
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-020-01136-0

ORIGINAL ARTICLE

Flat random forest: a new ensemble learning method towards better
training efficiency and adaptive model size to deep forest

Peng Liu1 · Xuekui Wang2 · Liangfei Yin3 · Bing Liu4

Received: 20 May 2019 / Accepted: 2 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The known deficiencies of deep neural networks include inferior training efficiency, weak parallelization capability, too many
hyper-parameters etc. To address these issues, some researchers presented deep forest, a special deep learning model, which
achieves some significant improvements but remain poor training efficiency, inflexible model size and weak interpretability.
This paper endeavors to solve the issues in a new way. Firstly, deep forest is extended to the densely connected deep forest
to enhance the prediction accuracy. Secondly, to perform parallel training with adaptive model size, the flat random forest
is proposed by achieving the balance between the width and depth of densely connected deep forest. Finally, two core algo-
rithms are respectively presented for the forward output weights computation and output weights updating. The experimental
results show, compared with deep forest, the proposed flat random forest acquires competitive prediction accuracy, higher
training efficiency, less hyper-parameters and adaptive model size.

Keywords Ensemble learning · Flat random forest · Training efficiency · Size-adaptive model

1 Introduction

As is known, ensemble learning is an effective learning
method to improve the performance of individual mod-
els. Typical ensemble learning methods include unsuper-
vised clustering algorithm [1], Bagging [2], Boosting [3],

XGBoost [4], Rule aggregation [5] and Random Forest (RF)
[6]. Recently, Zhou et al. presented Deep Forest (gcForest)
[7] as a counterpart of convolutional neural network (CNN).
Compared with CNN, gcForest has some advantages, such
as fewer hyper-parameters, shorter training time and lower
computation cost. Nevertheless, gcForest still has the fol-
lowing inadequacies:

1. Training Efficiency

In gcForest, the output of each RF layer is input to the next
layer, which leads to poor parallelization between different
layers during model training. What’s more, by means of
multi-grained scanning (MGS) [7], gcForest only extracts
the locally spatial input features (e.g. sequence data and
image) for training each random forest. Thereby, each ran-
dom forest needs to be trained for EACH scanning window
of different sizes, which results in poor training efficiency.

2. Size Adaption

The gcForest adaptively selects the model size by dynami-
cally increasing the depth of model. However, it cannot elim-
inate the random forests, which contribute little to the out-
put results, and cannot retrain the model accordingly. Thus,

 * Bing Liu
 liubing@cumt.edu.cn

 Peng Liu
 liupeng@cumt.edu.cn

 Xuekui Wang
 xuekui.wxk@alibaba-inc.com

 Liangfei Yin
 13814538110@163.com

1 National Joint Engineering Laboratory of Internet Applied
Technology of Mines, China University of Mining
and Technology, Xuzhou 221008, Jiangsu, China

2 Alibaba Group, Hangzhou 311121, Zhejiang, China
3 School of Information and Control Engineering, China

University of Mining and Technology, Xuzhou 221116,
Jiangsu, China

4 School of Computer Science and Technology, China
University of Mining and Technology, Xuzhou 221116,
Jiangsu, China

http://orcid.org/0000-0002-2365-6606
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-020-01136-0&domain=pdf

 International Journal of Machine Learning and Cybernetics

1 3

this kind of self-adaptive mechanism cannot guarantee that
every node of the random forests contributes substantially
to the final output. Consequently, it also leads to low train-
ing efficiency.

3. Number of Hyper-parameters

The gcForest needs to manually adjust numerous hyper-
parameters, including the number of random forests in MGS,
the size of sliding window of MGS, the number of random
forests in each cascade layer, the number of random trees
in each random forest, and so on. Therefore, the number of
manually adjusted hyper-parameters is still relatively large,
increasing great difficulty for model training.

4. Interpretability

As a deep model, gcForest cannot obtain the contribution
of each random forest to the final output after training, thus
leading to weak interpretability.

Aiming to solve the abovementioned issues of gcFor-
est, this paper proposes a new ensemble learning method
based on RF. First, inspired by densely connected CNN
[8], the densely connected deep forest (DCDF) is built by
improving the cascade modules of gcForest. Compared with
gcForest, DCDF has stronger forward feature-transmission
capacity and better performance for large-scale datasets.
To further improve the training efficiency, the flat random
forest (FRF) is developed by parallelizing DCDF. FRF not
only has the ability of learning better representation of the
output feature, but also makes parallelization much easier
via the trade-off between the depth and width of the model.
Compared with gcForest, FRF has the following advantages:

1. Higher training efficiency The output weight of FRF can
be simply calculated by the proposed forward calcula-
tion algorithm. Inspired by [9], the proposed algorithm
can update output weights efficiently with the increase of
the number of RF. Hence, FRF can be trained efficiently
to obtain the final model. Additionally, since the depth
of the model is controlled, it is easier to carry out paral-
lelization training for FRF, which enhances the training
efficiency considerably, especially for large-scale data.
Besides, in this paper, MGS is replaced by principle
component analysis (PCA) network (PCANet) [10],
which further improves the training efficiency and the
classification accuracy.

2. Size-adaptive model The proposed FRF can adaptively
specify model size through the model training. First,
the node number of enhancement-layer can be dynami-
cally increased by adding RF nodes. Besides, RF node
with small local weight will be replaced by new-trained
RF. At last, when the prediction accuracy of the model

reaches the goal or it does not rise any more, a size-
adaptive model can be obtained.

3. Less hyper-parameters Compared with gcForest, the
number of hyper-parameters, which need manually fine
tuning, is further reduced. For FRF, the hyper-parame-
ters only consist of the number of decision trees in each
RF, the node number of the feature-mapping layer and
the minimum sample number of the decision tree’s leaf
nodes. Since the first parameter has little effect upon
overall performance, it can be set as an empirical value.
Thus, only the rest two parameters need fine tuning for
FRF.

4. Better interpretability FRF has better interpretabil-
ity than gcForest based on the average output of each
RF. Specifically, the final output only relies on output
weights, which makes theoretical analysis easier.

To summarize, the primary contributions of this paper
are:

1. Introducing the idea of densely connected CNN to
DCDF, which significantly improves the prediction
accuracy of gcForest.

2. Utilizing the architecture of functional-link neural net-
works [11] to increase width and decrease depth of
DCDF and proposing a novel ensemble learning method,
termed as FRF.

3. Developing two algorithms for training FRF, including
forward output weight computation and output weight
updating.

4. Integrating PCA Scanning into FRF to further improve
the model training efficiency and accuracy.

The remaining paper is organized as follows: Sect. 2
introduces related works of ensemble learning, Sect. 3 pro-
vides the details of the flat random forest, Sect. 4 presents
experimental results with analysis, and Sect. 5 gives the
conclusion.

2 Related works

Conventional ensemble learning mainly includes meta-
learning, Rule Ensemble, semi-supervised based ensem-
ble learning, etc. Meta-feature generation methods (meta-
learning), such as Stacking [12] and adaptive mixture of
experts [13], which use the output of sub-level models as
the integrated features to construct advanced model. Rule
Ensemble [5] and Bayesian averaging model [14] employ the
training set to generate basic models and model combina-
tion simultaneously. Refs. [15, 16] study how to select basic
models to reach the minimum error rate for an ensemble
model. Moreover, there are some studies aiming at using

International Journal of Machine Learning and Cybernetics

1 3

semi-supervised learning to integrate clustering methods
into ensemble classier, including Semiboost [17], Assemble
[18] and Try-training [19], etc.

In recent years, many new research directions appear in
the field of ensemble learning. Yoon et al. [20] put forward
ensemble learning with trees of predictors that generated
a different path for each sample. Then the base predictors
of each sample were selected from the trees of predictors
according to their respective path so as to achieve better
performance. Wu et al. [21] generated random forest by
different feature subspace selections of minority class and
majority class to tackle the problem of imbalanced text cat-
egorization. Chakraborty et al. [22] embedded structured
random forest and Bayesian Network into a tree structure
and designed a dynamic method to decide the depth of tree
structure ensemble model. Chakraborty et al. [23] combined
clustering and classification for ensemble learning to solve
the problem of lack of sufficient manually labeled data.
Strauss et al. [24] utilized ensemble learning to solve the
problem of deep learning models, which is stated as being
highly vulnerable to adversarial perturbations. The above
studies improved ensemble learning from various perspec-
tives, including solving the issues that deep learning cannot
address.

Inspired by gcForest, this paper proposes FRF, a novel
ensemble learning method composed of meta-learning,
stacking, and adaptive selection of basic model or combined
model. Specifically, FRF leverages stacking architectures
and combines the meta-feature generation of the feature-
mapping layer with that of the enhancement layers, such as
to have satisfactory performance of representation learning
and good interpretability. In addition, the proposed node
elimination method is adaptive to select and update basic
models, while the output weight computing method is effi-
cient to decide the combined model. Finally, the proposed
FRF achieves good balance between high efficiency and
high classification accuracy, and makes theoretical analysis
simpler.

3 Flat random forest

In this section, we first introduce preliminaries that will be
useful to understand our model, which mainly cover details
of gcForest, the densely connected CNN and functional-link
neural network. After that, the densely connected deep forest
(DCDF) is presented as the underlying structure of the pro-
posed model. Then, the flat random forest (FRF) is presented
by parallelizing DCDF. Finally, PCA Scanning is integrated
into FRF to improve the classification accuracy.

3.1 Preliminaries

3.1.1 gcForest

Zhou et al. presented gcForest [7] to overcome the short-
comings of traditional CNN models. As shown in Fig. 1,
the output of prior layer in gcForest is just the input of next
layer and ONLY the input feature vector can serve as a part
of each layer’s input. The model training will become more
difficult as the depth of gcForest increases.

3.1.2 Densely connected CNN

The major contribution of the densely connected CNN [8] is
to put forward Dense Block and apply it to CNN, as shown
in Fig. 2. The main idea of Dense Block is to add up all the
outputs of prior layers as the input of subsequent neural lay-
ers. Motivated by this idea, we apply the dense connection to
the construction of Flat Random Forest model. More details
are presented in Sect. 3.3.

3.1.3 Functional‑link neural network

As illustrated in Fig. 3, the functional-link neural network
(FNN) is composed of input layer and enhancement layer,
and each layer contains numerous neuron nodes [11]. Thus,
FNN leverages the original input and generated features to
perform the prediction of the output.

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Ave Max

In
pu

t
Fe
at
ur
e
Ve

ct
or

Fi
na

lP
re
di
ct
io
n

Fig. 1 Cascade module of gcForest

Dense Block

Fig. 2 Dense block in densely connected CNN

 International Journal of Machine Learning and Cybernetics

1 3

3.2 Densely connected deep forest

Firstly, combined with the densely connected CNN, gcFor-
est is extended to Densely Connected deep forest (DCDF).
As shown in Fig. 4, the outputs of all prior layers in DCDF
are concatenated as the input of current layer. Specifically,
DCDF is considered as a widened gcForest with the depth
unchanged. Thus, RF at each level in Fig. 4 is regarded as a
whole, and the original model in Fig. 4 can be transformed
to the structure in Fig. 5. Notably, these two models are
essentially the same.

As illustrated in Fig. 5, if the cascade structure of gcFor-
est, except Level-1, is regarded as ONE node (i.e. Node-
N in Fig. 5), DCDF can be viewed as the width extension
based on Node-N, i.e., the extended model includes one
node (Node-1) in the first layer and N-1 nodes in the second
layer. Consequently, DCDF enriches the diversity of feature
representations, which contributes to the accuracy improve-
ment of the ensemble model.

From Fig. 5, we can observe that DCDF is actually one
special kind of FNN. Node-1 denotes the input layer that
is named feature-mapping layer in the following part of
the paper. The random forest layer composed of Node-2
to Node-N is named as enhancement layer. In addition, all
enhancement nodes in DCDF, except Node-2, contain more

than two random forest layers. Nevertheless, it is not hard to
find that this multi-layer cascade structure not only increases
the difficulty of theoretical analysis but also causes low
training efficiency for large-scale data. On one hand, making
DCDF wider can improve performance; on the other hand,
controlling the depth of DCDF facilitates efficient training
and good interpretability. Therefore, the depth and width of
DCDF should be balanced to enable the model with better
performance, training efficiency and interpretability, which
is the original idea of creating FRF.

3.3 System model of FRF

Based on DCDF, the system model of FRF is presented in
Fig. 6. As can be seen, Level-1 RF layer, named as the fea-
ture-mapping layer (FML), is firstly horizontally expanded.
On top of the FML, we design the enhancement layer (EL)
that is combined with the FML to form a two-layer RF cas-
cade. Moreover, the output of the FML is concatenated with
the input feature vector to serve as the input of the EL, and
both outputs are used for the final prediction.

Of note, FRF transfers every neuron node in FNN into
RF node, such that it can be regarded as a special kind of
FNN. As is well known, it is very important for ensemble
algorithms to have model diversity [25]. Therefore, the pro-
posed FRF utilizes a full-random tree forest and an ordinary
random forest to form a composite node to increase model
diversity.

Specifically, the feature-mapping layer of FRF is com-
posed of n nodes, shown in Fig. 6, and the input feature
vector of this layer is generated by original input data after
PCA scanning (as shown in Fig. 9, PCA scanning will be
described in Sect. 3.5). Through the feature-mapping layer,
a total of n feature mappings can be obtained, which are

Input layer

Enhancement layer

Output layer

Wh

W

W

A

Fig. 3 Functional-link neural network

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest Ave MaxIn
pu

tF
ea
tu
re

Ve
ct
or

Fi
na

lP
re
di
ct
io
n

Level-1 Level-2 Level-(N-1) Level-N

Fig. 4 Densely connected deep forest: gradually wider input of each
layer

Ave

Max

Input Feature Vector

Final Prediction

Forest Forest

Forest Forest

Forest Forest

Forest Forest

Forest Forest

Forest Forest

Forest Forest

Forest Forest one level in gcForest

we regard cascade forest
in this block as one node

output from different
level with different color

Node-1

Node-2

Node-3

Node-N

Fig. 5 A flat view of DCDF

International Journal of Machine Learning and Cybernetics

1 3

denoted as F1, F2,… , F
n
 . Moreover, each Fi is a k-dim vector

(for k classification, k = 3 in Fig. 6). Then we concatenate the
output of feature-mapping layer and the input feature vector
to serve as the input of enhancement layer. Next, through the
enhancement layer, the outputs can be obtained and denoted
as E1,E2,… ,E

m
, E

m+1,… , E
m+S , where m is the initial num-

ber of enhancement nodes, s is the dynamically added num-
ber of enhancement nodes, and m + s is the final number
of enhancement nodes till the end of training process. The
output layer uses the weighted sum of all outputs of feature-
mapping nodes and enhancement nodes to obtain the final
output. Moreover, the output of feature-mapping node and
enhancement node are all k-dim vectors (for k classification,
k = 3 in Fig. 6). Each element of the output vector repre-
sents the probability of input feature vector belonging to
the corresponding class. At last, the final class is the largest
element in the final output vector. The computation process
of the output for each RF is shown in Fig. 7. It is clear that
the output of RF is the average of all decision trees’ outputs.

3.4 Training process of FRF

As shown in Fig. 6, the input matrix of output layer is set as
the combination of feature-mapping layer and enhancement
layer, defined as � = [F1, F2,… , F

n
, E1,… , E

m+s] , where

F1, F2,… , F
n
, E1,… , E

m+s are column vectors composed
of k elements (k = 3 in Fig. 6). The output weight vector is
defined as � =

[
W1,W2,… ,W

n+m+s

]T . Hence, the following
equation can be obtained:

where Y denotes the final output vector of FRF.
The training process of FRF consists of three parts: gen-

eration of feature-mapping layer, generation of enhancement
layer and computation of output weight. The complete train-
ing procedure of FRF is as follows.

(3-1)� ∙� = �

Input Feature Vector

...

...

...

node 1

Added enhancement nodes during
training process

...

...

...
node 1 node m

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest Forest

Forest

Forest

Max

Final Output

...
W

Y

1F 2F nF

node n
feature-mapping layer

enhancement layer

node 2

...

concat Forest

Forest

Random Forest

Full-Random tree Forest

Output of each node ,it’s
a -dim vector for cla-
ssifica�on , we set =3 in
this picture

Fig. 6 Flat random forest: a size-adaptive flat model composed of feature-mapping layer and enhancement layer

Ave.

Class Vector
of input

input

Forest

… …

Fig. 7 Computation process of output vector for each RF

 International Journal of Machine Learning and Cybernetics

1 3

Next, the output weight vector � = [W1,W2,… ,W
n+m]

T
can be calculated through local weights as follows.

For new enhancement nodes, Eq. 3-4 shows that each
Wi only needs to multiply a coefficient. Denote the number
of additional enhancement nodes as s, each node’s output
weight can be updated as follows.

From the discussion mentioned above, it can be seen that
the training process of FRF only involves forward opera-
tions. In addition, the elimination mechanism and local
weights are introduced to guarantee all RFs contribute to
the final prediction vector. Moreover, by different values of
output weights, the contribution of each node to the final
prediction vector can be measured directly. Thus, the theo-
retical analysis of FRF becomes relatively easier.

(3-3)� =

∑N

i=1
O

T

i
⋅ C

i

N
=

∑N

i=1
�

ii

N

(3-4)W
i
=

�
i∑n+m

i=1
�
i

, i = 1, 2,… n + m

(3-5)W
t

i
=

⎧
⎪⎨⎪⎩

�i∑n+m+s

i=1
�i

=
�i∑n+m

i=1
�i

×
∑n+m

i=1
�i∑n+m+s

i=1
�i

= W
t−1
i

×
∑n+m

i=1
�i∑n+m+s

i=1
�i

, i = 1, 2,… n + m

�i∑n+m+s

i=1
�i

, i = n + m + 1,… , n + m + s

In Algorithm 1, the process of calculation and update for
W is as follows.

First, denote the output matrix of sample set in this node as
� =

[
�1,�2,… ,�

N

]T
, �

i
= [O

i1,Oi2,… ,O
ik
]T , i = 1, 2,…N ,

where Oip denotes the probability of the ith sample belong-
ing to the pth category predicted by this node. For the
sample set, its corresponding target category matrix is
� =

[
�1,�2,… ,�

N

]
, �

i
= [c

i1, ci2,… , c
ik
]T , i = 1, 2,…N

(only if the ith sample belongs to the pth category, then
cip = 1, else, cip = 0). Then the local weight is calculated as
Eq. 3-2.

where �T

i
∙ �i denotes the probability of the ith sample

belonging to the target category predicted by this node.
To calculate the average probability on the training set,
vectorization calculation is employed here. In Eq. 3-2, let
� = � ∙ � , Eq. 3-3 will be obtained.

(3-2)� =

∑N

i=1
�

T

i
∙ �

i

N

International Journal of Machine Learning and Cybernetics

1 3

3.5 PCA scanning

The gcForest [7] adopts Multi-grained scanning (MGS), as
shown in Fig. 8, to extract one-dimensional feature vector
that is then used as the input of cascade module. However,
through the experiments, it is discovered that this scan-
ning method requires high expense of CPU and memory
and is time-consuming meanwhile. In this paper, inspired
by PCANet, as shown in Fig. 9, we adopt PCA scanning
instead of MGS. The experiment demonstrates the scanning
efficiency greatly rises while the model accuracy even fur-
ther improved by PCA scanning. More details about PCA
scanning will be discussed in Sect. 3.6.

3.6 Combination of PCA scanning and FRF

The overall running procedure of proposed model is actually
divided into two parts, as shown in Fig. 10, named as PCA
scanning and Flat Random Forest (FRF) training.

Suppose we input N training images sized at 32 × 32 and
the size of scanning window is k1 × k2. Through padding and
scanning, 32 × 32 × N vectors can be generated with dimen-
sion of k1 × k2. Then PCA scanning will be performed after
averaging removed to extract L1 principal component feature

vectors via the parameter of L1 convolution kernels in the
first stage (the size of convolution kernel is k1 × k2). Thus,
the original input image is transformed to N × L1 images of
size 32 × 32 by the first-stage scanning. Moreover, based on
the first-stage scanning, the second-stage scanning conducts
the same operation to obtain L2 principal component feature
vectors as the parameter of second-stage convolution kernel
(the size of convolution kernel is k1 × k2). The second con-
volutional layer outputs N × L1 × L2 images of size 32 × 32,
which are divided into N groups (each original image corre-
sponds to one group). Then conduct hashing and histogram
statistics for each group to obtain the feature vector output
with the length of 2L2 ∗ L1 ∗ B (where B denotes the block
number when partitioning each image to carry out hashing
and histogram statistics, which is not detailed in this part.
Please refer to PCANet [10]). Thus, after PCA scanning, for
N input images, N feature vectors with length of 2L2 ∗ L1 ∗ B
are obtained.

After PCA scanning, the obtained feature vector and the
original input label are used to train the RFs to generate the
feature-mapping layer. Actually, the feature-mapping layer
contains n nodes, and to enhance diversity of ensemble
algorithms, each node is composed of a completely random
tree forest and an ordinary RF. The output of each node
is the mean value of two random forests’ output. Through
the feature-mapping layer, each training sample can obtain
� =

[
�1,�2,… ,�

n

]
 , in which Fi is a k-dim prediction vec-

tor (in Fig. 6, k = 3). Then F and the PCA-obtained feature

8-dim
6-dim

4-dim

169
instances

121
instances

81
instances

ForestA1

ForestB1

ForestA2

ForestB2

ForestA3

ForestB3

169

4-dim

6-dim

8-dim

1014
dim

121

81

726
dim

486
dim

2226
dim

Multi-Grained Scanning

Input data set

Extracted-feature
Matrix

3-dim

3-dim

1

N N-dim

16-dim

Fig. 8 Multi-grained scanning

Input layer

First Stage

Second Stage
Output layer

Batch-mean
Removal

PCA filters
convolution

Batch-mean
Removal

PCA filters
convolution

Binary
quantization
and mapping

Concatenated
image and
block-wise
histogram

Fig. 9 PCA scanning for FRF: more efficient feature extraction
method

Input layer

PCA scanning

Feature-Mapping layer

...
1F nF

concat

Enhancement layer

...
1E sm +E

Max

Final Output

Y

W

Flat Random Forest

Fig. 10 The pipeline model for classification

 International Journal of Machine Learning and Cybernetics

1 3

vector are concatenated into the new feature (the labels
still keep the same) to generate the enhancement layer of
m enhancement nodes. Similarly, each node is composed
of a completely random tree forest and an ordinary random
forest, and the output of each enhancement node is the mean
value of two random forests’ outputs. Through the enhance-
ment layer, each training sample can obtain m instances of
k-dim prediction vector. Next, as mentioned in Fig. 6, the
proposed training method is adopted to increase the number
of enhancement node dynamically until the end of training.
Finally, the output weight of each node is obtained.

At the FRF testing phase, each input sample passes
through the PCA scanning, feature-mapping layer and
enhancement layer to generate the input of output layer,
i.e. � =

[
�1,�2,… ,�

n
,�1,… ,�

m+s

]
 (given that the train-

ing process ends with m + s enhancement nodes). Then the
inner product of A and W can be easily computed to obtain
the final category prediction Y.

Lastly, we focus on the FRF’s hyper-parameters, includ-
ing the size of PCA scanning window, the number of deci-
sion trees contained in each RF, the minimum sample num-
ber of decision tree’s leaf nodes and the node number of the
feature-mapping layer. Among the four hyper-parameters,
the former two can be determined empirically and the lat-
ter two need manual fine-tuning. More detailed discussions
about hyper-parameters will be given in the experiments.

4 Experiments

In this section, to validate the effectiveness of the proposed
method, we compare FRF with DCDF, gcForest and some
other models on different datasets. Furthermore, the training
efficiency of FRF and other methods are compared by using
the same ratio of training data to testing data. Finally, three

experiments are designed to study the influence of hyper-
parameters on FRF.

4.1 Configuration

Firstly, as shown in Table 1, the common hyper-parameters
of gcForest, DCDF and FRF in the experiments are listed
as follows.

Secondly, the detailed hyper-parameters for FRF only are
shown as follows:

1. For PCA scanning, the corresponding hyper-parameters
are set as k1 = k2 = 5, L1 = L2 = 8, B = (H∕8) × (W∕8)

(refer to Sect. 3.6) while those of MGS are set just the
same as gcForest.

2. For the feature-mapping layer, the node number is 8, and
each node consists of a completely random tree forest
and a RF. Each RF contains 200 decision trees and the
minimum sample number of decision tree’s leaf nodes
is 40.

3. For the enhancement layer, correspondingly, each RF
includes 200 decision trees and the minimum sample
number of decision tree’s leaf node is 40.

Next, for other machine learning methods, we mainly
refer to the experiment data of gcForest reported in [7], and
the relevant hyper-parameters are specified.

Finally, we divide the training sample set into three parts
in the proportion of 60%, 20% and 20%, respectively. Then,
60% training data is utilized to generate RF. Then 80% (60%
plus 20%) data is used to calculate the local weight of each
node. Lastly, the left 20% is adopted to carry out accuracy
test. When the accuracy reaches the expected value or the
accuracy does not increase any more, the model training
process is terminated.

Table 1 Summary of common hyper-parameters

GcForest Densely-connected deep forest Flat random forest

Type of forests Type of forests Type of forests
Complete random tree forest, random forest,

etc.
Complete random tree forest, random forest,

etc.
Complete random tree forest, random forest,

etc.
Forest in multi-grained scanning Forest in multi-grained scanning Forest in feature Mapping layer
No.Forests:{2} No.Forests:{2} No.Forests:{8}
No.trees in each Forest:{30} No.trees in each Forest:{30} No.trees in each Forest:{200}
Tree growth: till pure leaf, or ≤ 20 instances Tree growth: till pure leaf, or ≤ 20 instances Tree growth: till pure leaf, or ≤ 40 instances
Sliding window size: {⌊d∕16⌋, ⌊d∕9⌋, ⌊d∕4⌋} Sliding window size: {⌊d∕16⌋, ⌊d∕9⌋, ⌊d∕4⌋}
Forest in cascade Forest in cascade Forest in Enhancement layer
No.Forests:{4} No.Forests:{4} No.Forests: self-adaption during training

process
No.trees in each Forest:{1000} No.trees in each Forest:{1000} No.trees in each Forest:{300}
Tree growth: till pure leaf, or ≤ 10 instances Tree growth: till pure leaf, or ≤ 10 instances Tree growth: till pure leaf, or ≤ 40 instances

International Journal of Machine Learning and Cybernetics

1 3

4.2 Experimental results

4.2.1 Accuracy

4.2.1.1 Image classification The following four kinds of
data sets are employed for image classification. Digits data
set is composed of 1797 samples, where each sample is a
handwriting of 0–9. MNIST is also a handwriting recogni-
tion data set sized at 28 × 28 that includes 60,000 training
samples and 10,000 test samples. Cifar10 data set contains
50,000 training images sized at 32 × 32 and 10,000 test
images of the same size, in which the number of object cat-
egory is 10. Moreover, for Cifar100 data set, the number
and size of training images and test images are the same
as Cifar10 except that it contains 100 object categories. In
the experiment, we use these four kinds of data sets to test
RF, gcForest, DCDF and FRF. Meanwhile, the experiment
results of LeNet-5 in gcForest [7], EC3 [23], DBN [26] and
BRF [27] are also compared together as shown in Table 2.

From Table 2, it can be observed that the accuracy of
DCDF is 1.94% higher than that of gcForest on average,
which means DCDF, with dense connection, has stronger
feature representation ability than gcForest. Most impor-
tantly, compared with DCDF and LeNet-5, FRF achieves
more competitive accuracy (11.5% higher than DCDF
and 3.34% higher than LeNet-5 on average), which proves
effectiveness of the transformation from depth to width. In

Table 2 Prediction accuracies
on various image data sets

Bold indicates the best results

Digits (%) MNIST Cifar10 (%) Cifar100 (%)

Flat random forest (PCA scanning) 99.81 99.36% 89.01 74.32
Flat random forest (multi-grained scanning) 99.75 99.01% 71.52 62.09
Densely-connected deep forest 99.73 99.02% 68.55 59.14
gcForest 99.69 98.96% [7] 63.82 51.00
BRF 98.98 98.75% 65.12 58.37
EC3 99.46 99.61% 70.36 67.45
DBN [13] 99.31 98.75% 62.27 55.77
DNN (Le-Net5) 99.77 99.05% [7] 80.59 68.73
Random forest 98.73 96.80% [7] 50.23 32.25

Table 3 Prediction accuracies
on ORL face data set

Bold indicates the best results

1 image 5 images 9 images

Flat random forest (PCA scanning) 66.94% 96.95% 99.30%
Flat random forest (multi-grained scanning) 66.38% 96.10% 98.50%
Densely-connected deep forest 65.83% 95.05% 98.60%
gcForest 63.06% [7] 94.25% [7] 98.30% [7]
BRF 66.48% 92.79% 98.18%
EC3 68.16% 96.32% 99.08%
Random forest 61.70% [7] 91.20% [7] 97.00% [7]
DNN (CNN) 3.30% [7] 86.50% [7] 92.50% [7]
SVM (RBF kernel) 57.90% [7] 78.95% [7] 82.50% [7]

Table 4 Small-scale classification data sets

Instances Features Classes

Iris 150 4 3
Letter 20,000 16 26
Adult 48,842 14 2
Yeast 1484 8 10
Zoo 101 17 7
Breast 106 10 6
Echocardiogram 132 12 2
Wine 178 13 3
Vertebral 310 6 3
Cvr 435 16 2
Bands 512 39 2
WDBC 569 32 2
Land-cover 675 148 9
Credit 690 15 2
Transfusion 748 5 2
Vehicle 946 18 4
Mammographic 961 6 2
CMC 1473 9 3
Car 1728 6 4
Image 2310 19 7
Madelon 2600 500 2
Chess 3196 36 2
ADS 3279 1558 2
Abalone 4177 8 29

 International Journal of Machine Learning and Cybernetics

1 3

addition, for FRF, compared with MGS, the accuracy is fur-
ther improved based on PCA scanning.

4.2.1.2 Face recognition ORL data set [28] consists of
faces of 40 people of different ages, genders and races.
Each person has 10 images sized at 92 × 112, and there
are 400 grayscale images in total with black background.
Each person’s facial expression is different, such as smil-
ing or not, eyes opening or closing, wearing or not wearing
glasses, etc. The face pose is different too, of which the
depth and plane rotation can both reach 20 degree. Moreo-
ver, the maximum variation of face size can be 10%. For
ORL data set, we compare the test results of random for-
est, gcForest, SVM, DCDF and FRF (with PCA scanning
and MGS respectively). In the experiment, for each object,
this paper selects 1, 5 and 9 face images to conduct model
training, while the remaining images are used to test. After
careful fine-tuning of hyper-parameters, the node number
of feature-mapping layer in FRF is set as 15. Table 3 gives
the test results.

As can be seen from Table 3, EC3 displays a superior test
accuracy when the training data are relatively insufficient.
This is mainly because that EC3 has a stronger learning abil-
ity when dealing with insufficient manually labeled data.
However, with sufficient training data, the proposed FRF is
superior to all the other methods.

4.2.1.3 Small‑scale data sets Classification experiments are
further carried out on twenty-four small-scale data sets. The
results are shown in Table 4 [29] and displayed in Fig. 11,
respectively. In Fig. 11, the X-axis represents various mod-

els on various data sets and the Y-axis denotes prediction
accuracies (percentage).

As shown in Table 4 and Fig. 11, compared with gcForest,
DCDF displays a slight rise of accuracy rate in most datasets
(a rise by 0.13% on average), and shows more superiority
over other competitive algorithms. The accuracy rate of FRF
is quite similar to that of DCDF in these small-scale data
sets, which demonstrates the accuracy does not get worse by
decreasing the model depth while increasing the model width.

4.2.2 Training efficiency

To validate the high training efficiency of FRF, we compare
the running time of FRF, BRF, EC3, DNN, MLP and gcFor-
est on the same data sets (detailed in the next paragraph),
and on the same computing resources as GPU GTX1080ti X
2 with 22G video memory, CPU Intel E5-2640 v4, Memory
32G and Hard Disk 1 TB.

Six image datasets and two small non-image datasets are
selected for this experiment. The six image datasets include
Digits, Minist, Cifar10, Cifar100, Fer and Adience; the non-
image datasets include Adult dataset and Letter dataset.
Hereinto, compared with the preceding experiments, this
section adds two new data sets, Fer and Adience, where Fer
is a Facial Expression Recognition data set with 35,888 pic-
tures and Adience has 26,580 human images with distributed
ages between 0 and 60. During the experiment, whenever the
accuracy variation tends to be stable, the training time and the
accuracy rate are recorded respectively, as shown in Fig. 12.

As can be seen from Fig. 12, in both large datasets and
small datasets, while maintaining competitive accuracy

Fig. 11 Prediction accuracies on small-scale data sets

International Journal of Machine Learning and Cybernetics

1 3

rates, FRF demonstrates a sensible advantage over other
methods in running time. Specifically, compared with gcFor-
est, the running time of FRF has been shortened by 24.3%
on average. Compared with that of other algorithms, the
running time of FRF is much faster. Therefore, it can be
concluded that FRF model has excellent scalability in terms
of running time. It is noted that the accuracies of FRF on
Cifar10 and Cifar100 are significantly better than that of
gcForest, due to the advantage of PCANet (for FRF) over
MGS (for gcForest) on large-scale image data sets.

4.2.3 Influence of hyper‑parameters

Three experiments are conducted to study the influence
of hyper-parameters on FRF, including node number in

feature-mapping layer, minimum samples of decision tree’s
leaf nodes and number of decision trees in RF, respec-
tively. For each experiment, cifar10 and IMDB data set are
employed to obtain two curves of accuracy variation. See
Figs. 13, 14 and 15.

As shown in Fig. 13, when the node number of feature-
mapping layer is not large enough, the accuracy rate can be
improved by increasing the node number. However, when
the node number reaches a threshold value, the improvement
of accuracy rate is no longer obvious. Therefore, during the
experiments, it is suggested that the node number of feature-
mapping layer should keep increasing until the performance
becomes steady.

Fig. 12 Training efficiency with
accuracy on various data sets

Fig. 13 Accuracy influence by node number of feature-mapping layer

Fig. 14 Accuracy influence by minimum sample amount of decision
tree’s leaf node

 International Journal of Machine Learning and Cybernetics

1 3

We can observe in Fig. 14 that the minimum sample
amount of decision tree’s leaf node should be in appropri-
ate range. If it is smaller than 30, the model will tends to
overfit. On the contrary, if it is larger than 80, under-fit-
ting will occur to the model. Thus, it is necessary to adjust
this parameter for different data sets to appropriate ranges,
respectively.

As illustrated in Fig. 15, the generalization ability of
the model is poor when the number of decision trees in RF
is smaller than 200. Hence, the final accuracy rate is low.
When the number surpasses a threshold (≥ 200), the final
accuracy rate tends to be relatively stable. Thus, based on
our experiment settings, the number of decision trees in RF
should not be smaller than 200.

5 Conclusion

In summary, this paper proposes a novel ensemble-learning
model to overcome the shortcomings of gcForest. By virtue
of dense connection and FNN, the proposed Flat Random
Forest model has the ability of adaptively learning the model
size, which enables the balance between the model depth
and width. Experimental results show that compared with
other popular methods our method achieves sensibly higher
training efficiency while maintaining competitive accuracy.

In the process of applying FNN to RF ensemble learn-
ing, we find that more studies need to be done in this area.
Could FRF be adopted to replace the fully connected layer
of CNN to solve the issue of too many parameters? Could
size-adaptive training of the model be implemented in other
way? How to use FRF to conduct transfer learning? And so
on. Moreover, the parallelization and theoretical analysis of
FRF still need to be investigated further.

Acknowledgements This work was supported by the Fundamental
Research Funds for the Central Universities (2017XKQY082). The
authors would like to thank the anonymous reviewers and the associate
editor for their valuable comments.

References

 1. Dimitriadou E, Weingessel A, Hornik K (2001) Voting-merging:
an ensemble method for clustering. In: International conference
on artificial neural networks, pp 217–244

 2. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
 3. Schapire RE (1999) A brief introduction to boosting. In: Six-

teenth international joint conference on artificial intelligence, pp
1401–1406

 4. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting
system. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp 785–794

 5. Friedman JH, Popescu BE (2008) Predictive learning via rule
ensembles. Ann Appl Stat 2(3):916–954

 6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
 7. Zhou ZH, Feng J (2017) Deep forest: towards an alternative to

deep neural networks. arXiv :1702.08835
 8. Huang G, Liu Z, Laurens VDM, Weinberger KQ (2017) Densely

connected convolutional networks. In Proceedings of the 2017
IEEE conference on computer vision and pattern recognition
(CVPR), vol 1(no. 2), p 3

 9. Chen CLP, Wan JZ (1999) A rapid learning and dynamic stepwise
updating algorithm for flat neural networks and the application to
time-series prediction. IEEE Trans Syst Man Cybern B Cybern
29(1):62–72

 10. Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2014) PCANet: a
simple deep learning baseline for image classification. IEEE Trans
Image Process 24(12):5017–5032

 11. Chen CLP, Liu Z (2018) Broad learning system: an effective and
efficient incremental learning system without the need for deep
architecture. IEEE Trans Neural Netw Learn Syst 29(1):10–24

 12. Payne DB, Stern JR (1985) Wavelength-switched passively cou-
pled single-mode optical network. In: Proceedings of the IOOC–
ECOC, vol 85, p 585

 13. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive
mixtures of local experts. Neural Comput 3(1):79–87

 14. Hoeting JA, Madigan D, Volinsky RCT (1999) Bayesian model
averaging: a tutorial. Stat Sci 14(4):382–401

 15. Bagui SC (2005) Combining pattern classifiers: methods and algo-
rithms. Technometrics 47(4):517–518

 16. Bauer E, Kohavi R (1999) An empirical comparison of voting
classification algorithms: bagging, boosting, and variants. Mach
Learn 36(1–2):105–139

 17. Mallapragada PK, Jin R, Jain AK, Liu Y, Mallapragada PK, Jin
R et al (2009) Semiboost: boosting for semi-supervised learning.
IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014

 18. Bennett KP, Demiriz A, Maclin R (2002) Exploiting unlabeled
data in ensemble methods. In: Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery and
data mining, pp 289–296

 19. Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled
data using three classifiers. IEEE Trans Knowl Data Eng
17(11):1529–1541

 20. Yoon J, Zame WR, Mihaela VDS (2018) ToPs: ensemble
learning with trees of predictors. IEEE Trans Signal Process
66(8):2141–2152

Fig. 15 Accuracy influence by number of decision trees in RF

http://arxiv.org/abs/1702.08835

International Journal of Machine Learning and Cybernetics

1 3

 21. Wu Q, Ye Y, Zhang H et al (2014) ForesTexter: an efficient ran-
dom forest algorithm for imbalanced text categorization. Knowl
Based Syst 67:105–116

 22. Amiri S, Mahjoub MA, Rekik I (2018) Dynamic multiscale tree
learning using ensemble strong classifiers for multi-label segmen-
tation of medical images with lesions. In: Proceedings of the 13th
international joint conference on computer vision, imaging and
computer graphics theory and applications, vol 4, pp 419–426

 23. Chakraborty T (2017) [IEEE 2017 IEEE international confer-
ence on data mining (ICDM)—New Orleans, LA (2017.11.18-
2017.11.21)] 2017 IEEE international conference on data min-
ing (ICDM)—EC3: combining clustering and classification for
ensemble learning, pp 781–786

 24. Strauss T, Hanselmann M, Junginger A et al (2017) Ensemble
methods as a defense to adversarial perturbations against deep
neural networks. arXiv :1709.03423

 25. Zhou ZH (2012) Ensemble methods: foundations and algorithms.
Chapman and Hall/CRC, London

 26. Hinton GE, Osindero S, Teh YW (2014) A fast learning algorithm
for deep belief nets. Neural Comput 18(7):1527–1554

 27. Wang Y, Xia ST, Tang Q et al (2018) A novel consistent random
forest framework: Bernoulli random forests. IEEE Trans Neural
Netw Learn Syst 29(8):3510–3523

 28. Samaria FS, Harter AC (1994) Parameterization of a stochastic
model for human face identification. IEEE Workshop Appl Com-
put Vis 22:138–142

 29. Asuncion A, Newman D (2007) UCI machine learning repository.
University of California, School of Information and Computer
Science, Irvine

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1709.03423

	Flat random forest: a new ensemble learning method towards better training efficiency and adaptive model size to deep forest
	Abstract
	1 Introduction
	2 Related works
	3 Flat random forest
	3.1 Preliminaries
	3.1.1 gcForest
	3.1.2 Densely connected CNN
	3.1.3 Functional-link neural network

	3.2 Densely connected deep forest
	3.3 System model of FRF
	3.4 Training process of FRF
	3.5 PCA scanning
	3.6 Combination of PCA scanning and FRF

	4 Experiments
	4.1 Configuration
	4.2 Experimental results
	4.2.1 Accuracy
	4.2.1.1 Image classification
	4.2.1.2 Face recognition
	4.2.1.3 Small-scale data sets

	4.2.2 Training efficiency
	4.2.3 Influence of hyper-parameters

	5 Conclusion
	Acknowledgements
	References

