

000 001 002 003 004 005 TWO (NARROW) HEADS ARE BETTER THAN 006 (AN ARBITRARILY WIDE) ONE 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018

019 ABSTRACT 020

021 In this paper, we establish a dimension- and precision-independent impossibility
022 result for a simplified transformer model. Due to their size, a comprehensive un-
023 derstanding of the internal operations of frontier large language models (LLMs) is
024 beyond the reach of current methods, but research into small and interpretable
025 models has proven successful. We study the representational limits of attention,
026 the core of transformer models, through the lens of the Endpoint Selection Prob-
027 lem (ESP), a simple yet expressive learning task defined over arcs of a directed
028 graph.
029

030 Our main theoretical results are twofold: (i) 1-head, 1-layer, attention-only trans-
031 formers cannot solve ESP on any graph containing a cycle, even with unbounded
032 dimension and precision; but, all DAGs (Directed Acyclic Graph) are solvable
033 with zero error (ii) in contrast, a 2-head, 1-layer, attention-only transformer can
034 solve ESP on arbitrary directed graphs with constant embedding dimension and
035 logarithmic precision. Prior lower bounds (Peng et al., 2024; Sanford et al., 2024c)
036 were conditional on bounds on dimension and precision. **Through a transforma-**
037 **tion, we extend our impossibility result from ESP to the much studied 2-hop**
038 **induction head problem.** Further, we uncover a surprising connection to NP-
039 **completeness by showing that the optimal error of the 1-head transformer is ex-**
040 **actly related to the size of MAS (Maximum Acyclic Subgraph) and hence inap-**
041 **proximable.**

042 Finally, we validate our theory with experiments and observe that gradient-based
043 optimization can reliably find 1-head solutions for DAGs and 2-head solutions for
044 arbitrary graphs with cycles, whereas 1-head models struggle to reach the optimal
045 solution in graphs with cycles. We believe that our techniques are of indepen-
046 dent interest and have the potential to establish a new fine-grained hierarchy of
047 transformer architectures, each with greater problem-solving power than the last.
048
049

050 1 INTRODUCTION 051

052 The transformer architecture (Vaswani et al., 2017) revolutionized artificial intelligence and made
053 possible the astonishing performance of large language models (LLMs). These systems exhibit
054 emergent abilities—reasoning, planning, even apparent world knowledge—that seem dispro-
055 portionate to their size and training data. However, despite this success, our understanding of why
056 transformers work remains shallow. Fine-grained analyses of LLMs are far beyond the reach of cur-
057 rent techniques. Their sheer scale, training complexity, and data dependence make rigorous proofs
058 almost impossible. To make progress, researchers have turned to simplified transformer models: one
059 or two layers, few attention heads, limited embedding dimensions; trading emergent phenomena for
060 the possibility of mathematical analysis. Previous work has revealed surprising capabilities of such
061 small transformers in domains such as pathfinding (Wang et al., 2025a), learning of causal structures
062 (Nichani et al., 2024), and compositional reasoning (Wang et al., 2025b). However, unconditional
063 boundaries—results that cleanly separate what a given architecture can and cannot do—remain rare.
064 Establishing such hierarchies is a necessary stepping stone toward a principled understanding of
065 how the remarkable properties of full-scale LLMs arise, and how we can further enhance them.
066

067 In this paper, we propose the Endpoint Selection Problem (ESP) as a natural test case. ESP re-
068 quires selecting an endpoint of an arc in a directed graph. This deceptively simple task is closely
069

054 tied to graph traversal and selection primitives, which underlie many higher-level reasoning problems,
 055 from path following to decision making in structured domains. ESP can be generalized in
 056 multiple directions: hypergraphs, multi-step traversal, or probabilistic endpoint selection. Thus, un-
 057 derstanding transformer performance on ESP is both intrinsically interesting and practically useful
 058 as a foundation for analyzing broader classes of algorithmic reasoning tasks.

059 Our central result establishes an unconditional impossibility: no 1-head, 1-layer, attention-only
 060 transformer can solve ESP on any directed graph with cycles. This barrier is independent of pre-
 061 cision or embedding dimension, which is also referred to as width in the literature (Merrill & Sab-
 062 harwal, 2024a), in contrast with prior results that required more assumptions to be made. At the
 063 same time, we demonstrate that a modest extension, two heads in a single layer, suffices to solve
 064 ESP on all directed graphs, with constant embedding dimension and precision logarithmic in the
 065 number of vertices of the graph. The techniques we introduce for proving these results do not ap-
 066 ply merely to ESP; they open the door to a systematic program of analyzing transformer hierarchies.
 067 The typical transformer architecture consists of attention layers alternating with FFN (Feed-Forward
 068 Network) layers. Since FFN with a single layer is already a universal approximator (Hornik et al.,
 069 1989), in this paper we focus on attention-only transformers a la (Nichani et al., 2024). We note that
 070 an exponential number of heads in a single layer is known to be a sequence-to-sequence universal
 071 approximator (Hu et al., 2025). By charting the landscape of what successively more expressive
 072 transformer architectures can and cannot do, we aim to reveal the structure behind the ‘magical’
 073 emergent properties of LLMs. In the long run, this line of work promises to replace mystique with
 074 mathematics: a principled understanding of how and why transformers scale from simple pattern
 075 recognizers to models that appear to reason, plan, and generalize.

076 1.1 SUMMARY OF OUR RESULTS

077 **Endpoint Selection Problem (ESP).** We define ESP to be the task of correctly selecting the head
 078 or tail of an arbitrary arc in a directed graph. The input is an ordered pair (representing the arc), a
 079 selector (indicating tail or head), and a query token, and the output should be the indicated member
 080 (first or second, respectively) of the ordered pair. The input distribution is assumed to be the uniform
 081 distribution over all arcs and selectors, i.e., uniform over a space of size $2m$, given a directed graph
 082 with m arcs. A model is said to solve ESP perfectly, or with zero error, if it always produces
 083 the correct output. We set the temperature ≈ 0 (temperature is the hyperparameter that controls
 084 randomness in the output distribution (Hinton et al., 2015)) so that model is deterministic.

- 085 • **1-head transformers.** No model can solve ESP perfectly for any graphs with cycles, even if
 086 embedding dimension and precision are unbounded (Theorem 2).
- 087 • For any DAG with n vertices, there exists a 1-head model with embedding dimension $O(n)$ that
 088 can solve ESP with zero error (Theorem 1).
- 089 • **No model can solve the well-studied 2-hop induction head problem (Olsson et al., 2022; Sanford
 090 et al., 2024d); our proof exploits a transformation from ESP to 2-hop induction head (Corollary 1).**
- 091 • The optimal 1-head model’s error is exactly $\frac{1}{2} - \frac{|\text{MAS}|}{2m}$, where MAS is the Maximum Acyclic
 092 Subgraph, an NP-complete problem (Theorem 1 and Corollary 2). It is NP-complete to even
 093 approximate the minimum error 1-head model for an arbitrary directed graph (Theorem 5).
- 094 • **2-head transformers.** We prove that a 2-head 1-layer attention-only transformer can solve ESP
 095 without error for any n -vertex directed graph, using $O(n)$ dimension and $O(1)$ precision (Theo-
 096 rem 3) or using $O(1)$ embedding dimension and $O(\log n)$ precision (Corollary 2).
- 097 • **Empirical analysis.** Experiments corroborate our theoretical results – gradient-based optimiza-
 098 tion can reliably find 1-head solutions for ESP on DAGs and 2-head solutions for ESP on arbitrary
 099 graphs with cycles, whereas 1-head models struggle to reach the optimal solution in cyclic graphs.

100 Our ESP formulation is arguably the simplest problem yielding the impossibility and intractability
 101 results with attention-only models that we have derived. It enables us to extend our lower bounds
 102 to related well-studied problems. Furthermore, the graph-theoretic formulation establishes a deeper
 103 connection between the representational capacity of a transformer for a given instance to the under-
 104 lying graph’s structural properties.

108 1.2 RELATED WORK
109
110
111112 Our work contributes to the understanding of the capabilities of small transformer models. Several
113 positive and negative results on transformer capabilities have been established in this field.
114115 **Transformer capabilities on graphs.** In Wang et al. (2025a), it is demonstrated that constant-depth
116 transformer models can be trained to find paths in a directed acyclic graph (DAG). The authors prove
117 their claim by proposing a set of weights capable of achieving this task and showing that this set of
118 weights can be found by using gradient descent. A classification of 9 graph problems grouped by
119 the model scales sufficient to solve them can be found in Sanford et al. (2024a). In Nichani et al.
120 (2024), it is shown that a two-layer attention-only transformer model can learn latent causal structure
121 in sequences. Further, they show that the transformer learns an induction head (Olsson et al., 2022)
122 when sequences are generated from an in-context Markov chain.123 **Comparison to Index Lookup.** Bhattacharya et al. (2024) analyze the Index Lookup problem,
124 where a model must return the token at a specified position in a sequence using the index token as
125 the query, and show that a 1-layer, 1-head transformer augmented with a small FFN and logarithmic
126 width can implement this task. Despite the similarity, the Index problem is different from ESP, since
127 in ESP the query token prevents the model from relying on **direct key–query alignment** between the
128 selector token and the corresponding sequence position (or arc endpoint). Indeed, our impossibility
129 argument for ESP provides a sharp separation from the logarithmic-width, logarithmic-precision
130 model for Index in Bhattacharya et al. (2024). A second significant difference between the two
131 formulations is that our ESP problem framework is defined over graphs and captures the limitations
132 of one-head transformers and capability of two-head transformers to resolve the problem defined
133 over different graph classes. In particular, our inapproximability result (Theorem 5) indicates that
134 even finding a 1-head model that approximates accuracy to within a 1.3606 factor is intractable. This
135 enables us to identify limitations in both the representation of the model as well as the intractability
136 of finding weights in the model that will lead to a desired level of accuracy.137 **Lower bound results.** A lower bound for function composition is formally proved in Peng et al.
138 (2024); using communication complexity arguments, they show that for attention-only 1-layer trans-
139 former models with embedding dimension d , input domain size $|A| = |B| = |C| = n$, with numbers
140 represented with p bits, and H heads, function composition is impossible if $H(d + 1)p < n \lg n$.
141 (Chen et al., 2024) extends this result to standard multi-layer transformers by showing that an L -
142 layer transformer with sequence length n needs model dimension $n^{\Omega(1)}$ to compose L functions.143 Sanford, Hsu, and Telgarsky prove several complexity results for transformers in Sanford et al.
144 (2023; 2024b) and Sanford et al. (2024d). They show that the 1-hop induction head task (which
145 is the task of returning, for two sequences of tokens $(\sigma_1, \dots, \sigma_n)$ and (τ_1, \dots, τ_n) , where τ_i is the
146 input token that follows the rightmost occurrence of the token equal to σ_i before position i) cannot
147 be solved by a 1-layer attention-only transformer unless $mph = \Omega(n)$, where m is the embedding
148 dimension, p is the precision, and h is the number of attention heads. Since it is known from previous
149 work that a 2-layer attention-only transformer with $h = O(1)$, $m = O(1)$, $p = O(\log(n))$ can solve
150 this task, the size lower bound for 1-layer attention-only transformers is exponentially larger than
151 for 2-layer attention-only transformers Sanford et al. (2024c); Bietti et al. (2023). In Sanford et al.
152 (2023), the tasks Match2 and Match3 are introduced, in which for a sequence $X = (x_1, \dots, x_n) \in [M]^N$
153 the output is a vector V where $V_i = 1$ iff there is a pair of elements in X such that $x_i + x_j = 0$
154 mod M (or a triplet in the case of Match3). They then show that Match2 can be solved by a 1-layer
155 1-head transformer, while a single-layer multihead transformer is not sufficient for Match3. It is
156 shown in Kozachinskiy et al. (2025) that even with infinite precision, a single-layer transformer
157 with size $n^{O(1)}$ can solve neither Match3 nor the composition task given in Peng et al. (2024).158 **Proofs of transformer advantages.** In Sanford et al. (2023), the authors propose an averaging
159 task that demonstrates the performance gained by increasing embedding dimension as well as an
160 efficiency improvement of an attention-only 1-layer transformer over recurrent and fully connected
161 neural networks Sanford et al. (2023). This result is expanded upon in Wang et al. (2024), where
162 a simpler version of this task is used to show that it is efficiently learnable with a convergence
163 guarantee for a 1-layer attention-only transformer, while a fully-connected neural network must have
164 exponentially more neurons in its first layer than the minimum width required for the transformer.

Circuit complexity results. Another set of complexity-theoretic results for Transformers can be found in Merrill & Sabharwal (2023; 2024a;b). In Merrill & Sabharwal (2023), it is shown that transformers with constant depth, context length n , and precision $O(\log n)$ can be simulated by uniform constant-depth threshold circuits, thus proving they cannot solve problems beyond uniform TC^0 such as graph connectivity. The same is shown to be true for transformers using average-hard attention in Merrill et al. (2022), which is extended to uniform TC^0 in Strobl (2023). Furthermore, in Chiang (2025), it is shown that transformers with either attention score computation method are in **DLOGTIME-uniform TC^0** , with softmax attention assuming $O(\text{poly}(n))$ -precision. It was shown in Merrill & Sabharwal (2024a) that log-depth transformers can solve graph connectivity, improving our understanding of the performance improvements attainable with increased depth. They also show that for a fixed-depth transformer, the hidden dimension must grow superpolynomially with input length in order for the transformer to solve regular language recognition and graph connectivity. Furthermore, they prove that a transformer with $O(\log n)$ chain-of-thought steps cannot solve any problem outside of TC^0 . A function composition task is discussed in Wang et al. (2025b), where the authors show that a complex compositional task called *k-fold composition* can be learned by a transformer with $O(\log k)$ layers. In Chen et al. (2025), it is shown that a constant-depth transformer using rotary position embeddings (RoPE) $\text{poly}(n)$ -size with $\text{poly}(n)$ -precision can be simulated by a **DLOGTIME-uniform TC^0** circuit family unless $TC^0 = NC^1$. Other circuit complexity results are presented in Cao et al. (2025); Hahn (2020); Strobl et al. (2024).

Empirical evaluation of multi-head attention. In Michel et al. (2019), the authors show that for some tasks, transformer models do not exploit the flexibility provided by multi-head attention and do not suffer from significant performance degradation when pruned from many heads to fewer heads per layer. Several other work exists in this area, such as Liu et al. (2021) and Voita et al. (2019).

2 PROBLEM SETUP AND TRANSFORMER MODEL

To analyze the representational power of attention heads, we introduce the **Endpoint Selection Problem (ESP)**, a supervised learning task defined over arcs of a directed graph $\mathcal{G} = (V, E)$. Its vocabulary set \mathcal{S} consists of:

$$\mathcal{S} = \underbrace{\{v_1, \dots, v_n\}}_{\text{vertex tokens } \mathcal{V}} \cup \underbrace{\{1, 2\}}_{\text{indicator tokens } \mathcal{I}} \cup \underbrace{\{\#\}}_{\text{query token}}.$$

Given an arc $(u, v) \in E$, an indicator $i \in \mathcal{I}$, and the query $\#$, we get the input sequence is $(u, v, i, \#)$, and the model must output u if $i = 1$ (head) and v if $i = 2$.

Fixing the query token restricts the model, reducing transforming ESP to a 2-hop induction head task (as we show in Appendix A). This task, studied in previous work (Sanford et al., 2024d), is a natural extension of the original induction head problem analyzed in Olsson et al. (2022). Its more general form, the k-hop induction head, is closely related to other sequential reasoning problems, such as pointer chasing (Sanford et al., 2024d; Peng et al., 2024) and *k-fold composition* (Wang et al., 2025b).

Transformer model. Our notation follows the style of Nichani et al. (2024). Let the input sequence be $S_{1:T} := (s_1, \dots, s_T) \in \mathcal{S}^T$, where \mathcal{S} is the vocabulary. The sequence is embedded as

$$\mathbf{X} := \text{embed}(S_{1:T}; \mathbf{E}, \mathbf{P}) := \mathbf{E}_{s_i} + \mathbf{P}_i \quad \text{for } i = 1, \dots, T \quad \mathbf{X}, \mathbf{P} \in \mathbb{R}^{T \times d}, \mathbf{E} \in \mathbb{R}^{|\mathcal{S}| \times d},$$

where \mathbf{E} and \mathbf{P} are the token and positional embedding matrices, respectively. A single layer attention-only transformer consists of a Multi-Head Attention (MHA) mechanism which computes the weighted sum of value vectors across k heads:

$$\text{MHA}(\mathbf{X}) := \sum_{j=1}^k \text{Softmax}(\text{Mask}(\mathbf{X} \mathbf{A}_j \mathbf{X}^\top)) \mathbf{X} \mathbf{V}_j \in \mathbb{R}^{T \times d_{out}},$$

where \mathbf{Q} , \mathbf{K} , \mathbf{V} are the query, key, and value parameter matrices of the attention mechanism and $\mathbf{A}_j := \mathbf{Q}_j \mathbf{K}_j^\top$. The output of the MHA block is passed through a final linear layer (parameterized by \mathbf{W}_0) to produce the output logits.

$$\mathbf{Z} := \text{TF}_\theta(S_{1:T}) := \text{MHA}(\text{embed}(S_{1:T}; \mathbf{E}, \mathbf{P})) \mathbf{W}_0^\top \in \mathbb{R}^{T \times |\mathcal{S}|}$$

The full set of model parameters is $\theta = (\mathbf{E}, \mathbf{P}, \{\mathbf{A}_j\}_{j=1}^k, \{\mathbf{V}_j\}_{j=1}^k, \mathbf{W}_0)$. The final predicted token, \hat{s} , is selected by finding the token with the highest score in the output row corresponding to the last input token (s_T). We mainly use arg max for the final prediction (softmax with temperature ~ 0), since our prediction task is deterministic: $\hat{s} := \arg \max_{s' \in \mathcal{S}} \mathbf{Z}_T[s']$.

3 ANALYSIS OF 1-HEAD TRANSFORMERS

3.1 1-HEAD MODELS CAN SOLVE ESP OVER DAGS

In this subsection, we prove that a 1-head transformer model can solve the selection problem over DAGs, if the dimension of the embedding space is at least the number of vertices in the DAG. In fact, we establish a more general result by quantifying the least error that can be achieved by a 1-head model on arbitrary directed graphs.

Theorem 1. *For any integer n and any directed graph G , which has n vertices, m edges, and an acyclic subgraph with m' edges, there exists a 1-head transformer model with embedding dimension $n + 1$ that incurs error at most $1/2 - m'/(2m)$ for ESP on G .*

Proof. Let G be the DAG over a set V of n vertices and m edges, and let H be an acyclic subgraph of G with m' edges. Consider the following labeling of the vertices of G : vertex v_i denotes the i th vertex in an arbitrary topological ordering of H ; so any edge (v_i, v_j) in H satisfies $i < j$.

Our construction uses both a token embedding and a positional embedding. The embedding dimension is $d = n + 1$. For each token v_i , the token embedding is simply the unit vector with 1 in dimension i . For tokens 1 and 2, we set the embeddings to be the following vectors, respectively.

$$\alpha \begin{pmatrix} \frac{n}{n} & \dots & \frac{n-i}{n} & \dots & \frac{1}{n} & \gamma \end{pmatrix}^T \text{ and } \alpha \begin{pmatrix} \frac{1}{n} & \dots & \frac{i}{n} & \dots & \frac{n}{n} & 0 \end{pmatrix}^T,$$

for parameters α and γ which we will set shortly. For the query token $\#$, we set the embedding to be the vector $(1 \ \dots \ 1)^T$. The positional embedding for position 1 is $(0 \ \dots \ 0 \ \delta)^T$, and zero for all other positions, where δ will be specified later in the proof.

The attention matrix \mathbf{A} is set to \mathbf{I} . We now conduct the output analysis for an input of the form $v_i v_j s \#$, where $s \in \{1, 2\}$ represents the selector. We determine the attention weights as follows:

$$\begin{aligned} e(\#)^T \mathbf{A} e(v_i) &= 1 + \delta; \quad e(\#)^T \mathbf{A} e(v_j) = 1; \quad e(\#)^T \mathbf{A} e(\#) = n + 1; \\ e(\#)^T \mathbf{A} e(1) &= \alpha(n + 1)/2 + \alpha\gamma; \quad e(\#)^T \mathbf{A} e(2) = \alpha(n + 1)/2. \end{aligned}$$

Following the softmax calculation, these attention weights lead to the convex coefficients for v_i, v_j , selector s , and $\#$ as

$$w_{v_i} = \frac{e^{1+\delta}}{\sigma_s}, \quad w_{v_j} = \frac{e}{\sigma_s}, \quad w_1 = \frac{e^{\alpha(n+1)/2+\alpha\gamma}}{\sigma_s}, \quad w_2 = \frac{e^{\alpha(n+1)/2}}{\sigma_s}, \quad w\# = \frac{e^{n+1}}{\sigma_s}, \quad \text{where}$$

$$\sigma_1 = e + e^\delta + e^{\alpha(n+1)/2+\alpha\gamma} + e^{(n+1)} \text{ and } \sigma_2 = e + e^\delta + e^{\alpha(n+1)/2} + e^{(n+1)}.$$

The final context vector y can then be written as $w_{v_i}e(v_i) + w_{v_j}e(v_j) + w_s e(s) + w\# e(\#)$. Then, we can expand vector y as

$$y_\ell = \begin{cases} \frac{1}{\sigma_1} (e^{1+\delta} + \alpha e^{\alpha(n+1)/2+\alpha\gamma} \frac{n-i+1}{n} + e^{n+1}) & \ell = i \text{ and } s = 1 \\ \frac{1}{\sigma_2} (e^{1+\delta} + \alpha e^{\alpha(n+1)/2} \frac{i}{n} + e^{n+1}) & \ell = i \text{ and } s = 2 \\ \frac{1}{\sigma_1} (e + \alpha e^{\alpha(n+1)/2+\alpha\gamma} \frac{n-j+1}{n} + e^{n+1}) & \ell = j \text{ and } s = 1 \\ \frac{1}{\sigma_2} (e + \alpha e^{\alpha(n+1)/2} \frac{j}{n} + e^{n+1}) & \ell = j \text{ and } s = 2 \\ \frac{1}{\sigma_s} (\alpha e^{\alpha(n+1)/2} \frac{n-\ell+1}{n} + e^{n+1}) & \text{otherwise} \end{cases}$$

We set \mathbf{V} and \mathbf{W}_0 to \mathbf{I} (noting that $d_{out} = d$); set $\alpha = 2/(n + 1)$, $\delta < \ln(1 + 2/(n^2 + n))$ to obtain

$$e > \alpha e^{\alpha(n+1)/2} \text{ and } \alpha e^{\alpha(n+1)/2} > n (e^{1+\delta} - e).$$

This ensures that $y_i, y_j > y_\ell$ for $\ell \neq i, j$ and for the input instance $ij\#\#2$, we have $y_j > y_i$ whenever $i < j$. Therefore, the model works correctly for this instance whenever $i < j$. By choosing $\gamma < \frac{n+1}{2}(\ln(\frac{n+1}{2}) + \ln(e^\delta - 1))$, we satisfy $e^{1+\delta} > e + \alpha e^{\alpha(n+1)/2+\alpha\gamma}$, so that for any input instance $ij\#\#1$, we have $y_i > y_j$, ensuring that the model works correctly for this instance for all $i \neq j$. Thus, of the $2m$ input instances, the model incurs an error on $m - m'$ of the instances, leading to an error of $1/2 - m'/(2m)$, completing the proof of the theorem. \square

270 3.2 NO 1-HEAD MODEL CAN SOLVE ESP OVER ANY GRAPH WITH CYCLES
271272 In this section, we establish that no 1-head 1-layer attention-only transformer model can solve the
273 selection problem over any graph with cycles.274 **Lemma 1.** *For any vectors \mathbf{x}_a and \mathbf{x}_b , there do not exist vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{ab}$ and \mathbf{x}_{ba} and reals r_1 ,
275 r_2 , r_{ab} , and r_{ba} in $[0, 1]$ satisfying the following four conditions:*

276
$$(r_1 \mathbf{x}_1 + r_{ab} \mathbf{x}_{ab}) \cdot (\mathbf{x}_a - \mathbf{x}_b) > 0, \quad (r_2 \mathbf{x}_2 + r_{ab} \mathbf{x}_{ab}) \cdot (\mathbf{x}_a - \mathbf{x}_b) < 0$$

277
$$(r_1 \mathbf{x}_1 + r_{ba} \mathbf{x}_{ba}) \cdot (\mathbf{x}_a - \mathbf{x}_b) < 0, \quad (r_2 \mathbf{x}_2 + r_{ba} \mathbf{x}_{ba}) \cdot (\mathbf{x}_a - \mathbf{x}_b) > 0$$

278

279 *Proof.* Consider the two-dimensional plane spanned by the vectors \mathbf{x}_a and \mathbf{x}_b ; we refer to this as the
280 x - y plane. Since the four conditions concern dot products with $\mathbf{x}_a - \mathbf{x}_b$, it is sufficient to consider
281 the projections of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{ab}, \mathbf{x}_{ba}$ on the x - y plane so that we can assume that $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{ab}, \mathbf{x}_{ba}$ all
282 lie on the x - y plane.
283284 We first establish the claim for the case where \mathbf{x}_a and \mathbf{x}_b are orthogonal to each other, and then
285 extend the argument to the general case. If \mathbf{x}_a and \mathbf{x}_b are orthogonal to each other, then without loss
286 of generality, let \mathbf{x}_a and \mathbf{x}_b be along the x - and y -axes, respectively. Furthermore, we can set \mathbf{x}_a
287 and \mathbf{x}_b to be unit vectors by scaling the x - and y -projections of other vectors without changing any
288 of the dot products.289 For any \mathbf{v} , let x_v and y_v be the projections of \mathbf{v} on the x - and y -axes, and let Δ_v denote $x_v - y_v$.
290 Then, the first condition can be rewritten as $r_1(x_1 - y_1) + r_{ab}(x_{ab} - y_{ab}) > 0$. Thus, all the four
291 conditions can be rewritten as:

292
$$r_1 \Delta_1 + r_{ab} \Delta_{ab} > 0; \quad r_2 \Delta_2 + r_{ab} \Delta_{ab} < 0; \quad r_1 \Delta_1 + r_{ba} \Delta_{ba} < 0; \quad r_2 \Delta_2 + r_{ba} \Delta_{ba} > 0.$$

293

294 Adding the first and fourth inequalities and subtracting the second and third inequalities yields $0 > 0$,
295 a contradiction. It thus follows that the four conditions cannot be simultaneously satisfied.
296297 We now consider the case where \mathbf{x}_a and \mathbf{x}_b are not orthogonal. Note that each of the four conditions
298 is a requirement that the dot product of $\mathbf{x}_a - \mathbf{x}_b$ with a specific vector, which is independent of \mathbf{x}_a
299 and \mathbf{x}_b , is either positive or negative. For any \mathbf{x}_a and \mathbf{x}_b , we can find orthogonal vectors \mathbf{x}'_a and \mathbf{x}'_b
300 satisfying $\mathbf{x}'_a - \mathbf{x}'_b = \mathbf{x}_a - \mathbf{x}_b$. This reduces the general case to that where \mathbf{x}_a and \mathbf{x}_b are orthogonal,
301 thus completing the proof of the lemma. \square 302 **Lemma 2.** *For any cycle C , there do not exist vectors $\mathbf{x}_1, \mathbf{x}_2$, a set of vectors $\{\mathbf{x}_{uv} : (u, v) \in C\}$,
303 a set of vectors $\{\mathbf{x}_v : v \in C\}$, and reals $r_1, r_2, \{r_{uv} : (u, v) \in C\}$ such that for every $(u, v) \in C$:*

304
$$(r_1 \mathbf{x}_1 + r_{uv} \mathbf{x}_{uv}) \cdot (\mathbf{x}_u - \mathbf{x}_v) > 0 > (r_2 \mathbf{x}_2 + r_{uv} \mathbf{x}_{uv}) \cdot (\mathbf{x}_u - \mathbf{x}_v).$$

305

306 *Proof.* The proof is by induction on the length of the cycle. For the induction base, we consider
307 a cycle of length 2 with two edges (a, b) and (b, a) . The non-existence of the vectors and reals
308 satisfying the desired conditions follows from Lemma 1.309 For the induction step, suppose the claim holds for all cycles of length at most k where $k \geq 2$.
310 Consider a cycle C of length $k + 1$. For the sake of contradiction, suppose there exist vectors and
311 reals satisfying the conditions stated in the lemma.312 Let a, b , and c be contiguous vertices on the cycle. Then, we have the following inequalities hold.

313
$$(r_1 \mathbf{x}_1 + r_{ab} \mathbf{x}_{ab}) \cdot (\mathbf{x}_a - \mathbf{x}_b) > 0, \quad (r_2 \mathbf{x}_2 + r_{ab} \mathbf{x}_{ab}) \cdot (\mathbf{x}_a - \mathbf{x}_b) < 0$$

314
$$(r_1 \mathbf{x}_1 + r_{bc} \mathbf{x}_{bc}) \cdot (\mathbf{x}_b - \mathbf{x}_c) > 0, \quad (r_2 \mathbf{x}_2 + r_{bc} \mathbf{x}_{bc}) \cdot (\mathbf{x}_b - \mathbf{x}_c) < 0.$$

315

316 Adding the first and third inequalities, and adding the second and fourth inequalities yield:

317
$$r_1 \mathbf{x}_1 \cdot (\mathbf{x}_a - \mathbf{x}_c) + r_{ab} \mathbf{x}_{ab} \cdot (\mathbf{x}_a - \mathbf{x}_b) + r_{bc} \mathbf{x}_{bc} \cdot (\mathbf{x}_b - \mathbf{x}_c) > 0$$

318
$$r_2 \mathbf{x}_2 \cdot (\mathbf{x}_a - \mathbf{x}_c) + r_{ab} \mathbf{x}_{ab} \cdot (\mathbf{x}_a - \mathbf{x}_b) + r_{bc} \mathbf{x}_{bc} \cdot (\mathbf{x}_b - \mathbf{x}_c) < 0.$$

319

320 Set r_{ac} and \mathbf{x}_{ac} so that $r_{ac} \mathbf{x}_{ac} \cdot (\mathbf{x}_a - \mathbf{x}_c) = r_{ab} \mathbf{x}_{ab} \cdot (\mathbf{x}_a - \mathbf{x}_b) + r_{bc} \mathbf{x}_{bc} \cdot (\mathbf{x}_b - \mathbf{x}_c)$ ensuring

321
$$(r_1 \mathbf{x}_1 + r_{ac} \mathbf{x}_{ac}) \cdot (\mathbf{x}_a - \mathbf{x}_c) > 0 > (r_2 \mathbf{x}_2 + r_{ac} \mathbf{x}_{ac}) \cdot (\mathbf{x}_a - \mathbf{x}_c).$$

322

323 We thus have found a solution to the set of inequalities for a cycle of length k that is obtained by
324 replacing edges (a, b) and (b, c) with (a, c) . This contradicts the induction hypothesis. \square

Theorem 2. For any directed graph G with cycles, there is no 1-head 1-layer attention-only transformer model that can solve the selection problem over G , even with unbounded dimension and unbounded precision.

Proof. Suppose there exists a 1-head model that accurately solves the selection problem over a directed graph G with cycles. Let C be an arbitrary cycle in G . Then, in particular, the model accurately solves the endpoint selection problem for every directed edge in C .

Setup. Fix an arbitrary directed edge (a, b) in C . Consider the following two input sequences of length $T = 4$: $S_1 = (a_1, b_2, 1_3, \#_4)$ which must output a ; $S_2 = (a_1, b_2, 2_3, \#_4)$ which must output b . Let the pre-softmax score for a token s at position p be denoted as $z_{s_p} = \# \mathbf{A} x_{s_p}^\top$. For the two sequences, the attention weights are given by:

$$\text{Softmax}(\#\mathbf{A}x_{a_1}^\top, \#\mathbf{A}x_{b_2}^\top, \#\mathbf{A}x_{1_3}^\top, \#\mathbf{A}x_{\#_4}^\top) = \text{Softmax}(z_{a_1}, z_{b_2}, z_{1_3}, z_{\#_4})$$

$$\text{Softmax}(\#\mathbf{A}x_{a_1}^\top, \#\mathbf{A}x_{b_2}^\top, \#\mathbf{A}x_{2_3}^\top, \#\mathbf{A}x_{\#_4}^\top) = \text{Softmax}(z_{a_1}, z_{b_2}, z_{2_3}, z_{\#_4})$$

These weights determine the final output vectors, and a single-head model must learn one matrix A that works for all the $2|C|$ instances corresponding to the edges in C .

Preliminaries. The final context vector for each sequence, S_i , is the weighted sum of the input embeddings, $v_i = w_i \cdot X_i$. The two context vectors can then be written as:

$$v_1 = \left(\frac{e^{z_1} x_{a_1} + e^{z_2} x_{b_2} + e^{z_3} x_{\#4}}{Z_1} \right) + \left(\frac{e^{z_1} x_{13}}{Z_1} \right); v_2 = \left(\frac{e^{z_1} x_{a_1} + e^{z_2} x_{b_2} + e^{z_3} x_{\#4}}{Z_2} \right) + \left(\frac{e^{z_2} x_{23}}{Z_2} \right)$$

where $Z_i = \sum_{j \in S_i} e^{z_j}$ for $i \in \{1, 2\}$. To simplify the above expression let us define vector, \mathbf{x}_{ab} , which represents the attention-weighted sum over the non-indicator tokens:

$$x_{ab} := \frac{e^{z_{a_1}} x_{a_1} + e^{z_{b_2}} x_{b_2} + e^{z_{\#4}} x_{\#4}}{e^{z_{a_1}} + e^{z_{b_2}} + e^{z_{\#4}}}$$

Using these definitions, we can express each of the final context vectors as a convex combination of the newly defined vectors and the indicator tokens.

$$\begin{aligned} \mathbf{v}_1 &= \left(\frac{e^{z_{a_1}} + e^{z_{b_2}} + e^{z_{\#4}}}{Z_1} \right) \mathbf{x}_{ab} + \left(\frac{e^{z_{1_3}}}{Z_1} \right) \mathbf{x}_{1_3} := r_{ab} \mathbf{x}_{ab} + r_1 \mathbf{x}_{1_3} \\ \mathbf{v}_2 &= \left(\frac{e^{z_{a_1}} + e^{z_{b_2}} + e^{z_{\#4}}}{Z_2} \right) \mathbf{x}_{ab} + \left(\frac{e^{z_{2_3}}}{Z_2} \right) \mathbf{x}_{2_3} := r_{ab} \mathbf{x}_{ab} + r_2 \mathbf{x}_{2_3} \end{aligned}$$

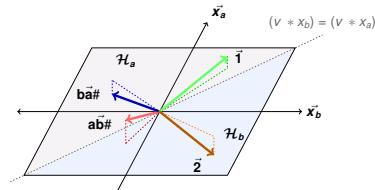
Geometric interpretation. The selection between tokens a and b depends on which side of the decision boundary $\mathbf{v} \cdot \mathbf{x}_a = \mathbf{v} \cdot \mathbf{x}_b$ the context vector \mathbf{v} lies. The two resulting regions are the a -dominant half-space, $\mathcal{H}_a = \{\mathbf{v} | \mathbf{v} \cdot \mathbf{x}_a > \mathbf{v} \cdot \mathbf{x}_b\}$, and the b -dominant half-space, $\mathcal{H}_b = \{\mathbf{v} | \mathbf{v} \cdot \mathbf{x}_b > \mathbf{v} \cdot \mathbf{x}_a\}$. The two selection tasks for any edge (a, b) impose the following constraints on the context vectors \mathbf{v}_1 and \mathbf{v}_2 : $\mathbf{v}_1 \in \mathcal{H}_a$ and $\mathbf{v}_2 \in \mathcal{H}_b$. Therefore, we get the following inequality constraints for every edge $(a, b) \in C$.

$$(r_{ab}\mathbf{x}_{ab} + r_1\mathbf{x}_1) \cdot (\mathbf{x}_a - \mathbf{x}_b) > 0,$$

$$(r_{ab}\mathbf{x}_{ab} + r_2\mathbf{x}_2) \cdot (\mathbf{x}_a - \mathbf{x}_b) \leq 0.$$

By Lemma 2, there do not exist vectors $\{\mathbf{x}_a : a \in C\}$, $\{\mathbf{x}_{ab} : (a, b) \in C\}$, \mathbf{x}_1 , and \mathbf{x}_2 and non-negative reals $\{r_{ab} : (a, b) \in C\}$, r_1 , r_2 that satisfy the above set of $2|C|$ constraints. \square

Figure 1: x - y plane.



Corollary 1. *There is no 1-head 1-layer attention-only transformer model that can solve the 2-hop induction head problem, even with unbounded dimension and unbounded precision.*

378 *Proof.* Due to space constraints, we provide a brief proof sketch and defer all details, including a formal
 379 definition of 2-hop induction head and the full proof, to Appendix A. We transform an instance
 380 of ESP to a 2-hop induction head instance as follows: $(a_1, b_2, i_3, \#_4) \Rightarrow (1_1, a_2, 2_3, b_4, \#_5, i_6, \#_7)$.
 381 In particular, note that in the 2-hop induction head instances created, the tokens in positions 1, 3,
 382 and 5 are always the same. Hence, any transformer circuit makes the next-token prediction based
 383 on the tokens in positions 2 and 4, position 6 (which contains token 1 or token 2) and the preceding
 384 token (which is $\#$). This is identical to the transformer model that is solving an ESP instance.

385 We formalize this idea, following the proof technique of Theorem 2. Consider the following two
 386 input sequences $(1_1, a_2, 2_3, b_4, \#_5, 1_6, \#_7)$ which must output a and $(1_1, a_2, 2_3, b_4, \#_5, 2_6, \#_7)$
 387 which must output b . We derive the attention weights and define context vectors v_1 and v_2 corresponding
 388 to the two sequences and vector x_{ab} , the attention-weighted sum over the non-indicator tokens.
 389 This enables us to express each of the final context vectors as a convex combination of x_{ab}
 390 and the indicator token vectors. (See Appendix A for the derivations.)

$$v_1 = r_{ab}x_{ab} + r_1x_{1_6} \quad v_2 = r_{ab}x_{ab} + r_2x_{2_6}$$

392 We similarly define the vector x_{ba} using the sequences. In order for the 1-head, 1-layer model to
 393 solve all 2-hop induction instances, we must have vectors x_{ab} , x_{ba} , x_{1_6} , and x_{2_6} that satisfy the
 394 following inequalities:

$$\begin{aligned} (r_{ab}x_{ab} + r_1x_{1_6}) \cdot (x_a - x_b) &> 0, & (r_{ab}x_{ab} + r_2x_{2_6}) \cdot (x_a - x_b) &< 0, \\ (r_{ba}x_{ba} + r_1x_{1_6}) \cdot (x_a - x_b) &< 0, & (r_{ba}x_{ba} + r_2x_{2_6}) \cdot (x_a - x_b) &> 0. \end{aligned}$$

395 By Lemma 2, such vectors do not exist, implying the desired impossibility result. \square

4 ANALYSIS OF 2-HEAD TRANSFORMERS

402 **Theorem 3.** *For any directed graph with n vertices, there exists a 2-head attention-only single-layer
 403 transformer model that can solve ESP with $O(n)$ dimensions and $O(1)$ precision.*

405 *Proof.* We provide a constructive proof by showing the existence of a set of model parameters
 406 that can solve ESP. Let $\mathcal{G} = (V, E)$ be a directed graph with vertex set V of size n and edge
 407 set E . Consider the input sequence $S_{1:4} = (u_1, v_2, i_3^*, \#_4)$ for an arc $(u, v) \in E$, where i_3^* is
 408 the selector token. We set the embedding dimension to $d := n + 3$, with standard basis vectors
 409 $\{e_1, \dots, e_d\} \subset \mathbb{R}^d$. The selector token i_3^* is embedded using only a token embedding to $-M e_{i^*}$,
 410 where M is a constant that will be set suitably large later in the proof. The token $\#_4$ is embedded
 411 as e_3 . Each vertex $v \in V$ appearing at position $i \in \{1, 2\}$ is embedded as $x_i = e_{v+3} + e_i$. The
 412 resulting embeddings form the input matrix $\mathbf{X} = [x_1, \dots, x_4]^\top \in \mathbb{R}^{4 \times d}$.

413 Our model’s final prediction for the correct endpoint vertex is given by

$$\hat{v} = \arg \max_{v \in V} \left[\left(\sum_{j=1}^2 \text{Softmax}(\#_4 \mathbf{A}_j \mathbf{X}^\top) \mathbf{X} \mathbf{V}_j \right) \mathbf{W}_0^\top \right]_v \quad (\star)$$

418 where $[\cdot]_v$ denotes the logit corresponding to vertex $v \in \mathcal{G}$. We define $\mathbf{V}_1 = \mathbf{V}_2 = \mathbf{V}$, set \mathbf{V} , \mathbf{W}_0 ,
 419 and calculate $\mathbf{V} \mathbf{W}_0^\top$ as follows:

$$\mathbf{V} := \begin{bmatrix} \mathbf{O}_{3 \times n} & \mathbf{O}_{3 \times 3} \\ \mathbf{I}_n & \mathbf{O}_{n \times 3} \end{bmatrix} \quad \mathbf{W}_0 := [\mathbf{I}_n \ \mathbf{O}_{n \times 3}] \quad \mathbf{R} = \mathbf{V} \mathbf{W}_0^\top = \begin{bmatrix} \mathbf{O}_{3 \times n} \\ \mathbf{I}_n \end{bmatrix} \in \mathbb{R}^{(n+3) \times n}.$$

422 Given our construction of \mathbf{V} and \mathbf{W}_0 , the final logit vector inside (\star) above simplifies to $(\alpha_1 +$
 423 $\alpha_2) \mathbf{X} \mathbf{R}$. Here \mathbf{R} is a fixed selection matrix that zeros out the first two dimensions while keeping
 424 the remaining n dimensions corresponding to the token embeddings for the vertices of our graph.
 425 Indeed, $\mathbf{X} \mathbf{R}$ is $[e_u, e_v, 0, 0]^\top$. Thus, the final prediction can be thought of as selecting which of u
 426 or v receives the largest weight under $\alpha_1 + \alpha_2$.

427 We define the attention matrices: in matrix \mathbf{A}_j , every element is 0 except for the element $(3, j)$,
 428 which is set to 1. Hence, we obtain

$$\#_4 \mathbf{A}_1 := [1 \ 0 \ 0 \ \dots \ 0] \in \mathbb{R}^{1 \times d}, \quad \#_4 \mathbf{A}_2 := [0 \ 1 \ 0 \ \dots \ 0] \in \mathbb{R}^{1 \times d}.$$

431 Here $\#_4 \mathbf{A}_1$ extracts the first row of \mathbf{X}^\top (corresponding to position 1), while $\#_4 \mathbf{A}_2$ extracts the
 second row of \mathbf{X}^\top (corresponding to position 2).

432 **Evaluating $\alpha_1 + \alpha_2$.** Fix $i_3^* = 2$ (the case $i_3^* = 1$ is symmetric). For the two heads, we get
 433

$$434 \quad \#_4 \mathbf{A}_1 \mathbf{X}^\top = \mathbf{z}_1 = [1, 0, 0, 0], \quad \#_4 \mathbf{A}_2 \mathbf{X}^\top = \mathbf{z}_2 = [0, 1, -M, 0].$$

$$435 \quad \text{Softmax}(\mathbf{z}_1) = \frac{1}{e+3} [e, 1, 1, 1], \quad \text{Softmax}(\mathbf{z}_2) = \frac{1}{e+2+e^{-M}} [1, e, e^{-M}, 1].$$

437 Thus, the first and second coordinates of $\alpha_1 + \alpha_2$ are $e/(e+3) + 1/(e+2+e^{-M})$ and $1/(e+3) +$
 438 $e/(e+2+e^{-M})$. By choosing M sufficiently large, we ensure that the second coordinate is larger
 439 than the first coordinate by a constant that can be made arbitrarily close to $1/((e+3)(e+2))$. Thus,
 440 the predicted token \hat{v} is the letter v , ensuring that the correct endpoint vertex is selected. \square

441 **Corollary 2.** *There exists a 2-head, 1-layer, attention-only transformer model with constant embedding
 442 dimension 5 and precision $O(\log n)$ that solves ESP on any directed graph.*
 443

444 *Proof.* We first give a proof for unbounded precision, and then extend the argument to $O(\log n)$
 445 precision. Instead of a token embedding that embeds vertices as basis vectors in \mathbb{R}^n , we embed
 446 them as well-separated unit vectors in \mathbb{R}^2 , and pad with a suitable positional embedding. Number
 447 the vertices 1 through n , and define
 448

$$449 \quad \theta_\ell := \frac{2\pi\ell}{n}, \quad \phi(v_\ell) := [\cos \theta_\ell \quad \sin \theta_\ell] \in \mathbb{R}^{1 \times 2}.$$

450 For a vertex v at position $i \in \{1, 2\}$, we create its embedding by adding the positional basis vector
 451 $\mathbf{e}_i \in \mathbb{R}^5$ to the padded vertex encoding, i.e.,
 452

$$453 \quad \mathbf{x}_i = \mathbf{e}_i + ([0, 0, 0] \oplus \phi(v)) \in \mathbb{R}^5.$$

454 Next, we update the value and output projection matrices \mathbf{V} and \mathbf{W}_0 and calculate $\mathbf{R} = \mathbf{V}\mathbf{W}_0^\top$:
 455

$$456 \quad \mathbf{V} := \begin{bmatrix} \mathbf{O}_{3 \times 2} & \mathbf{O}_{3 \times 3} \\ \mathbf{I}_2 & \mathbf{O}_{2 \times 3} \end{bmatrix}, \quad \mathbf{W}_0 := [\mathbf{E} \ \mathbf{O}_{n \times 3}] \quad \mathbf{R} = \mathbf{V}\mathbf{W}_0^\top \begin{bmatrix} \mathbf{O}_{3 \times n} \\ \mathbf{E}^\top \end{bmatrix} \in \mathbb{R}^{5 \times n},$$

456 where $\mathbf{E} \in \mathbb{R}^{n \times 2}$ is the token embedding matrix for all the vertices of the graph. We obtain that
 457 $\mathbf{X}\mathbf{R}$ is the $4 \times n$ matrix whose first row is the vector with k th coordinate being $\phi(k) \cdot \phi(u)$, second
 458 row is the vector with k th coordinate being $\phi(k) \cdot \phi(v)$ and remaining vectors being zero. (Here,
 459 for any vertex k , $\phi(k)$ is being viewed as a two-dimensional vector.) Note that $\phi(k) \cdot \phi(u) =$
 460 $\cos^2(\theta_u) + \sin^2(\theta_u) = 1$ for $k = u$ and is strictly less than 1 for $k \neq u$. By the same argument as in
 461 the proof of Theorem 3, the coordinate of $\alpha_1 + \alpha_2$ that is maximized is the selector i_3^* . Consequently,
 462 the n -dimensional vector $(\alpha_1 + \alpha_2)\mathbf{X}\mathbf{R}$ has its maximum value in the coordinate corresponding to
 463 the vertex that appears in position i_3^* , yielding the desired result, assuming unbounded precision.
 464

465 To obtain the result with $O(\log n)$ precision, we observe that when $k \neq u$, $\phi(k) \cdot \phi(u)$ equals
 466 $\cos(\theta_k) \cos(\theta_u) - \sin(\theta_k) \sin(\theta_u)$, which equals $\cos(\theta_k - \theta_u)$, which is at most $\cos(2\pi/n)$. By
 467 Taylor expansion, we have $\cos(2\pi/n) = 1 - \Omega(1/n^2)$. Therefore, it is sufficient to approximate
 468 $\cos(\theta_\ell)$ and $\sin(\theta_\ell)$ to an additive bound of $O(1/n^3)$. Thus, we can replace $\cos(\theta_\ell)$ and $\sin(\theta_\ell)$ by
 469 the nearest multiple of a rational number $1/r$, where r is an integer, which is $O(n^3)$. This ensures
 470 that the coordinates with the largest value in the first two row vectors of $\mathbf{X}\mathbf{R}$ continue to be those
 471 corresponding to u and v respectively, leading to the desired prediction. Since all weights in the
 472 embeddings and the attention matrix are multiples of $O(\log n)$, the result follows. \square
 473

475 5 EXPERIMENTS

477 We validate our theoretical results and probe the expressivity of attention heads for ESP.
 478

479 **Experimental setup.** We use a decoder-only transformer with causal self-attention and no feedfor-
 480 ward layers. Weights are tied between input embeddings and the output projection, and we retain
 481 residual connections and layer normalizations. We train with Adam and place no restrictions on
 482 embedding dimension or other hyper-parameters (training iterations, learning rate, batch size, etc.).
 483 All experiments were run on A100 and L4 GPUs via Google Colab.

484 **Datasets and metrics.** We generate transitive tournaments (the largest DAG for a given number
 485 of vertices) by labeling nodes 1 through $|V|$ and including all arcs (u, v) with $u < v$. To study
 486 cycles, we generate graphs with varying minimum feedback arc set (MFAS) sizes (see figures in

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Appendix C.1). We define the accuracy as the fraction of correctly predicted arcs over all training sequences extracted from the graph.

1-head models are sufficient for DAGs, insufficient for cycles; 2-head models solve all graphs. Consistent with Theorem 1, a single-head model solves ESP on DAGs. On graphs with cycles, it approaches the global minimum only for simple cases with $|\text{MFAS}| = 1$, i.e., achieving 100% accuracy on the maximum acyclic subgraph (MAS) and 50% on the remaining (MFAS) arcs, essentially guessing heads/tails. Performance degrades for more complex graphs with $|\text{MFAS}| > 1$. (See Appendix C.1 for more details.) Adding a second head enables ESP to be solved on arbitrary directed graphs, consistent with Theorem 3 (see Figure 2(B)).

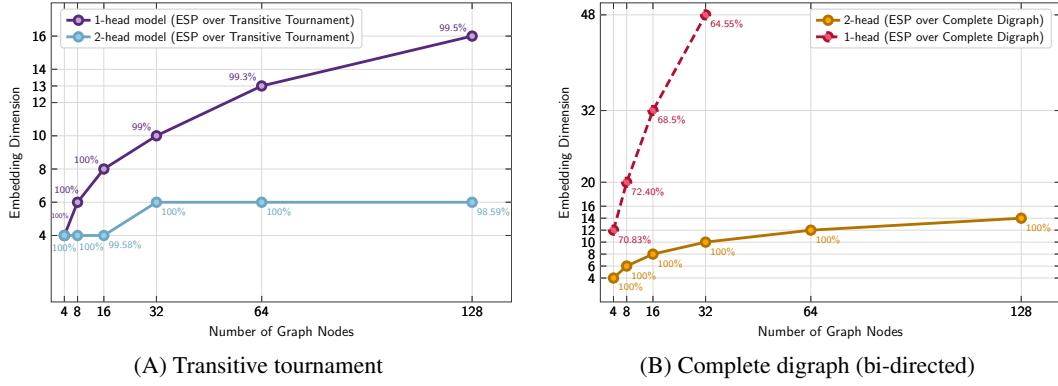


Figure 2: Accuracy plots for the best-performing models across different configurations.

Analysis of embedding dimension. We empirically study how the minimum dimension needed to solve ESP varies with graph size. In Figure 2(A), we observe that for DAGs, gradient-based optimization can find accurate constant-dimension 2-head models and nearly-accurate 1-head models with sublinear dimension (suggesting that the linear upper bound established in Theorem 1 can be improved). In Figure 2(B), we observe that for general graphs, gradient-based optimization finds accurate 2-head models with dimension that appears to grow logarithmically in the graph size, in contrast to the constant upper bound established in Corollary 2. Furthermore, 1-head models struggle on complete digraphs, and the gradient-based optimizer fails to find the best 1-head solution from Theorem 1. Since a complete digraph on n vertices has $m = n(n - 1)$ edges and a transitive orientation yields an acyclic subgraph with $m' = \binom{n}{2} = n(n - 1)/2$, the bound gives $\text{error} = \frac{1}{2} - \frac{n(n-1)/2}{2n(n-1)} = \frac{1}{4}$, i.e., accuracy $\geq 3/4 = 75\%$. In practice, even with $d \gg n$, our 1-head models fail to get close to the 75% accuracy level on complete digraphs. **Figure 2 reveals a clear separation: two narrow heads offer representational power that widening a single head cannot match. Additional experimental results, which analyze how bounded-width FFN components affect the accuracy of 1-head models for ESP, are provided in Appendix C.2.**

6 LIMITATIONS, DISCUSSION AND CONCLUDING REMARKS

Our analysis focuses on a highly simplified setting: attention-only transformers with either one or two heads. While this abstraction allows us to isolate fundamental representational limits, it does not account for components such as feedforward layers, residual connections, or training dynamics. Despite simplifications, our results highlight structural bottlenecks in attention itself, independent of embedding size or numerical precision. The observed gap between a single-head and two-head models suggests the emergence of a natural hierarchy in transformer capabilities, providing a framework for analyzing model design choices beyond empirical scaling.

In sum, our theoretical and experimental findings suggest that attention heads act as discrete units of computational power, with each additional head expanding the class of solvable problems opening the door to a principled taxonomy of transformer architectures characterizing the boundaries of deeper or multi-head configurations. More broadly, our approach demonstrates how simple formal tasks like ESP can serve as testbeds for probing the fundamental limits of large-scale sequence models.

540
541 ETHICS STATEMENT542
543 This paper presents work whose goal is to advance the field of Machine Learning. There are many
544 potential societal consequences of our work, none which we feel must be specifically highlighted
545 here.546
547 REPRODUCIBILITY STATEMENT548
549 This paper contains both theoretical results and experimental analyses. The main body of the paper
550 and the appendix together contain all the assumptions and complete proofs of all claims. We have
551 submitted the source code for all of our experimental analyses as supplementary material.552
553 REFERENCES554
555 Satwik Bhattacharya, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the repre-
556 sentational capabilities of transformers and recurrent architectures. In Proceedings of the 38th
557 International Conference on Neural Information Processing Systems, NIPS '24, Red Hook, NY,
558 USA, 2024. Curran Associates Inc. ISBN 9798331314385.559 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Hervé Jégou, and Léon Bottou. Birth of a
560 transformer: a memory viewpoint. In Proceedings of the 37th International Conference on Neural
561 Information Processing Systems, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.562 Yang Cao, Yubin Chen, Zhao Song, and Jiahao Zhang. Towards high-order mean flow generative
563 models: Feasibility, expressivity, and provably efficient criteria, 2025. URL <https://arxiv.org/abs/2508.07102>.564
565 Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Jiahao
566 Zhang. Circuit complexity bounds for RoPE-based transformer architecture. In Christos
567 Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Proceedings
568 of the 2025 Conference on Empirical Methods in Natural Language Processing, pp. 11091–
569 11108, Suzhou, China, November 2025. Association for Computational Linguistics. ISBN 979-
570 8-89176-332-6. doi: 10.18653/v1/2025.emnlp-main.561. URL <https://aclanthology.org/2025.emnlp-main.561>.571
572 Lijie Chen, Binghui Peng, and Hongxun Wu. Theoretical limitations of multi-layer transformer,
573 2024. URL <https://arxiv.org/abs/2412.02975>.574
575 David Chiang. Transformers in uniform TC^0 . Transactions on Machine Learning Research, 2025.
576 ISSN 2835-8856. URL <https://openreview.net/forum?id=ZA7D4nQuQF>.577
578 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
579 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Gan-
580 gul, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
581 Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
582 Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
583 URL <https://transformer-circuits.pub/2021/framework/index.html>.584
585 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
586 NP-Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.587
588 Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
589 of the Association for Computational Linguistics, 8:156–171, 2020. doi: 10.1162/tacl_a_00306.
URL <https://aclanthology.org/2020.tacl-1.11/>.590
591 Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
592 ArXiv, abs/1503.02531, 2015. URL <https://arxiv.org/abs/1503.02531>.593
594 K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxi-
595 mators. Neural Netw., 2(5):359–366, July 1989. ISSN 0893-6080.

594 Jerry Yao-Chieh Hu, Hude Liu, Hong-Yu Chen, Weimin Wu, and Han Liu. Universal approximation
 595 with softmax attention, 2025. URL <https://arxiv.org/abs/2504.15956>.

596

597 Viggo Kann. *On the Approximability of NP-complete Optimization Problems*. PhD thesis, Royal
 598 Institute of Technology, Department of Numerical Analysis and Computing Science, Stockholm,
 599 Sweden, 1992. Akademisk avhandling för teknisk doktorsexamen.

600 Richard M. Karp. Reducibility among combinatorial problems. In *Complexity of Computer*
 601 *Computations*, Proceedings of a Symposium on the Complexity of Computer Computations, pp.
 602 85–103, New York and London, 1972. Plenum Press.

603

604 Alexander Kozachinskiy, Felipe Urrutia, Hector Jimenez, Tomasz Steifer, Germán Pizarro, Matías
 605 Fuentes, Francisco Meza, Cristian B. Calderon, and Cristóbal Rojas. Strassen attention: Unlock-
 606 ing compositional abilities in transformers based on a new lower bound method, 2025. URL
 607 <https://arxiv.org/abs/2501.19215>.

608 Liyuan Liu, Jialu Liu, and Jiawei Han. Multi-head or single-head? an empirical comparison
 609 for transformer training. *CoRR*, abs/2106.09650, 2021. URL <https://arxiv.org/abs/2106.09650>.

610

611 William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
 612 formers. *Transactions of the Association for Computational Linguistics*, 11:531–545, 2023. URL
 613 <https://aclanthology.org/2023.tacl-1.31/>.

614

615 William Merrill and Ashish Sabharwal. A little depth goes a long way: The expressive power of log-
 616 depth transformers. In *NeurIPS 2024 Workshop on Mathematics of Modern Machine Learning*,
 617 2024a. URL <https://openreview.net/forum?id=njyCONK0JG>.

618

619 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
 620 In *The Twelfth International Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=NjNGlPh8Wh>.

621

622 William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
 623 threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856,
 624 2022. doi: 10.1162/tacl_a_00493. URL <https://aclanthology.org/2022.tacl-1.49/>.

625

626 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
 627 H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
 628 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 629 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf.

630

631

632 Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
 633 gradient descent. In *Proceedings of the 41st International Conference on Machine Learning*,
 634 ICML'24. JMLR.org, 2024.

635

636 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
 637 Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn
 638 Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones,
 639 Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark,
 640 Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads.
 641 *Transformer Circuits Thread*, 2022. URL <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

642

643 Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer ar-
 644 chitecture. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=KidynPuLNW>.

645

646 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
 647 transformers. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 648 URL <https://openreview.net/forum?id=36DxONZ9bA>.

648 Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
 649 Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
 650 algorithms. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 651 2024a. URL <https://openreview.net/forum?id=AfzbDw6DSp>.

652 Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
 653 Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
 654 algorithms. *arXiv preprint*, 2024b.

655 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the in-
 656 duction heads task. *CoRR*, abs/2408.14332, 2024c. URL <https://doi.org/10.48550/arXiv.2408.14332>.

657 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and log-
 658 arithmic depth. In *Proceedings of the 41st International Conference on Machine Learning*,
 659 ICML'24. JMLR.org, 2024d.

660 Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits,
 661 2023. URL <https://arxiv.org/abs/2308.03212>.

662 Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
 663 guages can transformers express? a survey. *Transactions of the Association for Computational
 664 Linguistics*, 12:543–561, 2024. doi: 10.1162/tacl_a_00663. URL <https://aclanthology.org/2024.tacl-1.30/>.

665 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 666 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 667 Processing Systems*, volume 30, pp. 5998–6008, 2017. Long Beach, CA, USA.

668 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-
 669 head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna
 670 Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting
 671 of the Association for Computational Linguistics*, pp. 5797–5808, Florence, Italy, July 2019.
 672 Association for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL <https://aclanthology.org/P19-1580/>.

673 Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. Alpine: unveiling
 674 the planning capability of autoregressive learning in language models. In *Proceedings of the 38th
 675 International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY,
 676 USA, 2025a. Curran Associates Inc. ISBN 9798331314385.

677 Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D. Lee. Transformers provably learn sparse token
 678 selection while fully-connected nets cannot. In *Proceedings of the 41st International Conference
 679 on Machine Learning*, ICML'24. JMLR.org, 2024.

680 Zixuan Wang, Eshaan Nichani, Alberto Bietti, Alex Damian, Daniel Hsu, Jason D. Lee, and Denny
 681 Wu. Learning compositional functions with transformers from easy-to-hard data, 2025b. URL
 682 <https://arxiv.org/abs/2505.23683>.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A ESP AS A SPECIAL CASE OF 2-HOP INDUCTION HEADS
703

704 **Induction Heads.** Induction heads are a well-studied circuit-level phenomenon in transformer
705 models (Elhage et al., 2021; Olsson et al., 2022), implemented by a pair of attention heads.
706 They perform the following simple find-and-copy algorithm: given an input sequence $S =$
707 $(s_1, \dots, s_i, s_{i+1}, \dots, s_T)$

708 1. find the last position $j < T$ where $s_j = s_T$,
709 2. predict the subsequent token s_{j+1} .

710 For example, given the input sequence $(a, \dots, a, b, \dots, a)$, the induction heads work together to pre-
711 dict b , since b follows the previous occurrence of a . This framework generalizes out-of-distribution,
712 since it executes an input-agnostic algorithm rather than memorizing fixed patterns.

713 **Two-Hop Induction.** The two-hop induction problem, first noted in Sanford et al. (2024d), ex-
714 tends this mechanism by chaining together two of the above find-and-copy operations. For example,
715 given the sequence

$$(a, \dots, b, c, \dots, a, b, \dots, a),$$

716 the correct prediction is c , since the model must first retrieve the b following a_j , and then output the
717 token that followed the earlier occurrence of b , namely c . Thus, two-hop induction composes two
718 one-hop induction steps, demonstrating how induction heads can be leveraged for more complex
719 reasoning.

720 **Relation to ESP.** We show that the Endpoint Selection Problem (ESP) is a special case of a 2-
721 hop induction head problem and present a full proof of Corollary 1. Recall that in ESP, the input
722 sequence is of the form

$$a \ b \ i \ \#,$$

723 where a, b are endpoints of an arc, and $i \in \{1, 2\}$ is an indicator token. The target outputs are as
724 follows:

$$a \ b \ 1 \ \# \mapsto a, \quad a \ b \ 2 \ \# \mapsto b, \quad b \ a \ 1 \ \# \mapsto b, \quad \dots$$

725 This input can be pre-processed into a form equivalent to a 2-hop induction instance. Specifically,
726 we can pad each sequence as

$$1 \ a \ 2 \ b \ \# \ 1 \ \#, \quad 1 \ a \ 2 \ b \ \# \ 2 \ \#, \quad 1 \ b \ 2 \ a \ \# \ 1 \ \#, \quad \dots$$

727 In this representation, fixing the query token converts the task from a 1-hop to a 2-hop problem by
728 “exhausting” a single hop. In particular, note that in the 2-hop induction head instances created, the
729 tokens in positions 1, 3, and 5 are always the same. Hence, any transformer circuit makes the next-
730 token prediction based on the tokens in positions 2 and 4 (each either a or b), position 6 (either 1 or
731 2) and the preceding token (which is $\#$). This is identical to the transformer model that is solving
732 an ESP instance. Therefore, one can design a transformer circuit for ESP by simply emulating one
733 for 2-hop induction head. This implies that our impossibility result from Theorem 2 also extends to
734 the 2-hop induction head problem.

735 We formalize the above argument, following the proof technique of Theorem 2. Consider the
736 following two input sequences $(1_1, a_2, 2_3, b_4, \#_5, 1_6, \#_7)$ which must output a and
737 $(1_1, a_2, 2_3, b_4, \#_5, 2_6, \#_7)$ which must output b . As before, let the pre-softmax score for a token
738 s at position p be denoted as $z_{s_p} = \# \mathbf{A} \mathbf{x}_{s_p}^\top$. For the two sequences, the attention weights are given
739 by:

$$\text{Softmax}(\# \mathbf{A} \mathbf{x}_{1_1}^\top, \mathbf{A} \mathbf{x}_{a_2}^\top, \mathbf{A} \mathbf{x}_{2_3}^\top, \# \mathbf{A} \mathbf{x}_{b_4}^\top, \# \mathbf{A} \mathbf{x}_{\#_5}^\top, \# \mathbf{A} \mathbf{x}_{1_6}^\top, \# \mathbf{A} \mathbf{x}_{\#_7}^\top) = \text{Softmax}(z_{1_1}, z_{a_2}, z_{2_3}, z_{b_4}, z_{\#_5}, z_{1_6}, z_{\#_7})$$

$$\text{Softmax}(\# \mathbf{A} \mathbf{x}_{1_1}^\top, \mathbf{A} \mathbf{x}_{a_2}^\top, \mathbf{A} \mathbf{x}_{2_3}^\top, \# \mathbf{A} \mathbf{x}_{b_4}^\top, \# \mathbf{A} \mathbf{x}_{\#_5}^\top, \# \mathbf{A} \mathbf{x}_{2_6}^\top, \# \mathbf{A} \mathbf{x}_{\#_7}^\top) = \text{Softmax}(z_{1_1}, z_{a_2}, z_{2_3}, z_{b_4}, z_{\#_5}, z_{2_6}, z_{\#_7})$$

740 The final context vector for each sequence, S_i , is the weighted sum of the input embeddings,
741 $\mathbf{v}_i = w_i \cdot \mathbf{X}_i$. The two context vectors can then be written as:

$$\mathbf{v}_1 = \left(\frac{e^{z_{1_1}} \mathbf{x}_{1_1} + e^{z_{a_2}} \mathbf{x}_{a_2} + e^{z_{2_3}} \mathbf{x}_{2_3} + e^{z_{b_4}} \mathbf{x}_{b_4} + e^{z_{\#_5}} \mathbf{x}_{\#_5} + e^{z_{1_6}} \mathbf{x}_{1_6} + e^{z_{\#_7}} \mathbf{x}_{\#_7}}{Z_1} \right) + \left(\frac{e^{z_{1_6}} \mathbf{x}_{1_6}}{Z_1} \right);$$

$$\mathbf{v}_2 = \left(\frac{e^{z_{1_1}} \mathbf{x}_{1_1} + e^{z_{a_2}} \mathbf{x}_{a_2} + e^{z_{2_3}} \mathbf{x}_{2_3} + e^{z_{b_4}} \mathbf{x}_{b_4} + e^{z_{\#_5}} \mathbf{x}_{\#_5} + e^{z_{\#_7}} \mathbf{x}_{\#_7}}{Z_2} \right) + \left(\frac{e^{z_{2_6}} \mathbf{x}_{2_6}}{Z_2} \right)$$

756 where $Z_i = \sum_{j \in S_i} e^{z_j}$ for $i \in \{1, 2\}$. We next define \mathbf{x}_{ab} , the attention-weighted sum over the
 757 non-indicator tokens:
 758

$$759 \quad \mathbf{x}_{ab} := \frac{e^{z_{11}} \mathbf{x}_{1_1} + e^{z_{a2}} \mathbf{x}_{a_2} + e^{z_{23}} \mathbf{x}_{2_3} + e^{z_{b4}} \mathbf{x}_{b_4} + e^{z_{\#5}} \mathbf{x}_{\#5} + e^{z_{\#7}} \mathbf{x}_{\#7}}{e^{z_{11}} + e^{z_{a2}} + e^{z_{23}} + e^{z_{b4}} + e^{z_{\#5}} + e^{z_{\#7}}}$$

761 Using these definitions, we can express each of the final context vectors as a convex combination
 762 of the newly defined vectors and the indicator tokens.
 763

$$764 \quad \mathbf{v}_1 = \left(\frac{e^{z_{11}} + e^{z_{a2}} + e^{z_{23}} + e^{z_{b4}} + e^{z_{\#5}} + e^{z_{\#7}}}{Z_1} \right) \mathbf{x}_{ab} + \left(\frac{e^{z_{16}}}{Z_1} \right) \mathbf{x}_{1_6} := r_{ab} \mathbf{x}_{ab} + r_1 \mathbf{x}_{1_6}$$

$$767 \quad \mathbf{v}_2 = \left(\frac{e^{z_{11}} + e^{z_{a2}} + e^{z_{23}} + e^{z_{b4}} + e^{z_{\#5}} + e^{z_{\#7}}}{Z_2} \right) \mathbf{x}_{ab} + \left(\frac{e^{z_{26}}}{Z_2} \right) \mathbf{x}_{2_6} := r_{ab} \mathbf{x}_{ab} + r_2 \mathbf{x}_{2_6}$$

770 We similarly define the vector \mathbf{x}_{ba} using the sequences $(1_1, b_2, 2_3, a_4, \#_5, 1_6, \#_7)$, which must
 771 output b , and $(1_1, b_2, 2_3, a_4, \#_5, 2_6, \#_7)$, which must output a . As we argue at the end of the proof
 772 of Theorem 2, Lemma 2 implies that there do not exist vectors \mathbf{x}_{ab} , \mathbf{x}_{ba} , \mathbf{x}_{1_6} , and \mathbf{x}_{2_6} satisfying the
 773 four inequalities:

$$774 \quad (r_{ab} \mathbf{x}_{ab} + r_1 \mathbf{x}_{1_6}) \cdot (\mathbf{x}_a - \mathbf{x}_b) > 0,$$

$$775 \quad (r_{ab} \mathbf{x}_{ab} + r_2 \mathbf{x}_{2_6}) \cdot (\mathbf{x}_a - \mathbf{x}_b) < 0,$$

$$776 \quad (r_{ba} \mathbf{x}_{ba} + r_1 \mathbf{x}_{1_6}) \cdot (\mathbf{x}_a - \mathbf{x}_b) < 0,$$

$$777 \quad (r_{ba} \mathbf{x}_{ba} + r_2 \mathbf{x}_{2_6}) \cdot (\mathbf{x}_a - \mathbf{x}_b) > 0.$$

779 This establishes that there is no 1-head, 1-layer attention-only transformer model for 2-hop induction
 780 head, even with unbounded dimension and unbounded precision.
 781

782 B NP-COMPLETENESS

784 We demonstrate the intractability of even approximating the minimum error of a 1-head model for
 785 ESP on general directed graphs.
 786

787 But first we state a corollary that follows directly from the theorems in Section 3. We remind the
 788 reader that MAS stands for Maximum Acyclic Subgraph, MFAS for Minimum Feedback Arc Set
 789 and for any directed graph with m arcs, $|\text{MAS}| + |\text{MFAS}| = m$.

790 **Corollary 3.** *For any integer n and any directed graph G , which has n vertices, m edges, and
 791 an acyclic subgraph with $|\text{MAS}|$ edges, there exists a 1-head transformer model with embedding
 792 dimension $n + 1$ that incurs an error exactly equal to $1/2 - |\text{MAS}|/(2m)$ for ESP on G .*

793 **Theorem 4.** *Finding a 1-head minimum error model for ESP is NP-complete.*

795 *Proof.* For the sake of formalization, let us define 1H-ESP to be the decision problem: given directed
 796 graph G and error ϵ accept if and only if there is a 1-head model which achieves error at most ϵ on
 797 G . As always, n and m stand for the number of vertices and arcs, respectively, of G . The reduction
 798 is from known NP-hard problem MAS (Maximum Acyclic Subgraph) Karp (1972); Garey & Johnson
 799 (1990), with the following definition as a decision problem: given a directed graph G and number
 800 m' , accept if and only if there is a DAG with at least m' arcs that is a subgraph of G . We prove
 801 NP-completeness of 1H-ESP by first showing that it is in NP and then showing that it is NP-hard by
 802 a reduction from MAS.

803 To see that 1H-ESP is in NP, guess any DAG contained in G with at least m' arcs and then follow
 804 the construction in the proof of Theorem 1 to obtain a certificate (NP-witness) that the error is
 805 $1/2 - m'/(2m)$.

806 Next, to see NP-hardness of 1H-ESP here is the straightforward reduction. Given an instance
 807 $\langle G, m' \rangle$ of MAS we transform it into instance $\langle G, 1/2 - m'/(2m) \rangle$. By Corollary 3 we know that
 808 m' is the size of the largest DAG if and only if the minimum error achievable is $1/2 - m'/(2m)$,
 809 and hence it follows that the MAS instance is accepted if and only if the 1H-ESP instance to which
 it is reduced is accepted. \square

810 We now strengthen the NP-completeness to an APX-hardness.
 811

812 **Theorem 5.** *The minimum error of the best 1-head model for ESP cannot be approximated to a
 813 factor better than 1.3606.*

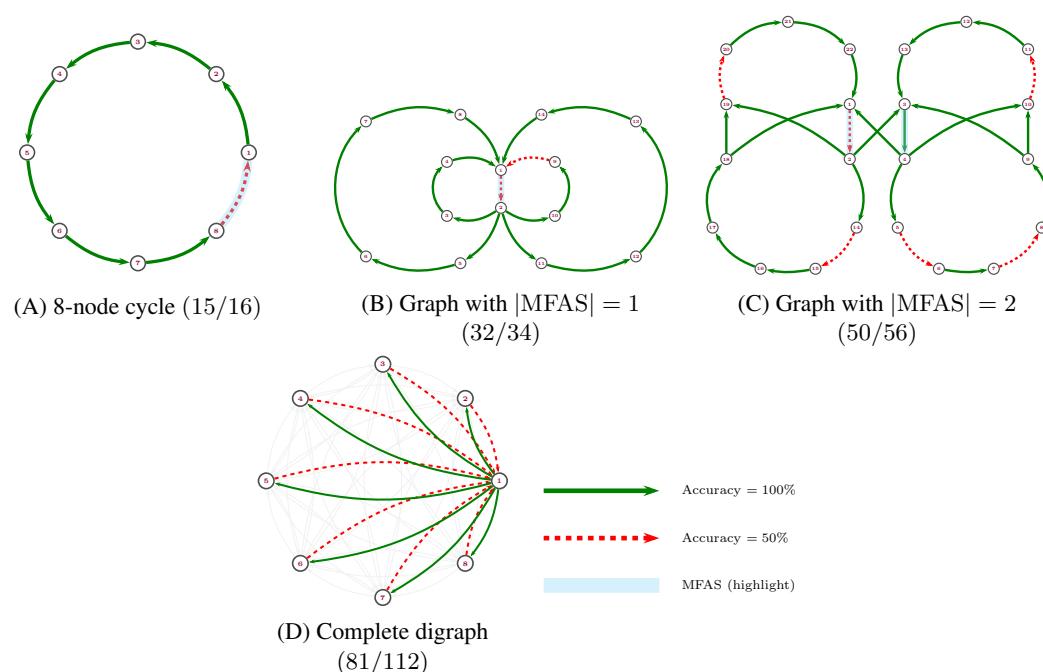
814
 815 *Proof.* The proof follows in straightforward fashion from the APX-hardness of MFAS, the Mini-
 816 mium Feedback Arc Set problem (Kann, 1992), which is known not to be approximable to a factor
 817 better than 1.3606, unless $P = NP$. Observe that the error in Corollary 3, $1/2 - |\text{MAS}|/(2m)$, is the
 818 same as $|\text{MFAS}|/(2m)$ and thus the inapproximability factor carries over exactly. \square

819
 820 **Corollary 4.** *Gradient descent cannot compute (even approximate) the global minimum (to better
 821 than a factor of 1.3606) of ESP for 1-head models in polynomial time, unless $P = NP$.*

823 C ADDITIONAL DETAILS FOR EXPERIMENTS WITH DIRECTED GRAPHS

825 C.1 GRAPH VISUALIZATIONS FOR ESP EXPERIMENTS

827 Figure 3 presents the family of directed graphs (with cycles) over which we analyze the 1-head
 828 and 2-head transformer models. Empirically, the best accuracies were obtained after more than 50
 829 runs with hyperparameter tuning for Figure 3(B) and Figure 3(C), and after more than 30 runs for
 830 Figure 3(A) and Figure 3(D), within 10k–20k training iterations each.



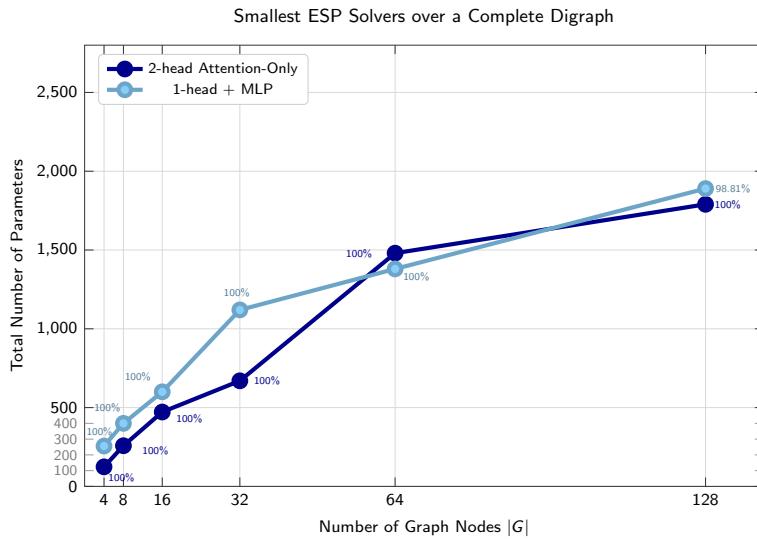
854 Figure 3: Prediction accuracies for the best-performing 1-head model for different graphs. Note that
 855 (D) only shows edges adjacent to vertex 1, and MFAS highlight only applies to (A), (B), and (C).

857 C.2 BOUNDED-WIDTH FFN EXPERIMENTS FOR ESP

858
 859 To further investigate how bounded-width feed-forward (FFN) components affect the representa-
 860 tional limits of shallow transformer models, we conducted an additional experiment measuring the
 861 smallest model size required to solve ESP over complete directed graphs of varying sizes. For
 862 each graph size, we identify the minimum-parameter configuration of (i) a 2-head attention-only
 863 transformer and (ii) a 1-head transformer augmented with a bounded-width FFN that achieves near-
 perfect accuracy.

864
 865 In this experiment, the parameter count refers to the total number of trainable parameters used by
 866 each respective model, including all attention matrices and (when present) the parameters in the
 867 FFN block.

868 Figure 4 summarizes the results. The key takeaway is that a 1-head transformer equipped with a
 869 bounded-width FFN can match the expressivity of a 2-head attention-only transformer when using
 870 a comparable number of total parameters.



918 **D LLM USAGE**
919

920 We used LLMs to help identify related work, transcribe handwritten equations into \LaTeX , and polish
921 writing and grammar.
922

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971