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ABSTRACT

In this paper, we establish a dimension- and precision-independent impossibility
result for a simplified transformer model. Due to their size, a comprehensive un-
derstanding of the internal operations of frontier large language models (LLMs)
is beyond the reach of current methods, but research into small and interpretable
models has proven successful. We study the representational limits of attention,
the core of transformer models, through the lens of the Endpoint Selection Prob-
lem (ESP), a simple yet expressive learning task defined over arcs of a directed
graph. ESP is closely related to the 2-hop induction head problem studied in prior
work, which itself can be formalized as a function composition task.
Our main theoretical results are twofold: (i) no 1-head, 1-layer, attention-only
transformer can solve ESP on any graph containing a cycle, even with unbounded
dimension and precision; (ii) in contrast, a 2-head, 1-layer, attention-only trans-
former can solve ESP on arbitrary directed graphs with constant embedding di-
mension and logarithmic precision. Prior lower bounds (Peng et al., 2024; Sanford
et al., 2024c) were conditional on bounds on dimension and precision. We com-
plement our 1-head result by showing that, while a zero-error model exists for any
directed acyclic graph, it is NP-complete to even approximate the best single-head
model that minimizes error on the arcs of an arbitrary directed graph.
Finally, we validate our theory with experiments and observe that gradient-based
optimization can reliably find 1-head solutions for DAGs and 2-head solutions for
arbitrary graphs with cycles, whereas 1-head models struggle to reach the optimal
solution in graphs with cycles. We believe that our techniques are of indepen-
dent interest and have the potential to establish a new fine-grained hierarchy of
transformer architectures, each with greater problem-solving power than the last.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) revolutionized artificial intelligence and made
possible the astonishing performance of large language models (LLMs). These systems exhibit
emergent abilities—reasoning, planning, even apparent world knowledge—that seem dispropor-
tionate to their size and training data. However, despite this success, our understanding of why
transformers work remains shallow. Fine-grained analyses of LLMs are far beyond the reach of cur-
rent techniques. Their sheer scale, training complexity, and data dependence make rigorous proofs
almost impossible. To make progress, researchers have turned to simplified transformer models: one
or two layers, few attention heads, limited embedding dimensions; trading emergent phenomena for
the possibility of mathematical analysis. Previous work has revealed surprising capabilities of such
small transformers in domains such as pathfinding (Wang et al., 2025a), learning of causal structures
(Nichani et al., 2024), and compositional reasoning (Wang et al., 2025b). However, unconditional
boundaries—results that cleanly separate what a given architecture can and cannot do—remain rare.
Establishing such hierarchies is a necessary stepping stone toward a principled understanding of
how the remarkable properties of full-scale LLMs arise, and how we can further enhance them.

In this paper, we propose the Endpoint Selection Problem (ESP) as a natural test case. ESP re-
quires selecting an endpoint of an arc in a directed graph. This deceptively simple task is closely
tied to graph traversal and selection primitives, which underlie many higher-level reasoning prob-
lems, from path following to decision making in structured domains. ESP can be generalized in

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multiple directions: hypergraphs, multi-step traversal, or probabilistic endpoint selection. Thus, un-
derstanding transformer performance on ESP is both intrinsically interesting and practically useful
as a foundation for analyzing broader classes of algorithmic reasoning tasks.

Our central result establishes an unconditional impossibility: no 1-head, one-layer, attention-only
transformer can solve ESP on any directed graph with cycles. This barrier is independent of pre-
cision or embedding dimension, which is also referred to as width in the literature (Merrill & Sab-
harwal, 2024a), in contrast with prior results that required more assumptions to be made. At the
same time, we demonstrate that a modest extension, two heads in a single layer, suffices to solve
ESP on all directed graphs, with constant embedding dimension and precision logarithmic in the
number of vertices of the graph. The techniques we introduce for proving these results do not ap-
ply merely to ESP; they open the door to a systematic program of analyzing transformer hierarchies.
The typical transformer architecture consists of attention layers alternating with FFN (Feed-Forward
Network) layers. Since FFN with a single layer is already a universal approximator (Hornik et al.,
1989), in this paper we focus on attention-only transformers a la (Nichani et al., 2024). We note that
an exponential number of heads in a single layer is known to be a sequence-to-sequence universal
approximator (Hu et al., 2025). By charting the landscape of what successively more expressive
transformer architectures can and cannot do, we aim to reveal the structure behind the ’magical’
emergent properties of LLMs. In the long run, this line of work promises to replace mystique with
mathematics: a principled understanding of how and why transformers scale from simple pattern
recognizers to models that appear to reason, plan, and generalize.

1.1 SUMMARY OF OUR RESULTS

Endpoint Selection Problem (ESP). We define ESP to be the task of correctly selecting the head
or tail of an arbitrary arc in a directed graph. The input is an ordered pair (representing the arc) and
a selector (indicating tail or head) and the output should be the indicated member (first or second,
respectively) of the ordered pair. The input distribution is assumed to be the uniform distribution
over all arcs and selectors, i.e., uniform over a space of size 2m, given a directed graph with m
arcs. A model is said to solve ESP perfectly, or with zero error, if it always produces the correct
output. We set the temperature ≈ 0 (temperature is the hyperparameter that controls randomness in
the output distribution (Hinton et al., 2015)) so that model is deterministic.

• 1-head transformers. No model can solve ESP perfectly for any graphs with cycles, even if
embedding dimension and precision are unbounded (Theorem 2).

• For any DAG with n vertices, there exists a 1-head model with embedding dimension O(n) that
can solve ESP with zero error (Theorem 1).

• It is NP-complete to even approximate the minimum error 1-head model for an arbitrary directed
graph (Theorem 5).

• 2-head transformers. We prove that a 2-head 1-layer attention-only transformer can solve ESP
without error for any n-vertex directed graph, using O(n) dimension and O(1) precision (Theo-
rem 3) or using O(1) embedding dimension and O(log n) precision (Corollary 1).

• Empirical analysis. Experiments corroborate our theoretical results – gradient-based optimiza-
tion can reliably find 1-head solutions for ESP on DAGs and 2-head solutions for ESP on arbitrary
graphs with cycles, whereas 1-head models struggle to reach the optimal solution in cyclic graphs.

1.2 RELATED WORK

Our work contributes to the understanding of the capabilities of small transformer models. Several
positive and negative results on transformer capabilities have been established in this field.

Transformer capabilities on graphs. In Wang et al. (2025a), it is demonstrated that constant-depth
transformer models can be trained to find paths in a directed acyclic graph (DAG). The authors prove
their claim by proposing a set of weights capable of achieving this task and showing that this set of
weights can be found by using gradient descent. A classification of 9 graph problems grouped by
the model scales sufficient to solve them can be found in Sanford et al. (2024a). In Nichani et al.
(2024), it is shown that a two-layer attention-only transformer model can learn latent causal structure
in sequences. Further, they show that the transformer learns an induction head (Olsson et al., 2022)
when sequences are generated from an in-context Markov chain.
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Lower bound results A lower bound for function composition is formally proved in Peng et al.
(2024); using communication complexity arguments, they show that for attention-only 1-layer trans-
former models with embedding dimension d, input domain size |A| = |B| = |C| = n, with numbers
represented with p bits, and H heads, function composition is impossible if H(d + 1)p < n lg n.
(Chen et al., 2024) extends this result to standard multi-layer transformers by showing that an L-
layer transformer with sequence length n needs model dimension nΩ(1) to compose L functions.

Sanford, Hsu, and Telgarsky prove several complexity results for transformers in Sanford et al.
(2023; 2024b) and Sanford et al. (2024d). They show that the 1-hop induction head task (which
is the task of returning, for two sequences of tokens (σ1, . . . , σn) and (τ1, . . . , τn), where τi is the
input token that follows the rightmost occurrence of the token equal to σi before position i) cannot
be solved by a 1-layer attention-only transformer unless mph = Ω(n), where m is the embedding
dimension, p is the precision, and h is the number of attention heads. Since it is known from previous
work that a 2-layer attention-only transformer with h = O(1), m = O(1), p = O(log(n)) can solve
this task, the size lower bound for 1-layer attention-only transformers is exponentially larger than
for 2-layer attention-only transformers Sanford et al. (2024c); Bietti et al. (2023). In Sanford et al.
(2023), the tasks Match2 and Match3 are introduced, in which for a sequence X = (x1, . . . , xn) ∈
[M ]N the output is a vector V where Vi = 1 iff there is a pair of elements in X such that xi+xj = 0
mod M (or a triplet in the case of Match3). They then show that Match2 can be solved by a 1-layer
1-head transformer, while a single-layer multihead transformer is not sufficient for Match3. It is
shown in Kozachinskiy et al. (2025) that even with infinite precision, a single-layer transformer
with size nO(1) can solve neither Match3 nor the composition task given in Peng et al. (2024).

Proofs of transformer advantages. In Sanford et al. (2023), the authors propose an averaging
task that demonstrates the performance gained by increasing embedding dimension as well as an
efficiency improvement of an attention-only 1-layer transformer over recurrent and fully connected
neural networks Sanford et al. (2023). This result is expanded upon in Wang et al. (2024), where
a simpler version of this task is used to show that it is efficiently learnable with a convergence
guarantee for a 1-layer attention-only transformer, while a fully-connected neural network must have
exponentially more neurons in its first layer than the minimum width required for the transformer.

Results related to transformer depth. Another set of complexity-theoretic results for Transformers
can be found in Merrill & Sabharwal (2023; 2024a;b). In Merrill & Sabharwal (2023), it is shown
that transformers with constant depth, context length n, and precision O(log n) can be simulated by
uniform constant-depth threshold circuits, thus proving they cannot solve problems beyond uniform
TC0 such as graph connectivity. The authors later proved in Merrill & Sabharwal (2024a) that log-
depth transformers can solve graph connectivity, improving our understanding of the performance
improvements attainable with increased depth. They also show that for a fixed-depth transformer,
the hidden dimension must grow superpolynomially with input length in order for the transformer
to solve regular language recognition and graph connectivity. Furthermore, they prove that a trans-
former with O(log n) chain-of-thought steps cannot solve any problem outside of TC0. A function
composition task is discussed in Wang et al. (2025b), where the authors show that a complex com-
positional task called k-fold composition can be learned by a transformer with O(log k) layers.

Empirical evaluation of multi-head attention In Michel et al. (2019), the authors show that for
some tasks, transformer models do not exploit the flexibility provided by multi-head attention and do
not suffer from significant performance degradation when pruned from many heads to fewer heads
per layer. Several other work exists in this area, such as Liu et al. (2021) and Voita et al. (2019).

2 PROBLEM SETUP AND TRANSFORMER MODEL

To analyze the representational power of attention heads, we introduce the Endpoint Selection
Problem (ESP), a supervised learning task defined over arcs of a directed graph G = (V,E). Its
vocabulary set S consists of:

S = {v1, . . . , vn}︸ ︷︷ ︸
vertex tokens V

∪ {1, 2}︸ ︷︷ ︸
indicator tokens I

∪ {#}︸︷︷︸
query token

.

Given an arc (u, v) ∈ E, an indicator i ∈ I, and the query #, we get the input sequence is
(u, v, i, #), and the model must output u if i = 1 (head) and v if i = 2.

3
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Fixing the query token restricts the model, reducing ESP to a 2-hop induction head task (as we show
in Appendix A). This task, studied in previous work (Sanford et al., 2024d), is a natural extension
of the original induction head problem analyzed in Olsson et al. (2022). Its more general form,
the k-hop induction head, is closely related to other sequential reasoning problems, such as pointer
chasing (Sanford et al., 2024d; Peng et al., 2024) and k-fold composition (Wang et al., 2025b).

Transformer model. Our notation follows the style of Nichani et al. (2024). Let the input sequence
be S1:T := (s1, . . . , sT ) ∈ ST , where S is the vocabulary. The sequence is embedded as

X := embed(S1:T ;E,P ) := Esi + Pi for i = 1, . . . , T X, P ∈ RT×d, E ∈ R|S|×d

A single layer attention-only transformer consists of a Multi-Head Attention (MHA) mechanism
which computes the weighted sum of value vectors across k heads:

MHA(X) :=

k∑
j=1

Softmax
(
Mask(XAjX

⊤)
)
XVj ∈ RT×dout ,

where Aj := QjK
⊤
j . The output of the MHA block is passed through a final linear layer (parame-

terized by W0) to produce the output logits.

Z := TFθ(S1:T ) := MHA(embed(S1:T ;E,P ))W⊤
0 ∈ RT×|S|

The full set of model parameters is θ = (E,P , {Aj}kj=1, {Vj}kj=1,W0). The final predicted token,
ŝ, is selected by finding the token with the highest score in the output row corresponding to the last
input token (sT ). We mainly use argmax for the final prediction (softmax with temperature ∼ 0),
since our prediction task is deterministic.

ŝ := argmax
s′∈S

ZT [s
′]

3 ANALYSIS OF 1-HEAD TRANSFORMERS

3.1 1-HEAD MODELS CAN SOLVE ESP OVER DAGS

In this subsection, we prove that a 1-head transformer model can solve the selection problem over
DAGs, if the dimension of the embedding space is at least the number of vertices in the DAG. In fact,
we establish a more general result by quantifying the least error that can be achieved by a 1-head
model on arbitrary directed graphs.
Theorem 1. For any integer n and any directed graph G, which has n vertices, m edges, and an
acyclic subgraph with m′ edges, there exists a 1-head transformer model with embedding dimension
n+ 1 that incurs error at most 1/2−m′/(2m) for ESP on G.

Proof. Let G be the DAG over a set V of n vertices and m edges, and let H be an acyclic subgraph
of G with m′ edges. Consider the following labeling of the vertices of G: vertex vi denotes the ith
vertex in an arbitrary topological ordering of H; so any edge (vi, vj) in H satisfies i < j.

Our construction uses both a token embedding and a positional embedding. The embedding dimen-
sion is d = n + 1. For each token vi, the token embedding is simply the unit vector with 1 in
dimension i. For tokens 1 and 2, we set the embeddings to be the following vectors, respectively.

α
(
n
n · · · n−i

n · · · 1
n γ

)T
and α

(
1
n · · · i

n · · · n
n 0

)T
,

for parameters α and γ which we will set shortly. For the query token #, we set the embedding to be
the vector (1 · · · 1)

T . The positional embedding for position 1 is (0 · · · 0 δ)
T , and zero

for all other positions, where δ will be specified later in the proof.

The attention matrix A is set to I . We now conduct the output analysis for an input of the form
vivjs#, where s ∈ {1, 2} represents the selector. We determine the attention weights as follows:

e(#)TAe(vi) = 1 + δ; e(#)TAe(vj) = 1; e(#)TAe(#) = n+ 1;

e(#)TAe(1) = α(n+ 1)/2 + αγ; e(#)TAe(2) = α(n+ 1)/2.

4
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Following the softmax calculation, these attention weights lead to the convex coefficients for vi, vj ,
selector s, and # as

wvi =
e1+δ

σs
, wvj =

e

σs
, w1 =

eα(n+1)/2+αγ

σs
, w2 =

eα(n+1)/2

σs
, w# =

en+1

σs
, where

σ1 = e+ eδ + eα(n+1)/2+αγ + e(n+1) and σ2 = e+ eδ + eα(n+1)/2 + e(n+1).

The final context vector y can then be written as wvie(vi) + wvje(vj) + wse(s) + w#e(#). Then,
we can expand vector y as

yℓ =



1
σ1

(
e1+δ + αeα(n+1)/2+αγ n−i+1

n + en+1
)

ℓ = i and s = 1
1
σ2

(
e1+δ + αeα(n+1)/2 i

n + en+1
)

ℓ = i and s = 2
1
σ1

(
e+ αeα(n+1)/2+αγ n−j+1

n + en+1
)

ℓ = j and s = 1
1
σ2

(
e+ αeα(n+1)/2 j

n + en+1
)

ℓ = j and s = 2
1
σs

(
αeα(n+1)/2 n−ℓ+1

n + en+1
)

otherwise

We set V and W0 to I (noting that dout = d); set α = 2/(n+1), δ < ln(1+2/(n2 +n)) to obtain

e > αeα(n+1)/2 and αeα(n+1)/2 > n
(
e1+δ − e

)
.

This ensures that yi, yj > yℓ for ℓ ̸= i, j and for the input instance ij#2, we have yj > yi whenever
i < j. Therefore, the model works correctly for this instance whenever i < j. By choosing
γ < n+1

2 (ln(n+1
2 ) + ln(eδ − 1)), we satisfy

e1+δ > e+ αeα(n+1)/2+αγ ,

so that for any input instance ij#1, we have yi > yj , ensuring that the model works correctly for
this instance for all i ̸= j. Thus, of the 2m input instances, the model incurs an error on m−m′ of
the instances, leading to an error of 1/2−m′/(2m), completing the proof of the theorem. □

3.2 NO 1-HEAD MODEL CAN SOLVE ESP OVER ANY GRAPH WITH CYCLES

In this section, we establish that no 1-head 1-layer attention-only transformer model can solve the
selection problem over any graph with cycles.
Lemma 1. For any vectors xa and xb, there do not exist vectors x1, x2, xab and xba and reals r1,
r2, rab, and rba in [0, 1] satisfying the following four conditions:

(r1x1 + rabxab) · (xa − xb) > 0, (r2x2 + rabxab) · (xa − xb) < 0

(r1x1 + rbaxba) · (xa − xb) < 0, (r2x2 + rbaxba) · (xa − xb) > 0

Proof. Consider the two-dimensional plane spanned by the vectors xa and xb; we refer to this as the
x-y plane. Since the four conditions concern dot products with xa − xb, it is sufficient to consider
the projections of x1,x2,xab,xba on the x-y plane so that we can assume that x1,x2,xab,xba all
lie on the x-y plane.

We first establish the claim for the case where xa and xb are orthogonal to each other, and then
extend the argument to the general case. If xa and xb are orthogonal to each other, then without loss
of generality, let xa and xb be along the x- and y-axes, respectively. Furthermore, we can set xa

and xb to be unit vectors by scaling the x- and y-projections of other vectors without changing any
of the dot products.

For any v, let xv and yv be the projections of v on the x- and y-axes, and let ∆v denote xv − yv .
Then, the first condition can be rewritten as r1(x1 − y1) + rab(xab − yab) > 0. Thus, all the four
conditions can be rewritten as:
r1∆1 + rab∆ab > 0; r2∆2 + rab∆ab < 0; r1∆1 + rba∆ba < 0; r2∆2 + rba∆ba > 0.

Adding the first and fourth inequalities and subtracting the second and third inequalities yields 0 > 0,
a contradiction. It thus follows that the four conditions cannot be simultaneously satisfied.

We now consider the case where xa and xb are not orthogonal. Note that each of the four conditions
is a requirement that the dot product of xa − xb with a specific vector, which is independent of xa

and xb, is either positive or negative. For any xa and xb, we can find orthogonal vectors x′
a and x′

b
satisfying x′

a−x′
b = xa−xb. This reduces the general case to that where xa and xb are orthogonal,

thus completing the proof of the lemma. □
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Lemma 2. For any cycle C, there do not exist vectors x1, x2, a set of vectors {xuv : (u, v) ∈ C},
a set of vectors {xv : v ∈ C}, and reals r1, r2, {ruv : (u, v) ∈ C} such that for every (u, v) ∈ C:

(r1x1 + ruvxuv) · (xu − xv) > 0 > (r2x2 + ruvxuv) · (xu − xv).

Proof. The proof is by induction on the length of the cycle. For the induction base, we consider
a cycle of length 2 with two edges (a, b) and (b, a). The non-existence of the vectors and reals
satisying the desired conditions follows from Lemma 1.

For the induction step, suppose the claim holds for all cycles of length at most k where k ≥ 2.
Consider a cycle C of length k + 1. For the sake of contradiction, suppose there exist vectors and
reals satisfying the conditions stated in the lemma.

Let a, b, and c be contiguous vertices on the cycle. Then, we have the following inequalities hold.
(r1x1 + rabxab) · (xa − xb) > 0, (r2x2 + rabxab) · (xa − xb) < 0

(r1x1 + rbcxbc) · (xb − xc) > 0, (r2x2 + rbcxbc) · (xb − xc) < 0.

Adding the first and third inequalities, and adding the second and fourth inequalities yield:
r1x1 · (xa − xc) + rabxab · (xa − xb) + rbcxbc · (xb − xc) > 0

r2x2 · (xa − xc) + rabxab · (xa − xb) + rbcxbc · (xb − xc) < 0.

Set rac and xac so that racxac · (xa − xc) = rabxab · (xa − xb) + rbcxbc · (xb − xc) ensuring
(r1x1 + racxac) · (xa − xc) > 0 > (r2x2 + racxac) · (xa − xc).

We thus have found a solution to the set of inequalities for a cycle of length k that is obtained by
replacing edges (a, b) and (b, c) with (a, c). This contradicts the induction hypothesis. □

Theorem 2. For any directed graph G with cycles, there is no 1-head 1-layer attention-only trans-
former model that can solve the selection problem over G, even with unbounded dimension and
unbounded precision.

Proof. Suppose there exists a 1-head model that accurately solves the selection problem over a
directed graph G with cycles. Let C be an arbitrary cycle in G. Then, in particular, the model
accurately solves the endpoint selection problem for every directed edge in C.

Setup. Fix an arbitrary directed edge (a, b) in C. Consider the following two input sequences of
length T = 4: S1 = (a1, b2, 13,#4) which must output a; S2 = (a1, b2, 23,#4) which must output
b. Let the pre-softmax score for a token s at position p be denoted as zsp = #Ax⊤

sp . For the two
sequences, the attention weights are given by:

Softmax
(
#Ax⊤

a1
,#Ax⊤

b2 ,#Ax⊤
13 ,#Ax⊤

#4

)
= Softmax(za1

, zb2 , z13 , z#4
)

Softmax
(
#Ax⊤

a1
,#Ax⊤

b2 ,#Ax⊤
23 ,#Ax⊤

#4

)
= Softmax(za1

, zb2 , z23 , z#4
)

These weights determine the final output vectors, and a single-head model must learn one matrix A
that works for all the 2|C| instances corresponding to the edges in C.

Preliminaries. The final context vector for each sequence, Si, is the weighted sum of the input
embeddings, vi = wi ·Xi. The two context vectors can then be written as:

v1 =

(
e
za1 xa1 + e

zb2 xb2
+ e

z#4 x#4

Z1

)
+

(
e
z13 x13

Z1

)
;v2 =

(
e
za1 xa1 + e

zb2 xb2
+ e

z#4 x#4

Z2

)
+

(
e
z23 x23

Z2

)

where Zi =
∑

j∈Si
ezj for i ∈ {1, 2}. To simplify the above expression let us define vector, xab,

which represents the attention-weighted sum over the non-indicator tokens:

xab :=
eza1xa1

+ ezb2xb2 + ez#4x#4

eza1 + ezb2 + ez#4

Using these definitions, we can express each of the final context vectors as a convex combination of
the newly defined vectors and the indicator tokens.

v1 =

(
eza1 + ezb2 + ez#4

Z1

)
xab +

(
ez13

Z1

)
x13 := rabxab + r1x13

v2 =

(
eza1 + ezb2 + ez#4

Z2

)
xab +

(
ez23

Z2

)
x23 := rabxab + r2x23

6
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Geometric interpretation. The selection between tokens a and b depends on
which side of the decision boundary v · xa = v · xb the context vector v lies.

x⃗b

x⃗a
(v ∗ xb) = (v ∗ xa)

Hb

Ha

a⃗b#

b⃗a#

1⃗

2⃗

Figure 1: x–y plane.

The two resulting regions are the a-dominant half-space,
Ha = {v|v · xa > v · xb}, and the b-dominant half-space,
Hb = {v|v · xb > v · xa}. The two selection tasks for any
edge (a, b) impose the following constraints on the context
vectors v1 and v2: v1 ∈ Ha and v2 ∈ Hb. Therefore, we get
the following inequality constraints for every edge (a, b) ∈ C.

(rabxab + r1x1) · (xa − xb) > 0,

(rabxab + r2x2) · (xa − xb) < 0.

By Lemma 2, there do not exist vectors {xa : a ∈ C}, {xab :
(a, b) ∈ C}, x1, and x2 and non-negative reals {rab : (a, b) ∈
C}, r1, r2 that satisfy the above set of 2|C| constraints. □

4 ANALYSIS OF 2-HEAD TRANSFORMERS

Theorem 3. For any directed graph with n vertices, there exists a 2-head attention-only single-layer
transformer model that can solve ESP with O(n) dimensions and O(1) precision.

Proof. We provide a constructive proof by showing the existence of a set of model parameters
that can solve ESP. Let G = (V,E) be a directed graph with vertex set V of size n and edge
set E. Consider the input sequence S1:4 = (u1, v2, i

∗
3,#4) for an arc (u, v) ∈ E, where i∗3 is

the selector token. We set the embedding dimension to d := n + 3, with standard basis vectors
{e1, . . . , ed} ⊂ Rd. The selector token i∗3 is embedded using only a token embedding to −Mei∗ ,
where M is a constant that will be set suitably large later in the proof. The token #4 is embedded
as e3. Each vertex v ∈ V appearing at position i ∈ {1, 2} is embedded as xi = ev+3 + ei. The
resulting embeddings form the input matrix X = [x1, . . . ,x4]

⊤ ∈ R4×d.

Our model’s final prediction for the correct endpoint vertex is given by

v̂ = argmax
v∈V

 2∑
j=1

Softmax
(
#4AjX

⊤)XVj

W⊤
0


v

(⋆)

where [·]v denotes the logit corresponding to vertex v ∈ G. We define V1 = V2 = V , set V , W0,
and calculate V W⊤

0 as follows:

V :=

[
O3×n O3×3

In On×3

]
W0 :=

[
In On×3

]
R = V W⊤

0 =

[
O3×n

In

]
∈ R(n+3)×n.

Given our construction of V and W0, the final logit vector inside (⋆) above simplifies to (α1 +
α2)XR. Here R is a fixed selection matrix that zeros out the first two dimensions while keeping
the remaining n dimensions corresponding to the token embeddings for the vertices of our graph.
Indeed, XR is [eu, ev, 0, 0]⊤. Thus, the final prediction can be thought of as selecting which of u
or v receives the largest weight under α1 + α2.

We define the attention matrices: in matrix Aj , every element is 0 except for the element (3, j),
which is set to 1. Hence, we obtain

#4A1 := [ 1 0 0 · · · 0 ] ∈ R1×d, #4A2 := [ 0 1 0 · · · 0 ] ∈ R1×d.

Here #4A1 extracts the first row of X⊤ (corresponding to position 1), while #4A2 extracts the
second row of X⊤ (corresponding to position 2).

Evaluating α1 + α2. Fix i∗3 = 2 (the case i∗3 = 1 is symmetric). For the two heads, we get

#4A1X
⊤ = z1 = [1, 0, 0, 0], #4A2X

⊤ = z2 = [0, 1, −M, 0].

Softmax(z1) = 1
e+3 [e, 1, 1, 1] , Softmax(z2) = 1

e+2+e−M

[
1, e, e−M , 1

]
.
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Thus, the first and second coordinates of α1+α2 are e/(e+3)+1/(e+2+ e−M ) and 1/(e+3)+
e/(e+ 2 + e−M ). By choosing M sufficiently large, we ensure that the second coordinate is larger
than the first coordinate by a constant that can be made arbitrarily close to 1/((e+3)(e+2)). Thus,
the predicted token v̂ is the letter v, ensuring that the correct endpoint vertex is selected. □

Corollary 1. There exists a 2-head, 1-layer, attention-only transformer model with constant embed-
ding dimension 5 and precision O(log n) that solves ESP on any directed graph.

Proof. We first give a proof for unbounded precision, and then extend the argument to O(log n)
precision. Instead of a token embedding that embeds vertices as basis vectors in Rn, we embed
them as well-separated unit vectors in R2, and pad with a suitable positional embedding. Number
the vertices 1 through n, and define

θℓ :=
2πℓ
n , ϕ(vℓ) := [cos θℓ sin θℓ] ∈ R1×2.

For a vertex v at position i ∈ {1, 2}, we create its embedding by adding the positional basis vector
ei ∈ R5 to the padded vertex encoding, i.e.,

xi = ei + ([ 0, 0, 0 ]⊕ ϕ(v)) ∈ R5.

Next, we update the value and output projection matrices V and W0 and calculate R = V W⊤
0 :

V :=

[
O3×2 O3×3

I2 O2×3

]
, W0 :=

[
E On×3

]
R = V W⊤

0

[
O3×n

E⊤

]
∈ R5×n,

where E ∈ Rn×2 is the token embedding matrix for all the vertices of the graph. We obtain that
XR is the 4× n matrix whose first row is the vector with kth coordinate being ϕ(k) · ϕ(u), second
row is the vector with kth coordinate being ϕ(k) · ϕ(v) and remaining vectors being zero. (Here,
for any vertex k, ϕ(k) is being viewed as a two-dimensional vector.) Note that ϕ(k) · ϕ(u) =
cos2(θu)+ sin2(θu) = 1 for k = u and is strictly less than 1 for k ̸= u. By the same argument as in
the proof of Theorem 3, the coordinate of α1+α2 that is maximized is the selector i∗3. Consequently,
the n-dimensional vector (α1 + α2)XR has its maximum value in the coordinate corresponding to
the vertex that appears in position i∗3, yielding the desired result, assuming unbounded precision.

To obtain the result with O(log n) precision, we observe that when k ̸= u, ϕ(k) · ϕ(u) equals
cos(θk) cos(θu) − sin(θk) sin(θu), which equals cos(θk − θu), which is at most cos(2π/n). By
Taylor expansion, we have cos(2π/n) = 1 − Ω(1/n2). Therefore, it is sufficient to approximate
cos(θℓ) and sin(θℓ) to an additive bound of O(1/n3). Thus, we can replace cos(θℓ) and sin(θℓ) by
the nearest multiple of a rational number 1/r, where r is an integer, which is O(n3). This ensures
that the coordinates with the largest value in the first two row vectors of XR continue to be those
corresponding to u and v respectively, leading to the desired prediction. Since all weights in the
embeddings and the attention matrix are multiples of O(log n), the result follows. □

5 EXPERIMENTS

We validate our theoretical results and probe the expressivity of attention heads on our graph-based
learning task.

Experimental setup. We use a decoder-only transformer with causal self-attention and no feedfor-
ward layers. Weights are tied between input embeddings and the output projection, and we retain
residual connections and layer normalizations. We train with Adam and place no restrictions on
embedding dimension or other hyper-parameters (training iterations, learning rate, batch size, etc.).
All experiments were run on A100 and L4 GPUs via Google Colab.

Datasets and metrics. We generate transitive tournaments (the largest DAG for a given number
of vertices) by labeling nodes 1 through |V | and including all arcs (u, v) with u < v. To study
cycles, we generate graphs with varying minimum feedback arc set (MFAS) sizes (see figures in
Appendix C). We define the accuracy as the fraction of correctly predicted arcs over all training
sequences extracted from the graph.

1-head models are sufficient for DAGs, insufficient for cycles; 2-head models solve all graphs.
Consistent with Theorem 1, a single-head model solves ESP on DAGs. On graphs with cycles, it
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approaches the global minimum only for simple cases with |MFAS| = 1, i.e., achieving 100% accu-
racy on the maximum acyclic subgraph (MAS) and 50% on the remaining (MFAS) arcs, essentially
guessing heads/tails. Performance degrades for more complex graphs with |MFAS| > 1. (See Ap-
pendix C for more details.) Adding a second head enables ESP to be solved on arbitrary directed
graphs, consistent with Theorem 3 (see Figure 2(B)).
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Figure 2: Accuracy plots for the best-performing models across different configurations.

Analysis of embedding dimension. We empirically study how the minimum dimension needed
to solve ESP varies with graph size. In Figure 2(A), we observe that for DAGs, gradient-based
optimization can find accurate constant-dimension 2-head models and nearly-accurate 1-head mod-
els with sublinear dimension (suggesting that the linear upper bound established in Theorem 1 can
be improved). In Figure 2(B), we observe that for general graphs, gradient-based optimization
finds accurate 2-head models with dimension that appears to grow logarithmically in the graph size,
in contrast to the constant upper bound established in Corollary 1. Furthermore, 1-head models
struggle on complete digraphs, and the gradient-based optimizer fails to find the best 1-head so-
lution from Theorem 1. Since a complete digraph on n vertices has m = n(n − 1) edges and a
transitive orientation yields an acyclic subgraph with m′ =

(
n
2

)
= n(n − 1)/2, the bound gives

error = 1
2 − n(n−1)/2

2n(n−1) = 1
4 , i.e., accuracy ≥ 3/4 = 75%. In practice, even with d ≫ n, our

1-head models fail to get close to the 75% accuracy level on complete digraphs. The plots in Fig-
ure 2 highlight a sharp separation between what can be learned by scaling the width of a single head
and by distributing computation across two narrow heads, indicating that additional heads unlock
qualitatively new representational power useful for solving our graph-based learning task.

6 LIMITATIONS, DISCUSSION AND CONCLUDING REMARKS

Our analysis focuses on a highly simplified setting: attention-only transformers with either one or
two heads. While this abstraction allows us to isolate fundamental representational limits, it does
not account for components such as feedforward layers, residual connections, or training dynamics,
which may interact in nontrivial ways. Moreover, while our hardness result applies even to approx-
imating the minimum error achievable by a 1-head model, heuristic methods may exhibit different
behaviors in practice for certain graph classes of interest.

Despite these simplifications, our results highlight structural bottlenecks in attention itself, inde-
pendent of embedding size or numerical precision. The observed gap between a single-head and
two-head models suggests the emergence of a natural hierarchy in transformer capabilities, provid-
ing a framework for analyzing model design choices beyond empirical scaling.

Taken together, our theoretical and experimental findings suggest that attention heads act as discrete
units of computational power, with each additional head expanding the class of solvable problems.
This perspective opens the door to a principled taxonomy of transformer architectures, motivating
future work on characterizing the boundaries of deeper or multi-head configurations. More broadly,
our approach demonstrates how simple formal tasks like ESP can serve as testbeds for probing the
fundamental limits of large-scale sequence models.
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A ESP AS A SPECIAL CASE OF 2-HOP INDUCTION HEADS

Induction Heads. Induction heads are a well-studied circuit-level phenomenon in transformer
models (Elhage et al., 2021; Olsson et al., 2022), implemented by a pair of attention heads.
They perform the following simple find-and-copy algorithm: given an input sequence S =
(s1, . . . , si, si+1, . . . , sT )

1. find the last position j < T where sj = sT ,
2. predict the subsequent token sj+1.

For example, given the input sequence (a1, . . . , ai, bi+1, . . . , aT ), the induction heads work together
to predict b, since b follows the previous occurrence of a. This framework generalizes out-of-
distribution, since it executes an input-agnostic algorithm rather than memorizing fixed patterns.

Two-Hop Induction. The two-hop induction problem, first noted in Sanford et al. (2024d), ex-
tends this mechanism by chaining together two of the above find-and-copy operations. For example,
given the sequence

(a1, . . . , bi, ci+1, . . . , aj , bj+1, . . . , aT ),

the correct prediction is c, since the model must first retrieve the b following aj , and then output the
token that followed the earlier occurrence of b, namely c. Thus, two-hop induction composes two
one-hop induction steps, demonstrating how induction heads can be leveraged for more complex
reasoning.

Relation to ESP. We show that the Endpoint Selection Problem (ESP) is a special case of a 2-hop
induction head problem. Recall that in ESP, the input sequence is of the form

a b i #,

where a, b are endpoints of an arc, and i ∈ {1, 2} is an indicator token. The target outputs are as
follows:

a b 1 # 7→ a, a b 2 # 7→ b, b a 1 # 7→ b, · · ·

This input can be pre-processed into a form equivalent to a 2-hop induction instance. Specifically,
we can pad each sequence as

1 a 2 b # 1 #, 1 a 2 b # 2 #, 1 b 2 a # 1 #, · · ·

In this representation, fixing the query token converts the task from a 1-hop to a 2-hop problem by
“exhausting” a single hop. Therefore, a circuit capable of two-hop induction can directly solve ESP.

B NP-COMPLETENESS

We demonstrate the intractability of even approximating the minimum error of a 1-head model for
ESP on general directed graphs.

But first we state a corollary that follows directly from the theorems in Section 3. We remind the
reader that MAS stands for Maximum Acyclic Subgraph, MFAS for Minimum Feedback Arc Set
and for any directed graph with m arcs, |MAS|+ |MFAS| = m.
Corollary 2. For any integer n and any directed graph G, which has n vertices, m edges, and
an acyclic subgraph with —MAS— edges, there exists a 1-head transformer model with embedding
dimension n+ 1 that incurs an error exactly equal to 1/2− |MAS|/(2m) for ESP on G.
Theorem 4. Finding a 1-head minimum error model for ESP is NP-complete.

Proof. For the sake of formalization, let us define 1H-ESP to be the decision problem: given directed
graph G and error ϵ accept if and only if there is a 1-head model which achieves error at most ϵ on
G. As always, n and m stand for the number of vertices and arcs, respectively, of G. The reduction
is from known NP-hard problem MAS (Maximum Ayclic Subgraph) Karp (1972); Garey & Johnson
(1990), with the following definition as a decision problem: given a directed graph G and number
m′, accept if and only if there is a DAG with at least m′ arcs that is a subgraph of G. We prove

13
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NP-completeness of 1H-ESP by first showing that it is in NP and then showing that it is NP-hard by
a reduction from MAS.

To see that 1H-ESP is in NP, guess any DAG contained in G with at least m′ arcs and then follow
the construction in the proof of Theorem 1 to obtain a certificate (NP-witness) that the error is
1/2−m′/(2m).

Next, to see NP-hardness of 1H-ESP here is the straightforward reduction. Given an instance
⟨G,m′⟩ of MAS we transform it into instance ⟨G, 1/2 −m′/(2m)⟩. By Corollary 2 we know that
m′ is the size of the largest DAG if and only if the minimum error achievable is 1/2 − m′/(2m),
and hence it follows that the MAS instance is accepted if and only if the 1H-ESP instance to which
it is reduced is accepted. □

We now strengthen the NP-completeness to an APX-hardness.
Theorem 5. The minimum error of the best 1-head model for ESP cannot be approximated to a
factor better than 1.3606.

Proof. The proof follows in straightforward fashion from the APX-hardness of MFAS, the Mini-
mum Feedback Arc Set problem (Kann, 1992), which is known not to be approximable to a factor
better than 1.3606, unless P = NP. Observe that the error in Corollary 2, 1/2− |MAS|/(2m), is the
same as |MFAS|/(2m) and thus the inapproximability factor carries over exactly. □

Corollary 3. Gradient descent cannot compute (even approximate) the global minimum (to better
than a factor of 1.3606) of ESP for 1-head models in polynomial time, unless P = NP.

C ADDITIONAL DETAILS FOR EXPERIMENTS WITH DIRECTED GRAPHS

Figure 3 presents the family of directed graphs (with cycles) over which we analyze the 1-head
and 2-head transformer models. Empirically, the best accuracies were obtained after more than 50
runs with hyperparameter tuning for Figure 3(B) and Figure 3(C), and after more than 30 runs for
Figure 3(A) and Figure 3(D), within 10k–20k training iterations each.
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(A) 8-node cycle (15/16)
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(B) Graph with |MFAS| = 1
(32/34)
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(C) Graph with |MFAS| = 2
(50/56)
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(D) Complete digraph
(81/112)

Accuracy = 100%

Accuracy = 50%

MFAS (highlight)

Figure 3: Prediction accuracies for the best-performing 1-head model for different graphs. Note that
(D) only shows edges adjacent to vertex 1, and MFAS highlight only applies to (A), (B), and (C).
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D LLM USAGE

We used LLMs to help identify us related work, transcribe handwritten equations into LATEX, and
polish writing and grammar.
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