
guarantees each pixel feature is assigned to only one prototype. Mω1Nω

= Nω

K 1K is an equipartition
constraint [4] which avoids the trivial solution in which all pixels are assigned to a single prototype.
And Cω ∈ RK×Nω

represents the cost matrix that measures the distance between pixel features and
prototypes.

Eq. 9 is a typical transportation problem [39] which can be easily calculated by the iterative Sinkhorn-
Knopp algorithm [7]. Specific derivation and implementation can be found in the Appendix C.

4.2 Sample Weighting and Prototype Update

Prototype 
(Current)

Noisy Label

Moving Path

Sample Weight

Prototype 
(Previous)

(a) w/o CoSW

✓

(b) With CoSW

Effective Scope

Figure 3: Regularized prototype update.

In the pipeline of smoke segmentation,
CoSW is employed in the loss func-
tion. We incorporate CoSW into the
basic cross-entropy loss:

Lw-CE =

N∑
n=1

vnCE(ŷn, yn), (10)

where vn refers to Eq. 7. ŷn and yn
respectively represent the predicted
value and ground truth for each pixel
in a mini-batch. N represents the
number of pixels in a mini-batch.

As for prototype update, it is challenging to ensure stability under noisy labels, as shown in Fig. 3.
Our objective for prototype updating is p̂k (cf. Eq. 8) with CoSW. To ensure stable training, we also
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Figure 4: Examples of the clean and three corrupted masks in NS-1K.

incorporate the update in a momentum way [15]:

p̂k ← µpk + (1− µ)p̂k; k = 1, 2, · · · ,ΩK, (11)

where µ ∈ [0, 1] is a momentum hyper-parameter.

4.3 Regularized Scatter Metric Learning (RSML)

Intuition. In prototype framework, metric learning is a widely used and powerful tool [62] that brings
similar features closer and pushes dissimilar ones apart, enabling the acquisition of a discriminative
embedding space. However, due to the presence of noisy labels, metric learning may lead to overfitting.
Therefore, we further incorporate the weighting into the scatter matrix to ensure the effectiveness of
metric learning. The scatter matrix can capture the dispersion information of the samples [61].

Detail. The way we implemented it is by incorporating CoSW into the Within-prototype Scatter
Matrix (WSM). The WSM serves as a representation of the dispersion of samples in relation to their
corresponding prototypes, allowing for the assessment of the compactness within each prototype. We
integrate CoSW vkn (cf. Eq. 7) into WSM for regularization:

Sw =

ΩK∑
k=1

Nk∑
n=1

vkn
N

(xk
n − pk)(xk

n − pk)T , (12)

For the Between-prototype Scatter Matrix (BSM), we do not apply weighting. The BSM can be
employed to quantify the separability between prototypes and features. We employ the non-parametric
strategy in which the scatter matrix is calculated between each pixel feature and its nearest neighbor
prototype. The BSM is defined as follows:

Sb =
1

N

N∑
n=1

(xω0
n − pNN (xn))(x

ω
n − pNN (xω

n))
T , (13)

where pNN (xn) is the nearest neighbor prototype of xn.

Finally, we employ the ratio-trace form [41] to transform the scatter matrices into a numeric value:
LS = 1

Tr(S
′−1
w Sb)

, where S
′

w = Sw + εI and the εI is added to guarantee the reversibility of Sw

and we set ε = 10−5. DeepLDA [10] has demonstrated that this trace form can be optimized using
gradient descent. Our final objective function is a combination of weighted cross-entropy loss Lw-CE
(cf. Eq. 10) and scatter loss LS: L = Lw-CE + αLS, where α is a weight hyperparameter.

5 Experiments

5.1 Experimental Setup

Real-world Noise Setting. Due to the visual diversity and blurry edges of smoke, label noise in the
large-scale real-world smoke datasets (SmokeSeg [53] and SMOKE5K [51]) is ubiquitous. Hence,
we conduct experiments on both datasets as real-world noise evaluation. To accurately measure
the robustness of the model, a clean validation set is essential. Therefore, we carefully re-annotate
the validation set of both datasets. The distinction between SmokeSeg and Smoke5K resides in the
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Table 1: Quantitive comparison on the real-world noisy dataset SmokeSeg. We compare methods
from various domains, including semantic segmentation (◦), smoke segmentation (†), segmentation
with label noise (§), and sample weighting (∗). The best: bold, the second: underline.

Methods Backbone Total Small Medium Large

F1 mIoU F1 mIoU F1 mIoU F1 mIoU

Real-time

AFFormer◦ [8] AFFormer-B 58.41 47.89 45.98 34.10 64.52 53.20 66.96 54.15
SeaFormer◦ [40] SeaFormer-B 57.58 44.70 41.33 30.35 66.02 53.10 67.16 53.21
SegFormer◦ [47] MiT-B0 60.90 48.53 48.31 35.69 68.86 53.34 68.53 55.80
SC§ [52] MiT-B0 59.78 47.70 45.76 33.15 68.37 55.68 66.13 53.96
CleanNet∗ [27] MiT-B0 61.63 47.00 47.16 33.57 66.23 50.91 70.96 56.22
Ours MiT-B0 62.98 48.62 49.85 36.64 68.81 53.87 70.79 55.85

Normal

DeeplabV3+◦ [5] ResNet-50 65.92 53.50 54.03 41.07 71.82 58.73 71.87 58.95
OCRNet◦ [57] HRNet-48 64.93 52.45 52.04 39.47 71.04 57.47 70.51 58.19
SegNeXt◦ [13] MSCAN-L 66.71 52.37 58.05 44.16 70.41 55.77 72.97 58.42
Trans-BVM† [51] ResNet-50 67.15 53.11 59.02 44.62 71.50 56.99 73.36 58.97
Ours ResNet-50 68.49 54.09 61.27 46.28 72.31 58.08 74.78 60.81

SegFormer◦ [47] MiT-B3 67.70 53.37 57.67 45.21 73.87 60.49 72.06 58.52
Trans-BVM† [51] MiT-B3 67.68 53.09 60.85 45.87 71.73 57.35 73.51 59.10
SC§ [52] MiT-B3 69.55 55.04 62.26 48.47 71.41 57.06 72.91 58.23
CleanNet∗ [27] MiT-B3 70.17 56.94 61.98 48.05 73.06 59.07 74.57 60.93
Ours MiT-B3 72.32 59.25 64.62 50.86 74.37 61.14 75.52 62.30

Table 2: Comparison on the real-world noisy dataset SMOKE5K and synthetic noisy dataset NS-1K.
Notation: semantic segmentation (◦), smoke segmentation (†), segmentation with label noise (§),
sample weighting (∗). The best: bold, the second: underline.

(a) Comparison on SMOKE5K.

Methods Fβ mIoU

OCRNet◦ [57] 72.51 63.00
DeeplabV3+◦ [5] 73.83 64.08
SegNeXt◦ [13] 76.44 67.08
Trans-BVM† [51] 76.23 67.55
Ours 77.02 67.58

SegFormer◦ [47] 78.68 68.29
Trans-BVM† [51] 78.91 68.97
SC§ [52] 79.33 69.40
CleanNet∗ [27] 80.37 70.23
Ours 81.71 71.24

(b) Comparison on the synthetic noisy dataset NS-1K.

Trans-BVM† [51] SC§ [52] CleanNet∗ [27] Ours

Noise Ratio Noise Intensity F1 mIoU F1 mIoU F1 mIoU F1 mIoU

0% - 52.79 39.12 51.94 37.84 52.02 38.24 52.59 38.32

20% Low 51.91 38.16 51.81 37.94 51.21 37.24 51.77 37.58
High 48.02 34.52 51.14 37.15 50.34 36.31 50.99 36.80

40% Low 45.40 32.30 49.69 35.89 49.09 35.53 50.18 36.69
High 41.09 28.15 45.31 32.16 46.08 33.15 48.34 34.73

60% Low 42.73 29.01 44.12 30.87 46.33 33.96 48.38 35.34
High 40.57 27.50 41.77 28.44 43.69 29.87 45.86 32.08

80% Low 39.28 26.42 40.52 27.42 42.96 29.37 44.40 31.24
High 37.38 25.58 39.09 25.88 40.27 27.21 42.37 29.89

unique smoke samples in SmokeSeg, which display high and variable transparency. Consequently,
SmokeSeg offers a better assessment of the robustness of the model.

Synthetic Noise Setting (NS-1K). To further investigate the robustness of the model to noise, we
also create a synthetic noise smoke segmentation dataset called NS-1K. We select 1,000 images
from SmokeSeg and carefully re-annotate them to obtain clean labels. Among them, 700 images
are used for training, and 300 images are used for validation. Then, we add noise to this dataset in
different forms, including eroded, dilated, and edge-distorted noise, as shown in Fig. 4. It is noted
that edge-distorted is implemented by randomly dilating or eroding the pixels on the boundary with
a circle. In the experiment, we set two noise parameters: one is the ratio of noise data (20%, 40%,
60%, 80%), and the other is the intensity of the noise data (high and low). The intensity of the noise
is determined by adjusting the degree of pixel displacement for three noise types.

Implementation Details. We implement our method on MMSegmentation. Standard color jittering,
random cropping, and random flipping are adopted for data augmentation during the training stage.
All experimental backbones are pre-trained on ImageNet-1K. We utilize the AdamW optimizer, with
learning rate starting at 6e-5 and scheduled according to the polynomial annealing policy. For the
SmokeSeg, we crop images to a size of 512× 512 for training, while for SMOKE5K, we follow the
previous methods and resize the images to 480× 480. For validation, we use the whole inference
method, and for simplicity, we do not use any data augmentation during the validation.

Evaluation Metric. Following previous literature, we employ F1 and mIoU for evaluation.
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Table 3: Ablation study of CoSW and metric learning.

(a) Ablation study of CoSW (dataset: SmokeSeg).

Proto Sample Weight Proto Weight F1 mIoU

bl 67.70 53.37
(1) ✓ 68.17 ↑ 0.47 55.23 ↑ 1.86
(2) ✓ ✓ 70.04 ↑ 2.34 56.40 ↑ 3.03
(3) ✓ ✓ 69.38 ↑ 1.68 55.72 ↑ 2.35
(4) ✓ ✓ ✓ 71.39 ↑ 3.69 57.68 ↑ 4.31

(b) Ablation on metric learning.

F1 mIoU

Proto 68.17 55.23
Triplet Loss 67.80 55.04
Scatter Loss 69.15 56.30

CoSW+Triplet 71.88 58.49
CoSW+ Scatter 72.32 59.25

Image 1k Iters 5k Iters 20k ItersGT Trans-BVM OursCleanNet

(b) The formation process of CoSW (blue curve for noisy 
labels, and red for clean in the first image column).

(a) Comparison of segmentation results in different scales.

Figure 5: The comparison of segmentation results in different scales and the formation of CoSW.

5.2 Comparison on Real-world Label Noise

Tab. 1 and Tab. 2a present the comparative results on the real datasets SmokeSeg and SMOKE5K,
respectively. We compare our method with methods from different domains, including general
semantic segmentation, SOTA method Trans-BVM [51] for smoke segmentation, segmentation
with noisy labels method, SC [52], and the sample weighting method, CleanNet [27]. The results
demonstrate that our method achieves the best performance in both datasets. Fig. 5a presents the
segmentation results of different methods. The Trans-BVM exhibits high miss detection, while
CleanNet is prone to false alarms. In contrast, our method demonstrates the best performance.

5.3 Comparison on Synthetic Label Noise

Tab. 2b reports the comparative results of different methods on a synthetic noisy dataset NS-1K.
When the dataset is clean or contains only a small amount of low-level noise, Trans-BVM performs
the best, as it is specifically designed for smoke detection. However, as the ratio and intensity of noise
increase, the performance of the Trans-BVM rapidly deteriorates. In contrast, our method maintains
robustness. In the case of maximum noise, our method achieves approximately higher F1 compared
to Trans-BVM.

5.4 Investigation on CoSW

Quantitive Ablation. To investigate the effect of CoSW, we conduct quantitive ablation, as illustrated
in Tab. 3a. In the ablation study, the baseline is SegFormer. Tab. 3a(1) replaces the decoder head
of SegFormer with prototypes. And there is improvement in model performance, indicating that
prototypes inherently provide robustness. In Tab. 3a(2), we incorporate CoSW into the samples,
resulting in a significant performance improvement. Tab. 3a(3) focus on utilizing CoSW for prototype
updates, as stable updates can also enhance robustness. Finally, in Tab. 3a(4), we combine both
approaches, resulting in the best performance achieved.
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How CoSW Formation. To investigate the reasons behind the effects of CoSW, we visualize the
formation process of CoSW, as shown in Fig 5b. It can be observed that as training progresses,
CoSW gradually forms its own confidence area. It reduces the weight of the noisy label parts, and
even more so for highly transparent areas, as these regions are more prone to noise. This indicates
that with the aid of CoSW, the model has developed its own recognition of smoke, rather than
being completely governed by labels. This is likely the reason for its robustness against noisy
labels. However, the CoSW requires the assumption that the majority of pixels have clean labels.

Image CleanNet CoSW (Ours)

Figure 6: Comparison of sample weighting.

When the label mask is completely noisy, the
model is also unable to distinguish the noisy la-
bels, because it can not learn which features are
the common of smoke.

Qualitative Comparation. Fig. 6 illustrates the
qualitative comparison among prototype-based
sample weighting methods, CleanNet, and our
CoSW. Although CleanNet can provide a confi-
dence area similar to that of CoSW, its area is
less precise. Moreover, the weighting area of
CleanNet changes more abruptly and lacks speci-
ficity. In contrast, CoSW differentiates between
transparent and opaque areas: the weighting in
transparent areas is gradual, while it is steeper in
transparent areas.

5.5 Further Investigation

Effect of Regularized Scatter Metric Learning. In Sec. 4.3, we introduce RSML, designed
specifically for metric learning under noisy labels. Tab. 3b demonstrates the effect of RSML. It
can be observed that using the triplet loss directly in metric learning under noisy labels diminishes
the performance of the model. However, incorporating CoSW leads to improved results, and the
performance is further enhanced when using the scatter matrix as a metric for evaluation.

Table 4: Different entropies.
F1 mIoU

Kapur’s Entropy 71.34 58.38
Burg’s Entropy 69.20 55.72

Shannon’s Entropy 72.32 59.25

Different Entropies. Our RWE (cf. Eq. 5) utilizes Shannon
entropy as its foundation in this paper. We have also experi-
mented with different entropies, such as Kapur’s entropy and
Burg’s entropy. The results are shown in Tab. 4. The derivation
process is provided in the Appendix B.

6 Conclusion

Smoke annotation is prone to noisy labels, which can lead to model instability and result in serious
accidents. However, existing methods have not addressed the issue of noisy labels in this field. In
this paper, we introduce conditional sample weighting (CoSW) to address inconsistent noisy labels
in smoke segmentation. CoSW utilizes prototypes as prior information and measures each feature
cluster with different criteria to re-weight the samples adaptively. Experimental results show that our
CoSW achieves the best performance on both real and synthetic noisy smoke segmentation datasets.

Limitations. The CoSW relies on the assumption that the majority of pixels have clean labels. If the
degree of noise is very high, the prototype may learn the features of the noise rather than the classes
(background and smoke). To determine whether the prototype is clean, it is necessary to introduce
clean validation, which is not implemented in our work. This is also a direction for further research.
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Appendix

A CoSW Derivation

The optimization problem for CoSW is:

max
P,V

J(P, V ) =−
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

)

− γ

ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk
∥xk

n − pk∥2,

(14)

with the constraint
∑Nk

n=1 v
k
n = Nk, where Nk denotes the number of pixel features belonging to ω.

The penalty function q(·) employs the L2 norm. The γ ∈ [0, 1] is a regularization parameter which
controls the degree of punishment.

We can transform the maximization function to incorporate all constraints by Lagrange multipliers:

L(P, V ) =−
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

)

− γ

ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk
∥xk

n − pk∥2

+

ΩK∑
k=1

λk(

Nk∑
n=1

vkn
Nk
− 1).

(15)

Taking the partial derivative of Eq. 15 with respect to vkn and p equal to zero, we can obtain the CoSW
vkn of each sample and the objective values p̂k for prototype update:

∂L

∂vkn
=− Nk

N
(
1

Nk
ln

vkn
Nk

)

− γ
1

N
∥xk

n − pk∥2 + λk 1

Nk
= 0,

(16)

∂L

∂pk
= 2

Nk∑
n=1

Nk

N
(xk

n − pk)
vkn
Nk

= 0. (17)

For Eq. 16, we have ln vkn/N
k = −γ∥xk

n − pk∥2 + γ(N/Nk)λk − 1. Then

vkn
Nk

= exp(−γ∥xk
n − pk∥2) exp(

λkγN

Nk
− 1). (18)

Since
∑Nk

n=1 v
k
n = Nk, we have

exp(
λkγN

Nk
− 1) =

1

exp(−γ∥xk
n − pk∥2)

. (19)

Substituting Eq. 19 into Eq. 18, the sample weighting can be obtained:

vkn = Nk exp(−γ∥xk
n − pk∥2)∑Nk

n=1 exp(−γ∥xk
n − pk∥2)

. (20)

And for Eq. 17, we have

p̂k =

∑Nk

n=1 x
k
nv

k
n∑Nk

n=1 v
k
n

=

∑Nk

n=1 x
k
n exp(−γ∥xk

n − pk∥2)∑Nk

n=1 exp(−γ∥xk
n − pk∥2)

. (21)
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B Other Entropies

B.1 Burg’s Entropy

For a probability distribution Π = (π1, π2, ..., πN ) of N random variables {x1, x2, ..., xN}, Burg’s
entropy is defined as

TB(Π) = −
N∑
i=1

lnπi. (22)

Based on this, we can define the following entropy:

Total-prototype entropy:

TB =

ΩK∑
k=1

Nk∑
n=1

ln vkn/N. (23)

Within-prototype entropy:

TB
w =

ΩK∑
k=1

TB
k , (24)

where TB
k =

∑Nk

n=1 ln v
k
n/N is formulated as the Burg’s entropy of the similarities in the n-th

prototype.

Between-prototype entropy:

TB
b =

ΩK∑
k=1

Nk∑
n=1

lnNk/N. (25)

Then, we also have TB = TB
w + TB

b . The optimization objective can be formulated as

max
P,V

JB(P, V ) =−
ΩK∑
k=1

Nk∑
n=1

ln(
vkn
Nk

)

− γ

ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk
∥xk

n − pk∥2.

(26)

We can follow the procedure in Sec. A to solve Eq. 26:

vkn = Nk (−γ∥xk
n − pk∥2)∑Nk

n=1(−γ∥xk
n − pk∥2)

, (27)

p̂k =

∑Nk

n=1 x
k
n(−γ∥xk

n − pk∥2)∑Nk

n=1(−γ∥xk
n − pk∥2)

, (28)

B.2 Kapur’s Entropy

For a probability distribution Π = (π1, π2, ..., πN ) of N random variables {x1, x2, ..., xN}, Kapur’s
entropy is defined as

TK(Π) = −
N∑
i=1

πi lnπi −
N∑
i=1

(1− πi) ln(1− πi). (29)

Based on this, we can define within-prototype Kapur’s entropy as

Tw =−
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

)

−
ΩK∑
k=1

Nk

N

Nk∑
n=1

(1− vkn
Nk

) ln(1− vkn
Nk

).

(30)
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For Shannon’s entropy and Burg’s entropy, we have T = Tw + Tb and TB = TB
w + TB

b . However,
in Kapur’s entropy, it is not the case. For a given classification problem, maximizing the within-
prototype Kapur’s entropy is different from maximizing Kapur’s entropy on the whole dataset. This
means we cannot simply consider maximizing the entropy of each prototype independently. But for
consistency and comparison, we also use the within-class Kapur’s entropy instead of the within-class
entropy to design the objective function.

Based on Eq. 30, we have the following objective function:

max
P,V

JK(P, V ) =−
ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk

ln(
vkn
Nk

)

−
ΩK∑
k=1

Nk

N

Nk∑
n=1

(1− vkn
Nk

) ln(1− vkn
Nk

)

− γ

ΩK∑
k=1

Nk

N

Nk∑
n=1

vkn
Nk
∥xk

n − pk∥2.

(31)

The likelihood value and the objective of the prototype update can be obtained by following the
procedure in Sec. A:

vkn = Nk 1

1 + exp(−∥xk
n − pk∥2 − λk)γ

, (32)

p̂k =

Nk∑
n=1

xk
n

1 + exp(−∥xk
n − pk∥2 − λk)γ

, (33)

where λk are the solutions of
∑Nk

n=1 v
k
n = Nk.

C Details of Pixel-Prototype Matching (P2M)

C.1 Derivation of P2M

The P2M is based on the matching process in ProtoSeg [62] and SwAV [4]. The optimization problem
to be solved is

min
Mω

Tr(Mω⊤Cω),

s.t. Mω∈{0, 1}K×Nω

, Mω⊤1K = 1Nω

,Mω1Nω

=
Nω

K
1K ,

(34)

where Mω ∈ RK×Nω

is the matching strategy and Cω ∈ RK×Nω

represents the cost matrix that
measures the distance between pixel features and prototypes:

Cω
ij = ∥xω

j − pω
i ∥2, i = 1, 2, · · · ,K, j = 1, 2, · · · , Nω. (35)

Eq. 34 is a typical transportation problem [39] and solving it directly using linear programming is
time-consuming. One fast approach involves incorporating an entropy regularization term τH(Mω)
to facilitate the relaxation of Mω and acquire an approximate solution [7]:

min
Mω

Tr(Mω⊤Cω)− τH(Mω),

s.t. Mω∈RK×Nω

+ , Mω⊤1K = 1Nω

,Mω1Nω

=
Nω

K
1K ,

(36)

where H(Mω) = −
∑

ij M
ω
ij logMω

ij and the τ > 0 is applied to control the smoothness of the
matching strategy. We set τ = 0.05. The solution of Eq. 36 can be given by:

Mω = Diag(u) exp
(Cω

−τ
)
Diag(v), (37)

where u ∈ RK and v ∈ RNω

represent renormalization vectors. They can be calculated by
the iterative Sinkhorn-Knopp algorithm [7] which is efficient on GPU as it only relies on matrix
multiplications.
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Table 5: Impact of the number of iterations in Sinkhorn-Knopp algorithm (dataset: SmokeSeg,
backbone: MiT-B3).

# Sinkhorn Iterations 1 3 5 10 20

F1 66.40 72.32 72.22 72.15 72.10
mIoU 52.78 59.83 59.63 59.38 59.23

C.2 The Number of Sinkhorn Iterations

We also investigate the impact of the number of normalization steps on model performance, as shown
in Tab. 5. It can be observed that when iteration=1, the model performance is poor. We think this is
due to an insufficient number of steps, which fails to adequately match the pixels and prototypes. As
the number of iterations increases, the performance of the model improves and tends to stabilize.

C.3 The Number of Prototypes Per Class

Tab. 6 reports the performance of different numbers of prototypes. It can be observed that as the
number of prototypes increases from 1 to 3, there is a significant improvement. This demonstrates that
the polycentric embedding space formed by multiple prototypes indeed enhances the representation
of the model. The growth becomes slow when the number exceeds 10.

Table 6: Impact of the number of prototypes (dataset: SmokeSeg, backbone: MiT-B3).
# Prototype Number 1 3 5 10 20

F1 68.73 70.85 71.71 72.32 72.43
mIoU 56.50 58.39 59.23 59.83 59.92
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper provides a complete and correct proof in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information necessary to reproduce the main
experimental results (in main submission and appendix), ensuring that the main claims and
conclusions of the paper can be independently verified and validated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper has not yet been open-sourced for data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a thorough description of the details of our experiments in the
paper and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: There is no reporting of error bars or statistical significance information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The paper does not provide sufficient information on the computer resources,
such as the type of comput workers, memory, and time of execution needed to reproduce
the experiments. However, the paper compensates for this by providing details on the
computational complexity of the proposed methods and other SOTA methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics,
as outlined in the provided URL. The paper adheres to the ethical practices and guidelines
specified in the NeurIPS Code of Ethics during the research process.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper solely emphasizes the positive societal impacts of the work per-
formed, omitting any discussion of potential negative consequences or societal drawbacks.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper thoroughly acknowledges and properly credits the creators or origi-
nal owners of assets, including code, data, and models, used in the research. Additionally, it
explicitly mentions and respects the licenses and terms of use associated with these assets,
ensuring ethical and legal compliance.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper contributes a synthetic noisy dataset NS-1K.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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