Published as a Tiny Paper at ICLR 2023

PROPAGATE DEEPER AND ADAPTIVE GRAPH CONVO-
LUTIONAL NETWORKS

Sisi Zhang

School of Computer Science and Engineering
Northeastern University

Shenyang, China
shujizhangsisi@126.com

Fan Li

School of Computer Science and Engineering
Northeastern University

Shenyang, China

1ifl119@foxmail.com

Lun Du *

Data Knowledge Intelligence Group
Microsoft

Beijing, China
lun.du@microsoft.com

Ge Yu

School of Computer Science and Engineering
Northeastern University

Shenyang, China

yugel@mail .neu.edu.cn

Mengyuan Chen

Beijing Normal University
Beijing, China
chenmy.sharon@gmail.com

ABSTRACT

Graph Convolutional Networks (GCNs) are the basic architecture for handling
graph-structured data. How to deepen GCNs like Convolutional Neural Networks
(CNN) and Transformer to improve their capability has always been a challenge.
As the number of layers increases, the performance of GCNs degrades, which
is commonly attributed to over-smoothing but is constantly debated. In this pa-
per, we eliminate the equivalence between model degradation and over-smoothing
or gradient vanishing and propose a systematic solution, an Adaptive DeepGCN
(ADGCN) architecture, which makes the model the potential to address all issues.
We locate learnable parameters in optimal locations to enable adaptive adjust-
ments for various types of graph-structured data. We conduct experiments on
real-world datasets to verify the stability and adaptability of our architecture.

1 INTRODUCTION

The studies have demonstrated that deeper architectures can increase the expression ability of deep
neural networks in many domains, however, model degradation refers to the decline in generalization
performance after stacking many GCN layers. Many studies have investigated the causes of it. We
discover that there are causes of diversification that depend on different concerns. Some studies have
focused primarily on over-smoothing caused by multiple graph convolution operations, others have
concentrated on gradient vanishing, and still, others have expanded their perspective to consider the
generalization gap based on the Lipschitz constraint to identify the key factors which can enhance
model performance (Yang et al., 2020; |Chen et al., 2020a; Feng et al.l |2020; Zhu et al., 2021} |Yan
et al., 2021} |Chien et al.| 2021} |Godwin et al., 2022; |Cong et al., [2021; |Zhang et al., 2022 Huang
et al.l [2023)).

We argue that model degradation is a complex problem that is not caused by a single issue but rather
by the coexistence of various factors. The differences in conclusions among previous studies can be
attributed to the alteration of key factors revealed due to different settings. For instance, some stud-
ies focus on models with fewer than 10 layers, which exhibit normal gradients and low complexity

*Corresponding Author

Published as a Tiny Paper at ICLR 2023

but suffer from over-smoothing. As the number of layers increases, the problem of gradient vanish-
ing becomes more pronounced, potentially overshadowing other issues. We propose a systematic
solution, an Adaptive DeepGCN (ADGCN) architecture, which makes the model the potential to ad-
dress all issues. It is beneficial to consistently manage the interaction between various components
through end-to-end learning in neural networks. We place learnable parameters at the appropriate
locations so that the model has space to make adaptive adjustments to different graph-structured
data. The effect is comparable to the architecture of precise manual parameter modification.

The ADGCN architecture consists of three components that regulate the model’s information prop-
agation, control the model complexity, and introduce the attention mechanism as a control switch
for selective aggregation of information across layers. Through experiments, we gain a deeper un-
derstanding of the necessity of the “systematic” approach. For instance, when considering only
reducing the model’s complexity (i.e., the number of parameters in the model is excessive for the
current dataset), there is an improvement in the generalization ability and training effectiveness
compared to the basic GCN model. However, the degradation still persists.

2 ADAPTIVE DEEPGCN

When the performance of GCNs combined with residual connections or other technologies is still
reduced (Li et al.| | 2019), it is clear that only guaranteeing the training accuracy (roughly equal to 1)
is not enough. Additionally, as the number of layers increased, the performance of the GCN variants,
namely GCNII (Chen et al., 2020b)) and Decoupled GCN (DGCN) (Cong et al.,|2021), improved. In
order to create a more stable and adaptable deep GCN architecture, we also propose the ADGCN.

The ADGCN model can be mathematically formulated as H = softmax(Z), Z = ZlL:l vH® and
HY = o((yPHY 4+ (1 —) HO)(BWO 4 (1 — 5)I)), where oy, £; and ~; are the learnable
parameters for the [-th layer of the model, and v, > 0Vl € {0,1,..., L}, ZlL:O v, = 1. Intuitively,
« can determine the trade-off between topology information and the initial node information of each
layer, which preserves node information while also expanding the receptive field. [controls the
model complexity, and -y can aggregate each hidden layer with attention mechanism. In addition,
GCNII has manually adjustable hyper-parameters « and /3, DGCN with learnable parameters 8 and
v, and ResGCN with the residual connections. Due to the space limit, the mathematical formulas
and other details of the models are deferred to Appendix.

Table 1: Comparison of classification accuracy on citation network datasets.

Dataset Models 2 Layers(epoch) 4 Layers 8 Layers | 16 Layers 32 Layers 64 Layers 128 Layers(epoch)
GCN 0.8010(600) 0.8011(600) 0.7471(600) FIT - - -

ResGCN 0.8106(600) 0.7993(600) 0.7735(600) | 0.7885(600) 0.7793(1000) FTT -

Cora GCNII 0.8006(200) 0.7965(200) 0.8004(200) | 0.8098(200) 0.8219(200) 0.8153(200) 0.8233(200)
DGCN 0.8094(200) 0.8093(200) 0.8113(200) | 0.8105(200) 0.8062(200) 0.8125(200) 0.8132(200)
ADGCN(a, 3,7) 0.7871(200) 0.8147(200) 0.8151(200) | 0.8152(200) 0.8181(200) 0.8214(200) 0.8222(200)
ADGCN(uniform) 0.7700(200) 0.7993(200) 0.7788(200) | 0.7898(200) 0.7876(200) 0.7987(200) 0.8069(200)

GCN 0.7301(600) 0.7292(600) 0.6748(600) FTT - - -

ResGCN 0.7398(600) 0.7678(600) 0.7590(600) | 0.7222(600) 0.7275(600) FIT -

PubMed GCNII 0.7687(200) 0.7699(200) 0.7804(200) | 0.7962(200) 0.7975(200) 0.7984(200) 0.7949(200)
DGCN 0.7795(200) 0.7725(200) 0.7844(200) | 0.7838(200) 0.7849(200) 0.7854(200) 0.7890(200)
ADGCN(«e, 3,7) 0.7653(200) 0.7812(200) 0.7902(200) | 0.7908(200) 0.7922(200) 0.7981(200) 0.7945(200)
ADGCN(uniform) 0.7668(200) 0.7625(200) 0.7706(200) | 0.7702(200) 0.7731(200) 0.7669(200) 0.7736(200)

3 EXPERIMENT AND MAIN RESULT

We use the Cora, Citeseer, PubMed, and Wiki Chameleons datasets to assess the accuracy of each
model in the node classification task. Due to space limitations, the statistical information of the
datasets, detailed comparisons between different architectures, and the ablation experiments of the
ADGCN model will be provided in the Appendix.

As shown in Table [} we highlight important results in bold, and FTT stands for failure to train,
indicating a model’s inability to achieve satisfactory training accuracy within a reasonable number
of iterations. In comparison to other models, ADGCN achieves higher accuracy with deeper layers

Published as a Tiny Paper at ICLR 2023

without having to manually adjust the hyper-parameters for every configuration. ADGCN performs
comparably to GCNII and outperforms ResGCN and DGCN. The optimal accuracies for the GCN
and ResGCN are between 2 and 8 layers, which are less than the optimal value for the GCNII,
DGCN and ADGCN. The final row of each dataset indicates that the model’s performance will
be significantly influenced by the parameters’ initialization method, which should be taken into
consideration. We initialize oy, 81,7 to A(1 — A\)!, where X is a hyperparameter and the model is
insensitive to it.

As observed from the degradation phenomenon of ResGCN, the addition of weight matrices results
in excessive transformations, increasing model complexity and leading to overfitting issues. In con-
trast, the GCNII, DGCN, and ADGCN models, which possess the ability to adjust model complexity,
demonstrate the capacity to mitigate model degradation. ADGCN specifically addresses the issue of
information not smoothly propagating between layers in the neural network and the unique proper-
ties of graph-structured data, which includes both topology and node feature information. Through
appropriate initialization settings, ADGCN achieves optimal performance. GCNII requires manual
adjustment of layer-specific hyper-parameters and lacks information aggregation across layers, mak-
ing it less suitable for processing large-scale graph-structured data. DGCN, due to its disregard for
node information and inadequate parameter initialization, performs inferiorly compared to ADGCN
in terms of performance. In general, the ADGCN model demonstrates high adaptability and scala-
bility for handling large-scale data while effectively overcoming model degradation problem.

URM STATEMENT

Author Sisi Zhang meets the URM criteria of the ICLR 2023 Tiny Papers Track.

ACKNOWLEDGEMENTS

This work is funded by the National Natural Science Foundation of China (62272093, 62137001).

REFERENCES

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 3438-3445, 2020a.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725-1735. PMLR,
2020b.

E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph neural
network. In International Conference on Learning Representations, 2021.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34, 2021.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in neural information processing systems, 33:22092-22103, 2020.

Jonathan Godwin, Michael Schaarschmidt, Alexander L. Gaunt, Alvaro Sanchez-Gonzalez, Yulia
Rubanova, Petar Velickovic, James Kirkpatrick, and Peter W. Battaglia. Simple GNN regularisa-
tion for 3d molecular property prediction and beyond. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Jincheng Huang, Lun Du, Xu Chen, Qiang Fu, Shi Han, and Dongmei Zhang. Robust mid-pass
filtering graph convolutional networks. In Proceedings of the ACM Web Conference 2023, pp.
328-338, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. 2017. ArXiv abs/1609.02907, 2017.

Published as a Tiny Paper at ICLR 2023

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9267-9276, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same
coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv preprint
arXiv:2102.06462, 2021.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gens. arXiv preprint arXiv:2003.13663, 2020.

Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, and Bin
Cui. Model degradation hinders deep graph neural networks. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 2493-2503, 2022.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In Proceedings of the Web Conference 2021, pp.
1215-1226, 2021.

A APPENDIX

A.1 GCN AND ITS VARIANTS

The following architectures are the GCN and its variants.

GCN. [Kipf & Welling|(2017) indicated that the GCN is the one-order approximation of spectral
GCN with propagation operation P and transformation operation W. The normalized propagation

matrix (i.e., graph convolution operation) P = In + D~ 2AD"z, where A denotes adjacency
matrix and D denotes the diagonal degree matrix. The output of I-th graph convolution layer is
formulated as the following:

HY = o(PHI-DWWY), (1)

where o () is ReLU activation, and W) is the weight matrix of {-th layer.

ResGCN. [Li et al.| (2019) suggest GCN combined with residual connections to address the the
gradient vanishing during deepening. The output of [-th layer is formulated as the following:

HY = o(PHI- VWD) L HI-D, 2)

The ResGCN model can solve the gradient vanishing, but we still observe model degradation issue
in Table[Tland Table 3l

GCNIIL. |Chen et al|(2020b) is one of the state-of-the-art deep GCNs so far, which is composed
of initial residual and identity mapping techniques. To achieve optimal generalization performance,
the critical parameters (i.e., « and (3) for different datasets must be manually adjusted. The [-th layer
is formulated as the following:

HO = o (((1 - a)PHD + qHO) (1= AT, + 5WD)), ®

where oy € [0,1] and §; € [0, 1].

Published as a Tiny Paper at ICLR 2023

DGCN. |Cong et al|(2021) computes the output of the model with learnable parameters «; and
0. By separating expressive power from generalization ability, it creates a decoupled structure for
GCNs. This can lessen the generalization gap’s reliance on the weight matrices. It is defined as:

L
z=> oHY, HO =PH"((1-)1, + WD), 4)
=1
where j3; € [0, 1].

A.2 ITLLUSTRATING THE MODEL DEGRADATION

A.2.1 EXPERIMENT SETUP

Here are the models’ additional empirical evaluations using the widely used standard citation net-
work datasets and Wiki Chameleons dataset. Statistics of the datasets are summarized in Table
E] (Sen et al.l 2008} Rozemberczki et al.| [2021). We consider semi-supervised node classification
tasks and contrast how the models’ generalization performance changes as the number of layers
increases. We set the hidden dimension as 64, dropout rate as 0.1, learning rate as 0.01, A = 0.1.

Table 2: Dataset statistics.

Dataset Type Nodes Edge Classes Features
Cora Citation network 2,708 10,556 7 1,433
Citeseer Citation network 3,327 9,104 6 3,703
PubMed Citation network 19,717 88,648 3 500
Wiki Chameleons Knowledge graph 2,277 36,101 5 2,325

A.2.2 RESULTS

Table[3]is the supplementary results of Table[T]in section[3] The experimental results of various mod-
els on the Citeseer and Wiki datasets are consistent with those on the Cora and PubMed datasets,
with the ADGCN model performing the best. It is evident that all improved models show signifi-
cantly higher accuracy compared to the GCN model. It should be noted that the Citeseer dataset is
denser than Cora and PubMed, resulting in more pronounced improvements for various models on
it, which is in line with intuition. Additionally, the GCNII model did not undergo precise manual
parameter tuning for the Wiki dataset, resulting in relatively poorer performance, highlighting the
high adaptability of the ADGCN model.

We conduct ablation experiments on the adaptive parameters of the ADGCN model and analyzed
their respective effects. As shown in Table[z_f], overall, the ADGCN model demonstrates more stable
performance compared to the various settings in the ablation experiments, indicating the importance
of each component of the ADGCN model. Specifically, the experimental results with only the «,
B, and ~y parameters retain exhibit model degradation problem. The ADGCN model with the re-
tention of 8 and y parameters successfully overcomes the degradation issue. The addition of the «
parameter achieves the maximum improvement in model performance. This indicates a progressive
relationship between the adaptive parameters. By selectively aggregating inter-layer feature infor-
mation using the -y parameter to ensure smooth model training, overcoming the degradation issue of
deep models is further achieved with the 8 parameter, and extracting as many features as possible
from the graph-structured data is accomplished with the v parameter. This approach leads to the
attainment of a model with maximum potential.

Figures|[I|to[d]provide a detailed depiction of the generalization performance variation as the number
of layers increases from 2 to 48, showcasing the fine-grained changes in node classification perfor-
mance for different architectures. They compare the results across different datasets and demonstrate
similar outcomes. These findings confirm the effectiveness and robustness of the ADGCN model.
They also highlight the importance of the «, (3, and parameters in the ADGCN, as they play
significant roles in capturing graph information, exploring model depth, and facilitating effective
information propagation between layers.

Published as a Tiny Paper at ICLR 2023

Table 3: Accuracy for the node classification task.

Datasets Models 2 Layers(epoch) 4 Layers 8 Layers | 16 Layers 32 Layers 64 Layers 128 Layers(epoch)
GCN 0.6298(600) 0.6010(600) 0.5745(600) FIT - - -

ResGCN 0.6927(600) 0.6801(600) 0.6994(600) | 0.6889(600) 0.6353(1000) FIT -

Citescer GCNII 0.6843(200) 0.6687(200) 0.6864(200) | 0.6838(200) 0.6949(200) 0.6955(200) 0.6971(200)
DGCN 0.6935(200) 0.6917(200) 0.6894(200) | 0.6919(200) 0.6891(200) 0.6953(200) 0.6980(200)
ADGCN(q, 3,7) 0.6933(200) 0.6951(200) 0.7082(200) | 0.7002(200) 0.7030(200) 0.7031(200) 0.7118(200)
ADGCN(uniform) 0.6433(200) 0.6630(200) 0.6605(200) | 0.6845(200) 0.7081(200) 0.6917(200) 0.6746(200)

GCN 0.3822(1000) 0.3879(1000) 0.4279(1000) FIT - - -

ResGCN 0.3750(1000) 0.3934(1000) 0.3810(1000) | 0.3843(1000) 0.3541(1000) FIT -

Wiki GCNII 0.3867(400) 0.3923(400) 0.4228(1000) | 0.3973(1000) 0.4067(1000) 0.4072(1000) 0.4158(1000)
DGCN 0.3918(400) 0.3663(400) 0.3509(1000) FIT - - -
ADGCN(q, 3,7) 0.4741(400) 0.4638(400) 0.4712(1000) | 0.4743(1000) 0.4788(1000) 0.4689(1000) 0.4648(1000)
ADGCN(uniform) 0.4386(400) 0.4796(400) 0.4419(400) | 0.4657(400) 0.4718(400) 0.4433(400) 0.4567(400)

Table 4: Ablation experiments.

Datasets Models 2 Layers(epoch) 4 Layers 8 Layers ‘ 16 Layers 32 Layers 64 Layers 128 Layers(epoch)
GCN 0.8010(600) 0.8011(600) 0.7471(600) FIT - - -
ADGCN(«) 0.7949(200) 0.7871(200) 0.7214(200) | 0.7662(200) 0.7376(200) 0.7495(200) 0.7733(200)
ADGCN(3) 0.8115(200) 0.8014(200) 0.7942(200) | 0.7954(200) 0.6833(200) FTT(200) FTT(200)

Cora ADGCN(v) 0.7978(200) 0.7893(200) 0.7818(200) | 0.7841(200) 0.7917(200) 0.7803(200) 0.7913(200)
ADGCN(«,) 0.7840(100) 0.8077(100) 0.8192(100) | 0.8215(100) 0.8185(100) 0.8137(100) 0.8137(100)
ADGCN(a,) 0.7987(200) 0.8003(200) 0.7787(200) | 0.7542(200) 0.7575(200) 0.7903(200) 0.7871(200)
ADGCN(3,7) 0.8094(200) 0.8093(200) 0.8113(200) | 0.8105(200) 0.8062(200) 0.8125(200) 0.8132(200)
ADGCN(q, 8,7) 0.7871(100) 0.8147(100) 0.8151(200) | 0.8152(200) 0.8181(200) 0.8214(200) 0.8222(200)
GCN 0.6298(600) 0.6010(600) 0.5745(600) FTT - - -
ADGCN(«) 0.6661(200) 0.6880(200) 0.6628(200) | 0.6529(200) 0.6473(200) 0.6704(200) 0.6607(200)
ADGCN(p) 0.6911(200) 0.6867(200) 0.6771(200) | 0.6576(200) 0.4909(200) FTT(200) FTT(200)

Citeseer ADGCN(y) 0.6695(200) 0.6477(200) 0.6696(200) | 0.6742(200) 0.6607(200) 0.6651(200) 0.6712(200)

‘ ADGCN(a, 3) 0.6925(200) 0.6897(200) 0.6943(200) | 0.6971(200) 0.6924(200) 0.6983(200) 0.6942(200)
ADGCN(o,) 0.6763(200) 0.6847(200) 0.6957(200) | 0.6856(200) 0.6508(200) 0.6714(200) 0.6763(200)
ADGCN(S,v) 0.6935(200) 0.6917(200) 0.6894(200) | 0.6919(200) 0.6891(200) 0.6953(200) 0.6980(200)
ADGCN(q, 8,7) 0.6933(200) 0.6951(200) 0.7082(200) | 0.7002(200) 0.7030(200) 0.7031(200) 0.7118(200)
GCN 0.7301(600) 0.7292(600) 0.6748(600) FTT - - -
ADGCN(«) 0.7612(200) 0.7648(200) 0.7305(200) | 0.7341(200) 0.7516(200) 0.7454(200) 0.7484(200)
ADGCN(3) 0.7743(200) 0.7704(200) 0.7779(200) | 0.7833(200) 0.7735(200) FIT -

PubMed ADGCN(v) 0.7817(200) 0.7641(200) 0.7794(200) | 0.7734(200) 0.7637(200) 0.7633(200) 0.7544(200)
ADGCN(«, f) 0.7557(200) 0.7878(200) 0.7898(200) | 0.7939(200) 0.7906(200) 0.7921(200) 0.7838(200)
ADGCN(e, 7) 0.7734(200) 0.7610(200) 0.7746(200) | 0.7677(200) 0.7648(200) 0.7498(200) 0.7558(200)
ADGCN(3,7) 0.7795(200) 0.7725(200) 0.7844(200) | 0.7838(200) 0.7849(200) 0.7854(200) 0.7890(200)
ADGCN(q, 8,7) 0.7653(200) 0.7812(200) 0.7902(200) | 0.7908(200) 0.7922(200) 0.7981(200) 0.7945(200)

Published as a Tiny Paper at ICLR 2023

Accuracy

---- ADGCN(aBy):Train —— ResGCN:Test
—— ADGCN(aBy):Test ---- GCN:Train
---- ResGCN:Train —— GCN:Test
10 20 30 40 48
Model Depth
(a) Cora

,‘L\//r
7/</\/

FNTINAR

—— ADGCN(apy):Test
—— DGCN:Test
GCNIl:Test

2 10 20 30 40 48

Model Depth

(b) Cora

Figure 1: On the Cora dataset, (a) compare the ADGCNs with learnable parameters, ResGCNs with
residual connections and standard GCNSs respectively. Note that the model degradation is reflected
in the red solid line in ranges 2 to 11 and the blue solid line in ranges 2 to 48 showing a slightly
decline in testing accuracy, meanwhile, the training accuracy roughly equal to 1. (b) compare the
ADGCNs, DGCNs and GCNIIs in testing accuracy in ranges 2 to 48. The performance of ADGCN
is superior to that of DGCN and nearly equal to that of GCNII with manual parameter adjustment.
There is no model degradation in any of the three models.

1.0 0.73
0.721
0.81] /\,\/\/‘/\z—‘\/\/\/\/\r\/\
0.71 5
0.701
3 0.6 9
e © 0.691
=1 S
Vo4 O 0.681
9] [}
< < 0.671
0.2
---- ADGCN(aBy):Train —— ResGCN:Test 0.66 —— ADGCN(apy):Test
—— ADGCN(aBy):Test ~ ---- GCN:Train 0,651 —— DGCN:Test
0.01 ---- ResGCN:Train —— GCN:Test ' GCNIl:Test
0.64
2 10 20 30 40 48 2 10 20 30 40 48
Model Depth Model Depth
(a) Citeseer (b) Citeseer

Figure 2: On the Citeseer dataset, (a) compare the ADGCNs, ResGCNs and standard GCNs respec-
tively. Note that the experimental results are similar to Cora. (b) compare the ADGCNs, DGCNs
and GCNIIs in testing accuracy in ranges 2 to 48. The performance of ADGCN is superior to that
of DGCN and that of GCNII with manual parameter adjustment. There is no model degradation in
any of the three models, meanwhile, ADGCN and GCNII are more stable than DGCN.

Published as a Tiny Paper at ICLR 2023

1.0
0.84
3
@© 0.6
—
=]
[}
& 041
0.2 ---- ADGCN(apBy):Train —— ResGCN:Test
—— ADGCN(aBy):Test ---- GCN:Train
---- ResGCN:Train —— GCN:Test
0.0
10 20 30 40 48
Model Depth
(a) PubMed

0.82

Accuracy
o
@
o

o
N
IN

0.72

o
~
©

e
g
o

A
W
A%
—— ADGCN(aBy):Test
—— DGCN:Test
GCNIl:Test
2 10 20 30 40 48
Model Depth

(b) PubMed

Figure 3: On the PubMed dataset, (a) compare the ADGCNs, ResGCNs and standard GCNs respec-
tively. Note that the experimental results are similar to Cora and Citeseer. (b) compare the ADGCNs,
DGCNs and GCNIIs in testing accuracy. The performance of ADGCN is superior to that of DGCN
and nearly equal to that of GCNII. There is no model degradation in any of the three models.

Accuracy
°© o o o o
~ ~ ~ ~ o
N B o ee] o

o
9
o

A PR ISR

—— ADGCN(aBy):Test
—— DGCN:Test
ADGCN(ay):Test

2 10 20 30 40 48

Model Depth

(a) Cora

Accuracy
o o o o o o
2 @ S Y ® o
o (5] o v o w

o
0
v

| eSS

—— ADGCN(aBy):Test
—— DGCN:Test
ADGCN(ay):Test

2 10 20 30 40 48

Model Depth

(b) PubMed

Figure 4: Comparison of models with different parameter configurations. The yellow curves show
instability compared with the others . This demonstrates the necessity of controlling model com-
plexity through 5.

	introduction
	Adaptive DeepGCN
	experiment and main result
	Appendix
	GCN and its variants
	Illustrating the model degradation
	experiment setup
	RESULTS

