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CADO: Cost-Aware Diffusion Solvers
for Combinatorial Optimization through RL fine-tuning
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Abstract
Combinatorial Optimization (CO) problems play
a pivotal role in various domains, including op-
erational research and computer science while it
have significant computational challenges. Recent
advancements in Machine Learning (ML), partic-
ularly through Supervised Learning (SL) and Re-
inforcement Learning (RL), have shown promise
in tackling these challenges. SL methods have
effectively imitated high-quality solutions, while
RL techniques directly optimize objectives but
struggle with large-scale problems due to sparse
rewards and high variance. We proposes an RL
fine-tuning framework, combining SL and RL,
for diffusion-based CO solvers, addressing limita-
tions of existing methods which often ignore cost
information and overlook cost variations during
post-processing. Our experiments demonstrate
that RL fine-tuning significantly enhances perfor-
mance, surpassing traditional diffusion models
and proving robust even with suboptimal training
data. This approach also facilitates transfer learn-
ing across different CO problem scales, setting a
new benchmark for generative model-based CO
solvers.

1. Introduction
Combinatorial Optimization (CO) problems play a pivotal
role in various domains, including operational research and
computer science. However, the inherent complexity of
these problems, such as NP-hardness, poses significant com-
putational challenges (Karp, 1975). Traditionally, the field
has been dominated by rule-based heuristics tailored to spe-
cific problems (Papadimitriou & Steiglitz, 1998). Neverthe-
less, recent advancements in Machine Learning (ML) have
demonstrated the potential to tackle CO problems through
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data-driven approaches (Bengio et al., 2021). ML-based
CO solvers can be broadly categorized into two: Supervised
Learning (SL) methods and Reinforcement Learning (RL)
techniques. The key difference between these approaches
lies in the availability of a training dataset comprising solu-
tions as labels for CO instances.

Supervised Learning (SL) methods have shown promising
results in solving Combinatorial Optimization (CO) prob-
lems by imitating high-quality solutions from a training
dataset (Graikos et al., 2022a; Mirhoseini et al., 2021; Kool
et al., 2019a; Niu et al., 2020). Recent advancements in gen-
erative models, such as diffusion models, have demonstrated
remarkable precision in generating high-dimensional out-
puts in image and language domains (Ho et al., 2020). These
successes have also been applied to CO domains, with no-
table examples like DIFUSCO (Sun & Yang, 2023) and T2T
(Li et al., 2023). Despite the promising results of applying
diffusion models to CO problems, training without consider-
ing cost information can be particularly problematic in the
CO domain, because prediction errors in generated solutions
might be similar, but their costs can vary significantly. As a
result, the trained model may produce undesirable outcomes
that do not satisfy the true objective during inference. On
the other hand, RL methods (da Costa et al., 2020; Wu et al.,
2019; Kool et al., 2019b; Kwon et al., 2020; Kim et al.,
2022) directly optimize the objective but pose challenges
for large-scale problems due to sparse reward problem and
high training variance.

Meanwhile, combining RL and SL in order to complement
each other has proven highly successful in various domains
such as image and texts (Ziegler et al., 2019; Deng et al.,
2022; Bai et al., 2022; Clark et al., 2024; Fan et al., 2023;
Black et al., 2024). These hybrid methods typically involve
using (self) supervised learning to train a large generative
model on large datasets and then fine-tuning it with RL to
optimize the true objective. RL fine-tuning helps refine
the generative model to better meet the desired objectives,
making it crucial for practical applications.

Inspired by the recent success, we propose an RL fine-tuning
framework for CO. Despite its success in various domains,
the effectiveness of RL fine-tuning on generative models
has not yet been explored in the CO domain. Figure 1
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Figure 1. The learning curve during RL fine-tuning. The cost value
decreases, but the SL loss increases, indicating that the SL loss is
not sufficient for CO.

shows the prediction error (SL loss) between the solutions
generated by the model and the optimal solution, and cost
values during RL fine-tuning where the cost decreases, the
SL loss increases. This indicates that training using only the
SL loss may not be sufficient in CO and necessity for the
cost utilization.

We apply RL fine-tuning to the diffusion-based solver,
which has shown promising results in CO, and it offers
additional advantages for diffusion model-based CO solvers.
The necessity of feasibility in CO requires solutions to ad-
here to strict constraints. Sun & Yang (2023) employs post-
processing decoders to transform raw solutions sampled
from the diffusion model into constraint-satisfying ones,
but their learning objective ignores the potential changes
in the solution’s cost during post-processing, which can
lead to suboptimal performance. Through RL fine-tuning,
the model learns to generate solutions with post-processing
decoding in mind.

In our comprehensive experiments, our RL-finetuning
framework demonstrates superiority in various scenarios.
First, our fine-tuned diffusion model outperforms other dif-
fusion baselines by being aware of the changes in the cost
of the post-processed solutions. Second, our ideas can be
applied for transfer learning across different scales of CO
domains, making it easier to adapt the model to new prob-
lem instances of varying sizes without requiring additional
training datasets for each size. Finally, unlike existing meth-
ods that rely heavily on high-quality training datasets, our
approach shows robustness even with suboptimal training
data. This is crucial for real-world applications where opti-
mal solutions are not always available for training. These
overall results suggest that our integration of cost informa-
tion and the decoding process into the learning framework
offers a promising improvement for generative model-based
CO solvers.

2. Preliminaries and Related works
In this section, we provide the preliminary knowledge and
the most related works. Additional related works are pro-
vided in Appendix A.

2.1. Problem Formulation

We define the problem and introduce the key notations re-
lated to combinatorial optimization (CO) problems. Let G be
the set of all CO instances, and let g ∈ G denote a instance.
Each instance g has an associated discrete solution space
Xg := {0, 1}Ng and an objective function cg : Xg → R for
each solution x ∈ Xg defined as:

cg(x) = cost(x, g) + valid(x, g). (1)

Here, cost(·) represents the cost value to be optimized,
while valid(·) is a constraint indicator function, where
valid(x, g) = 0 if the solution x belongs to the feasible so-
lution space Fg ⊂ Xg, and valid(x, g) = ∞ when x /∈ Fg.
The optimization goal is to find the optimal solution x⋆ for
a given instance s:

xg
⋆ = argmin

x∈Xg

cg(x). (2)

We describe two specific CO problems as examples: the
Traveling Salesman Problem (TSP) and the Maximal In-
dependent Set (MIS) problem. In the TSP, an instance g
represents the coordinates of n cities to be visited. The solu-
tion x is an n× n matrix, where x[i, j] = 1 if the traveler
moves from city i to city j or vice versa. The total solution
space is Xg = {0, 1}n×n, and the feasible solution space
Fg ⊂ Xg is the set of all feasible TSP tours that visit each
city exactly once. The objective function cost(·) represents
the total length of the given tour and should be minimized.
In the MIS problem, an instance g represents a graph (V,E),
where V is the vertex set and E is the edge set. The solution
space Xg = {0, 1}V indicates whether each vertex v ∈ V
is included in the solution set. To satisfy the independence
property, x should not contain nodes connected by edges
in E. The objective function cost(·) represents the total
number of selected nodes and should be maximized.

2.2. Supervised Learning and Reinforcement Learning
in Combinatorial Optimization

As described in the introduction, most Neural Combinato-
rial Optimization (NCO) approaches can be categorized into
two types: Supervised Learning (SL) and Reinforcement
Learning (RL). In this part, we compare the learning objec-
tives for both approaches. In SL, the solver assumes the
availability of high-quality solutions x⋆

g for each training
instance g ∼ P (g), where P (g) is the distribution of the
CO instances.
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The solver’s goal is to search for parameters θ that resem-
ble a conditional distribution of the high-quality solutions
pθ(x

g
⋆|g) ≈ P (xg

⋆|g) for a given instance g ∼ P (g). Typi-
cally, generative model-based CO solvers try to maximize
the likelihood using the following objective function L(θ):

L(θ) = Eg∼P (g)[− log pθ(x
g
⋆|g)]. (3)

One notable point is that the solver in SL just resembles the
distribution of the optimal solution xg

⋆ rather than consider-
ing the cost(x, g) function.

In RL, the solver does not assume the availability of the
high-quality solutions xg

⋆ for a given instance g. However,
the solver exploits the information of the objective function
cg(·) during exploration and exploitation of the solutions x.
The solver’s goal is also to learn a distribution pθ(x | g) for
a given instance g that optimizes the objective function cg
as follows:

R(θ) = Eg∼P (g),x∼pθ(x|g)[−cg(x)]. (4)

Although both approaches are guaranteed to find the op-
timal parameters under ideal conditions, when applied in
practice, each has its own pros and cons. In the case of SL,
a sufficiently large amount of high-quality training data is
required, but due to the NP-hardness of the CO problem, it
is not easy to create this data. In the case of RL, it is difficult
to learn because it starts from scratch due to the limitation
of the solutions worth referencing.

2.3. Diffusion model for CO

Sun & Yang (2023) propose a diffusion model-based CO
solver called DIFUSCO. In CO, a diffusion model is em-
ployed to estimate the distribution of high-quality solutions
for combinatorial optimization problems during the train-
ing phase (Sun & Yang, 2023; Li et al., 2023). Since
the solution x is belongs to the discrete solution space
{0, 1}N , the noising process q(xt|xt−1) and denoising pro-
cess q(xt−1|xt,x0) are also done on the discrete space
{0, 1}N . In this work, we followed the discrete diffusion
models introduced by Austin et al. (2021a); Hoogeboom
et al. (2021); Sun & Yang (2023).

The diffusion process consists of a forward noising proce-
dure and a reverse denoising procedure. The forward pro-
cess incrementally adds noise to the initial solution x0 = xg

⋆,
creating a sequence of latent variables x0,x1, . . . ,xT. Note
that in CO, x0 follows the high-quality solutions for a given
instance g, i.e., x0 ∼ P (xg

⋆|g). Furthermore, the fully
noised solution xT in the last timestep T becomes an Ng

dimensional Bernoulli random variable with probability
p = {0.5}Ng and each variable is independent of each
other, i.e., xT ∼ Bern(p = {0.5}Ng ). For brevity, we omit
a problem instance g and denote xg

⋆ as x0 in all formulas of
the diffusion model as a convention.

The forward noising process is defined by q(x1:T|x0) =∏T
t=1 q(xt|xt−1), where x0 ∼ q(x0|g), and q(x1:T|x0) =∏T
t=1 q(xt|xt−1) denotes the transition probability at each

step. The reverse process is modeled as pθ(x0:T|g) =

p(xT)
∏T

t=1 pθ(xt−1|xt, g), with θ representing the model
parameters. The training objective is to match pθ(x0|g)
with the data distribution q(x0|g), optimized by minimizing
the variational upper bound of the negative log-likelihood:

L(θ) = Eq

[
− log pθ(x0|x1, g)+

T∑
t=2

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt, g))
]

(5)

More details are described in Appendix.

2.4. Decoder for feasiblity in ML-based CO solvers

As we mentioned in Section 2.1, the feasible solution space
Fg is a much smaller subset compared to the total solu-
tion space Xg. However, the above diffusion model only
guarantees feasibility of the sampled solution x0. In other
words, we know that x0 belongs to the total solution space
Xg but may not belong to the feasible solution space Fg.
To overcome this issue, Sun & Yang (2023), who suggest
the diffusion models for CO, introduce an additional post-
processing decoder fg : Xg → Fg which slightly changes
the sampled solution x0 into the feasible solution fg(x0)
near the original solution, i.e., x0 ≈ fg(x0). Since the
decoder fg modifies the solution, the goal in CO is also
changed from minimizing cost(x0, g)+valid(x0, g) to min-
imizing cost(fg(x0), g). However, the previous work (Sun
& Yang, 2023) introduces a diffusion model for CO but
does not consider the effect of the decoder in their learning
objective in (5).

In RL, it is much easier to consider these decoding mech-
anisms without hurting the objective compared to the CO
scenario. In the RL scenario, we can slightly modify the
objective R(θ) in (4) as follows:

R(θ) = Eg∼P(g),x∼pθ(x|g)[−cost(fg(x0), g)].

With this simple modification of R(θ), the solver knows
how the objective is affected by the decoder fg since the
cost is determined by the post-processed solution fg(x0, g).
Taking these factors into account, we introduce an MDP in
the following section which formulates the denoising pro-
cess of the pretrained diffusion model with the consideration
of the decoder fg .

3. Method
3.1. MDP modeling of diffusion model for CO

An MDP is defined by a tuple (S,A, P, ρ0, R), where s ∈ S
is a state in the state space S, a ∈ A is an action belongs
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Figure 2. The overall denoise process in terms of MDP. The initial random noise xT is sampled from the Bern(p = 0.5N ).

to the action space A, P (st+1| st,at) is the state transi-
tion distribution, ρ0(s0) is the initial state distribution, and
R(st,at) is the reward function. The objective of RL is to
learn a policy π that maximizes the expected cumulative
reward J(π), formalized as Eτ∼p(τ |π)

[∑T
t=0 R (st,at)

]
where τ = (s0,a0...sT ,aT ) is a sequence of states and
actions from a policy in the MDP.

We formulate the denoising process in the diffusion process
as Markov Decision Process (MDP) for CO, motivated from
(Black et al., 2024) in the image domain:

st ≜ (g, t,xt) ,

at ≜ xt−1,

π (at | st) ≜ pθ (xt−1 | xt, g) ,

P (st+1 | st,at) ≜
(
δs, δt−1, δxt−1

)
,

ρ0(s0) ≜ (g, t,Bern(p = 0.5Ng )),

R (st,at) ≜

{
−cs (fg(x0), g) if t = 0,

0 otherwise.

(6)

where Bern(p) is a Bernoulli distribution with vector proba-
bilities p that samples the initial random noise xT , and δy
is the Dirac delta distribution with nonzero density only at
y. We then apply a policy gradient algorithm for optimizing
the iterative denoising procedure with the cost function:

∇θJ = E

[
T∑

t=0

∇θ log pθ (xt−1 | xt, g) (−cost (fg(x0), g))

]
(7)

We note that the solver is able to consider the effect of the
post-processed solution x0 by the decoder fg if the agent
learns the suggested MDP properly.
Remark 3.1. One of the challenges in current RL-finetuning
techniques is reward hacking (Black et al., 2024; Fan et al.,
2023), where the model learns to optimize for high reward
values while sacrificing actual output quality, which is hard
to compute. However, in our problem domain of combina-
torial optimization (CO), the decoder inherently guarantees
feasibility. This means that minimizing the cost function
directly correlates with improving the solution quality. As a
result, our approach is not susceptible to the reward hacking
issue that plagues many existing RL-finetuning methods.

3.2. RL fine-tuning for cost-aware diffusion model

The overall structure of our framework is illustrated in Fig-
ure 2. CADO consists of two phases. In the first phase, the
diffusion model is trained using the given dataset with the
supervised learning objective objective L(θ) in (5). In the
second phase, we apply RL fine-tuning on the pretrained
diffusion model to optimize R(θ) in (4). During this phase,
the training instances g can be newly generated from the dis-
tribution P (g) or sampling from the instances in the train
dataset. In general, generating unseen instances is more
beneficial for aspects such as generalization compared to us-
ing existing instances in the train dataset. Therefore, when
the distribution of instances is known, we sampled new in-
stances directly from the environment rather than utilizing
the existing instances.

To accurately measure the effectiveness of RL-finetuning
compared to previous works (Sun & Yang, 2023; Li et al.,
2023) with the diffusion models that did not consider
Rl-finetuing, we directly finetune the pretrained diffusion
model employed in those papers and performed finetuning.
The denoising component of the Diffusion model consists of
a 12-layer anisotropic Graph Neural Network (GNN), with
each layer utilizing either 128 or 256 units. More details of
the network architecture are described in Appendix.

Many other techniques in (Sun & Yang, 2023; Li et al.,
2023) are also applied in a similar manner. The decoders
used for post-processing to generate feasible solutions are
identical to those employed in (Sun & Yang, 2023; Li et al.,
2023). The 2OPT heuristic(Lin & Kernighan, 1973) can be
optionally applied for TSP. Finally, we adopted the local
rewriting technique from Chen & Tian (2019a); Li et al.
(2023), which involves reinjecting noise and performing
denoising after the initial denoising process.

Recently, Li et al. (2023) proposed a method called T2T that
enables DIFUSCO to utilize cost information by guiding the
denoising steps through gradients from the differentiable
cost function, thereby directly minimizing the CO objective
during inference. (Li et al., 2023) is similar to our work in
that it also incorporates cost information. However, our ap-
proach does not require a differentiable cost function, which
is not always straightforward to define in CO problems.

During RL fine-tuning, we apply several techniques to fa-
cilitate efficient training. First, we freeze the first 11 layers
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Table 1. Results on TSP-50 and TSP-100. AS: Active Search, S: Sampling Decoding, BS: Beam Search, RRC: Random Re-
Construct(algorithm from Luo et al. (2023), which iteratively refines the partial solution). * represents the baseline for computing
the drop. All the results except for † and T2T are taken from Li et al. (2023). The results of models† are taken from Zhou et al. (2024),
which are evaluated on the different test instance set with others.

Algorithm Type TSP-50 TSP-100

Length ↓ Drop ↓ Length ↓ Drop ↓
Concorde (Applegate et al., 2006) Exact 5.69* 0.00% 7.76* 0.00%

2OPT (Lin & Kernighan, 1973) Heuristics 5.86 2.95% 8.03 3.54%
Farthest Insertion Heuristics 6.12 7.50% 8.72 12.36%

AM (Kool et al., 2019b) RL+Grdy 5.80 1.76% 8.12 4.53%
GCN (Joshi et al., 2019a) SL+Grdy 5.87 3.10% 8.41 8.38%

Transformer (Bresson & Laurent, 2021) RL+Grdy 5.71 0.31% 7.88 1.42%
POMO (Kwon et al., 2020) RL+Grdy 5.73 0.64% 7.84 1.07%

Sym-NCO (Kim et al., 2022) RL+Grdy - - 7.84 0.94%
Image Diffusion (Graikos et al., 2022b) SL+Grdy 5.76 1.23% 7.92 2.11%

BQ† (Drakulic et al., 2023) SL+Grdy - - 7.79 0.35%
LEHD† (Luo et al., 2023) SL+Grdy - - 7.81 0.58%

ICAM† (Zhou et al., 2024) RL+Grdy - - 7.83 0.90%
DIFUSCO (Sun & Yang, 2023) SL+Grdy 5.72 0.48% 7.84 1.01%

T2T (Sun & Yang, 2023) SL+Grdy 5.69 0.04% 7.77 0.18%
CADO (Ours) SL+RL+Grdy 5.69 0.01% 7.77 0.08%

AM (Kool et al., 2019b) RL+Grdy+2OPT 5.77 1.41% 8.02 3.32%
GCN (Joshi et al., 2019a) SL+Grdy+2OPT 5.70 0.12% 7.81 0.62%

Transformer (Bresson & Laurent, 2021) RL+Grdy+2OPT 5.70 0.16% 7.85 1.19%
POMO (Kwon et al., 2020) RL+Grdy+2OPT 5.73 0.63% 7.82 0.82%

Sym-NCO (Kim et al., 2022) RL+Grdy+2OPT - - 7.82 0.76%
BQ† (Drakulic et al., 2023) - - - - -

LEHD† (Luo et al., 2023) SL+Grdy+RRC - - 7.76 0.01%
ICAM† (Zhou et al., 2024) RL+Grdy+RRC - - 7.79 0.41%

DIFUSCO (Sun & Yang, 2023) SL+Grdy+2OPT 5.69 0.09% 7.78 0.22%
T2T (Li et al., 2023) SL+Grdy+2OPT 5.69 0.02% 7.76 0.06%

CADO (Ours) SL+RL+Grdy+2OPT 5.69 0.00% 7.76 0.01%

in the GNN architecture and only update the parameters in
the last layer of the GNN. Additionally, we optionally apply
Low-Rank Adaptation (LoRA) (Hu et al., 2022) to fine-tune
the remaining 11 layers. Our experimental results demon-
strate that for most tasks, fine-tuning only the last layer
is sufficient, leading to faster training speed and reduced
memory usage. However, in certain cases, applying LoRA
yielded significantly improved performance. We observe
that LoRA was particularly beneficial when the performance
of the pre-trained diffusion model alone was inadequate. In
such scenarios, incorporating LoRA contributed to notable
performance enhancements.

4. Experiment
The experiments were carried out using a single NVIDIA
Telsla A40 GPU and two cpu cores of AMD EPYC 7413
24-Core Processor both for training and testing. Basically,
all test procedures are the same as DIFUSCO (Sun & Yang,
2023) and T2T (Li et al., 2023) studies, which serve as
crucial baselines for comparison.

4.1. Experiment settings

Problems We test our proposed CADO on the Traveling
Salesman Problem (TSP) and the Maximal Independent Set
(MIS), which are basically edge and node selecting prob-
lem respectively. TSP is the most commonly used bench-
mark combinatorial optimization problem, where the objec-
tive is to determine the shortest possible route that visits a
set of nodes exactly once and returns to the original node.
cost(x, G) in the Equation 1 is defined as costTSP(x, G) =∑

i,j xi,j · wi,j , where wi,j denotes the weight (distance)
between vertices i and j, and validTSP(x, G) returns 0 only
when x visits a set of nodes exactly once and returns to the
original node.

MIS is another widely used benchmark problem where
the objective is to find the largest subset of vertices in a
graph such that no two vertices in the subset are adjacent.
The cost is defined as costMIS(x, G) =

∑
i (1− xi), and

validMIS(x, G) returns 0 only when each vertice in the set
has no connection to any other vertice in the set.
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Table 2. Results on TSP-500 and TSP-1000. AS: Active Search, S: Sampling Decoding, BS: Beam Search, RRC: Random Re-
Construct(algorithm from Luo et al. (2023), which iteratively refines the partial solution). * represents the baseline for computing
the drop. All the results except for † and T2T are taken from Li et al. (2023). The results of models† are taken from Zhou et al. (2024),
which are evaluated on the different test instance set with others.

Algorithm Type TSP-500 TSP-1000

Length ↓ Drop ↓ Time Length ↓ Drop ↓ Time

Concorde (Applegate et al., 2006) Exact 16.55* - 37.66m 23.12* - 6.65h
Gurobi (Gurobi Optimization, 2020) Exact 16.55 0.00% 45.63h - - -

LKH-3 (default) (Helsgaun, 2017) Heuristics 16.55 0.00% 46.28m 23.12 0.00% 2.57h
Farthest Insertion Heuristics 18.30 10.57% 0s 25.72 11.25% 0s

AM (Kool et al., 2019b) RL+Grdy 20.02 20.99% 1.51m 31.15 34.75% 3.18m
GCN (Joshi et al., 2019a) SL+Grdy 29.72 79.61% 6.67m 48.62 110.29% 28.52m

POMO+EAS-Emb (Hottung et al., 2021) RL+AS+Grdy 19.24 16.25% 12.80h - - -
POMO+EAS-Tab (Hottung et al., 2021) RL+AS+Grdy 24.54 48.22% 11.61h 49.56 114.36% 63.45h

DIMES (Qiu et al., 2022) RL+Grdy 18.93 14.38% 0.97m 26.58 14.97% 2.08m
DIMES (Qiu et al., 2022) RL+AS+Grdy 17.81 7.61% 2.10h 24.91 7.74% 4.49h
DIMES (Qiu et al., 2022) RL+Grdy+2OPT 17.65 6.62% 1.01m 24.83 7.38% 2.29m
DIMES (Qiu et al., 2022) RL+AS+Grdy+2OPT 17.31 4.57% 2.10h 24.33 5.22% 4.49h

BQ† (Drakulic et al., 2023) SL+Grdy 16.72 1.18% 0.77m 23.65 2.27% 1.9m
LEHD† (Luo et al., 2023) SL+Grdy 16.78 1.56% 0.27m 23.85 3.17% 1.6m
LEHD† (Luo et al., 2023) SL+Grdy+RRC 16.58 0.34% 8.7m 23.40 1.20% 48.6m

ICAM† (Zhou et al., 2024) RL+Grdy 16.78 1.56% 0.03 23.80 2.93% 0.03m
ICAM† (Zhou et al., 2024) RL+Grdy+RRC 16.69 1.01% 2.4m 23.55 1.86% 16.8m

DIFUSCO (Sun & Yang, 2023) SL+Grdy 18.11 9.41% 5.70m 25.72 11.24% 17.33m
DIFUSCO (Sun & Yang, 2023) SL+Grdy+2OPT 16.81 1.55% 5.75m 23.55 1.86% 17.52m

T2T (Li et al., 2023) SL+Grdy 17.69 6.92% 4.90m 25.39 9.83% 17.93m
T2T (Li et al., 2023) SL+G+2OPT 16.68 0.83% 4.83m 23.41 1.26% 18.37m

CADO (Ours) SL+RL+Grdy 16.97 2.56% 2.52m 24.92 7.78 % 18.31m
CADO (Ours) SL+RL+Grdy+2OPT 16.64 0.58% 2.67m 23.35 1.02 % 7.67m

EAN (Deudon et al., 2018) RL+S+2OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h
AM (Kool et al., 2019b) RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h

GCN (Joshi et al., 2019a) SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m
DIMES (Qiu et al., 2022) RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m
DIMES (Qiu et al., 2022) RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h
DIMES (Qiu et al., 2022) RL+S+2OPT 17.64 6.56% 1.10m 24.81 7.29% 2.86m
DIMES (Qiu et al., 2022) RL+AS+S+2OPT 17.29 4.48% 2.11h 24.32 5.17% 4.53h

BQ† (Drakulic et al., 2023) SL+BS 16.62 0.58% 11.9m 23.43 1.36% 29.4m
ICAM† (Zhou et al., 2024) RL+BS 16.69 1.01% 1.5m 23.54 1.83% 10.5m
ICAM† (Zhou et al., 2024) RL+S 16.65 0.78% 0.63m 23.49 1.58% 3.8m

DIFUSCO (Sun & Yang, 2023) SL+S 17.48 5.65% 19.02m 25.11 8.61% 59.18m
DIFUSCO (Sun & Yang, 2023) SL+S +2OPT 16.69 0.37% 19.05m 23.42 1.30% 59.53m

T2T (Li et al., 2023) SL+S 17.14 3.60% 17.05m 24.85 7.51% 1.12h
T2T (Li et al., 2023) SL+S +2OPT 16.62 0.46% 17.02m 23.31 0.85% 1.17h

CADO (Ours) SL+RL+S 16.75 1.27% 6.83m 24.47 5.88 % 24.73m
CADO (Ours) SL+RL+S+2OPT 16.60 0.34% 6.90m 23.28 0.69 % 25.78m

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

CADO: Cost-Aware Diffusion Solvers for Combinatorial Optimization through RL fine-tuning

Table 3. Comparison of Different Algorithms on SATLIB and ER-[700-800]

Algorithm Type SATLIB ER-[700-800]

Size ↑ Drop ↓ Time Size ↑ Drop ↓ Time

KaMIS (Lamm et al., 2016) Heuristics 425.96∗ - 37.58m 44.87∗ - 52.13m
Gurobi (Gurobi Optimization, 2020) Exact 425.95 0.00% 26.00m 41.28 7.78% 50.00m

Intel (Li et al., 2018a) SL+Grdy 420.66 1.48% 23.05m 34.86 22.31% 6.06m
DIMES (Qiu et al., 2022) RL+Grdy 421.24 1.11% 24.17m 38.24 14.78% 6.12m

DIFUSCO (Sun & Yang, 2023) SL+Grdy 424.56 0.33% 8.25m 36.55 18.53% 8.82m
T2T (Li et al., 2023) SL+Grdy 425.02 0.22% 8.12m 39.56 11.83% 8.53m

CADO (Ours) SL+RL+Grdy 425.01 0.22% 9.52m 42.96 4.25% 9.50m

Intel (Li et al., 2018a) SL+TS - - - 38.80 13.43% 20.00m
DGL (Böther et al., 2022) SL+TS - - - 37.26 16.96% 22.71m

LwD (Ahn et al., 2020a) RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m
GFlowNets (Zhang et al., 2023) UL+S 423.54 0.57% 23.22m 41.14 8.53% 2.92m
DIFUSCO (Sun & Yang, 2023) SL+S 425.13 0.19% 26.32m 40.35 10.07% 32.98m

T2T (Li et al., 2023) SL+S 425.22 0.17% 23.80m 41.37 7.81% 29.73m
CADO (Ours) SL+RL+S 425.14 0.19% 16.57m 43.53 2.998% 11.90m

Datasets In TSP experiments, we use the training in-
stances provided by DIFUSCO (Sun & Yang, 2023)
where the solutions are generated by the Concorde ex-
act solver (Applegate et al., 2006) or the LKH-3 heuris-
tic solver (Helsgaun, 2017). For the fair comparison, we
use the same test instances as in Joshi et al. (2022); Kool
et al. (2019b) for TSP-50/100 and Fu et al. (2021b) for
TSP-500/1000. In MIS experiments, we experiment on
two types of graphs following (Li et al., 2018b; Ahn et al.,
2020b; Böther et al., 2022; Qiu et al., 2022; Sun & Yang,
2023; Li et al., 2023), SATLIB (Hoos & Stutzle, 2000) and
Erdős–Rényi (Erdos & Renyi, 1960). We also use the train-
ing instances provided by DIFUSCO, and test instances
from Qiu et al. (2022).

Evaluation Metrics We evaluate our model and other
baselines in terms of three metrics : 1) Length : the aver-
age tour length for TSP (the smaller, the better), and Size :
the average size of independent set for MIS (the larger, the
better). 2) Drop : the average performance difference be-
tween the generated solutions from the models and optimal
solutions. 3) Time : the total run time during test time.

Baselines We compare our method with the following
methods : (1) Classical Solvers: Concorde [2], LKH3
[16], HGS [50], and OR-Tools [41]; (2) Constructive NCO:
POMO [29], MDAM [54], EAS [19], SGBS [8], and BQ
[12]; (3) Heatmap-based Method: Att-GCN+MCTS [13].

4.2. Main Result

TSP 50/100 Our experiments on TSP 50 and TSP 100,
summarized in Table 1. By utilizing reward signals during
training, we significantly improve the model’s performance,
achieving the state-of-the-art (SOTA). Notably, for TSP 50,

our model without 2-opt heuristics (SL+RL+Grdy, drop:
0.01%) outperforms DIFUSCO (0.09%) and T2T (0.02%)
with 2-opt, underscoring the superior optimization capability
of our RL fine-tuning approach.

TSP 500/1000 For larger instances, our model continues
to deliver impressive results. The message remains con-
sistent: our fine-tuning approach significantly reduces the
gap, emphasizing its effectiveness. Our method consistently
achieves SOTA performance, validating the effectiveness of
combining supervised and RL losses during training. The
success of our method can be attributed to its ability to ob-
serve multiple new instances due to RL fine-tuning, and
incorporating the post-processing decoder in the training
phase, allowing the model to learn to produce solutions that
are optimal for the post-processing decoder. Note that the
computational costs with ours and T2T are the same and
very similar to DIFUSCO, but different library versions and
optimized code result in different computation times.

MIS SAT/ER Our experimental results on the SATLIB
dataset shows competitive performance with previous state-
of-the-art, T2T. As the performance of DIFUSCO, our back-
bone model, is already near optimal, only the minimal im-
provement has been achieved. Additionally, generating new
SAT instances is not trivial. As a result, we utilized the exist-
ing training dataset during RL fine-tuning, which might have
limited potential performance improvements. This finding
suggests that for better results, exposing the RL fine-tuning
process to new samples, rather than reusing the samples
employed in supervised learning (SL), could lead to more
significant performance enhancements. The performance
on the ER dataset is outstanding. Our CADO approach
achieved a maximum independent set size of 42.96 with a
drop of 4.25%, significantly better than the results of the
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previous state-of-the-art. In this case, we generated random
graphs during RL fine-tuning, which contributed to dramatic
improvements in performance.

4.3. SL under the low quality train dataset

Table 4. Results on the low quality dataset.

Algorithm Drop 0% Drop 1.36%
Drop ↓ Drop ↓

DIFUSCO 0.48 % 2.298%
T2T 0.04% 1.001%
CADO(ours) 0.01 % 0.911%

A significant advantage of RL fine-tuning is its ability to
continually explore higher quality solutions during train-
ing. Therefore, it can be less sensitive to the quality of
the given dataset. To verify this, we constructed an addi-
tional dataset consisting only of suboptimal solutions for
TSP100, in addition to the dataset with optimal solutions.
The suboptimal dataset was created by running LKH-3 for 1
second per instance, resulting in samples with an average
drop of 1.36% compared to the optimal dataset. Table 4
shows the performance of algorithms trained on both the
optimal dataset (Drop 0%) and the suboptimal dataset (Drop
1.36%). As expected, DIFUSCO’s performance signifi-
cantly decreased when trained on the lower-quality dataset.
In contrast, both our approach and T2T, which utilize cost
information, demonstrated the ability to generate samples
of higher quality than the provided dataset. Our method
slightly outperformed T2T. These results highlight the im-
portance of leveraging cost information in combinatorial
optimization.

4.4. Transfer learning

Table 5. Results on transfer learning on various TSP size.

Fine-tuning 100→500 500→1000
Drop ↓ Drop ↓

SL →× 3.2% 2.12%
SL → SL 1.55% 1.86%
SL → RL 1.59% 1.04%

In this section, we conducted experiments in a transfer learn-
ing setting where the tasks of the training data and the target
task differ. While it is possible to fine-tune using RL as we
have done, if a dataset for the target task exists, it is also
feasible to fine-tune using SL as DIFUSCO does. We com-
pared SL fine-tuning and RL fine-tuning in this context. We
set up two environments: one where the model was trained
on TSP100 and then fine-tuned on TSP500 (100→500),
and another where the model was trained on TSP500 and

then fine-tuned on TSP1000 (500→1000). As shown in the
Table 5, directly applying the model without fine-tuning re-
sults in poor performance. Compared to SL fine-tuning, our
method achieved similar performance on TSP500 and better
performance on TSP1000, despite not using an additional
dataset labeled with solutions close to optimal. These results
demonstrate that RL fine-tuning is more cost-effective and
efficient.

5. Conclusion
In this paper, we introduced an RL fine-tuning framework
for generative models in Combinatorial Optimization (CO)
problems, addressing the limitations of traditional diffusion-
based solvers. Our approach integrates cost-awareness into
solution generation, significantly enhancing performance
in various CO domains. Furthermore, it shows robustness
with the quality of the training data, and can effectively
adapts to different scales of CO problems through transfer
learning. These overall results suggest that our integration of
cost information and the decoding process into the learning
framework offers a promising improvement for generative
model-based CO solvers.
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A. Diffusion Loss
In CO, considering that the entry of the optimization variable x are indicators of whether to select a node or an edge, each
entry can also be represented as an one-hot {0, 1}2 while modeling it with Bernoulli distribution. Therefore, for diffusion
process, x turns into N one-hot vectors x0 ∈ {0, 1}N×2. Then, discrete diffusion model (Austin et al., 2021b) is utilized.
Specifically, at each time step t, the process transitions from xt−1 to xt defined as:

q(xt|xt−1) = Cat(xt;p = xt−1Qt) (8)

where the Cat(x;p) is a categorical distribution over x ∈ {0, 1}N×2 with vector probabilities p and transition probability
matrix Qt is:

Qt =

[
(1− βt) βt

βt (1− βt)

]
(9)

Here, βt represents the noise level at time t. The t-step marginal distribution can be expressed as:

q(xt|x0) = Cat(xt;p = x0Qt) (10)

where Qt = Q1Q2, . . . ,Qt. To obtain the distribution q(xt−1|xt,x0) for the reverse process, Bayes’ theorem is applied,
resulting in:

q(xt−1|xt,x0) = Cat

(
xt−1;p =

xtQt
⊤ ⊙ x0Qt−1

x0Qtxt
⊤

)
(11)

As in (Austin et al., 2021b), the neural network responsible for denoising pθ(x̃0|xt, g) is trained to predict the original data
x0. During the reverse process, this predicted x̃0 is used as a substitute for x0 to calculate the posterior distribution:

pθ(xt−1|xt) =
∑
x

q(xt−1|xt, x̃0)pθ(x̃0|xt, g) (12)

B. Neural Network Architecture
Following Sun & Yang (2023), we also utilize an anisotropic graph neural network with edge gating (Bresson & Laurent,
2018a;b) for backbone network of the diffusion model.

Consider hℓ
i and eℓij as the features of node i and edge ij at layer ℓ, respectively. Additionally, let t represent the sinusoidal

features (Vaswani et al., 2017) corresponding to the denoising timestep t. The propagation of features to the subsequent
layer is performed using an anisotropic message-passing mechanism:

êℓ+1
ij = P ℓeℓij +Qℓhℓ

i +Rℓhℓ
j , (13)

eℓ+1
ij = eℓij + MLPe(BN(êℓ+1

ij )) + MLPt(t), (14)

hℓ+1
i = hℓ

i + α(BN(U ℓhℓ
i +

∑
j∈Ni

σ(êℓ+1
ij )⊙ V ℓhj)), (15)

where U ℓ, V ℓ, P ℓ, Qℓ, Rℓ ∈ Rd×d are learnable parameters for layer ℓ, α denotes the ReLU activation function (Krizhevsky,
2010), BN stands for Batch Normalization (Ioffe & Szegedy, 2015), A signifies the aggregation function implemented as
SUM pooling (Xu et al., 2019), σ is the sigmoid activation function, ⊙ represents the Hadamard product, Ni indicates the
neighbors of node i, and MLP(·) refers to a two-layer multi-layer perceptron.

For the Traveling Salesman Problem (TSP), the initial edge features e0ij are derived from the corresponding values in xt, and
the initial node features h0

i are initialized using the nodes’ sinusoidal features. In contrast, for the Maximum Independent
Set (MIS) problem, e0ij are initialized to zero, and h0

i are assigned values corresponding to xt. We then apply a classification
or regression head, with two neurons for classification and one neuron for regression, to the final embeddings of xt (i.e.,
{eij} for edges and {hi} for nodes) for discrete and continuous diffusion models, respectively.
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C. Related works
ML-based CO solvers can be divided into two categories based on their training procedures: RL and SL methods. RL
methods iteratively refine subsolutions(da Costa et al., 2020; Wu et al., 2019; Chen & Tian, 2019b; Li et al., 2021; Hou et al.,
2023) or extend a partial solution until a complete solution is formed (Kool et al., 2019b; Bello et al., 2016; Kwon et al.,
2020; Kim et al., 2022), offering the significant advantage of directly optimizing the given objective. However, because the
learning process involves exploring and finding good solutions independently without any guidance from the beginning, it is
not easy to train on large-scale problems with a vast search space. On the other hand, SL methods (Joshi et al., 2019a; Fu
et al., 2021a; Geisler et al., 2022; Joshi et al., 2019b) predict a solution in one step without iterative refinement. This allows
for relatively stable training on large-scale problems, thanks to the availability of a training dataset. However, these methods
heavily depend on the quality of the training dataset, and because cost information is not inherently considered, the solutions
they produce may not be optimal in practice.

Generative models have shown remarkable success in images and texts, leading to various studies proposing their application
in CO with the expectation of leveraging their powerful expressiveness(Graikos et al., 2022a; Mirhoseini et al., 2021; Kool
et al., 2019a; Niu et al., 2020; Sun & Yang, 2023; Li et al., 2023). Treating the CO solution generation process as image
generation, those methods usually utilize probabilistic generative models to train the solver to sample CO solutions. Recently,
(Sun & Yang, 2023), which is closely related to our work, proposes diffusion model-based CO solvers called DIFUSCO,
and shows the promising results in various CO problems. However, since generative models are mostly trained using SL,
those methods also share the same drawbacks as SL methods in CO. To overcome them, (Li et al., 2023) extends DIFUSCO
by integrating a cost-guided local search during the denoising process, thereby better aligning with the true goal of CO,
finding optimal solutions for individual instances. (Li et al., 2023) is similar to our work in that it additionally utilized cost
information, but it requires a differentiable cost function, which is not always straightforward to define in CO problems.
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