
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

WaSCR: A WebAssembly Instruction-Timing Side Channel
Repairer

Anonymous Author(s)
Abstract

WebAssembly (Wasm) is a platform-independent, low-level binary
language that enables near-native performance in web applications.
Given its growing importance in the web ecosystem, securing We-
bAssembly programs becomes increasingly important. A key secu-
rity concern with WebAssembly is the threat of instruction-timing
side-channel attacks, which exploit timing variations in branch in-
structions dependent on sensitive data, allowing attackers to infer
sensitive information through timing measurement.

In this paper, we introduceWaSCR, an automatedWebAssembly
instruction-timing Side-ChannelRepairer. WaSCR uses control and
data dependencies to trace the flow of sensitive data and prevent
its leakage. It employs rule-based code transformations to linearize
the program, eliminating branches dependent on sensitive data
and substituting them with constant-time selectors. Our evaluation
demonstrates that WaSCR effectively eliminates instruction-timing
side channels while maintaining program correctness, with efficient
repairs and moderate performance overhead.

1 Introduction

WebAssembly (Wasm) is a platform-independent, low-level binary
language designed to enable near-native performance in web ap-
plications [58]. It is widely supported by major browsers [33] and
increasingly popular in the web ecosystem [26]. Despite operating
within a sandboxed environment, which is generally considered
secure [58], WebAssembly remains vulnerable to side-channel at-
tacks [3, 28, 55, 56]. These attacks exploit a program’s non-functional
properties, such as execution time, cache access, or power consump-
tion, to infer sensitive information like passwords or encryption
keys [13, 16, 29, 35]. Research has shown that side-channel vul-
nerabilities can be exploited in WebAssembly programs [55], and
existing protections have proven inadequate [56].

One common form of side-channel attacks is the instruction-

timing attack, where an attacker deduces sensitive information
by measuring the execution time of instructions in conditional
branches. However, most WebAssembly side-channel research has
focused on other types of attacks, such as Spectre [32, 36, 53], port
contention [43], and cache attacks [14, 23], with limited work on
addressing instruction-timing side channels. Tools developed for
other languages, such as C/C++ and Java [12, 18, 34, 47, 48, 52, 59]
– including those based on LLVM – cannot be easily adaptable to
WebAssembly due to its unique language features and the diversity
of its runtimes, such as V8 [50] and Wasmtime [4], which employ
various compiler infrastructures.

Current solutions for mitigating instruction-timing side channels
in WebAssembly are limited to CT-Wasm [17, 54] and the work by
Tsoupidi et al. [51]. CT-Wasm extends WebAssembly’s semantics to
enforce constant-time programming [10], ensuring that program
execution time is independent of sensitive data by introducing a
“secret” data type and prohibiting its use in conditional branches.

However, since CT-Wasm is not part of the standard WebAssembly
specification, it is implemented as an extension to theWebAssembly
reference interpreter and V8 JavaScript engine. Similarly, Tsoupidi
et al. used Relational Symbolic Execution (RelSE) to detect constant-
time violations in WebAssembly, but their approach also requires
modifications to the WebAssembly reference interpreter.

While existing approaches [51, 54] provide some protection
against instruction-timing attacks in WebAssembly, they have sig-
nificant limitations. First, they require platform-specific extensions,
which limit their portability across platforms. Second, although
these tools can detect constant-time violations in WebAssembly
programs, fixing these violations still requires substantial manual
effort from developers, making the process labor-intensive and
error-prone. Consequently, there is an urgent need for robust, auto-
mated defenses to effectively detect and repair instruction-timing
side channels in WebAssembly.

However, repairing instruction-timing side channels inWebAssem-
bly presents distinct challenges. First, WebAssembly’s unique type
system, stack-based architecture, and memory model make exist-
ing defenses from other languages ineffective. Second, the absence
of high-level data types and semantic metadata complicates the
tracking of dependencies within WebAssembly’s linear memory.
Third, WebAssembly’s diverse control structures and branching
mechanisms increase the complexity of accurately modeling and
transforming programs. Additionally, WebAssembly blocks can re-
turn values, adding another layer of intricacy that requires sophisti-
cated analysis to effectively monitor data flow and taint propagation
across different blocks. Finally, indirect calls — dynamic function
invocations based on a function table — further hinder analysis and
program transformation efforts.

To address these challenges, we introduce WaSCR, a static anal-
ysis tool designed to automatically detect and repair instruction-
timing side channels inWebAssembly programs. Figure 1 illustrates
WaSCR’s architecture. It takes a WebAssembly module, along with
a list of functions and user-annotated sensitive data, as input. It con-
structs a ProgramDependency Graph (PDG) [21] for theWebAssem-
bly module, on which it then performs taint analysis. This analysis
traces both data and control dependencies to identify branches
and code blocks affected by sensitive data, marking them as vul-
nerable. Upon identifying these vulnerabilities, WaSCR applies
predefined rule-based code transformations. This process linearizes
the vulnerable branches using constant-time selectors, ensuring the
WebAssembly module’s execution remains independent of sensitive
data. This approach effectively mitigates instruction-timing side
channel vulnerabilities.

We evaluate WaSCR on 20 WebAssembly modules across three
key dimensions. First, we demonstrate the effectiveness of WaSCR

in repairing instruction-timing side-channel vulnerabilities using
GEM5 [11, 31], a fine-grained CPU architecture simulator. Second,
we illustrate WaSCR’s efficiency of the repair process by measuring

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Overview of WaSCR

1 (module
2 (memory (export "memory") 1)
3 (func (export "add_and_store")
4 (param $p i32) (param $q i32) (local $a i32)
5 local.get $p
6 local.get $q
7 i32.add
8 local.set $a
9 i32.const 0 ;; memory address to store
10 local.get $a ;; value to store
11 i32.store offset=0))

(a) WebAssembly code module.wasm
1 const { instance } = await WebAssembly.

↩→ instantiateStreaming(fetch('module.wasm'));
2 instance.exports.add_and_store (20);
3 const memory = new Uint32Array(instance.exports.

↩→ memory.buffer);
4 console.log(memory [0]);

(b) JavaScript glue code

Figure 2: Example of Wasm and its JS glue code

the time required for leakage detection and code transformation.
Third, we evaluate the quality of the repaired programs by measur-
ing runtime overhead and code size increase. Our results confirm
that WaSCR effectively mitigates instruction-timing vulnerabilities,
faithfully preserves semantic correctness, and introduces moderate
overhead.

In summary, our work makes the following contributions:
• We introduce WaSCR, a static analysis tool that automati-

cally detects and repairs instruction-timing side channels
in WebAssembly without platform-specific extensions.

• WaSCR uses taint tracking and rule-based code transforma-
tion to identify and linearize sensitive conditional branches
in WebAssembly, mitigating timing vulnerabilities.

• We evaluate WaSCR on 20 WebAssembly modules, demon-
strating its effectiveness in mitigating instruction-timing
side channels while ensuring efficiency and quality.

2 Background and Motivation

This section provides an introduction of WebAssembly, explains
how instruction-timing side-channel attacks work, and outlines the
use of constant-time selectors to mitigate such vulnerabilities.

2.1 WebAssembly

WebAssembly is a low-level, platform-independent binary language
that executes in a sandboxed environment [58]. It can be compiled

from high-level languages such as C/C++, Rust, and Go [24]. Its
ability to deliver near-native performance has made it increasingly
popular, particularly in web applications where it runs alongside
JavaScript. Figure 2 illustrates a WebAssembly module along with
its JavaScript glue code. Specifically, the WebAssembly function
add_and_store (Figure 2a) adds the two parameters, stores the
result in a local variable $a, and writes the value of $a to mem-
ory address 0. The JavaScript glue code (Figure 2b) initializes the
WebAssembly module, invokes the add_and_store function, and
prints the addition result.

WebAssembly distinguishes itself from other programming lan-
guages with several key features:
Strict Type System. Unlike high-level languages that support a
wide range of data types and automatic type inference, WebAssem-
bly enforces a strict type system with only four numeric data types
(i32, i64, f32, and f64). These types must be explicitly defined,
making it resemble low-level machine code.
Stack-based Virtual Machine. WebAssembly operates on a stack
machine for instruction execution, instead of using registers or
memory for computation, as seen in most high-level languages. As
shown in Figure 2a, values are pushed to the stack using local.get,
consumed by i32.add, and the result is pushed back onto the stack.
Linear Memory. It uses linear memory, a continuous memory
region that both WebAssembly code and host environments (e.g.,
JavaScript) can access directly. This differs from high-level lan-
guages that abstract memory through automated mechanisms like
garbage collection. Although native assembly also interacts directly
with memory, WebAssembly’s memory model is more constrained,
adding an extra security layer through sandboxing.

These distinctive features make analyzing WebAssembly funda-
mentally different from high-level languages and native assembly
code. While WebAsssembly is designed with security in mind, side-
channel vulnerabilities remain a significant concern and require
specialized analysis and targeted mitigation techniques.

2.2 Instruction-Timing Side Channels

Figure 3 shows a WebAssembly function that compares a password
with a guessed input sequence, potentially exposing sensitive pass-
word information through instruction-timing side channels. The
function’s parameters represent the starting memory addresses
of the password and the guessed sequence. To highlight the core

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

WaSCR: A WebAssembly Instruction-Timing Side Channel Repairer

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 (func $check_password
2 (param $passwd_ptr i32) (param $guessed_seq_ptr i32) (result i32)
3 (local $ret_val i32)
4 ...
5 loop $loop
6 ... ;; load the characters from the 2 strings
7 local.get $pwd_i
8 local.get $guess_i
9 i32.eq
10 local.set $cond
11 block $cmp
12 local.get $cond
13 br_if $cmp ;; continue $loop if $pwd_i == $guess_i
14 i32.const -1
15 return ;; return -1 if $pwd_i != $guess_i
16 end
17 ... ;; continue $loop
18 end
19 i32.const 0
20 return ;; return 0 if all characters match
21)

Figure 3: Example of instruction-timing side channels

1 i32.const 11
2 i32.const 7
3 local.get $p
4 ;; select 7 if $p is false,

↩→ otherwise select 11
5 select

(a) select in WebAssembly

1 movl rcx,0x7
2 movl rdx,0xb
3 # test the condition:
4 testl rax,rax
5 # conditional move:
6 cmovzl rdx,rcx

(b) select in x86-64 code

Figure 4: Example of the WebAssembly select instruction

logic responsible for the side-channel leak, we present a simplified
version of the code.

In this example, the function $check_password iteratively loads
and compares each character of the password and the guessed se-
quence, storing the result of each comparison in the variable $cond.
Depending on this comparison result, the function jumps to differ-
ent branches within the $cmp block. If the two characters match,
the function breaks out of the $cmp block and continues the loop
iteration. If the loop completes without a mismatch, the function
returns with value 0. If a mismatch occurs, the loop terminates early,
returning the function with value -1. It is important to note that in
WebAssembly, when br_if targets blocks, it breaks to the end of
the block when the condition is true. In contrast, when targeting
loops, br_if branches to the beginning of the loop under the true
condition.

This branching behavior leads to varying execution times based
on where the mismatch occurs, creating a timing discrepancy. Con-
sequently, an attacker can infer the correct password by carefully
measuring execution times across different input sequences.

2.3 Repair with Constant-Time Selectors

To mitigate instruction-timing side channels, one widely-use ap-
proach is linearizing program branches using constant-time selec-
tors [12, 47, 48, 52, 59]. A constant-time selector is a technique used
in programming to ensure that an action takes the same amount
of time regardless of input conditions. Its purpose is to prevent
attackers from inferring sensitive information (e.g., cryptographic
keys or passwords) by measuring program execution time. In We-
bAssembly, the select instruction acts as a constant-time selector
when executed on runtime engines such as V8 [50] and Wasmtime
[4]. These engines implement select using the CMOVcc conditional
move instructions in x86-64 architecture. In contrast, branch in-
structions such as JZ in x86-64 can be affected by CPU features
like speculative execution and branch misprediction, making them

1 block $blk
2 local.get $sens_data
3 br_if $blk
4 local.get $__stack_pointer
5 i32.const -1
6 i32.store offset=12
7 end

(a) Sensitive-data-dependent flow

1 local.get $stack_ptr
2 i32.load offset=12
3 local.set $prev
4 ;; select prev or new:
5 local.get $__stack_pointer
6 local.get $prev
7 i32.const -1
8 local.get $sens_data
9 select ;; ct-selector
10 i32.store offset=12

(b) Linearized version

(c) Contro flow of Figure 5a (d) Control flow of Figure 5b

Figure 5: Example of branch linearization

ineffective at eliminating timing variations. Similarly, directly us-
ing if/elseWebAssembly instructions cannot guarantee constant-
time behavior, even if both branches are equalized. Instead, CMOVcc
instructions provide a reliable constant-time alternative for condi-
tional selection, a characteristic that has been validated by existing
research [12, 59]. Figure 4 shows how the select instruction is
implemented in WebAssembly and its corresponding x86-64 ma-
chine code, compiled with Node.js version 20.13. The constant-time
selector allows us to linearize sensitive-data-dependent branches,
thereby mitigating potential instruction-timing side channels.

Figure 5 illustrates how branches can be linearized using constant-
time selectors. Initially (Figure 5a), the execution flow is sensitive to
the value of $sens_data, as seen in the conditional branching (line
3). If $sens_data is true, the program breaks out of the block early,
skipping further actions. If false, the program continues to execute
sequentially, updating a memory buffer with the value -1. Figure 5c
illustrates this conditional branching with red and green arrows,
highlighting the varying execution paths that can lead to timing
differences. In the linearized version (Figure 5b), these sensitive-
data-dependent branches are replaced by constant-time selectors,
ensuring that the execution time remains the same regardless of
input values, thereby eliminating timing side channels. Specifically,
lines 6 to 9 in Figure 5b show the constant-time selector control-
ling the memory update. If $sens_data is false, the memory buffer
is updated with -1. If true, the original value in memory remains
unchanged. Figure 5d shows the revised control flow where the
program now consistently follows a single path. This approach
ensures that the program’s behavior mimics the original logic but
without the timing discrepancies that would expose sensitive data
through side channels.

In Section 4, We will discuss our detailed methodology for repair-
ing instruction-timing side channels in WebAssembly programs.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3 Threat Model

Our threat model focuses on instruction-timing side-channel vul-
nerabilities in WebAssembly caused by branches that depend on
sensitive data, such as secret passwords or cryptographic keys.
Other types of side-channel attacks, including cache leaks, Spectre
attacks, power side-channel leaks, and other microarchitectural
vulnerabilities, are beyond the scope of this work. Additionally,
we limit our scope to leaks originating within WebAssembly mod-
ules and assume no side-channel vulnerabilities exist in the host
environment. The attacker is presumed capable of executing the
WebAssembly program repeatedly to gather timing data using var-
ious timing strategies in different granularities – ranging from
JavaScript APIs like performance.now() to CPU cycle-accurate
timers such as rdtscp – to infer sensitive information, though they
cannot directly access the program’s variables or memory.

4 Design of WaSCR

Figure 1 illustrates WaSCR’s architecture. It takes a WebAssem-
bly module in WebAssembly Text Format (WAT), along with user-
annotated sensitive data and a list of function names, as inputs.
WaSCR consists of two main components: Leakage Detection and
Rule-based Code Transformation. First, it uses WABT [57], an open-
source WebAssembly binary toolkit, to parse the WAT module and
construct a Program Dependency Graph (PDG). Through a sound
static taint analysis, WaSCR traces data and control dependencies
to identify blocks with conditional branches that depend on sensi-
tive data, which may cause instruction-timing side-channel leaks.
In this context, “block” refers to WebAssembly structures such as
block, if, and loop instructions containing conditional branches.
Next, WaSCR repairs these vulnerable branches by applying rule-
based code transformations, employing constant-time selectors on
the Abstract Syntax Tree (AST) of the WebAssembly module to
eliminate timing discrepancies. The modified AST is subsequently
converted back to WAT format, completing the repair process.

4.1 Leakage Detection

WaSCR detects instruction-timing side-channel vulnerabilities by
identifying conditional branches dependent on sensitive data and
their associated blocks. This begins by constructing a PDG for the
WebAssembly module, followed by taint analysis on the graph.
Program Dependency Graph. The PDG for a given WebAssem-
bly module consists of four key components: Abstract Syntax Tree
(AST), Control Flow Graph (CFG), Control Dependency Graph
(CDG), and Data Dependency Graph (DDG). By leveraging control
and data dependencies, we propagate sensitive annotations across
the PDG, tainting all nodes that handle sensitive data. This process
identifies sensitive branches and blocks that can be exploited as
side channels, indicating where repairs are needed.
Sound Static Analysis. Once PDG is built and sensitive data is
annotated, WaSCR propagates these sensitive annotations through
the data and control dependency edges to identify all sensitive
branches and their corresponding blocks needing repair.

1 (global $__stack_pointer (mut i32) (i32.const 65536))
2 (func $mem_example (param $key i32)
3 (local $addr1 i32) (local $addr2 i32)
4 local.get $addr1
5 local.get $key
6 i32.store offset=0;; store key to memory
7 ...
8 local.get $addr2
9 i32.load offset=0;; load data, probably get the key
10)

Figure 6: Challenge in handling memory access operations

Algorithm 1 Sound Static Taint Analysis
1: function DetectSensitiveBlock(𝑆 , 𝑜𝑝)
2: let 𝑠𝑡𝑎𝑐𝑘 = 𝑆
3: while 𝑠𝑡𝑎𝑐𝑘 is not empty do

4: let 𝑠 = stack.top()
5: stack.pop()
6: if 𝑜𝑝 is true and 𝑠 represents a newly traced function 𝐹 then

7: push all memory load instructions in 𝐹 to stack
8: end if

9: for all 𝑠′ is data/control dependent on 𝑠 do
10: if 𝑠′ was pushed into 𝑠𝑡𝑎𝑐𝑘 then

11: continue
12: end if

13: stack.push(𝑠′)
14: if 𝑠′ is a conditional branch instruction then

15: mark the corresponding block as requiring program repair
16: end if

17: end for

18: end while

19: end function

Algorithm 1 outlines the taint analysis process, which identifies
all sensitive branches and blocks that require repair. For a given
WebAssembly module, we begin by initializing a stack with a list
of sensitive variables. This stack is maintained to manage nodes
during propagation. We traverse the neighboring nodes of the top
node on the stack, following data and control dependency edges. If
a node has not been visited, it is pushed onto the stack for further
propagation. When encountering conditional branch instructions,
such as if and br_if, we mark their associated blocks for repair.

A key challenge arises during propagation when handling mem-
ory access operations (e.g., i32.store and i32.load), which can
create implicit data dependencies through WebAssembly’s linear
memory. For example, in Figure 6, the sensitive key stored in linear
memory via i32.store (line 6) can later be retrieved by i32.load
(line 9) if the memory address variables ($addr1 and $addr2) re-
solve to the same value at runtime, even though there are no direct
data or control dependencies between these instructions.

Despite prior efforts on points-to analysis in other languages [7,
9, 39, 49], applying these techniques toWebAssembly is challenging
due to its unique memory access patterns. Instead of traditional
pointers, WebAssembly uses an offset-based memory access system,
where memory operations can access any valid address within
linear memory at runtime. In some of our dataset samples, memory
addresses are calculated using offsets added to the global variable
$__stack_pointer, which often leads to overestimation. These
factors make points-to analysis more complex in WebAssembly.

To address this, WaSCR adopts a conservative approach. By
default, implicit data dependencies between memory store and
load instructions are matched based on their address variables and
offsets. This approach serves as the baseline configuration in our
experiments. Additionally, we offer an option for users to treat
all memory access operations within traced sensitive functions as
sensitive. When taint propagation enters a new function, WaSCR

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

WaSCR: A WebAssembly Instruction-Timing Side Channel Repairer

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1 local.get $cond1
2 if $I0
3 ...
4 block $B0
5 local.get $cond2
6 br_if $B0
7 local.get $update
8 local.set $val
9 end
10 end

(a) Original code

1 local.get $update
2 local.get $val
3 local.get $cond1
4 local.get $cond2
5 i32.eqz
6 i32.and
7 select
8 local.set $val

(b) Transformed code

Figure 7: Example of nested branches using condition list

automatically adds all memory load instructions within that func-
tion to the tracing stack.

4.2 Rule-based Code Transformation

After identifying sensitive nodes and their associated blocks,WaSCR
implements a rule-based code transformation tomitigate instruction-
timing side channels. This transformation has two main goals: (1) to
eliminate all conditional branches within marked sensitive blocks,
and (2) to ensure that program semantics remain correct after lin-
earization.

The removal of conditional branches is straightforward, which
involves eliminating all branch instructions and any related sensi-
tive block structures. However, as this step alone would break the
original program’s semantics, additional code transformations are
required to ensure the correctness of execution.

Table 1: Basic store & set transformation rules

Operations Original Instructions Repaired Version

Variable set

local.get $cond
if

...
local.set $p

end

local.set $temp
local.get $p
local.get $temp
local.get $cond
select
local.set $p

Memory store

local.get $cond
if

...
local.get $addr
local.get $val
i32.store

end

local.get $addr
i32.load
local.set $prev_val
local.get $addr
local.get $prev_val
local.get $val
select
i32.store

Basic Transformation Rules.Most WebAssembly instructions do
not require modificationwhen conditional branches are removed, as
they only affect the program implicitly through the WebAssembly
virtual stack machine (e.g., i32.add). Our main focus is ensuring
memory and variable states are maintained to preserve program
correctness. Thus, our transformations specifically target memory
store and variable set operations. Table 1 outlines the basic trans-
formation rules (excluding instructions with similar logic, such
as local.tee and i64.store). For each store and set instruc-
tion within a conditional branch, the execution is governed by the
associated condition. To maintain correct semantics, we use the
WebAssembly constant-time select instruction to choose between
the updated and original values based on the condition.
Nested Branches. In nested conditional branches, instructions can
be influenced by multiple conditions. To address this complexity,
we generate a condition list for each instruction. This list acts as
a synthetic condition that provides a generalized representation
of the execution context. As shown in Figure 7a, all instructions

1 block $B1
2 loop $L2
3 local.get $loop_cond
4 br_if $B1
5 local.get $break_cond
6 br_if $B1
7 ...
8 end
9 end

(a) Loop in WebAssembly

1 for(int i=0; i<L; i++){
2 if (break_cond) {
3 break;
4 }
5 }

(b) Loop in C

Figure 8: Loop structure in WebAssembly v.s. C

1 block $B1
2 loop $L2
3 ;; loop bound condition:
4 local.get $loop_cond
5 br_if $B1
6 ;; extra break condition:
7 local.get $cond1
8 br_if $B1
9 ...
10 end
11 end

(a) Original code

1 block $B1
2 loop $L2
3 local.get $loop_iter
4 global.get $est_bound
5 i32.lt_s
6 local.get $loop_cond
7 local.get $cond1
8 i32.or
9 i32.eqz
10 i32.or
11 br_if $L2
12 end
13 local.get $loop_iter
14 global.get $est_bound
15 call $select_larger
16 global.set $est_bound
17 end

(b) Transformed code

Check iteration within the estimated

bound.

Check original break conditions.

Update the estimated bound.

Figure 9: Example of loop transformation

within the inner block $B0 are governed by both the br_if and
outer if conditions. For if blocks, we store their condition values
and add them to the condition list for all enclosed instructions.
For br_if, we append the inverse of the branch condition to the
condition list for all subsequent instructions in the breaking block,
as those instructions will be skipped if the condition evaluates to
true. For example, in Figure 7a, the local.set $val instruction is
controlled by both the if condition ($cond1) and br_if condition
($cond2). Consequently, in the transformed program (Figure 7b),
local.set $val will execute only if $cond1 is true and $cond2 is
false, based on the condition list derived from these two conditions.
A special case is the br instruction. We convert all br instructions
to br_if instructions with true conditions for consistency.
Loop Iterations. A key challenge in constant-time program repair
is managing loop iterations when the loop upper bound is deemed
sensitive. To ensure execution time remains independent of sensi-
tive data, it is crucial to establish a fixed loop upper bound. Existing
approaches either statistically estimate upper bounds [48, 59] or dy-
namically manage iteration numbers in Just-in-Time environments
[52], both with limitations: the former lacks flexibility, while the
latter is unavailable in our environment. Given these constraints,
we propose using Large Language Models (LLMs) to analyze the
loop and estimate a preliminary upper bound, followed by static
code transformation to adaptively adjust this upper bound during
loop execution.

While WebAssembly loops share similarities with those in other
languages, they exhibit unique behaviors. As shown in Figure 8, a
single break statement in Cmay translate tomultiple br_if instruc-
tions in WebAssembly. These br_if instructions collectively serve
to exit the same loop, which complicates static analyses to identify
the loop’s iteration bound exit condition. To address this issue, our

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1 (func $Callee (param $p i32)
2 ...
3)
4 (func $Caller (param

↩→ $key_cond i32)
5 (local $l i32)
6 local.get $key_cond
7 if $I0
8 local.get $l
9 call $Callee
10 end
11)

(a) Function condition - Before

1 (func $Callee (param $p i32)
2 global.get $global_cond
3 ...
4)
5 (func $Caller (param

↩→ $key_cond i32)
6 (local $l i32)
7 global.get $global_cond
8 local.get $key_cond
9 i32.and
10 global.set $global_cond
11 local.get $l
12 call $Callee
13)

(b) Function condition - After

Figure 10: Example of function calls in sensitive branches

approach replaces all breaking points and enforces adherence to
our custom upper bound for the WebAssembly loop.

To determine loop upper bound and enhance the soundness of
the static analysis for loop handling, we utilize LLMs. Specifically,
we input the loop body into ChatGPT [38], prompting it to identify
loop iteration conditions and estimate an upper bound. We then
remove all br and br_if instructions from the loop block, incorpo-
rating them into the condition lists of enclosed instructions within
the loop. Finally, we append the iteration process to the end of the
loop structure, adhering to the estimated upper bound.

However, this initial estimate may be overly conservative, allow-
ing the loop to exceed the estimated maximum. To address this,
we implement an adaptive bound update mechanism. We store the
estimated upper bound in a global variable, which is dynamically
updated if the actual number of loop iterations exceeds the current
estimate. This global variable persists across multiple executions of
the same WebAssembly module, enabling incremental refinement
of the upper bound with each run. This iterative process facilitates
convergence toward a more accurate upper bound.

Figure 9 illustrates the transformation process. Initially, the br_-
if instructions (Figure 9a) are removed, with their conditions stored
in local variables. During each iteration, the value of $loop_iter is
incremented and compared against the estimated upper bound. The
loop terminates only if either $cond1 or $loop_cond is satisfied,
and the iteration count exceeds the estimated upper bound (lines 3
to 11, Figure 9b). To ensure correct exit conditions, these conditions
are evaluated as true only upon the first execution where they are
met. Subsequent executions will not alter their value once the exit
decision is made. Finally, the estimated upper bound is updated
by comparing it to the actual number of loop iterations, using the
larger value (lines 13 to 16, Figure 9b).
Function Calls in Sensitive Branches. In cases where function
calls occur within sensitive branches, we must ensure these func-
tions are properly linearized. For each function, we use a global
variable to manage its execution status. Figure 10 illustrates this
approach. Since WebAssembly operates in a single-threaded, se-
quential environment, the caller can set this global variable to either
true or false before invoking a function, indicating whether the
function would be called in the original branch. Next, all memory
store instructions within the callee function are governed by this
condition, in addition to any original constraints. Local variable
set instructions within the callee are not considered, as they only
affect the callee function and do not impact the outer program.

Function/Block Return Values. In WebAssembly, block instruc-
tions (such as if blocks) can terminate with return values, similar
to functions. To ensure consistent timing behavior, we enforce a
single exit point per block or function by eliminating all alternative
exit paths. To preserve return value semantics during transforma-
tion, we temporarily store the return value and use the select
instruction at the end of each block or function to determine and
return the correct value, preserving the original behavior.
Indirect Function Calls and Break Tables.WebAssembly’s in-
direct function calls are based on runtime indexes, allowing the
selection of the appropriate function at runtime. To ensure accurate
static analysis and facilitate code transformation, all indirect func-
tion calls are converted into direct calls accompanied by multiple
conditional branches, each corresponding to a potential function
that matches the signature. Similarly, break tables are transformed
into multiple br_if instructions.

4.3 Correctness Analysis

We claim that our methodology ensures the correctness of repairing
instruction-timing side channels in terms of both leakage detection

and code transformation.
Soundness of Leakage Detection. Our side-channel detection
employs a sound taint analysis approach. We ensure that taint prop-
agation comprehensively covers all possible nodes that are either
control- or data-dependent on sensitive information. Although this
process may over-approximate, it guarantees that no branches de-
pendent on sensitive data are overlooked. Therefore, this thorough
coverage effectively ensures no instruction-timing side channels
remain after the subsequent code transformation phase.
Correctness of Code Transformation. Our code transformation
preserves the semantic equivalence of the original program through
a meticulously designed linearization process. This process ensures
that variable set and memory store instructions in the repaired pro-
grams take effect only when all associated conditions are satisfied,
thereby guaranteeing that the memory and variable states remain
consistent with those of the original programs.

5 Evaluation

In this section, we evaluate WaSCR’s ability to repair instruction-
timing side-channel leaks inWebAssemblymodules. Our evaluation
is guided by three key research questions that focus on effectiveness,
efficiency, and quality of the repaired programs:

• RQ1 (Effectiveness of WaSCR): How effectively does
WaSCR repair instruction-timing side channels inWebAssem-
bly modules?

• RQ2 (Efficiency of the Repair Process): How quickly
does WaSCR complete the repair process?

• RQ3 (Quality of the Repaired Programs): What is the
quality of the repaired programs in terms of execution time
and code size?

5.1 Experiment Setup

We conduct our experiments on the GEM5 simulator, which allows
us to customize CPU components to isolate cache miss interfer-
ence, ensuring evaluation accuracy and fairness. To execute the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

WaSCR: A WebAssembly Instruction-Timing Side Channel Repairer

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

WebAssembly modules, we use WasmEdge [2] as the runtime en-
vironment within GEM5, employing the WasmEdge C API to load
and interact with WebAssembly modules, while compiling the C
host program to x86 binary for GEM5 simulation. This setup en-
ables precise measurement of CPU cycles specifically for the tested
WebAssembly functions, yielding deterministic results.

Our evaluation dataset consists of 20 samples in total. We col-
lected 12 samples from previous studies on instruction-timing at-
tacks, including Wu et al. [59], Sorares et al. [47], Disselkoen et
al. [20], and Borrello et al. [12], which assess side-channel elimi-
nation. These sources, originally written in C/C++, were compiled
to WebAssembly using Emscripten [1], the most widely used We-
bAssembly compiler [44]. Additionally, we selected 8 real-world
WebAssemly modules collected by Romano et al. [45] and Hilbig
et al. [27]. To adapt the samples for testing with WasmEdge, we
made minor modifications to export core functionalities of these
WebAssembly modules (e.g., encryption) to the host environment,
preserving key functionalities while facilitating evaluation.

Table 2: GEM5 simulation results of WaSCR

Program

Before Fixing After Fixing

Input 1 Input 2 |Delta| Input 1 Input 2 |Delta|

des [46] 12362766 14227470 1864704 20034520 20034520 0
loki91 [46] 24024119 23540603 483516 130371440 130371440 0
3way [46] 1684764 1718896 34132 2429415 2429415 0
twofish [30] 21018532 20944796 73736 32466778 32466778 0
tls-rempad-luk13 [19] 585945 95405 490540 846894 846894 0
findmax [40] 2593284 1926951 666333 3910999 3910999 0
binsearch [40] 76556 86159 9603 107105 107105 0
histogram [40] 5400615 5572615 172000 9679317 9679317 0
rsort [40] 2457558 3970219 1512661 23719489 23719489 0
hash-one [47] 863457 594401 269056 1672259 1672259 0
plain-many [47] 420241 43313709 42893468 286627044 286627044 0
check_password [20] 167113 81354 85759 446449 446449 0
xsalsa20_xor [45] 13194536 121603 13072933 17642213 17642213 0
process [45] 77706 78298 592 187394 187394 0
thinning_zs [27] 708776 102373 606403 1726690 1726690 0
hyphenate [27] 146883 79964 66919 517213 517213 0
rotate [27] 211958 280070 68112 16987167 16987167 0
sha256_bench [27] 210639 207399 3240 1036356 1036356 0
test [27] 163786 160720 3066 820504 820504 0
sha1_bench [27] 238139 235292 2847 2397430 2397430 0

5.2 RQ1: Effectiveness of WaSCR

To evaluate the effectiveness of WaSCR, we manually analyzed the
C/C++ source code and created two distinct inputs for each We-
bAssembly function, designed to trigger different execution paths
and resulting in varying execution times. For the real-world We-
bAssembly samples, randomly chosen inputs were utilized. For
each sample, we measured the CPU cycles of the WebAssembly
function executed within GEM5, both before and after applying
WaSCR, using the designed inputs. To isolate the influence of adap-
tive loop management and runtime environment, we warm up the
tested WebAssembly functions in advance with both inputs. This
pre-execution phase establishes consistent loop bounds, ensuring
reliable CPU cycle measurement.

Table 2 presents the results, showing that without WaSCR, the
CPU cycles for each sample vary between the two designed inputs,
indicating vulnerability to instruction-timing side-channel attacks.
In contrast, after applying WaSCR, such timing variances are elimi-
nated, thereby mitigating potential leaks from timing attacks.

RQ1 Takeaway:WaSCR effectively repairs instruction-timing side
channels, enhancing WebAssembly security against such leaks.

5.3 RQ2: Efficiency of the Repair Process

de
s

hi
st

og
ra

m
xs

al
sa

20
_x

or

te
st

fin
dm

ax

pr
oc

es
s

rs
or

t

pl
ai

n-
m

an
y

ha
sh

-o
ne

tw
of

ish
sh

a2
56

_b
en

ch

th
in

ni
ng

_z
s

3w
ay

lo
ki

91

tls
-re

m
pa

d-
lu

k1
3

hy
ph

en
at

e
sh

a1
_b

en
ch

ro
ta

te
ch

ec
kp

as
s_

wo
rd

bi
ns

ea
rc

h

10 3

10 2

10 1

100

Re
pa

ir
Ti

m
e

(L
og

 S
ca

le
 in

 S
ec

on
ds

)

0.085

0.011

0.051
0.037

0.004

2.487

0.042

0.0160.018

1.320

0.489

0.020

0.0880.068

0.0270.026

0.158

0.049

0.0040.005

Figure 11: Program repair time of WaSCR

We measured the time WaSCR took to repair each WebAssembly
module, encompassing both leakage detection and code transfor-
mation phases. The results, averaged over ten repair executions,
are presented in Figure 11. Our findings show that WaSCR typically
completes repairs within a few seconds, demonstrating efficiency
for practical use.
RQ2 Takeaway:WaSCR efficiently repairs the selected samples,
completing all tasks within a few seconds, thereby demonstrating
its practicality.

5.4 RQ3: Quality of the Repaired Programs

WaSCR introduces overhead due to code transformation, which
linearizes sensitive branches and manages loop bounds. We mea-
sured its overhead in terms of runtime performance and code size
increase to assess the quality of repaired programs.
Runtime overhead. To illustrate the runtime overhead introduced
by WaSCR, we calculated the ratio of the CPU cycles for each
WebAssembly module after applying WaSCR to the larger CPU
cycle count of the two inputs before fixing, as shown in Table 3.
The results indicate that WaSCR can introduce runtime overhead
through code transformation. We consider the overhead of most
samples to be acceptable, as branch linearization requires executing
additional paths not present in the original implementations. In
contrast, for some real-world WebAssembly modules, we mark
all elements as sensitive to reduce manual effort and demonstrate
the robustness of our approach without knowing each function’s
purpose. This forces all branches to be transformed and linearized,
resulting in higher overhead. For example, in the rotate sample, we
manually confirmed that it performs image rotation. Linearization
forces the program to handle all possible sizes and angles, leading
to an overhead increase of approximately 60×.
Code size increase.We compared the lines of code for each We-
bAssembly module before and after applying WaSCR, calculating
the ratio as presented in Table 3. The code size increase generally
aligns with the runtime overhead, which we also deem acceptable.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

RQ3 Takeaway: WaSCR generally produces repaired programs of
good quality on most samples, balancing enhanced protection with
moderate performance and code size overhead.

Table 3: Code size increase and runtime overhead

Program

Code Size
Runtime

OverheadLoC - Origin LoC - Repaired Overhead

des 1637 2510 1.41x 1.53x
loki91 1710 3508 5.43x 2.05x
3way 2345 3395 1.41x 1.45x
twofish 13765 22866 1.54x 1.66x
tls-rempad-luk13 195 504 1.44x 2.58x
findmax 205 348 1.51x 1.70x
binsearch 74 190 1.24x 2.57x
histogram 285 485 1.79x 1.70x
rsort 876 2320 5.97x 2.64x
hash-one 378 733 1.94x 1.94x
plain-many 322 1330 6.61x 4.13x
check_password 216 661 2.67x 3.06x
xsalsa20_xor 1211 2042 1.68x 1.33x
process 9172 10905 1.18x 2.39x
thinning_zs 346 787 2.27x 2.43x
hyphenate 529 997 1.88x 3.52x
rotate 748 5354 7.13x 60.6x
sha256_bench 4169 12930 3.10x 4.92x
test 1101 3978 2.67x 5.01x
sha1_bench 2165 11003 5.08x 10.06x

6 Related Works

Instruction-timing Side-Channel Attacks and Mitigation. Nu-
merous studies have focused on detecting and mitigating timing
side-channel attacks. Geimer et al. [22] provide a comprehensive
survey of timing side-channel detectors. Many of these tools em-
ploy static verification methods, such as static taint analysis [15,
20, 47, 59], symbolic execution [19, 20], and other static meth-
ods [5, 6, 8, 42], to identify potential side channels in programs.
Another direction involves dynamic detection using techniques like
fuzzing [25, 37], statistical testing [41], etc. These approaches have
demonstrated effectiveness in side channel verification.

Linearizing sensitive branches through program transformation
is an effective method to eliminate instruction-timing side channels.
Wu et al. [59] applied static detection and constant-time selectors to
mitigate these leaks in C/C++ programs. As follow-upworks, Soares
et al. [48] extended this approach with additional bound checks
for memory safety, while Borrello et al. [12] utilized an adaptive
just-in-time strategy to handle loop iterations, which we follow in
our study. Under the Just-in-Time (JIT) environment, Cleemput et
al. [52] proposed a dynamic approach to repair the leaking code.

While these approaches effectively eliminate timing side chan-
nels in their respective contexts, they do not target WebAssembly-
specific side channels, which is the focus of our research.
Side-Channel Attacks in WebAssembly. Despite incorporating
several security mechanisms, WebAssembly remains susceptible
to side-channel attacks [3, 28, 55, 56], particular instruction-timing
attacks, which continue to be a significant concern within the We-
bAssembly community. Current research mainly focuses on stati-
cally verifying the constant-time property of WebAssembly mod-
ules. For instance, Watt et al. [54] proposed CT-Wasm, an extension

of WebAssembly’s types and semantics to verify the constant-time
property concerning sensitive data. Tsoupidi et al. [51] employed
a Relational Symbolic Execution (RelSE) based approach to dis-
cover constant-time violations in WebAssembly modules. However,
these works require modifications to WebAssembly runtimes or
interpreters and do not provide automatic fixing for addressing po-
tential side channels. While other studies have explored protections
against microarchitecture side channels, such as cache attacks [14]
and speculative execution leaks [36, 53], they do not provide a
safeguard regarding instruction-timing side channels.

In contrast, our approach provides a platform-independent ap-
proach for automatic detection and repair of instruction-timing
side channels, effectively filling this gap in existing research.

7 Discussion

In this section, we discuss our current limitations and future direc-
tions to improve our work.
Imported Function Calls.WebAssembly modules can import and
execute external functions (e.g., JavaScript APIs), which may be
invoked within sensitive code branches. One potential solution
is to expand the trace path into these imported functions and in-
troduce an additional parameter to indicate whether the functions
should execute, allowing for behavior adjustments. However, imple-
menting this approach would require modifications to the runtime
environment, which is beyond the scope of our current work. We
have identified this as an area for future improvement.
Multidimensional Side Channels. Our work exclusively focuses
on WebAssembly instruction-timing side channels, while other
types of side-channel attacks, such as microarchitecture attacks,
are beyond its scope. Additionally, the current WebAssembly speci-
fication does not mandate the select instruction to be translated
into constant-time machine code (e.g., CMOV on x86 or ARM), thus
WebAssembly runtimes could implement this translation differently.
Although our code inspections and GEM5 simulations confirm that
today’s WebAssembly runtimes typically provide this guarantee,
ensuring this property consistently would require collaboration
with the WebAssembly standardization committee to incorporate a
constant-time requirement into the official specification. We con-
sider this a potential work for future research.

8 Conclusion

In this paper, we introduce WaSCR, an automated WebAssembly
instruction-timing side channel repairer. WaSCR employs static
code transformation to protect WebAssembly from timing side-
channel vulnerabilities. Through carefully designed leakage de-
tection and transformation rules, we achieve full linearization of
control flows, providing a robust and compatible approach that sup-
ports variousWebAssembly runtimes. We demonstrate that WaSCR
effectively mitigates instruction-timing side channels, achieving
moderate repair time and high repair quality.

9 Data Availability

Our code is available at https://anonymous.4open.science/r/Dep-
graph-wasm-29E0/.

8

https://anonymous.4open.science/r/Dep-graph-wasm-29E0/
https://anonymous.4open.science/r/Dep-graph-wasm-29E0/

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

WaSCR: A WebAssembly Instruction-Timing Side Channel Repairer

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] [n. d.]. Emscripten: a complete open source LLVM-based compiler toolchain for

WebAssembly. https://emscripten.org
[2] 2024. WasmEdge Runtime. https://github.com/WasmEdge/WasmEdge. Accessed:

2024-10-07.
[3] Adservio. 2024. Memory Safety in WebAssembly. https://www.adservio.fr/post/

memory-safety-in-webassembly. Accessed: August 31, 2024.
[4] Bytecode Alliance. 2024. Wasmtime - A fast and secure runtime forWebAssembly.

https://github.com/bytecodealliance/wasmtime. Accessed: 2024-09-30.
[5] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and

Michael Emmi. 2016. Verifying Constant-Time Implementations. In 25th USENIX

Security Symposium (USENIX Security 16). USENIX Association, Austin, TX, 53–
70. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/almeida

[6] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, and Swarn Priya. 2022. Enforcing Fine-grained Constant-time Policies.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-

cations Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing
Machinery, New York, NY, USA, 83–96. https://doi.org/10.1145/3548606.3560689

[7] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. (1994).

[8] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. 2013.
Formal verification of side-channel countermeasures using self-composition.
Science of Computer Programming 78, 7 (2013), 796–812. https://doi.org/10.1016/
j.scico.2011.10.008 Special section on Formal Methods for Industrial Critical
Systems (FMICS 2009 + FMICS 2010) & Special section on Object-Oriented Pro-
gramming and Systems (OOPS 2009), a special track at the 24th ACM Symposium
on Applied Computing.

[9] George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive Points-
To Analysis for C and C++. In Sensors Applications Symposium. https://api.
semanticscholar.org/CorpusID:16346939

[10] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.
2014. System-level Non-interference for Constant-time Cryptography. In Pro-

ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security (Scottsdale, Arizona, USA) (CCS ’14). Association for ComputingMachin-
ery, New York, NY, USA, 1267–1279. https://doi.org/10.1145/2660267.2660283

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.

News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718
[12] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida.

2021. Constantine: Automatic Side-Channel Resistance Using Efficient Control
and Data Flow Linearization. In Proceedings of the 2021 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’21). ACM. https://doi.org/10.
1145/3460120.3484583

[13] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical.
In 12th USENIX Security Symposium (USENIX Security 03). USENIX Association,
Washington, D.C. https://www.usenix.org/conference/12th-usenix-security-
symposium/remote-timing-attacks-are-practical

[14] Javier Cabrera Arteaga, Orestis Floros, Oscar Vera Perez, Benoit Baudry, and
Martin Monperrus. 2021. CROW: Code Diversification for WebAssembly. In
Proceedings 2021 Workshop on Measurements, Attacks, and Defenses for the Web

(MADWeb 2021). Internet Society. https://doi.org/10.14722/madweb.2021.23004
[15] Luwei Cai, Fu Song, and Taolue Chen. 2024. Towards Efficient Verification

of Constant-Time Cryptographic Implementations. arXiv:2402.13506 [cs.CR]
https://arxiv.org/abs/2402.13506

[16] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-Channel
Leaks in Web Applications: A Reality Today, a Challenge Tomorrow. In 2010 IEEE

Symposium on Security and Privacy. 191–206. https://doi.org/10.1109/SP.2010.20
[17] WebAssembly Community. 2023. Constant-Time Proposal Overview. https:

//github.com/WebAssembly/constant-time/blob/main/proposals/constant-
time/Overview.md Accessed: 2024-08-15.

[18] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical Mitigations for Timing-Based Side-Channel Attacks on Modern
x86 Processors. In 2009 30th IEEE Symposium on Security and Privacy. 45–60.
https://doi.org/10.1109/SP.2009.19

[19] Lesly-AnnDaniel, Sébastien Bardin, and Tamara Rezk. 2023. Binsec/Rel: Symbolic
binary analyzer for security with applications to constant-Time and secret-
erasure. ACM Transactions on Privacy and Security 26, 2 (2023), 11:1–42. https:
//doi.org/10.1145/3563037

[20] Craig Disselkoen, Sunjay Cauligi, Dean Tullsen, and Deian Stefan. [n. d.]. Finding
and eliminating timing side-channels in crypto code with pitchfork.

[21] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst.

9, 3 (jul 1987), 319–349. https://doi.org/10.1145/24039.24041

[22] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules, Lesly-Ann Daniel,
Sébastien Bardin, and Clémentine Maurice. 2023. A Systematic Evaluation
of Automated Tools for Side-Channel Vulnerabilities Detection in Cryptographic
Libraries. arXiv:2310.08153 [cs.CR] https://arxiv.org/abs/2310.08153

[23] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-By
Key-Extraction Cache Attacks from Portable Code. In Applied Cryptography and

Network Security: 16th International Conference, ACNS 2018, Leuven, Belgium, July

2-4, 2018, Proceedings (Leuven, Belgium). Springer-Verlag, Berlin, Heidelberg,
83–102. https://doi.org/10.1007/978-3-319-93387-0_5

[24] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. SIGPLAN Not. 52, 6 (jun 2017), 185–200.
https://doi.org/10.1145/3140587.3062363

[25] Shaobo He, Michael Emmi, and Gabriela Ciocarlie. 2019. ct-fuzz: Fuzzing for
Timing Leaks. arXiv:1904.07280 [cs.SE] https://arxiv.org/abs/1904.07280

[26] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study
of Real-World WebAssembly Binaries: Security, Languages, Use Cases. In Pro-

ceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2696–2708. https:
//doi.org/10.1145/3442381.3450138

[27] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study
of Real-World WebAssembly Binaries: Security, Languages, Use Cases. In Pro-

ceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 2696–2708. https:
//doi.org/10.1145/3442381.3450138

[28] Minseo Kim, Hyerean Jang, and Youngjoo Shin. 2022. Avengers, Assemble!
Survey of WebAssembly Security Solutions. In 2022 IEEE 15th International

Conference on Cloud Computing (CLOUD). 543–553. https://doi.org/10.1109/
CLOUD55607.2022.00077

[29] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel attacks
in cloud computing. In 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA). 406–418. https://doi.org/10.1109/HPCA.2016.
7446082

[30] Jack Lloyd and the Botan contributors. 2023. Botan: Crypto and TLS for Modern
C++. https://github.com/randombit/botan. Accessed: October 6, 2023.

[31] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A.Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:
Version 20.0+. arXiv:2007.03152 [cs.AR] https://arxiv.org/abs/2007.03152

[32] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2109–2122. https://doi.org/10.
1145/3243734.3243761

[33] JudyMcConnell. 2019. WebAssembly support now shipping in all major browsers.
https://blog.mozilla.org/blog/2017/11/13/webassembly-inbrowsers/. Accessed:
2024-08-27.

[34] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The
Program Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks. USENIX Association, Baltimore, MD.

[35] Keaton Mowery, Sriram Keelveedhi, and Hovav Shacham. 2012. Are AES x86
cache timing attacks still feasible?. In Proceedings of the 2012 ACM Workshop

on Cloud Computing Security Workshop (Raleigh, North Carolina, USA) (CCSW
’12). Association for Computing Machinery, New York, NY, USA, 19–24. https:
//doi.org/10.1145/2381913.2381917

[36] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan
Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham,
Dean Tullsen, and Deian Stefan. 2021. Swivel: Hardening WebAssembly against
Spectre. arXiv:2102.12730 [cs.CR]

[37] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2019. DifFuzz: Differ-
ential Fuzzing for Side-Channel Analysis. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). 176–187. https://doi.org/10.1109/

9

https://emscripten.org
https://github.com/WasmEdge/WasmEdge
https://www.adservio.fr/post/memory-safety-in-webassembly
https://www.adservio.fr/post/memory-safety-in-webassembly
https://github.com/bytecodealliance/wasmtime
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1145/3548606.3560689
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1016/j.scico.2011.10.008
https://api.semanticscholar.org/CorpusID:16346939
https://api.semanticscholar.org/CorpusID:16346939
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.14722/madweb.2021.23004
https://arxiv.org/abs/2402.13506
https://arxiv.org/abs/2402.13506
https://doi.org/10.1109/SP.2010.20
https://github.com/WebAssembly/constant-time/blob/main/proposals/constant-time/Overview.md
https://github.com/WebAssembly/constant-time/blob/main/proposals/constant-time/Overview.md
https://github.com/WebAssembly/constant-time/blob/main/proposals/constant-time/Overview.md
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1145/3563037
https://doi.org/10.1145/3563037
https://doi.org/10.1145/24039.24041
https://arxiv.org/abs/2310.08153
https://arxiv.org/abs/2310.08153
https://doi.org/10.1007/978-3-319-93387-0_5
https://doi.org/10.1145/3140587.3062363
https://arxiv.org/abs/1904.07280
https://arxiv.org/abs/1904.07280
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1145/3442381.3450138
https://doi.org/10.1109/CLOUD55607.2022.00077
https://doi.org/10.1109/CLOUD55607.2022.00077
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/HPCA.2016.7446082
https://github.com/randombit/botan
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://blog.mozilla.org/blog/2017/11/13/webassembly-inbrowsers/
https://doi.org/10.1145/2381913.2381917
https://doi.org/10.1145/2381913.2381917
https://arxiv.org/abs/2102.12730
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1109/ICSE.2019.00034

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

ICSE.2019.00034
[38] OpenAI. 2021. ChatGPT: OpenAI’s Conversational AI. https://openai.com/

chatgpt Accessed: 2024-02-27.
[39] David J. Pearce, Paul H.J. Kelly, and Chris Hankin. 2007. Efficient field-sensitive

pointer analysis of C. ACM Trans. Program. Lang. Syst. 30, 1 (nov 2007), 4–es.
https://doi.org/10.1145/1290520.1290524

[40] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In 24th USENIX Security Sym-

posium (USENIX Security 15). USENIX Association, Washington, D.C., 431–
446. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/rane

[41] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. 2016. Dude, is my code
constant time? Cryptology ePrint Archive, Paper 2016/1123. https://eprint.iacr.
org/2016/1123 https://eprint.iacr.org/2016/1123.

[42] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. 2016.
Sparse representation of implicit flows with applications to side-channel detec-
tion. In Proceedings of the 25th International Conference on Compiler Construction

(Barcelona, Spain) (CC 2016). Association for Computing Machinery, New York,
NY, USA, 110–120. https://doi.org/10.1145/2892208.2892230

[43] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren. 2022.
Port Contention Goes Portable: Port Contention Side Channels in Web Browsers.
In Proceedings of the 2022 ACM on Asia Conference on Computer and Communi-

cations Security (Nagasaki, Japan) (ASIA CCS ’22). Association for Computing
Machinery, New York, NY, USA, 1182–1194. https://doi.org/10.1145/3488932.
3517411

[44] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2022. An empiri-
cal study of bugs in webassembly compilers. In Proceedings of the 36th IEEE/ACM

International Conference on Automated Software Engineering (Melbourne, Aus-
tralia) (ASE ’21). IEEE Press, 42–54. https://doi.org/10.1109/ASE51524.2021.
9678776

[45] Alan Romano and Weihang Wang. 2023. Automated WebAssembly Function
Purpose IdentificationWith Semantics-Aware Analysis. In Proceedings of the ACM
Web Conference 2023 (Austin, TX, USA) (WWW ’23). Association for Computing
Machinery, New York, NY, USA, 2885–2894. https://doi.org/10.1145/3543507.
3583235

[46] Bruce Schneier. 2007. Applied cryptography: protocols, algorithms, and source code

in C. john wiley & sons.
[47] Luigi Soares, Michael Canesche, and FernandoMagnoQuintão Pereira. 2023. Side-

channel Elimination via Partial Control-flow Linearization. ACM Trans. Program.

Lang. Syst. 45, 2, Article 13 (jun 2023), 43 pages. https://doi.org/10.1145/3594736
[48] Luigi Soares and Fernando Magno Quintãn Pereira. 2021. Memory-Safe Elim-

ination of Side Channels. In 2021 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). 200–210. https://doi.org/10.1109/CGO51591.
2021.9370305

[49] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings

of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). Association for Com-
puting Machinery, New York, NY, USA, 32–41. https://doi.org/10.1145/237721.
237727

[50] The Chromium Project. 2024. V8 JavaScript Engine. https://v8.dev. Accessed:
2024-08-19.

[51] Rodothea Myrsini Tsoupidi, Musard Balliu, and Benoit Baudry. 2021. Vivienne:
Relational Verification of Cryptographic Implementations in WebAssembly. In
2021 IEEE Secure Development Conference (SecDev). 94–102. https://doi.org/10.
1109/SecDev51306.2021.00029

[52] Jeroen Van Cleemput, Bjorn De Sutter, and Koen De Bosschere. 2020. Adap-
tive Compiler Strategies for Mitigating Timing Side Channel Attacks. IEEE

Transactions on Dependable and Secure Computing 17, 1 (2020), 35–49. https:
//doi.org/10.1109/TDSC.2017.2729549

[53] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-
tomatically eliminating speculative leaks from cryptographic code with blade.
Proc. ACM Program. Lang. 5, POPL, Article 49 (jan 2021), 30 pages. https:
//doi.org/10.1145/3434330

[54] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Ste-
fan. 2019. CT-wasm: type-driven secure cryptography for the web ecosystem.
Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 1–29.
https://doi.org/10.1145/3290390

[55] WebAssembly Community. [n. d.]. Security Considerations for WebAssembly.
https://webassembly.org/docs/security/.

[56] WebAssembly Community. 2022. Discussion on WASI-Crypto’s API design.
https://github.com/WebAssembly/wasi-crypto/issues/21. Accessed: 2023-09-25.

[57] WebAssembly Community. 2024. WABT: The WebAssembly Binary Toolkit.
https://github.com/WebAssembly/wabt. Accessed: 2024-03-28.

[58] WebAssembly Community Group. 2024. WebAssembly Specification. https:
//webassembly.github.io/spec/core/intro/introduction.html. Accessed: 2024-08-
31.

[59] MengWu, Shengjian Guo, Patrick Schaumont, and ChaoWang. 2018. Eliminating
timing side-channel leaks using program repair. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York,
NY, USA, 15–26. https://doi.org/10.1145/3213846.3213851

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

10

https://doi.org/10.1109/ICSE.2019.00034
https://openai.com/chatgpt
https://openai.com/chatgpt
https://doi.org/10.1145/1290520.1290524
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://eprint.iacr.org/2016/1123
https://eprint.iacr.org/2016/1123
https://eprint.iacr.org/2016/1123
https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/3488932.3517411
https://doi.org/10.1145/3488932.3517411
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1145/3543507.3583235
https://doi.org/10.1145/3543507.3583235
https://doi.org/10.1145/3594736
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://v8.dev
https://doi.org/10.1109/SecDev51306.2021.00029
https://doi.org/10.1109/SecDev51306.2021.00029
https://doi.org/10.1109/TDSC.2017.2729549
https://doi.org/10.1109/TDSC.2017.2729549
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3290390
https://webassembly.org/docs/security/
https://github.com/WebAssembly/wasi-crypto/issues/21
https://github.com/WebAssembly/wabt
https://webassembly.github.io/spec/core/intro/introduction.html
https://webassembly.github.io/spec/core/intro/introduction.html
https://doi.org/10.1145/3213846.3213851

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 WebAssembly
	2.2 Instruction-Timing Side Channels
	2.3 Repair with Constant-Time Selectors

	3 Threat Model
	4 Design of WaSCR
	4.1 Leakage Detection
	4.2 Rule-based Code Transformation
	4.3 Correctness Analysis

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Effectiveness of WaSCR
	5.3 RQ2: Efficiency of the Repair Process
	5.4 RQ3: Quality of the Repaired Programs

	6 Related Works
	7 Discussion
	8 Conclusion
	9 Data Availability
	References

