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Abstract

In the Multi-Agent Path Finding (MAPF) problem, the aim
is to find collision free paths for multiple agents. MAPF
has many practical applications and has spawned massive re-
search interest in the past two decades. Most MAPF research
assumed that every agent is assigned a target it must reach.
This assumption often does not hold in several key applica-
tions such as automated warehouses and parking lots, where
some agents are assigned targets to reach, and others, denoted
as unassigned agents, can either stay idle or move to clear the
way for the assigned agents. In this paper we introduce this
important problem, explain its uniqueness and encourage the
entire community to work on it.

1 Introduction and overview

In the Multi-Agent Path Finding problem (MAPF) (Stern
et al. 2019), the aim is to find collision-free paths for mul-
tiple mobile agents (robots, vehicles, people etc.). MAPF
has applications in traffic control, aviation, robotic ware-
houses etc. Consequently, MAPF spawned massive research
recently with thousands of published papers, including many
papers by the authors. Numerous variants of MAPF were
presented over the years. Perhaps the most prominent vari-
ant (received a large attention starting around 2010) is the
offline (one shot) version where the input receives start and
target locations for the agents and the output is a set of paths,
one for each agent from its start to its target. A more real-
istic variant of MAPF that captured researchers a few years
later is that of Lifelong MAPF where agents are repeatedly
assigned targets after they reaches their current targets.

Nevertheless, despite the wide research on MAPF, a com-
mon assumption shaped this research problem to be more
scientific but less applicative. The assumption is that every
agent is assigned a target and it must follow a path from
its start to its target. This assumption often does not hold
in several key applications such as automated warehouses
and parking lots, where some agents are assigned targets to
reach, and others, denoted as unassigned agents, have no tar-
gets to go to and can either stay idle or move to clear the way
for the assigned agents.

In this paper we introduce the problem of Multi-agent
Path Finding with Unassigned Agents (MAPFUA), where
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assigned agents have targets to go to while unassigned
agents do not have targets but are allowed to move to clear
the way for the assigned agents. We define a number of vari-
ants and associated costs functions for MAPFUA including:
(1) fastest arrival of the assigned agents to their targets, (2)
minimizing Fuel consumption and (3) minimizing the num-
ber of unassigned agents that move. We then explain the ap-
plicability of MAPFUA and provide a number of research
directions to pursue. Finally we provide a number of rep-
resentative results that demonstrate the vast richness of this
problem. Thus, researchers are encouraged to work on this
practical and fascinating problem which generalizes MAPF.

2 Existing research on MAPF

The input to MAPF is a graph G; a set of k agents
ai,...,a; and a start and target location for each agent,
denoted s1,...,s; and tq1,...,t; , respectively. The task
is to find a path for each agent from its start to its target
such that no two agents conflict, i.e., they never occupy the
same location at the same time step. In some settings, con-
flicts also include agents crossing the same edge in oppo-
site directions at the same time. A primary application of
MAPF is in automated warehouses (Li et al. 2021b), where
the products are placed on shelves and robots are repeat-
edly assigned tasks to pick items from the shelves and bring
them to some delivery station for shipping out to the clients
(see www.youtube.com/watch?v=gqshXW4zEUPc).
MAPF has many other practical applications in factories,
digital entertainment, traffic control, aviation, and more.
Therefore, in the last two decades MAPF attracted signifi-
cant interest from scientists and practitioners in diverse ar-
eas such as Artificial Intelligence, Robotics, Industrial En-
gineering etc. A variety of settings and cost objectives (i.e.,
metrics to minimize) have been proposed, along with numer-
ous algorithms designed to solve these problems (see our
surveys in (Felner et al. 2017; Stern et al. 2019)). MAPF is
very challenging (proved NP-hard (Yu and LaValle 2013b;
Nebel 2020; Surynek 2010)) due to the exponential number
of applicable actions per state (=mapping of all agents to
locations), as well as the exponential number of states.

2.1 Classical MAPF

The classical variant of MAPF described above is called
the Offline (one shot) MAPF variant as the output is a plan



that includes a non-conflicting path for each of the agents.
One approach to address it is to apply combinatorial search
algorithms such as A* enhanced by MAPF-specific tech-
niques (Standley 2010a; Goldenberg et al. 2014), or com-
pile it to different NP-Hard problems such as SAT and ASP
and then use dedicated solvers (Surynek et al. 2016; Er-
dem et al. 2013). A different approach is to plan for each
agent separately and invoke conflict-resolution methods to
coordinate these plans. Primary examples of algorithms that
follow this approach are Prioritized Planning (PP) (Sil-
ver 2005), Large Neighborhood Search for MAPF (MAPF-
LNS) (Li et al. 2022, 2021a), the Increasing Cost Tree
Search (ICTS) (Sharon et al. 2013), and the Conflict-based
Search algorithm (CBS) (Sharon et al. 2015). Yet another ap-
proach for solving MAPF problems is to plan for all agents
together but limit the planning horizon. Prominent exam-
ples of this approach include PIBT (Okumura et al. 2022),
LaCAM (Okumura 2023), and PIE (Zhang et al. 2024).
Our lab in BGU (managed jointly by the authors) devel-
oped key algorithms from each of these approaches (Sharon
et al. 2013, 2015; Felner et al. 2012; Surynek et al. 2016),
including CBS, which is considered state-of-the-art for opti-
mally solving MAPEF, received several awards (Sharon et al.
2015, 2012), and has spawned many variants and enhance-
ments (Barer et al. 2014; Zhang et al. 2022; Felner et al.
2018; Boyarski et al. 2021) inter alia.

Contemporary research on MAPF focuses on the follow-
ing directions: (i) Developing new algorithms for classical
MAPF sometimes for various objectives to minimize such
as Sum-of-Costs (Sharon et al. 2015), Makespan (Maliah,
Atzmon, and Felner 2025) and Fuel (Koyfman et al. 2025).
(i1) Developing suboptimal and incomplete algorithms for
MAPF with the aim to find solutions faster and for larger
problems (with many more agents) but sacrificing solution
optimality and sometimes even the completeness of the solv-
ing algorithm. (iii) Exploring different settings of MAPF
such as continuous environments (Andreychuk et al. 2022),
agents with different shapes (Li et al. 2019), Uncertainty
(Wagner and Choset 2017; Atzmon et al. 2020; Shofer,
Shani, and Stern 2023) and Privacy (Keskin et al. 2024).

2.2 Lifelong MAPF

Lifelong MAPF (LM APF) is another variant of MAPF that
was spawned in the past 15 years (albeit later than classical
MAPF). LMAPF better suits the online nature of many of
the practical MAPF applications such as warehouses and
parking lots. In LMAPF when an agent reaches its tar-
get it receives a new target to go to. The objective of a
LMAPF algorithm is to repeatedly find conflict-free paths
for the agents aiming to maximize the system throughput,
which is the number of times the agents reached their tar-
gets. In warehouses, system throughput corresponds to the
number of packages delivered over time. A basic algorithm
for LMAPF (which has dozens of variants and improve-
ments) is based on repeatedly solving the MAPF problem
based on the current set of locations of the agents and the
current set of targets. To speed up the search and consider
the uncertainty over future targets, it is common to apply the
Rolling Horizon Collision Resolution (RHCR) mechanism
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Figure 1: MAPF (left). MAPFUA (mid). alr (Right)

(Li et al. 2021b). In RHCR, we plan for all agents while ig-
noring conflicts that are expected to occur after a predefined
number of time steps referred to as the planning horizon.
Then, we execute the prefix of this plan and repeat this plan-
ning procedure as needed. Recent work proposed interleav-
ing planning and execution, planning for the next sequence
of actions while performing them (Zhang et al. 2024).

2.3 Goal Allocation in MAPF

In classical MAPF every agent is assigned a unique tar-
get. Extensions of MAPF also exist. In Anonymous MAPF
(AMAPF) agents are interchangeable and can be assigned to
any target. Finding makespan optimal solutions for AMAPF
can be done in polynomial time (Yu and LaValle 2013a)
while optimizing the sum-of-costs is much harder (Honig
et al. 2018). In the Multi-Agent Combinatorial Path Find-
ing (MCPF) problem, each agent is assigned a unique tar-
get but the returned paths must also visit additional targets
on their way to their assigned target (Ren, Rathinam, and
Choset 2021, 2023).

3 MAPF with Unassigned Agents

A common prominent assumption that exists in almost all
of the work on MAPF is that every agent is assigned a tar-
get (possibly more targets in MCPF). While this setting is
appealing and spawned massive research as surveyed above,
we believe that it is relatively far from the reality of many
key applications that were mentioned by many authors for
justifications of the applicability of their work.

We next consider a novel generalization of MAPF which
we believe is much more suitable to many real-world ap-
plications. In the new problem some agents remain unas-
signed, i.e., they do not have a target they must reach, but
may still be able to move to make room for the other agents.
We call this problem MAPF with Unassigned Agents
(MAPFUA). The agents in MAPFUA are divided into two
classes: (1) Assigned agents, agents that are assigned tar-
gets to go to; and (2) Unassigned agents, which do not have
a target, yet still occupy a location and can optionally move
if this is helpful. A solution to MAPFUA is a path for each
of the assigned agents from its start location to its target lo-
cation, as well as paths for the unassigned agents. The paths
for the unassigned agents may be trivial — stay in place, but
may involve moving to clear the path for the assigned agents
if this is helpful for improving the solution (e.g., through-
put of the system or other metrics, see below). Figure 1(left)
shows a classic MAPF problem instance while figure 1(mid)
shows a MAPFUA problem instance where blue agents are
assigned agents while green agents are unassigned agents.



3.1 Applicability of MAPFUA

MAPFUA is directly suitable for warehouses where some
of the robots do not have tasks (e.g., when there are cur-
rently more robots than tasks). Similarly, in LM APF, when
an agent reaches its target, its task is completed. If a new
task is not yet assigned to it, then it should be treated as
an unassigned agent and may move away from its (already
reached) target if this is helpful for other agents (we recently
highlighted this (Pertzovsky et al. 2025)). Traditional auto-
mated warehouses were not densely populated with delivery
robots and packages. Thus, most of the time all robots were
assigned tasks to perform and existing MAPF algorithms
sufficed. Modern automated warehouses, however, are huge
and include thousands of robots in them. Such environments
often include agents with no specific task assigned to it.

Additionally, MAPFUA is most suitable in warehouses
where there are no carrying robots but all packages have
moving abilities. For example, consider a 3D grid (or any
other graph) where some cells occupy packages with mer-
chandise. The task is to navigate some of these packages
along the grid to specific target locations (e.g., docking sta-
tions). Mechanically, packages can move if we install some
kind of robotic wheels for them, or, alternatively, packages
are placed on a structure of moving tracks and can be moved
anywhere via these tracks. In such warehouses, each pack-
age is now a mobile entity, logically a (cheap) robot. Natu-
rally, packages without targets can be treated as unassigned
agents and be optionally moved from their locations if this
is helpful for other agents.

Such warehouses already exist in modern storage au-
tomation systems including: Autonomously Moving Pack-
ages, Robotic Parking Lots and Automated Greenhouses for
plants that move on demand. See for example:

(1) versatileautomation.com/why-versatile,
(2) silmanautomatedparkingsystems.com,

(3) www.roboticparking.com,

(4) parkplusinc.com,

(5) www.wps.eu/nl/tuinbouw/buffersystemen,
(6) www.greenhousemag.com/article/gm0112
-movable-tray-systems.

All these examples exactly exhibit MAPFUA: some
packages, cars or plants must be moved to users while others
must be moved away to make way.

Despite all these real world applications, MAPFUA re-
ceived minimal attention from the research community. We
thus believe that after so many years that the research com-
munity spent on the classical version of MAPF it should
move and focus on this new variant. The contributions of rel-
evant algorithms and research on such problems are sorely
needed in the relevant industry just mentioned.

3.2 Formal Definition of MAPFUA

Formally, MAPFUA is defined by a graph G = (V, E),
a set of assigned agents A = {ai,...,a,}, and a set of
unassigned agents U = {uy, ..., u,, }. Each assigned agent
a; € A is associated with a start vertex s; € V and a target
vertex t; € V, while each unassigned agent u; € U is as-
sociated with a start vertex s; € /' but no target. A solution

7 to this problem is a mapping of each agent (assigned or
unassigned) to a path in G, where for each assigned agent
a; € A, the path 7; starts at s; and ends at ¢;, and for each
unassigned agent u; € U, the path 7; starts at s; and may
end at any vertex in V. The paths of all agents, whether as-
signed or unassigned, must be conflict-free.

We next define practical types of MAPFUA and charac-
terize them according to different solution criteria and cost
functions. We demonstrate these types of MAPFUA on a
parking-lot use case where car owners come to pick up their
cars (these cars are the assigned agents). Human employees
must drive cars to their owners but are also allowed to move
the other cars (unassigned agents) to clear the way in case
they are blocking the assigned agents. Of course, other prac-
tical examples are evident too.

3.3 Solution criteria.

A natural solution criterion for MAPFUA (taken from
MAPF) is that all assigned agents end up at their targets
without conflicts along the way. Other solution criteria are
also be practical in MAPFUA. For example, in the parking
lot use case it is sufficient for each car to reach its owner, but
not necessarily at the same time. This is known as the reach-
ability criterion (Okumura et al. 2022; Morag et al. 2025).
Another solution criterion is where each agent has a set of
goals that it can choose from. In the parking-lot, this corre-
sponds to cases where the cars are moved from the owner
to some position in the parking lot. It does not matter which
position in the lot is chosen as long as it is vacant. This is
somewhat related to Anonymized MAPF (Yu and LaValle
2013a; Honig et al. 2018) and to MCPF (Ren, Rathinam, and
Choset 2021, 2023), but here, there might be more targets
than (assigned) agents and not all targets must be visited.

4 Cost Functions for MAPFUA

We next define serval possible cost functions for MAPFUA
and again demonstrate them on the parking-lot use case.

(1) Sum of Service Time (SST). This cost is the sum of time
steps required to move each assigned agent to its target. SST
corresponds maximizing the system throughput.

(2) Fuel. This cost is the total number of moves made by
either assigned or unassigned agents (and waiting does not
cost). The Fuel cost corresponds to minimizing the energy
costs required to move the agents.

(3) Number of Unassigned Agents that Move (NUA).
Here we do not care about the lengths of the paths but aim to
minimize the number of unassigned agents that move. In the
parking lot example, entering a car and starting its engine is
costly and should be minimized for two reasons. First, own-
ers of the unassigned cars are not happy when their cars are
moved (fuel is lost and an accident may occur). Second, the
human employees work harder when entering a new car (you
have to find the keys, remember the codes etc.)

Figure 2 illustrates the differences between these solution
costs. In this example (top left, a), the car at the top left cor-
ner (assigned agent, blue) needs to be moved to the owner
at the top right. Figure 2b shows the optimal solution for
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Figure 2: MAPFUA instance (a) and its cost functions (b—d)

minimizing SST: all unassigned cars (green) move one step
down at time step ¢; (dashed arrows) and then the assigned
car moves all the way to the right and reaches the target at
time step tg. Figure 2c shows the solution for minimizing
Fuel: only one unassigned car moves down and then the as-
signed car goes down one row, then right all the way, and
finally up to the target (total of 8 moves). Finally, Figure 2d
shows the solution for minimizing NUA: the assigned car
bypasses all other car, and no other car is moved. Recently,
we worked on a variant of Fuel where there is a single as-
signed agent and only its moves are counted but moves of
unassigned agents are not counted (Pertzovsky, Stern, and
Zivan 2024a; Pertzovsky et al. 2025).

S Challenges and Research Directions

The introduction of MAPFUA spawns many challenges and
calls for new research directions as we next list (this is
of course not an exhaustive list). We encourage the entire
MAPF community to take part in these directions.

5.1 Characterization of MAPFUA

Since MAFPUA has rarely been studied, the first task would
be to theoretically characterize it, find its key variants and
evaluate the computational complexity of optimizing the dif-
ferent cost function. The influence of the number of unas-
signed agents relative to the number of assigned agents and
relative to the size of the environment should be studied.

5.2 Optimal Algorithms for MAPFUA

The next task would be to develop (optimal) algorithms for
the various MAPFUA variants and cost functions, based on
existing single- and multi-agent path finding algorithms. For
example, adapting A* to MAPFUA is relatively simple by
using the common joint state-space for MAPF where states
include all the permutations of agents into locations. At each
time step, every agent can either stay idle (wait) or move to
an adjacent location (move). Naturally, agents are allowed to
move in parallel. The joint state-space can be optimized fur-
ther for MAPFUA, as any permutation of the m unassigned
agents into the same set of m locations is equivalent. Natu-
rally, the costs of the different actions depend on the differ-
ent cost functions mentioned above. Next, for an A*-based
system, admissible heuristics should be developed for the
various cost functions. Finally, many enhancements and im-
provement that were suggested for classical MAPF (such as

independence detection and operator decomposition (Stan-
dley 2010b), EPEA* (Goldenberg et al. 2014)) etc.) should
be adapted to A*-based MAPFUA solvers.

Another research direction can migrate CBS to MAP-
FUA. A regular CBS tree is developed. A goal node is where
all assigned agents have paths to their targets while unas-
signed agents have any possible path. Conflicts between as-
signed agents are treated in the classic way. Conflicts that
include unassigned agents are challenging because an unas-
signed agent does not have a target. Therefore, in its low
level, an unassigned agent needs to find a path (that goes
somewhere) that satisfies the required constraint, and heuris-
tics should be developed to guide the corresponding search.

5.3 Suboptimal algorithms for MAPFUA

Practical applications often prefer to trade-off solution cost
for runtime, in order to ensure timely response time to end
users. Such algorithms should be developed for MAPFUA.
A general approach for this is to use Bounded Suboptimal
Search (BSS) algorithms such as Weighted A* (Pohl 1973)
and Explicit Estimation Search (EES) (Thayer and Ruml
2011). BSS algorithms accept a suboptimality bound B and
return a solution with cost < B x OPT, where OPT is
the optimal solution cost. This approach should be followed
also for MAPFUA, building on the optimal algorithms sug-
gested above. Our prior work on BSS for MAPF yielded the
ECBS algorithm (Barer et al. 2014), which combines CBS
and Focal search. Adapting ECBS and its more sophisti-
cated extensions like EECBS (Li, Ruml, and Koenig 2021)
to MAPFUA is another possible direction. Of course, the
many other algorithms (besides the few examples just given)
developed for MAPF should also be modified for MAP-
FUA. Many non-trivial challenges will arise here and we
again encourage the community to take part in this endeavor.

5.4 MAPFUA in Dense Environments

Many of the MAPFUA use cases (e.g., parking lots and
warehouses) are in environments that are incentivized to uti-
lized space. Consequently, such environments often include
regions that are densely populated with robots/agents. Dense
environments are becoming more common as the use of mo-
bile agents increases, in particular in modern warehouses.
In dense regions, moving unassigned agents to clear the
way for the assigned agents is sometimes extremely useful
and even crucial. Let alr be the ratio between the number
of agents and the total number of locations that agents may
occupy. In Figure 1(right), alr = 9/12. Intuitively, a MAPF
environment is dense if alr is close to 1 (very few empty
cells). The option of moving unassigned agents in sparse en-
vironments (with small alr) is not that significant. In such
environments treating unassigned agents as static obstacle
(and not moving them at all) is a reasonable policy because
assigned agents can simply bypass the unassigned agents.'

'Of course, doing this may lose solution optimality. Moreover,
if an unassigned agent is blocking an entrance to a region that con-
tains the target then completeness can also be forfeited. Indeed, it
will be easy to draw synthetic examples where optimality and even
completeness are forfeited. However, such examples are very rare



By contrast, dense environments (with large alr) are particu-
larly important for MAPFUA because bypasses of assigned
agents are harder to perform or even impossible. The ability
to move unassigned agents can make a big difference on the
runtime of the algorithm, on the quality of the solution that
is returned and on whether or not the algorithm is complete.

Thus, developing algorithms for MAPFUA with partic-
ular interest in dense environments is essential. Again, this
should be done while taking all the cost functions defined
above into consideration. Additionally, both optimal- and
suboptimal algorithms should be developed specifically this
case. Furthermore, the definition based on alr =~ 1 is rather
simple as other aspects of the environment such as its topol-
ogy may also be crucial for identifying algorithm failure.
Thus, a deeper research on what makes the environment
dense is needed. Additionally, environments are sometimes
mixed with both sparse and dense regions. For example,
large warehouses have densely populated areas, e.g., near
the picking stations, while other areas are very sparse (de-
noted by sparse-dense environments). Thus, treatment of
such environments also requires deep studying.

6 Combining MAPFUA in Other Settings

Another important challenge is to add the notion of unas-
signed agents to other non-classical settings of MAPF. We
list a few of them here with specific focus on recently intro-
duced MAPF settings. We encourage researchers to work on
these setting as well, ideally in combination with the MAP-
FUA idea of having unassigned agents.

6.1 MAPFUA for Lifelong Setting

A viable research direction is to incorporate the above tech-
niques of MAPFUA into lifelong setting, where new tasks
are repeatedly allocated to agents over time. Such setting
raise algorithmic challenges such as how to interleave plan-
ning and execution, how to optimize the system behavior
over time, and how to dynamically detect and treat dense
and sparse regions to ensure high throughput.

6.2 MAPF with the Reachability Criterion

The classical solution criterion of MAPF is that given a start
and a target configuration of the agents the task is to move
the agents from the start to the target configuration. That is,
we need a specific time step where all agents are in their
goal configuration (at the same time). The vast majority of
the research on MAPF used this criterion. Recently, Morag
et al. (2025) importantly argued that in many realistic set-
tings there is only a need for an agent to arrive at its target
(as soon as possible). But an agent is then free to leave its
target and there is no need to see all agents located in their
targets at the same time. Such variant is called MAPF with
the reachability criterion (MAPFRO). A very important ex-
ample that was given by Morag et al. (2025) is of Lifelong
MAPF (LMAPF) where an agent receives a new target as
soon as it arrives at its current target. This is certainly the

in practice and for many practical use cases which are sparse with
agents, treating them as static obstacles will suffice.

case in modern warehouses where after delivering a pack-
age there is no need for the agent to stay at its target and
it immediately plans its path to its new target. But, in prac-
tice, many LM APF algorithms continue to use the classical
criterion when solving LM APF.

We would like to point out that the introduction of MAP-
FUA and of unassigned agents is directly relevant for
MAPFRO. MAPFRO can be reduced to MAPFUA as fol-
lows. After reaching its target (until it receives a new target)
an agent becomes an unassigned agent. Thus, the algorithm
can choose to either move such an agent or to leave it idle in
its current position. Alternatively, MAPFUA can be reduced
to MAPFRO by setting the start location of an unassigned
agent as its target. Thus, at time ?( the agent has arrived at
its target and is free to move away.

6.3 The Multi-Agent Warehouse Rearrangement

A new variant of MAPF called the Multi-Agent Warehouse
Rearrangement problem (MAWR) was introduced very re-
cently (Sherma, Weiss, and Salzman 2025). Again, the input
is a start and a target configuration of agents. The agents,
referred to as moving obstacles, must all travel from their
initial configuration to their goal configuration. However,
the agents cannot move on their own and a carrying robot
must carry them along their intended path. This problem is
of course very realistic and is evident in many modern ware-
houses such as Amazon etc. (See video above). They formal-
ized MAWR as a general search problem in which the output
is a set of paths for the carrying robots that transfer all the
agents from their initial configuration to their final config-
uration. They also introduced a CBS-based algorithm that
solves this problem optimally for the makespan cost func-
tion. Their algorithm has two phases: the first phase plans
paths for the agents. The second phase assigns the carrying
robots to move these agents along their paths.

An important and interesting direction is to expand the
fascinating MAWR problem by adding the notion of unas-
signed agents. Indeed, in realistic warehouses not all items
need be moved. So, now the task is to assign the robots to
move the assigned agents to their targets. These robots can
also be instructed to move unassigned agents if moving them
will improve the the cost of the overall solution. Here too,
variants of all our cost functions described above are valid
and could be very relevant to real world applications.

7 Preliminary Experimental Results

Our group has started to work on some of the directions
listed above. Here we present a taste of these preliminary
directions and some representative experimental results for
the three cost functions described above.

7.1 STT of CBS with Unassigned Agents

We evaluated three policies for handling unassigned agents
within CBS (Sharon et al. 2015), which is a prominent op-
timal algorithm. (1) CBS_baseline treats unassigned agents
as static obstacles that can not be moved. (2) CBS solves a
classic MAPF problem, where the unassigned agents are as-
signed their start locations as their targets. That is, they are
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Figure 3: Coverage. Varying the # of unassigned agents.

allowed to move away but must return to their start states.
(3) CBS_RO assumes that the unassigned agents do not have
targets and can thus move away as needed.

Figure 3 show experimental results where a total 60
agents were present, and the number of unassigned agents
was varied. The z-axis shows the number of unassigned
agents (out of the 60 agents), and the y-axis shows cov-
erage when given 1 minute per instance (left) or average
SST (right). As can be seen, the coverage of all CBS vari-
ants increase when more agents become unassigned. This
is reasonable because all the three policies for unassigned
agents have less planning to do than for regular assigned
agents. In CBS_RO (green) the unassigned agents have the
larger degree of freedom, and it has the best coverage among
all variants. Classic CBS allows the unassigned agents to
move but forces them to later return to their start states,
while CBS_baseline treats them as obstacles. Thus, it seems
that Classic CBS (Blue) gives more freedom to the unas-
signed agents than CBS_baseline (red). But, surprisingly,
CBS_baseline has a better coverage, probably because CBS
must create a non-conflicting path for each of these agents
and this demands time.

The average SST per agent is given in Figure 3(right). All
variants have similar SST and this is attributed to the fact
that the environment was relatively sparse (alr = 60/256 =
0.23). Thus, all assigned agents found relative similar cost
paths, despite the fact that some of them had more time con-
suming computation. We conjecture that for denser environ-
ments the STT will be vary among the different polices.

Further exploring all these issues is an example of the
wide research field that is ahead of us.

7.2 MAPFUA with a Single Assigned Agent

Recently, we considered a MAPFUA case with a single as-
signed agent. This is motivated by emergency vehicles, e.g.,
an ambulance, that need to move as smooth as possible to the
hospital while all other vehicles move to clear the way. For
this case we developed the Corridor Generating Algorithm
(CGA) (Pertzovsky, Stern, and Zivan 2024b), a polynomial-
time rule-based algorithm guaranteed to find a solution if
one exists under general assumptions. CGA is designed to
minimize fuel of the assigned agent. It is an open question
how to optimize time for the assigned agent, or how to mini-
mize the movements of all other agents. We later generzlied
CGA to the case a multiple assigned agents and intoduced
the Multi-agent CGA algorithm (Pertzovsky et al. 2025).

Agents Max IH MH
2/14 13,539 (4.9s) | 12,186 (5.7s) | 12,119 (6.7s)
2/16 | 162,477 (89s) | 59,313 (26s) | 56,883 (32s)
2/18 136,565 (73s) | 51,428 (22s) | 30,124 (18s)

2/20 125,886 (55s) | 47,062 (19s) | 17,501 (14s)

Table 1: Nodes expanded and runtime (in secs) on a 5 X 5
grid with varying numbers of unassigned agents.

7.3 Optimally solving MAPFUA for NUA

We implemented a variant of A* for the NUA cost (minimize
the number of unassigned agents that move) using the joint
agent state-space. For heuristics we have done the follow-
ing. For each assigned agent a; we performed a secondary
search where a; may step into the location of an unassigned
agent a; and in this case a; is deleted from the environ-
ment (similar to the capture action in chess). The aim of
this secondary search is to find a path for a; to its target
while minimizing the number of unassigned agents that are
captured (denoted cap(a;)). cap(a;) is an admissible heuris-
tic for agent a;. We then implemented three ways to aggre-
gate cap(a;) among all assigned agents. (1) Max. Here we
took the maximum of cap(a;) over all assigned agents. (2)
Increasing Heuristics (IH). Here, we iterate over all indi-
vidual unassigned agents and check whether their individual
removal will allow all assigned agents to get the their tar-
gets. If so, IH is set to 1. Otherwise we do the same for all
pairs, then triples etc. (3) Merge Heuristic (MH). Here, we
merge together all assigned agents into a joint-agent (meta-
agent) and search for this joint-agent for the minimal num-
ber of captures. Intuitively, the latter heuristics incur larger
overhead per node but are more informed.

Table 1 presents the number of nodes expanded (and times
in seconds) on a 5 x 5 grid with z = 2 assigned agents and
y unassigned agents, denoted in the table by x/y. Indeed
the stronger heuristics caused a significant reduction in the
number of nodes expanded. Timing results showed similar
trends but naturally the stronger heuristics incurs more over-
head per node. For timing, IH is most suitable for cases with
small number of unassigned agent while MH is most suit-
able for cases with a small number of assigned agents. We
aim to further investigate this phenomenon.

8 Summary and Conclusions

We have introduced the MAPFUA problem (including a
number of possible cost functions) and explained its im-
portance and its applicability. We presented several direc-
tion for future research on MAPFUA. Finally, we included
a number of preliminary results that demonstrate the rich-
ness of MAPFUA. We strongly encourage the large MAPF
research community to take part in researching this fascinat-
ing, more-general and more-applicative problem.
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