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ABSTRACT

To accelerate the training of graph convolutional networks (GCNs), many
sampling-based methods have been developed for approximating the embedding
aggregation. Among them, a layer-wise approach recursively performs impor-
tance sampling to select neighbors jointly for existing nodes in each layer. This
paper revisits the approach from a matrix approximation perspective. We identify
two issues in the existing layer-wise sampling methods: sub-optimal sampling
probabilities and the approximation bias induced by sampling without replace-
ment. We thus propose remedies to address these issues. The improvements are
demonstrated by extensive analyses and experiments on common benchmarks.

1 INTRODUCTION

Graph Convolutional Networks (Kipf & Welling, 2017) are popular methods for learning the rep-
resentation of nodes. However, it is computationally challenging to train a GCN over large-scale
graphs due to the inter-dependence of nodes in a graph. In the mini-batch training for an L-layer
GCN, the computation of embeddings involves not only the batch nodes but also batch nodes’ L-
hop neighbors, which is known as the phenomenon of “neighbor explosion” (Zeng et al., 2019) or
“neighbor expansion” (Chen et al., 2018a; Huang et al., 2018). To alleviate such a computation is-
sue for large graphs, sampling-based methods are proposed to accelerate the training and reduce the
memory cost. These approaches can be categorized as node-wise sampling approaches (Hamilton
et al., 2017; Chen et al., 2018a), subgraph sampling approaches (Zeng et al., 2019; Chiang et al.,
2019; Cong et al., 2020), and layer-wise sampling approaches (Chen et al., 2018b; Huang et al.,
2018; Zou et al., 2019). We focus on layer-wise sampling in this work, which enjoys the efficiency
and variance reduction by sampling columns of renormalized Laplacian matrix in each layer.

This paper is a study of the existing sampling schemes in layer-wise sampling methods. We identify
two potential drawbacks in the common practice for layer-wise sampling (Chen et al., 2018b; Zou
et al., 2019). First, the current sampling probabilities used are sub-optimal since a core assump-
tion in FastGCN and LADIES does not hold in many common graph benchmarks, such as Reddit
(Hamilton et al., 2017) and OGB(Hu et al., 2020). Secondly, the previous implementations of the
layer-wise sampling methods slightly deviate from their theoretical results, and introduce bias in
the estimation due to the usage of sampling without replacement. Realizing the two issues, we ac-
cordingly propose the remedies with new sampling probabilities and a debiasing algorithm. The
improvements of the proposed methods are demonstrated by extensive experiments on evaluating
the matrix approximation error and prediction accuracy on large-scale benchmarks along with some
theoretical analyses.

To the best of our knowledge, our result is the first to recognize and resolve the issues with the default
assumption and the practical implementation of layer-wise sampling methods for GCN. Once these
sub-optimal practices are addressed, we observe that the GCN models consistently converge faster
in training and usually enjoy a higher prediction accuracy. We believe the proposed methods can
more generally improve the training for GCN as well, e.g., the same strategy can allow node-wise
sampling methods to adopt sampling without replacement and further improve the approximation
accuracy. Moreover, our discussion on the bias induced by sampling without replacement is not
limited to GCN, and the debiasing algorithm we develop can contribute to other sampling-based
machine learning models beyond layer-wise sampling.
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1.1 BACKGROUND AND RELATED WORK

GCN Graph Convolutional Networks (GCNs, Kipf & Welling (2017)) effectively incorporate the
technique of convolution filter into the graph domain (Wu et al., 2020; Bronstein et al., 2017).
Viewed as an approximation for the spectral graph convolutions (Bruna et al., 2014; Defferrard
et al., 2016), GCN has achieved great success in learning tasks such as node classification and
link prediction, with applications ranging from recommender systems (Ying et al., 2018), traffic
prediction (Cui et al., 2019; Rahimi et al., 2018), and knowledge graphs (Schlichtkrull et al., 2018).

Sampling Based GCN Training To name a few of sampling schemes, GraphSAGE (Hamilton
et al., 2017) first introduces the “node-wise” neighbor sampling scheme, where a fixed number
of neighbors are uniformly and independently sampled for each node in every layer. To reduce
variance in node-wise sampling training, VR-GCN (Chen et al., 2018a) applies a control variate
approach with historical activation. Instead of sampling for each node, “layer-wise” sampling is a
more efficient approach: joint sampling scheme for all the existing nodes in each layer so that these
nodes can share the sampled neighboring node. FastGCN (Chen et al., 2018b) first introduces this
scheme with importance sampling. AS-GCN (Huang et al., 2018) proposes an alternative sampling
probability for layer-wise sampling by approximating the hidden layer in the sampling procedure.
Then Zou et al. (2019) propose a layer-dependent importance sampling scheme (LADIES) to further
reduce the variance in training. This alleviates the issue of empty rows in sampled adjacency matrix
for FastGCN. For the “subgraph” approach, ClusterGCN (Chiang et al., 2019) samples a dense
subgraph associated with the batch nodes by graph clustering algorithm; GraphSAINT (Zeng et al.,
2019) introduces normalization and variance reduction in subgraph sampling.

2 NOTATIONS AND PRELIMINARIES

2.1 GRAPH CONVOLUTIONAL NETWORKS

The GCN architecture for semi-supervised node classification is introduced by Kipf & Welling
(2017). Suppose we have an undirected graph G = (V, E), where V is the set of n nodes and E
is the set of E edges. Denote node i in V as vi, where i ∈ [n] is the index of nodes in the graph and
[n] denotes the set {1, 2, ..., n}. Each node vi ∈ V is associated with a feature vector xi ∈ Rp and
a label vector yi ∈ Rq . Though we can observe the feature of every node in V and every edge in
E , i.e. the n × n adjacency matrix A, we are only able to observe the label of partial nodes Vtrain,
satisfying Vtrain ⊂ V . Thus, we need to predict the labels for the rest nodes in V\Vtrain and it
becomes a semi-supervised learning task. A graph convolution layer is defined as:

Z(l+1) = PH(l)W (l), H(l) = σ(Z(l)), (1)

where σ is an activation function and P is obtained from applying normalization to the graph adja-
cency matrix A; H(l) is the embedding matrix of the graph nodes in the l-th layer, and W (l) is the
parameter matrix of the same layer. In particular, H(0) is the n × p feature matrix. For mini-batch
training, the training loss for an L-layer GCN is defined as 1

|Vbatch|
∑

vi∈Vbatch
`(yi, z

(L)
i ), where `

is the loss function, batch nodes Vbatch is a subset of Vtrain at each iteration. z(L)
i is the i-th row in

Z(L), | · | denotes the cardinality of a set.

In this paper, we set P = D̃−1/2(A + I)D̃−1/2, where D̃ is a diagonal matrix with Dii =
1 +

∑
iAij . The matrix P is constructed as a renormalized Laplacian matrix to help alleviate

overfitting and exploding/vanishing gradients issues (Kipf & Welling, 2017), which is used by Kipf
& Welling (2017); Chen et al. (2018a); Cong et al. (2020).

2.2 LAYER-WISE SAMPLING

To address “neighbor explosion” issue for graph neural networks, sampling methods are integrated
into the stochastic training. Motivated by the idea to approximate the matrix PH(l) in (1), Fast-
GCN (Chen et al., 2018b) applies an importance-sampling-based strategy. Instead of individually
sampling neighbors for each node in the l-th layer, they sample a set of s neighbors S(l) from V with
importance sampling probability pi, where pi ∝

∑n
j=1P

2
ji and

∑
i pi = 1. For the (l− 1)-th layer,
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Figure 1: Compare matrix approximation error for layer-wise sampling methods. The matrix ap-
proximation error is measured by ‖Z̃(1)

batch − Z̃
(1)
sampling‖F . The error curve of the original LADIES

method shows an abnormal U-shape on ogbn-arxiv and ogbn-mag datasets.

they naturally set V(l−1) = S(l). LADIES (Zou et al., 2019) improves the importance sampling
probability pi as

p
(l)
i ∝

∑
vj∈N (l)P

2
ji,∀i ∈ [n] (2)

where N (l) = ∪vi∈V(l)N (vi) and
∑

j p
(l)
j = 1. In this case, S(l) the nodes sampled for the l-th

layer are guaranteed to be within the neighborhood of V(l). The whole procedure can be concluded
by a diagonal matrix S(l) ∈ Rn×n and a row selection matrixQ(l) ∈ Rsl×n, which are defined as

Q
(l)
k,j =

{
1, j = i

(l)
k

0, else
, S

(l)
j,j =

{
(slp

(l)

i
(l)
k

)−1, j = i
(l)
k

0, else,

where {i(l)k }
sl
k=1 are the indices of rows selected in the l-th layer. The forward prop-

agation with layer-wise sampling can thus be equivalently represented as Z̃(l+1) =
Q(l+1)PS(l)H(l)W (l),H(l) = (Q(l))Tσ(Z̃(l)), where Z̃(l+1) is the approximation of the em-
bedding matrix for layer l.

3 EXPERIMENTAL SETUP

In advance of the formal introduction to the the issues and the corresponding remedies in Section 4
and Section 5, we state the basic setups of the main experiments and datasets as they appear multiple
times across the paper. Details about GCN model training are deferred to the according sections.

Main experiments. To study the influence of the aforementioned issues we evaluate the matrix
approximation error (c.f. Figure 1) of different methods and consider it as a new metric to reflect the
performance of the sampling strategy on approximating the original mini-batch training in one-step
propagation. Since the updates of parameters in the training is not involved in the simple metric
above, in Section 6 we further evaluate the prediction accuracy on testing sets of both intermediate
models during training and final outputs, using the metrics in Table 2.

Benchmarks. Empirical experiments are conducted on 5 datasets (see details at Table 2 in Ap-
pendix B): Reddit (Hamilton et al., 2017), ogbn-arxiv, ogbn-proteins, ogbn-mag and ogbn-products
(Hu et al., 2020). Reddit is a traditional large graph dataset used by Chen et al. (2018b); Zou et al.
(2019); Chen et al. (2018a); Cong et al. (2020); Zeng et al. (2019). Ogbn-arxiv, ogbn-proteins and
ogbn-products are Open Graph Benchmarks (OGB) proposed by Hu et al. (2020). Compared to
traditional datasets, our selected OGB data have larger volume (up to million-node scale) with more
challenging data split. The metrics in Table 2 follow the choices of recent works and the recommen-
dation by (Hu et al., 2020).

4 RECONSIDER IMPORTANCE SAMPLING PROBABILITIES

The efficiency of layer-wise sampling comes from sampling, and the choice of sampling probabili-
ties impacts the prediction accuracy of GCNs. To minimize the variance (for the sake of notational
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Figure 2: Fit y(l) ∼ β0+β1x on ogbn-arxiv data. The orange solid line denotes the fitted regression
line. All pairs of (x, y) are collected from 5 repeated experiments and after the convergence of
models. Details of experimental setups, results for other data are deferred to Appendix C.3.

brevity, from now on we omit the superscript (l) when the objects are from the same layer)

E ‖QPSHW −QPHW ‖2F ,

Zou et al. (2019) show that the optimal sampling probability pi for node i satisfies (also see Ap-
pendix E for a derivation from a perspective of approximate matrix multiplication)

pi ∝ ‖(HW )[i]‖ · ‖QP [i]‖,

where for a matrixA,A[i] andA[i] respectively represent the i-th row / column of matrixA.

4.1 CURRENT APPROXIMATION STRATEGIES AND THEIR LIMITATIONS

The optimal sampling probabilities discussed above are usually unavailable during the mini-batch
training. W andH keep changing in the training and even worse we only have access to part of the
matrix HW in each batch. To approximate the optimal sampling probability, previous works de-
velop two different strategies, 1) approximating the hidden activationHW , or 2) sampling without
the information fromHW .

A representatives of the former strategy is AS-GCN (Huang et al., 2018), which linearly approximate
HW by node features. This strategy improves the accuracy of efficient GCN, while the estimation
of hidden activation causes considerable overall training time, which in practice is “even longer than
vanilla GCN” (Zeng et al., 2019). Another issue of this strategy is that the approximation must be
updated during the training procedure. This dependence between sampling and training renders it
impossible to save training time by preparing sampling results in advance of the training.

Instead, the second strategy, the theme of our paper, allows the decoupling of sampling and training,
and has been adopted by FastGCN (Chen et al., 2018b) and LADIES (Zou et al., 2019). To proceed
without the information from HW , FastGCN (resp. LADIES) assumes ‖(HW )[i]‖ ∝ ‖P [i]‖
(resp. ‖QP [i]‖), and sets their sampling probabilities as pi ∝ ‖P [i]‖2 (resp. ‖QP [i]‖2),
∀i ∈ [n]. However, we find this assumption is too strong. To test it, we conduct linear regres-
sion y(l) ∼ β0 + β1x for different layers separately (l = 1, 2, 3), where each y(l) is the `2 norm
of one row in H(l)W (l) and each x is the norm of corresponding column in P . The result of
ogbn-arxiv is presented in Figure 2. For layer 1 to layer 3, the intercepts (with stand error) of
the regression lines are 2.364(±0.002), 4.014(±0.008) and 19.722(±0.024) respectively, which are
much larger than zero with the statistical significance; however, the according slopes β1’s are at a
smaller scale: −0.154(±0.005), 4.468(±0.021) and 2.158(±0.069). Note that β1 for layer 1 is even
negative with statistical significance. Such evidence shows that the relation between ‖(HW )[i]‖ and
‖P [i]‖ is pretty unstable and might be even negatively correlated. This violates the assumption that
‖(HW )[i]‖ ∝ ‖P [i]‖. Similar patterns are also observed on the other datasets (See Appendix C.3).

4.2 PROPOSED SAMPLING PROBABILITIES

As analyzed above, the sampling probabilities in LADIES are sub-optimal due to the failure of their
assumption. To address this issue, we instead admit that we have no prior knowledge of HW , and
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tend to assume a uniform distribution of ‖(HW )[i]‖’s. With this belief we propose the following
sampling probabilities:

pi ∝ ‖QP [i]‖, ∀i ∈ [n]. (3)

Compared to the sampling probabilities of LADIES in Equation (2), our proposed sampling proba-
bilities pi’s are more conservative. From a matrix approximation perspective, we rewrite the target
matrix product as QPIHW , and only aim to approximate the known part QPI . It turns out that
assuming the uniform distribution of the norms of rows inHW can help improve both the variance
of the matrix approximation and the prediction accuracy of GCNs. We empirically justify our sam-
pling probabilities in the next section and Section 6. The theoretical analysis of the new probability
is presented in Section 4.4.

4.3 EVALUATION ON MATRIX APPROXIMATION ERROR

To further justify our proposed sampling probability, we consider the following 1-layer matrix ap-
proximation error, which evaluates the propagation approximation to the embedding aggregation of
full-batch.

‖Z̃(1)
batch − Z̃

(1)
sampling‖F = ‖QbatchPH

(0)W (0) −QbatchPSH
(0)W (0)‖F ,

where Z̃(1)
batch and Z̃(1)

sampling are the embedding at the bottom layer for the whole batch (using all
avaiable neighbors without sampling) and for a certain sampling method; S is the sampling matrix;
Qbatch’s 0, 1 diagonal entries indicate if a node is in the batch; ‖ · ‖F denotes the Frobenius norm of
a matrix. The experiments are repeated 200 times, in which we regenerate the batch nodes (shared
by all sampling methods) and the sampling matrix for each method. The batch size is fixed as 512
and the numbers of sampled neighbors are 256, 512, 768, 1024, 2536, and 2048. W (0) is fixed and
inherited from the trained model reported in Section 6.

It is not surprising to observe that in Figure 1, the result of our proposed sampling probabilities
(denoted as “LAIDES+flat”, blue solid line) is consistently better than that of the original LADIES
method (black dashed line) and of FastGCN (black solid line) on every dataset. This supports the
new sampling probability in Equation (3). The discussion of the other (debiased) methods in this
figure is deferred to Section 5.

4.4 THEORETICAL ANALYSIS OF THE NEW PROBABILITIES

Whether our choice of probabilities can outperform the previous ones depends on the distribution of
the norms of rows in HW . When ‖HW(i)‖ is not proportional to the corresponding `2 norm of
column (QP )(i), our proposed probabilities can benefit the approximate matrix multiplication task
more than the ones assuming a relation of proportionality. We find the common long-tail distribution
of numbers suffices to exert the strengths of the new probabilities, which can be concluded as the
following assumption:
Assumption 1. To simplify the notation we denote B := QP and C := HW , where P is an
n-by-n matrix as defined above. Let m be the number of non-zero columns in B, and define C1 :=

‖B‖2F /m

(
∑n

i=1 ‖B[i]‖/m)
2 ≥ 1. There also exists a constant C2 ≥ 1 such that 1

C2
‖C‖2F /n ≤ ‖C[i]‖2 ≤

C2‖C‖2F /n. Assume C1/C
2
2 ≥ 1.

With the assumption above, we show the variance of the approximation with our proposed probabil-
ities is smaller than the variance of LADIES by the following lemma.
Lemma 1. We denote the sampling matrix with our probabilities in Equation (3) as S1, and denote
the sampling matrix with probabilities of LADIES in Equation (2) as S0. If Assumption 1 holds,
then we have

E ‖BS1C −BC‖2F ≤ E ‖BS0C −BC‖2F .

The proof is provided in Appendix F.

Remark. Assumption 1 is related to the uniformity in the distributions of ‖B[i]‖’s and ‖C[i]‖’s.
We tentatively discuss the implication of the assumption in Appendix F. We remark the assumption
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indicates it is unrealistic that the new probabilities can outperform the ones in LADIES, as distri-
butions of datasets can vary. Nevertheless, as shown in Section 6 it can be an effective attempt to
improve the prediction accuracy of LADIES by simply adopting the conservative sampling scheme.

5 DEBIAS SAMPLING WITHOUT REPLACEMENT

The theoretical results derived by Chen et al. (2018b); Zou et al. (2019) guarantee their methods are
unbiased approximations of the embedding aggregations in GCN training, with an independent and
identically distributed (i.i.d.) sub-sample assumption. However, biases are induced in the imple-
mentations due to the usage of sampling without replacement. As illustrated by the U-shape curves
of ogbn-arxiv and ogbn-mag datasets in Figure 1, in the long run the matrix approximation error
of LADIES even increases with the number of sub-samples. The trend indicates the existence of
biases since given an unbiased estimation, the matrix approximation error is expected to decrease
with more sub-samples used. In particular, such bias is more significant in sparse graphs with small
average degrees. In the following subsections, we analyze the implementation of sampling without
replacement in LADIES to demonstrate the origin of the bias, and propose a new correction method
to debias the estimation while keep using sampling without replacement.

Remark. We insist on the usage of sampling without replacement because it does diminish the vari-
ance of the estimation. This practice indeed works for node-wise sampling methods adopting simple
random sampling (SRS, sampling with all-equal probabilities). Specifically, assuming m items are
uniformly sampled without replacement from a population of size n, using the same formula for
estimation as in sampling with replacement is still unbiased and enjoys the reduction of variance by
a finite population correction (FPC) factor n−m

n−1 (Lohr, 2019, Section 2.3).

5.1 WEIGHTED RANDOM SAMPLING WITHOUT REPLACEMENT

We first introduce the implementation and necessary notations of non-uniform sampling without
replacement applied in FastGCN and LADIES. Given a set V = [n] representing the indices of n
items (matrices in the layer-wise sampling setting) {Xi}ni=1 and associated sampling probabilities
{pi}ni=1, the algorithm can be stated as a sequential procedure named as weighted random sampling
(WRS) (Efraimidis & Spirakis, 2006, Algorithm D). Specifically, aside from the set Sk of k previ-
ously sampled indices (0 ≤ k ≤ m− 1, S0 := ∅), the k + 1-th random index Ik+1 is sampled from
the set V − Sk of the rest n− k indices with probabilities

p
(0)
i := pi, ∀i ∈ V = [n],

p
(k)
i :=

pi∑
j∈V−Sk

pj
, ∀k ∈ [m− 1], i ∈ V − Sk.

In the implementation of previous layer-wise sampling methods, the formula used to estimate the
target

∑n
i=1Xi is displayed (after adapted to the notations in this subsection) as follows:

1

m

m−1∑
k=0

XIk+1
/pIk+1

, (4)

which is derived under the sampling with replacement assumption. With the notations introduced,
we are now able to analyze the effect of directly using Equation (4) while the WRS algorithm is
performed. The expectation of a certain summandXIk+1

/pIk+1
will be

E
XIk+1

pIk+1

= E

E
XIk+1

p
(k)
Ik+1

p
(k)
Ik+1

pIk+1

| Fk

 = E

[
1∑

i∈V−Sk
pi

∑
i∈V−Sk

Xi

]
, (5)

where Fk is the σ-algebra generated by the random indices inside the corresponding set Sk,∀k =

0, 1, · · · ,m − 1, and the second equation holds because
p
(k)
Ik+1

pIk+1
= 1∑

i∈V−Sk
pi

is Fk-measurable.

The expectation is in general unequal to the target
∑n

i=1Xi for k > 0, except for some extreme
conditions such as all-equal pi’s. The bias in each summand (except for the first term with k = 0)
accumulates and results in the ultimate bias in the given estimation.
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5.2 A REMEDY TO ATTAIN UNBIASED ESTIMATION

The bias induced by the sequential WRS algorithm has been extensively analyzed by many other
studies, especially the ones on stochastic gradient estimators (Liang et al., 2018; Liu et al., 2019;
Kool et al., 2019). Given a sequence of random indices sampled through WRS, as far as we know
there are two genres to assign coefficients to summands in Equation (4). Both of the two methods
relate to the stochastic sum-and-sample estimator (Liang et al., 2018; Liu et al., 2019), which can be
derived from Equation (5). Using the fact E XIk+1

pIk+1

∑
i∈V−Sk

pi = E
[∑

i∈V−Sk
Xi

]
, a stochastic

sum-and-sample estimator of
∑n

i=1Xi can be immediately constructed as

Πk+1 =
∑
j∈Sk

Xi +
XIk+1

p
(k)
Ik+1

,∀k = 0, 1, · · ·m− 1. (6)

(The proof of unbiasedness is brief and provided by Kool et al. (2019, Appendix C.1).) To minimize
the variance, Liang et al. (2018); Liu et al. (2019) develop the first genre to focus on the last estimator
Πm and propose methods to pick the initial m − 1 random indices. Kool et al. (2019, Theorem 4)
turn to the second genre which utilize Rao-Blackwellization (Casella & Robert, 1996) of Πm.

In fast training for GCN, both of the two genres are somewhat inefficient from a practitioner’s
perspective. The first genre works well when

∑
i∈Sm−1

pi is close to 1, otherwise the last term in

Πm,
XIk+1

p
(k)
Ik+1

, will brings in large variance and reduce the sample efficiency; for the second genre,

the time cost to perform Rao-Blackwellization (Kool et al., 2019) is extremely high (O(2m) even
with approximation by numerical integration) and conflicts with the purpose of fast training. To
overcome the issues of the two existing genres, we propose an iterative method to fully utilize each
estimator Πk+1 with acceptable runtime to decide the coefficients for each term in Equation (4).

Conceptually, we recursively perform the weighted averaging below:

Z0 := 0, Zk+1 := (1− αk+1)Zk + αk+1Πk+1,∀k = 0, 1, · · · ,m− 1,

where αk+1 is a constant decided by k. When α1 = 1, Z1 = Π1 =
XI1

pI1
is unbiased and the

unbiasedness of Zm can be obtained by induction as each Πk+1 is unbiased as well. For the choice
of αk+1’s, we intentionally specify αk+1 = n

(n−k)(k+1) , motivated by the preference that if all pi’s
are 1/n, the output coefficients of the algorithm will be all 1/m, the same as the ones in an SRS
setting.

In practice, it suffices for the debiasing algorithm to find the coefficients for each Xk+1, which
can be obtained in advance of the final computation of Zm. We, therefore, adapt the preceding
recursive estimation to iterative updates of coefficients, and conclude the procedure in Algorithm 1
in Appendix A. The time complexity of Algorithm 1 is O(m2), as in iteration k + 1 we update the
coefficients for the first k + 1 random indices sampled. The time complexity is comparable to the
one of embedding aggregation in layer-wise sampling, as shown in Appendix D.

5.3 EFFECTS OF DEBIASING

As an immediate result, our proposed debiasing method can significantly improve the matrix ap-
proximation error in a single step of embedding aggregation. In Figure 1, we observe in all the five
datasets, the debiased variant of LADIES has a smaller error, and its error ordinarily drops with
the number of sub-samples. When combining the debiasing with the new probabilities raised in
Section 2.2, the effect of debiasing is significant only when the graphs (ogbn-arxiv and ogbn-mag)
are sparse and when the sub-sample sizes are large enough. We have the following conjectures for
this phenomenon. The insignificant improvement is caused by the flat distribution of our proposed
probabilities, as the debiasing procedure will maintain the estimation if the sampling probabilities
are all-equal. For sparse graphs, however, the number of sampled columns (m) is comparable to the
neighborhood size of the batch nodes (n), and as the biases accumulate the effect of the debiasing
algorithm emerges.

We further comment that debiasing is not a panacea for GCN accuracy, and the results in Fig-
ure 1 cannot fully predict the corresponding GCN accuracy. Conceptually, the columns sampled are
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Table 1: Summary of prediction accuracy on different datasets. The accuracy is reported in the form
of a percentage (%).

Reddit ogbn-arxiv ogbn-proteins ogbn-products ogbn-mag
Full-batch 93.81±0.18 66.39±0.25 65.71±0.11 68.33±0.16 29.60±0.27
Node-wise (2) 92.13±0.27 64.51±0.30 65.76±0.18 68.71±0.07 29.05±0.45
Node-wise (10) 94.41±0.07 66.47±0.19 66.34±0.10 69.57±0.20 29.54±0.27
VR-GCN (2) 94.62±0.04 67.49±0.25 67.45±0.02 70.90±0.28 28.99±0.40
VR-GCN (10) 94.36±0.05 66.50±0.33 66.39±0.06 69.81±0.31 29.66±0.68
GraphSAINT 89.47±0.83 60.58±0.62 66.33±0.07 62.77±1.04 24.77±0.88
FastGCN 44.46±2.30 25.44±0.82 52.44±1.88 26.98±0.42 7.13±0.48
FastGCN (2) 60.31±0.70 30.23±1.10 58.80±1.06 31.58±0.70 5.85±0.57
LADIES 73.86±0.17 60.95±0.31 68.28±0.05 52.97±1.11 24.79±0.48
w/ flat 90.04±0.11 62.76±0.26 68.26±0.06 62.64±0.10 27.30±0.27
w/ debiased 86.73±0.36 61.55±0.40 68.87±0.09 55.92±0.92 25.74±0.80
w/ flat & debiased 89.34±0.40 61.90±0.43 67.64±0.15 62.57±0.22 27.41±0.28
LADIES (2) 88.34±0.11 64.01±0.39 68.17±0.10 65.24±0.40 28.59±0.39
w/ flat 93.64±0.19 66.56±1.84 68.10±0.07 68.47±0.25 29.58±0.19
w/ debiased 92.75±0.22 65.93±0.27 69.14±0.15 67.18±0.24 30.08±0.28
w/ flat & debiased 93.59±0.09 66.22±0.10 67.75±0.11 68.49±0.06 29.88±0.34

mainly decided by the sampling probabilities, and a debiasing procedure solely adjusts the weights
for different columns. This adjustment partially overlaps with the updates of the parametersW (l)’s
in a GCN, and therefore the improvement of debiasing to the GCN accuracy will be limited. We
claim debiasing should be considered as a means to save some parameter updates, more than a tech-
nique designed to improve the GCN accuracy. We will empirically verify the effect of debiasing in
the next section.

6 EXPERIMENTS

In this section, we empirically evaluate the performance of each method on five node prediction
datasets: Reddit, ogbn-arxiv, ogbn-proteins, ogbn-mag, ogbn-products (See Table 2). We denote
“LADIES+flat”, “LADIES+debiased”, and “LADIES+flat+debiased” respectively as the variants
of LADIES with the improvements from Section 4, from Section 5, and from both. We compare
our methods to the original GCN with mini-batch stochastic training (denoted by full-batch), two
layer-wise sampling methods: FastGCN and LADIES. Apart from that, we also implement the other
common fast GCN training methods, including GraphSAGE (Hamilton et al., 2017) (vanilla node-
wise sampling while keep using the GCN architecture), VR-GCN (Chen et al., 2018a), and subgraph
sampling method GraphSAINT (Zeng et al., 2019).

For the training settings, we use a 2-layer GCN for each task with an ADAM optimizer of learning
rate 0.001. (Due to limited computational resources, we have to use the shallow GCN since the
full-batch method and node-wise sampling methods require much more GPU memory even when
L = 3.) The number of hidden variables is 256 and the batch size is 512. For layer-wise sampling
methods, we adopt both the classical setting that in each layer the numbers of columns sampled are
equal to the batch size 512, and an “increasing” setting (denoted with (2)) that twice nodes will
be sampled in the next layer. For the node-wise sampling methods, we combine the settings in
the original papers of GraphSAGE (Hamilton et al., 2017) VR-GCN (Chen et al., 2018a) that we
separately set the number of neighbors per node as 2 (denoted with (2)) and 10 (denoted with (10)).
For the subgraph sampling method GraphSAINT (Zeng et al., 2019), the subgraph size is by default
equal to the batch size. The experiment results are reported in Table 1, with the means and associated
standard deviations based on 5 runs. More details of the settings are deferred to Appendix C.1.

6.1 TRAJECTORIES OF MODEL CONVERGENCE

We first compare the convergence rates of different methods. The results on Reddit, ogbn-proteins,
and ogbn-products are shown in Figure 3, and the results on other datasets are deferred to Figure 4
in Appendix C.2 due to limited space.

8
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Figure 3: Metrics in each epoch. The layer-wise sampling methods follow the “increasing” setting
(denoted with (2) in Table 1); for the node-wise sampling methods, the number of neighbors is 2.

In Figure 3 (and Figure 4), we observe LADIES (the green curve) tends to move fast at the beginning
of training while slow down after the first stage. In contrast, the debiased variants of LADIES have
convergence patterns similar to the outstanding while time-consuming methods Full-batch and VR-
GCN, and seem to accelerate the training of LADIES at the local convergence stage. Figure 3
also demonstrates that in most cases, “LADIES+debiased” converges slower than “LADIES+flat”,
which indicates that regarding convergence, the effect of debiasing is not as important as choosing
a proper sampling scheme. This observation matches our analysis in Section 5.3 that debiasing can
save some turns of parameter updates and sampling probabilities decide the overall quality of the
approximation to embedding aggregations.

6.2 PREDICTION ACCURACY

The prediction accuracy on test sets of different datasets is reported in Table 1. We observe the
new sampling probabilities and the debiasing algorithm show consistent improvement over exist-
ing layer-wise sampling methods, FastGCN and LADIES. In addition, the experiments further ver-
ify the previous observation that the two remedies we apply have the overlapping effect, which
is implied in Figure 1 and Figure 3 that (when sub-sample size is small) the improvement of
“LADIES+flat+debiased” over its ablation method “LADIES+flat” is insignificant. As for the four
benchmark methods, the full-batch method and two node-wise sampling methods have outstanding
performance on the accuracy, as they benefit from the vast amount of computation. The graph-
SAINT method demonstrates a tendency to perform well on the dataset with a high average degree,
such as ogbn-proteins. We comment that when the amount of computation is controlled, layer-wise
sampling can enjoy similar prediction accuracy to node-wise sampling, as shown in Table 1.

We close this section with a remark on the seemingly strange phenomenon that some efficient
GCNs aim to mimic the original full-batch GCN while having a higher prediction accuracy on some
datasets. We speculate the reason behind this phenomenon is that a good approximation can recover
the principal components in the original embedding matrix, and also restrain the noise via the sparse
/ low-rank structure. A similar observation (Sanyal et al., 2018) is found in Convolutional Neural
Networks (CNN) as well, that applying a low-rank regularizer, such as SVD, to the representation
of the intermediate layers can improve the prediction errors of the CNN models.

7 CONCLUSION

We carefully analyze layer-wise sampling in this work and make two improvements to current layer-
wise sampling models. We first show that a conservative choice of sampling probabilities outper-
forms the existing ones. The latter probabilities assume the L2 norm of embedding is proportional
to the norm of the corresponding column of the renormalized Laplacian matrix, which is usually too
strong in practice. We further propose a new correction method to debias the estimation in layer-wise
sampling through iterative updates of coefficients for columns sampled. The empirical experiments
justify our proposed method and show that our method achieves high accuracy close to the SOTA
node-wise sampling method, VR-GCN.
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A ALGORITHM TO SPECIFY THE COEFFICIENTS FOR DEBIASING

The algorithm described in Section 5.2 is provided in this section.

Algorithm 1: Iterative updates of coefficients to construct the ultimate debiased estimator Zm

Input: probabilities {pi}ni=1, random indices {Ik+1}m−1k=0 generated by WRS with {pi}ni=1
Output: a length m coefficient vector β
Initialize the vector β = 0 ∈ Rm, sum of probabilities pS = 0;
for k ← 0 to m− 1 do

α = n
(n−k)(k+1) ;

β[k] = α(1− pS)/pIk+1
;

for j ← 0 to k − 1 do
β[j] = (1− α)β[j] + α;

end
pS = pS + pIk+1

;
end
return β;
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Table 2: Summary of datasets. Each undirected edge is counted once. Each node in ogbn-protein
has 112 binary labels. “D.” refers to the average degree of the graph. “Feat” refers to the number of
features. “Split Ratio” refers to the ratio of training/validation/test data.

Dataset Nodes Edges D. Feat. Classes Tasks Split Ratio Metric
Reddit 232,965 11,606,919 50 602 41 1 66/10/24 F1-score
ogbn-arxiv 160,343 1,166,243 13.7 128 40 1 54/18/28 Accuracy
ogbn-proteins 132,534 39,561,252 597.0 8 binary 112 65/16/19 ROC-AUC
ognb-mag 736,389 5,396,336 7.3 128 349 1 85/9/6 Accuracy
ogbn-products 2,449,029 61,859,140 50.5 100 47 1 8/2/90 Accuracy

B INFORMATION OF DATASETS

Table 2 summaries the information of datasets used in our experiments.

C ADDITIONAL EXPERIMENT DETAILS

C.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUPS

In this section, we describe the additional details of experiment setups for Section 6. All the models
are implemented by Pytorch. We use one Tesla V100 SXM2 32GB GPU with 10 CPU threads to
train the models in Section 6. Our implementation of Full-batch method, FastGCN, LADIES are
adapted from the codes by Zou et al. (2019); our implementation of vanilla node-wise sampling,
VR-GCN, GraphSAINT is adapted from the codes by Cong et al. (2020). For the vanilla node-wise
sampling method, there are several variants of structures Ying et al. (2018) while we fix the model
structure as GCN in our experiments for fair comparison. We use ELU as the activation function
in the convolutional layer for all the models: ELU(x) = x for x > 0, ELU(x) = exp(x) − 1 for
x ≤ 0. We choose dropout rate as 0.2, which means 20 percents of units are randomly dropped
during the training. Validation and testing are performed with Full-batch inference (using all pos-
sible neighbors) on validation and testing nodes. Note that some existing Pytorch implementations
of GCNs involve several ad-hoc tricks, such as row-normalizing sampled Laplacian matrix. For the
accuracy evaluation experiments in Section 6, we stop training when the validation F1 score does
not increase for 200 batches. For a fair comparison, we remove certain tricks in our experiments,
such as normalization of each rows in the sampled Laplacian matrix in layer-wise sampling. Such
a trick may help in the practice but it might not be compatible to some other methods and is out
of the focus of our study. We use the metrics in Table 2 to evaluate the accuracy of each method.
Concretely, Reddit is a multi-class classification task and we use the Micro-F1 score with function
“sklearn.metrics.f1 score”. For OGB data, we use the built-in evaluator function in module ogb by
Hu et al. (2020).

C.2 ADDITIONAL RESULTS ON MODEL CONVERGENCE

The convergence results on ogbn-arxiv and ogbn-mag are provided in Figure 4. The setting of each
model is the same as in Figure 3.

C.3 ADDITIONAL REGRESSION EXPERIMENTS

For the regression experiments in Section 4.1, we train a 3-layer GCN without sampling, i.e., full-
batch SGD training, with 256 hidden variables per layer. The batch size is 512. Early stopping
training policy is applied. We also remark that these experiments are conducted to check the as-
sumption of importance sampling, rather than pursuing SOTA performance. When we finish training
the model, the norms of rows in HW are extracted through a full-batch inference with all training
nodes. Hence, we only record the pairs (x(l)i , yi)’s for sampled nodes in regression, where i indicates
the index of the sampled nodes in the l-th layer.

Figure 5 is a supplementary to Figure 2. The assumption: ‖(HW )[i]‖ ∝ ‖P [i]‖ does not hold on all
of these datasets. We do not have the regression result on the ogbn-product dataset since the training
of 3-layer GCN fails due to the memory limitation.
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Figure 4: Metrics in each epoch.

Figure 5: Regression on Reddit, ogbn-protein, ogbn-mag datasets. GCN is trained with full-batch
SGD.
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C.4 DISTRIBUTIONS OF THE NORM OF ROWS / COLUMNS IN RELATED MATRICES

Figure 6: Distribution of ‖P [i]‖ and ‖(HW )[i]‖ for Reddit, ogbn-arxiv, ogbn-protein and ogbn-mag.

Figure 6 demonstrates the distribution of ‖P [i]‖ and ‖(HW )[i]‖ (layer 1, 2, 3) for Reddit, ogbn-
arxiv, ogbn-protein and ogbn-mag datasets. The ‖(HW )[i]‖’s are obtained from the experiment
in Section C.3. The outliers larger than the 99.9% quantile or small than the 0.1% quantile are
removed.

As shown in the histograms, our analysis regarding Assumption 1 tends to hold generally on these
datasets. For the norms of columns in P (as a replacement for QP for clarity), we observe there
are some columns with large norms far beyond the average. Those columns contribute a lot to the
quadratic mean, which results in a huge C1 in Assumption 1. In contrast, the norms of rows inHW
concentrate around their average, inducing a small C2. Those facts together with Assumption 1 and
Lemma 1 in the main paper explain why our proposed sampling probabilities are more proper for
some real datasets.

D TIME COMPLEXITY ANALYSIS

We analyze the complexity of vanilla node-wise sampling and layer-wise sampling in this section.
The analysis is adapted from the work by Zou et al. (2019), but we show a lighter bound for layer-
wise sampling. For l such that 0 ≤ l ≤ L − 1, the propagation formulas for sampling based GCN
can be formulated as:

Z̃(l+1) = P̄ (l)H̃(l)W (l),

14
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where H̃(l) = Z̃(l) ∈ Rsl×p, P̂ (l) ∈ Rsl+1×sl , W (l) ∈ Rp×p. In particular, for LADIES,
P̄

(l)
LADIES = Q(l+1)PS(l).

Table 3: The time complexity for computation for L-layer GCN training by layer-wise sampling
and node-wise sampling . The first column refers to the matrix operation type, nodes aggregation or
linear transformation.

Layer-wise Node-wise
Nodes Aggregation O(scpL) O(sbLp)
Linear Transformation O(sp2L) O(sbL−1p2)

For simplicity, we suppose that the number of hidden variables in each layer is fixed as p, the same
as the dimension of H(0). The batch size and the numbers of nodes sampled in each layer equal
are set all equal to a fixed constant s. We assume the number of sampled neighbors per node in
node-wise sampling is b. We denote the maximal degree of all the nodes in the graph as c. The
computational cost of the propagation comes from two parts: the linear transformation, a dense
matrix product, H̃(l)W (l) and the node aggregation, a sparse matrix product, P̄ (l)(H̃(l)W (l)).
The time complexity is summarized in Table 3. We additionally comment although the time cost
of two parts both linearly depend on the number of nodes involved (number of non-zero elements
in Q(l+1)), the node aggregation part usually dominates since the sparse matrix product involved is
less efficient than the dense matrix product involved in a modern computer.

The linear transformation, H̃(l)W (l) is dense matrix production. The cost depends on the shape of
two matrices, and is given as O(slp2). LADIES fixes sl as s for each layer, so O(slp2) = O(sp2).
For node-wise sampling sl = sbL−l, since number of node exponentially grows. Thus by summation
over all the layers, we have the results in the second row in Table 3.

The node aggregation, P̄ (l)(H̃(l)W (l)) is a sparse matrix production, since P̄ (l) is sparse. For
simplicity, we denote H̃(l)W (l) as C(l) ∈ Rsl×p. Thus the time complexity of this sparse matrix
production becomes O(nnz(Pl)p), where nnz(Pl) is the number of non-zero entries in P̄ (l). For
layer-wise sampling, since we sample s nodes for each layer and each node has at most c neighbors,
so nnz(Pl) ≤ sc. For node-wise sampling, since each node has b neighbors and the neighbors are
not shared by all the nodes in each layer, nnz(Pl) = bsl = sbL+1−l. By summation over all the
layers, we attain the results in the first row of Table 3.

E RESULTS IN APPROXIMATE MATRIX MULTIPLICATION

In this section, we revisit approximate matrix multiplication to derive the previous layer-wise sam-
pling methods. Specifically, the sampling matrix S used in FastGCN and LADIES can be decom-
posed as S = ΠΠT , where Π ∈ Rn×d is a sub-sampling sketching matrix defined as follows:

Definition E.1 (Sub-sampling sketching matrix). Consider a discrete distribution which draws i
with probability pi > 0,∀i ∈ [n]. For a random matrix Π ∈ Rn×d, if Π has i.i.d. columns and each
column Π(j) can randomly be 1√

dpi
ei with probability pi, where ei is the i-th column of the n-by-n

identity matrix In, then Π is called a sub-sampling sketching matrix with sub-sampling probabilities
{pi}ni=1.

With this definition, we introduce a result in AMM to construct the sub-sampling sketching matrix,
which coincides with the conclusion in FastGCN and LADIES.

Theorem E.1 (Theorem 1 (Drineas et al., 2006)). Suppose B ∈ RnB×n, C ∈ Rn×nC , the number
of sub-sampled columns d ∈ Z+ such that 1 ≤ d ≤ n, and the sub-sampling probabilities {pi}ni=1
are such that

∑n
i=1 pi = 1 and such that for a quality coefficient β ∈ (0, 1]

pi ≥ β
‖B[i]‖‖C[i]‖∑n

i′=1 ‖B[i′]‖‖C[i′]‖
,∀i ∈ [n]. (7)

Construct a sub-sampling sketching matrix Π ∈ Rn×d with sub-sampling probabilities {pi}ni=1

as in Definition E.1, and let BΠΠTC be an approximation to BC. Let δ ∈ (0, 1) and η =
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1 +
√
(8/β) log(1/δ). Then with probability at least 1− δ,

‖BC −BΠΠTC‖2F ≤
η2

βd
‖B‖2F ‖C‖2F . (8)

Remark. The theorem is closely related to Lemma 1 in Appendix B of LADIES, which studies the
variance E ‖BC −BSC‖2F . For the choice of sub-sampling probabilities, Equation (7) reproduces
the conclusion in FastGCN and LADIES, when we respectively takeB as P andQP .

F PROOF OF LEMMA 1 AND SOME REMARKS

To prove Lemma 1 in the main paper, we first adapt a technical lemma (Zou et al., 2019, Lemma 1),
which relates the sampling matrix to the variance (expectation of squared Frobenius norm) of the
approximate matrix multiplication.

Lemma F.1 (Adapted from Lemma 1 (Zou et al., 2019)). Given two matrices B ∈ RnB×n and
C ∈ Rn×nC , for any i ∈ [n] define the positive probabilities pi’s such that

∑n
i=1 pi = 1. We further

require the probability pi = 0 if and only if the corresponding column B[i] or row C[i] is all-zero.
The sub-sampling sketching matrix Π ∈ Rn×d is generated accordingly. Let S := ΠΠT , it holds
that

ES

[
‖BSC −BC‖2F

]
=

1

d

 ∑
i:pi>0

1

pi

∥∥∥B[i]
∥∥∥2 · ∥∥C[i]

∥∥2 − ‖BC‖2F


where d is the number of samples.

With the lemma above, the proof of Lemma 1 in the main paper is provided as follows.

Proof. Recall the notation in Lemma 1 in the main paper is simplified as B := QP ,C := HW .
As the union of neighbors of nodes inQ cannot cover all the nodes, some columns inB are all-zero,
and we accordingly define anQ-measurable matrix L as in Lemma F.1. We have

E
[
‖BS1C −BC‖2F

]
=EQ

[
ES1

(
‖BS1C −BC‖2F

∣∣Q)]
=
1

d
EQ

 ∑
i:pi>0

1

pi

∥∥∥B[i]
∥∥∥2 · ∥∥C[i]

∥∥2 − ‖BC‖2F
 .

where the second equation holds as we apply Lemma F.1 to the inner expectation in the right-hand
side of the first line. Plugging pi ∝ ‖B[i]‖ (Equation (3) in the main paper) into the preceding
probabilities pi’s, we reach

E
[
‖BS1C −BC‖2F

]
=
EQ

[(∑
i:pi>0

∥∥B[i]
∥∥)(∑

i:pi>0

∥∥B[i]
∥∥ ∥∥C[i]

∥∥2)]
d

−
EQ

[
‖BC‖2F

]
d

=
1

d
EQ

[(
n∑

i=1

∥∥∥B[i]
∥∥∥)( n∑

i=1

∥∥∥B[i]
∥∥∥∥∥C[i]

∥∥2)]− 1

d
EQ

[
‖BC‖2F

]
.

As computed by Zou et al. (2019), the variance of LADIES is similarly given as

E
[
‖BS0C −BC‖2F

]
=

1

d
EQ

 ∑
i:pi>0

∥∥∥B[i]
∥∥∥2
 ∑

i:pi>0

∥∥C[i]

∥∥2− 1

d
EQ

[
‖BC‖2F

]
.

Consequently, to prove the lemma it suffices to show that ∑
i:pi>0

∥∥∥B[i]
∥∥∥
 ∑

i:pi>0

∥∥∥B[i]
∥∥∥∥∥C[i]

∥∥2 ≤
 ∑

i:pi>0

∥∥∥B[i]
∥∥∥2
 ∑

i:pi>0

∥∥C[i]

∥∥2 , (9)
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and the inequality above follows with Assumption 1. Specifically, plugging the inequality ‖C[i]‖2 ≤
C2‖C‖2F /n,∀i ∈ [n] in the left-hand-side above, we have ∑

i:pi>0

∥∥∥B[i]
∥∥∥
 ∑

i:pi>0

∥∥∥B[i]
∥∥∥∥∥C[i]

∥∥2 ≤ ( n∑
i=1

‖B[i]‖

)2
C2

n
‖C‖2F =

m

C1
‖B‖2F

C2

nm
m‖C‖2F ,

in which the last equation comes from the definitionC1 :=
‖B‖2F /m

(
∑n

i=1 ‖B[i]‖/m)
2 . To close the proof, we

utilize the inequality 1
C2
‖C‖2F /n ≤ ‖C[i]‖2 and bound m‖C‖2F by nC2

∑
i:pi>0

∥∥C[i]

∥∥2. Finally
we attain Equation (9) with the core assumption C1

C2
2
≥ 1. ♦

Remark. In Assumption 1 we indeed implicitly assume ‖B[i]‖’s follow a long-tail distribution
that most norms are around the average while a few columns have large norms. The high non-
uniformity makes the average of squared norms much larger than the square of averaged norms. For
‖C[i]‖’s, considering the normalization techniques (such as batch or layer normalization) to stabilize
the scale of the parameters, they tend to not vary widely, which implies a small C2. The numerical
experiments on the comparison of approximation error (see Figure 1) and the histograms of the
norms in trained models shown in Figure 6 further validate the assumption. Based on the empirical
analysis above, we claim the assumption is mild and tends to hold at least for some datasets.

G SUPPLEMENTARY EXPERIMENTS OF REBUTTAL REVISION

G.1 SUPPLEMENTARY REGRESSION EXPERIMENTS

In addition to the regression experiments in Section 4.1 and Appendix C.3, we also present the
regression results in Figure 7 and Figure 5, for a 3-layer GCN with our LADIES+flat+debias sampler
and LADIES sampler respectively Both of them have 512 nodes sampled at each layer and keep
other hyper-parameters the same as regression experiments. The regression results in the following
figures show similar patterns to Figures 2 and 5.

G.2 SAMPLING TIME AND TRAINING TIME

We compare the sampling time per batch for 1-layer GCN with layer-wise sampling methods (Fast-
GCN, LADIES, and our proposed methods) and GraphSAGE. The time is presented in milliseconds.
The batch size is 512, and the number of sampled nodes is 512 or 1024. The average sampling time
(followed by standard deviation) over 200 batches is presented in Table 4. We note that the sampling
time may involve some overhead costs. For example, the input Laplacian matrix is Scipy-spare-
matrix on the CPU, while in sampling, it is converted to a PyTorch-sparse-matrix.

By Table 4, we conclude that the cost of debiasing algorithm is acceptable. Moreover, since the
debiasing only depends on the number of nodes sampled, its time cost will be dwarfed by sam-
pling on very large graphs. For example, sampling 512 nodes, the average batch sampling time
for “LADIES”, “LADIES + debiased”, “LADIES + flat + debiased”, are 8.3 ± 0.1, 11.7 ± 0.2,
11.7± 0.5 respectively on ogbn-arxiv while 83.4± 1.3 and 83.7± 0.8 and 83.5± 0.6 respectively
on ogbn-products data. We remark that the node-wise sampling takes a significantly longer time
because individually sampling from each row in the re-normalized Laplacian matrix (stored as a
sparse matrix in implementation) leads to a large overhead cost.

We present the training time per batch for 2-layer and 3-layer GCNs with different methods in Ta-
bles 5 and Table 6 respectively. The time is presented in millisecond and averaged over 110 batches,
where we discard the first 20 and the last 20 out of 150 total batches to disregard potential warm-up
time for GPU. The other settings are kept the same as our experiments of accuracy evaluation in
Table 1. We note that the timing on GPU is sensitive to the hardware and has a relatively large
standard deviation.

As presented in Tables 5 and 6, our proposed methods have similar training time with LADIES due
to the same propagation scheme of GCN with layer-wise sampling strategy. The VR-GCN generally
shows superiority in prediction accuracy (see Table 1). However, it also takes a significantly longer
time in training since its propagation involves using and updating historical activation.
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Figure 7: Regression on Reddit, ogbn-arxiv, ogbn-protein, ogbn-mag datasets. GCN is trained by
LADIES + flat + debias sampler. The fitted regression line is in orange color.
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Figure 8: Regression on Reddit, ogbn-arxiv, ogbn-protein, ogbn-mag datasets. GCN is trained by
LADIES. The fitted regression line is in orange color.
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Table 4: Average sampling time (in milliseconds) per batch for layer-wise methods and vanilla node-
wise method (GraphSAGE). 512 and 1024 (followed with the dataset name) indicate the number of
node sampled for one layer. The “f” and “d” in “LADIES+f+d” denotes “flat” and “debiased”
respectively.

FastGCN LADIES LADIES+f LADIES+d LADIES+f+d Node-wise
Reddit (512) 10.6 ± 0.9 10.9 ± 0.3 10.0 ± 0.2 13.1 ± 0.3 13.1 ± 0.4 632.5 ± 4.3
Reddit (1024) 10.0 ± 0.6 11.8 ± 0.4 10.4 ± 0.1 17.1 ± 0.4 16.1 ± 0.6 637.0 ± 4.2
arxiv (512) 4.2 ± 0.1 8.3 ± 0.1 7.8 ± 0.1 11.7 ± 0.2 11.7 ± 0.5 585.2 ± 3.6
arxiv (1024) 6.9 ± 0.1 9.7 ± 0.1 9.0 ± 0.1 17.2 ± 0.3 16.5 ± 0.3 585.6 ± 3.1
mag (512) 16.8 ± 0.1 27 ± 0.1 24.5 ± 0.1 30.0 ± 0.03 27.8 ± 0.1 1084.3 ± 1.7
mag (1024) 18.9 ± 0.2 28.6 ± 0.2 27.7 ± 0.1 36.0 ± 0.2 34.9 ± 0.1 1119 ± 2.9
proteins (512) 11.1 ± 1 11.2 ± 0.3 10 ± 0.2 13.6 ± 0.2 12.6 ± 0.2 830.9 ± 5.3
proteins (1024) 8.9 ± 0.2 12.4 ± 0.1 11.4 ± 0.1 18.9 ± 0.2 18.0 ± 0.3 804.2 ± 4.6
products (512) 54.8 ± 0.7 83.4 ± 1.3 80.3 ± 0.4 83.7 ± 0.8 83.5 ± 0.6 2795.4 ± 4.7
products (1024) 57.1 ± 0.5 80.8 ± 0.8 78.7 ± 0.7 87.0 ± 0.6 85.4 ± 0.7 2737.7 ± 4.8

Table 5: Average training time (in milliseconds) per batch for a 2-layer GCN.
Reddit ogbn-arxiv ogbn-mag ogbn-proteins ogbn-products

Full-batch 372 ± 21.5 65.2 ± 3.97 72.3 ± 8.25 1702 ± 67.0 703 ± 77.8
FastGCN 9.47 ± 1.21 24.1 ± 5.12 23.3 ± 6.27 8.50 ± 1.22 7.43 ± 1.04
FastGCN (2) 9.47 ± 1.25 24.9 ± 5.09 20.8 ± 5.71 8.76 ± 1.06 8.34 ± 1.11
LADIES 7.95 ± 1.03 19.3 ± 3.25 16.7 ± 4.54 8.69 ± 1.11 10.3 ± 1.24
w/ flat 7.86 ± 1.04 16.0 ± 2.37 26.1 ± 6.54 9.00 ± 1.21 8.03 ± 1.07
w/ debiased 7.86 ± 1.11 19.1 ± 3.45 19.5 ± 5.67 8.21 ± 1.04 8.44 ± 1.09
w/ flat & debiased 8.01 ± 1.09 14.6 ± 2.59 20.5 ± 5.62 9.06 ± 1.14 8.11 ± 1.09
LADIES (2) 14.2 ± 4.68 21.0 ± 4.00 22.7 ± 6.05 8.83 ± 1.12 11.2 ± 1.35
w/ flat 8.70 ± 1.13 23.1 ± 4.04 21.9 ± 5.65 10.3 ± 1.24 13.1 ± 1.52
w/ debiased 8.75 ± 1.15 14.0 ± 1.94 16.3 ± 4.64 10.7 ± 1.29 8.54 ± 1.09
w/ flat & debiased 8.12 ± 1.13 21.0 ± 3.60 13.3 ± 4.15 12.5 ± 1.41 8.50 ± 1.15
Node-wise (2) 8.13 ± 1.12 22.0 ± 3.64 17.3 ± 4.67 9.50 ± 1.29 8.34 ± 1.21
Node-wise (10) 11.3 ± 1.05 19.7 ± 2.84 22.0 ± 5.60 10.3 ± 1.29 11.7 ± 1.31
VR-GCN (2) 153 ± 17.3 86.8 ± 6.09 106 ± 12.4 239 ± 42.7 88.5 ± 2.51
VR-GCN (10) 302 ± 23.9 104 ± 8.47 175 ± 15.1 360 ± 45.6 402 ± 65.3
GraphSAINT 8.23 ± 1.14 23.1 ± 3.26 20.4 ± 5.98 8.34 ± 1.07 8.26 ± 1.11

Table 6: Average training time (in milliseconds) per batch for a 3-layer GCN.
Reddit ogbn-arxiv ogbn-mag ogbn-proteins ogbn-products

Full-batch 1042.8 ± 30.1 148 ± 5.8 352.1 ± 11.5 3312.3 ± 82.1 4490.7 ± 102.6
FastGCN 16.9 ± 6.3 30.8 ± 4.3 19 ± 4.8 13 ± 1.3 8.9 ± 1.0
FastGCN (2) 9.6 ± 1.2 27.4 ± 4.6 18.9 ± 4.7 9.8 ± 1.2 9.4 ± 1.1
LADIES 10.6 ± 1.3 27.6 ± 3.7 19.9 ± 4.8 11.1 ± 1.3 8.9 ± 1.0
w/ flat 10.1 ± 1.1 26.4 ± 3.9 12.1 ± 2.4 10.1 ± 1.2 9.9 ± 1.0
w/ debiased 10.1 ± 1.2 30 ± 4.1 22.5 ± 5.5 10.6 ± 1.2 10.6 ± 1.0
w/ flat & debiased 9.7 ± 1.1 27.1 ± 3.6 15.7 ± 4.3 10.9 ± 1.2 9.3 ± 1.0
LADIES (2) 10 ± 1.2 29 ± 4.1 19.2 ± 5.1 10.5 ± 1.2 10.2 ± 1.1
w/ flat 16.1 ± 4.9 27.2 ± 3.7 21.4 ± 5.8 10.4 ± 1.1 13.1 ± 1.4
w/ debiased 10.3 ± 1.1 24.7 ± 3.1 23.3 ± 5.8 10.5 ± 1.2 12.4 ± 1.3
w/ flat & debiased 10.7 ± 1.1 26.8 ± 4.4 24.8 ± 6.4 10.5 ± 1.1 9.9 ± 1.1
Node-wise (2) 10.9 ± 1.3 27 ± 4.2 17.2 ± 4.3 11.5 ± 1.3 11.5 ± 1.1
Node-wise (10) 77.8 ± 12 34.9 ± 3.3 52.4 ± 6.7 24.6 ± 1.1 50.4 ± 1.1
VR-GCN (2) 379.7 ± 23.6 154.1 ± 12 218.7 ± 16.7 428.9 ± 53 473.6 ± 69.7
VR-GCN (10) 858.1 ± 32 224.9 ± 17.8 488.1 ± 34.7 1618.7 ± 67.3 2075 ± 112.8
GraphSAINT 9.5 ± 1.1 22.6 ± 3.2 21.2 ± 5.6 11.2 ± 1.3 10.5 ± 1.0
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G.3 FINER VISUALIZATION OF FIGURE 3 AND FIGURE 4

To better differentiate the distinct sampling-based methods in Figure 3 and Figure 4, we provide
Figure 9 to group the methods of the same type by the same color and demonstrate the trajectories
of model convergence. We also provide Figure 10 to only compare the layer-wise sampling methods
(FastGCN, LADIES, LADIES+flat, LADIES+debiasd, LADIES+flat+debiasd).

Figure 9: Metrics in each epoch.

Figure 10: Metrics in each epoch.
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