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Abstract
The known deficiencies of deep neural networks include inferior training efficiency, weak parallelization capability, too many 
hyper-parameters etc. To address these issues, some researchers presented deep forest, a special deep learning model, which 
achieves some significant improvements but remain poor training efficiency, inflexible model size and weak interpretability. 
This paper endeavors to solve the issues in a new way. Firstly, deep forest is extended to the densely connected deep forest 
to enhance the prediction accuracy. Secondly, to perform parallel training with adaptive model size, the flat random forest 
is proposed by achieving the balance between the width and depth of densely connected deep forest. Finally, two core algo-
rithms are respectively presented for the forward output weights computation and output weights updating. The experimental 
results show, compared with deep forest, the proposed flat random forest acquires competitive prediction accuracy, higher 
training efficiency, less hyper-parameters and adaptive model size.

Keywords Ensemble learning · Flat random forest · Training efficiency · Size-adaptive model

1 Introduction

As is known, ensemble learning is an effective learning 
method to improve the performance of individual mod-
els. Typical ensemble learning methods include unsuper-
vised clustering algorithm [1], Bagging [2], Boosting [3], 

XGBoost [4], Rule aggregation [5] and Random Forest (RF) 
[6]. Recently, Zhou et al. presented Deep Forest (gcForest) 
[7] as a counterpart of convolutional neural network (CNN). 
Compared with CNN, gcForest has some advantages, such 
as fewer hyper-parameters, shorter training time and lower 
computation cost. Nevertheless, gcForest still has the fol-
lowing inadequacies:

1. Training Efficiency

In gcForest, the output of each RF layer is input to the next 
layer, which leads to poor parallelization between different 
layers during model training. What’s more, by means of 
multi-grained scanning (MGS) [7], gcForest only extracts 
the locally spatial input features (e.g. sequence data and 
image) for training each random forest. Thereby, each ran-
dom forest needs to be trained for EACH scanning window 
of different sizes, which results in poor training efficiency.

2. Size Adaption

The gcForest adaptively selects the model size by dynami-
cally increasing the depth of model. However, it cannot elim-
inate the random forests, which contribute little to the out-
put results, and cannot retrain the model accordingly. Thus, 
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this kind of self-adaptive mechanism cannot guarantee that 
every node of the random forests contributes substantially 
to the final output. Consequently, it also leads to low train-
ing efficiency.

3. Number of Hyper-parameters

The gcForest needs to manually adjust numerous hyper-
parameters, including the number of random forests in MGS, 
the size of sliding window of MGS, the number of random 
forests in each cascade layer, the number of random trees 
in each random forest, and so on. Therefore, the number of 
manually adjusted hyper-parameters is still relatively large, 
increasing great difficulty for model training.

4. Interpretability

As a deep model, gcForest cannot obtain the contribution 
of each random forest to the final output after training, thus 
leading to weak interpretability.

Aiming to solve the abovementioned issues of gcFor-
est, this paper proposes a new ensemble learning method 
based on RF. First, inspired by densely connected CNN 
[8], the densely connected deep forest (DCDF) is built by 
improving the cascade modules of gcForest. Compared with 
gcForest, DCDF has stronger forward feature-transmission 
capacity and better performance for large-scale datasets. 
To further improve the training efficiency, the flat random 
forest (FRF) is developed by parallelizing DCDF. FRF not 
only has the ability of learning better representation of the 
output feature, but also makes parallelization much easier 
via the trade-off between the depth and width of the model. 
Compared with gcForest, FRF has the following advantages:

1. Higher training efficiency The output weight of FRF can 
be simply calculated by the proposed forward calcula-
tion algorithm. Inspired by [9], the proposed algorithm 
can update output weights efficiently with the increase of 
the number of RF. Hence, FRF can be trained efficiently 
to obtain the final model. Additionally, since the depth 
of the model is controlled, it is easier to carry out paral-
lelization training for FRF, which enhances the training 
efficiency considerably, especially for large-scale data. 
Besides, in this paper, MGS is replaced by principle 
component analysis (PCA) network (PCANet) [10], 
which further improves the training efficiency and the 
classification accuracy.

2. Size-adaptive model The proposed FRF can adaptively 
specify model size through the model training. First, 
the node number of enhancement-layer can be dynami-
cally increased by adding RF nodes. Besides, RF node 
with small local weight will be replaced by new-trained 
RF. At last, when the prediction accuracy of the model 

reaches the goal or it does not rise any more, a size-
adaptive model can be obtained.

3. Less hyper-parameters Compared with gcForest, the 
number of hyper-parameters, which need manually fine 
tuning, is further reduced. For FRF, the hyper-parame-
ters only consist of the number of decision trees in each 
RF, the node number of the feature-mapping layer and 
the minimum sample number of the decision tree’s leaf 
nodes. Since the first parameter has little effect upon 
overall performance, it can be set as an empirical value. 
Thus, only the rest two parameters need fine tuning for 
FRF.

4. Better interpretability FRF has better interpretabil-
ity than gcForest based on the average output of each 
RF. Specifically, the final output only relies on output 
weights, which makes theoretical analysis easier.

To summarize, the primary contributions of this paper 
are:

1. Introducing the idea of densely connected CNN to 
DCDF, which significantly improves the prediction 
accuracy of gcForest.

2. Utilizing the architecture of functional-link neural net-
works [11] to increase width and decrease depth of 
DCDF and proposing a novel ensemble learning method, 
termed as FRF.

3. Developing two algorithms for training FRF, including 
forward output weight computation and output weight 
updating.

4. Integrating PCA Scanning into FRF to further improve 
the model training efficiency and accuracy.

The remaining paper is organized as follows: Sect. 2 
introduces related works of ensemble learning, Sect. 3 pro-
vides the details of the flat random forest, Sect. 4 presents 
experimental results with analysis, and Sect. 5 gives the 
conclusion.

2  Related works

Conventional ensemble learning mainly includes meta-
learning, Rule Ensemble, semi-supervised based ensem-
ble learning, etc. Meta-feature generation methods (meta-
learning), such as Stacking [12] and adaptive mixture of 
experts [13], which use the output of sub-level models as 
the integrated features to construct advanced model. Rule 
Ensemble [5] and Bayesian averaging model [14] employ the 
training set to generate basic models and model combina-
tion simultaneously. Refs. [15, 16] study how to select basic 
models to reach the minimum error rate for an ensemble 
model. Moreover, there are some studies aiming at using 
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semi-supervised learning to integrate clustering methods 
into ensemble classier, including Semiboost [17], Assemble 
[18] and Try-training [19], etc.

In recent years, many new research directions appear in 
the field of ensemble learning. Yoon et al. [20] put forward 
ensemble learning with trees of predictors that generated 
a different path for each sample. Then the base predictors 
of each sample were selected from the trees of predictors 
according to their respective path so as to achieve better 
performance. Wu et al. [21] generated random forest by 
different feature subspace selections of minority class and 
majority class to tackle the problem of imbalanced text cat-
egorization. Chakraborty et al. [22] embedded structured 
random forest and Bayesian Network into a tree structure 
and designed a dynamic method to decide the depth of tree 
structure ensemble model. Chakraborty et al. [23] combined 
clustering and classification for ensemble learning to solve 
the problem of lack of sufficient manually labeled data. 
Strauss et al. [24] utilized ensemble learning to solve the 
problem of deep learning models, which is stated as being 
highly vulnerable to adversarial perturbations. The above 
studies improved ensemble learning from various perspec-
tives, including solving the issues that deep learning cannot 
address.

Inspired by gcForest, this paper proposes FRF, a novel 
ensemble learning method composed of meta-learning, 
stacking, and adaptive selection of basic model or combined 
model. Specifically, FRF leverages stacking architectures 
and combines the meta-feature generation of the feature-
mapping layer with that of the enhancement layers, such as 
to have satisfactory performance of representation learning 
and good interpretability. In addition, the proposed node 
elimination method is adaptive to select and update basic 
models, while the output weight computing method is effi-
cient to decide the combined model. Finally, the proposed 
FRF achieves good balance between high efficiency and 
high classification accuracy, and makes theoretical analysis 
simpler.

3  Flat random forest

In this section, we first introduce preliminaries that will be 
useful to understand our model, which mainly cover details 
of gcForest, the densely connected CNN and functional-link 
neural network. After that, the densely connected deep forest 
(DCDF) is presented as the underlying structure of the pro-
posed model. Then, the flat random forest (FRF) is presented 
by parallelizing DCDF. Finally, PCA Scanning is integrated 
into FRF to improve the classification accuracy.

3.1  Preliminaries

3.1.1  gcForest

Zhou et al. presented gcForest [7] to overcome the short-
comings of traditional CNN models. As shown in Fig. 1, 
the output of prior layer in gcForest is just the input of next 
layer and ONLY the input feature vector can serve as a part 
of each layer’s input. The model training will become more 
difficult as the depth of gcForest increases.

3.1.2  Densely connected CNN

The major contribution of the densely connected CNN [8] is 
to put forward Dense Block and apply it to CNN, as shown 
in Fig. 2. The main idea of Dense Block is to add up all the 
outputs of prior layers as the input of subsequent neural lay-
ers. Motivated by this idea, we apply the dense connection to 
the construction of Flat Random Forest model. More details 
are presented in Sect. 3.3.

3.1.3  Functional‑link neural network

As illustrated in Fig. 3, the functional-link neural network 
(FNN) is composed of input layer and enhancement layer, 
and each layer contains numerous neuron nodes [11]. Thus, 
FNN leverages the original input and generated features to 
perform the prediction of the output.
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3.2  Densely connected deep forest

Firstly, combined with the densely connected CNN, gcFor-
est is extended to Densely Connected deep forest (DCDF). 
As shown in Fig. 4, the outputs of all prior layers in DCDF 
are concatenated as the input of current layer. Specifically, 
DCDF is considered as a widened gcForest with the depth 
unchanged. Thus, RF at each level in Fig. 4 is regarded as a 
whole, and the original model in Fig. 4 can be transformed 
to the structure in Fig. 5. Notably, these two models are 
essentially the same.

As illustrated in Fig. 5, if the cascade structure of gcFor-
est, except Level-1, is regarded as ONE node (i.e. Node-
N in Fig. 5), DCDF can be viewed as the width extension 
based on Node-N, i.e., the extended model includes one 
node (Node-1) in the first layer and N-1 nodes in the second 
layer. Consequently, DCDF enriches the diversity of feature 
representations, which contributes to the accuracy improve-
ment of the ensemble model.

From Fig. 5, we can observe that DCDF is actually one 
special kind of FNN. Node-1 denotes the input layer that 
is named feature-mapping layer in the following part of 
the paper. The random forest layer composed of Node-2 
to Node-N is named as enhancement layer. In addition, all 
enhancement nodes in DCDF, except Node-2, contain more 

than two random forest layers. Nevertheless, it is not hard to 
find that this multi-layer cascade structure not only increases 
the difficulty of theoretical analysis but also causes low 
training efficiency for large-scale data. On one hand, making 
DCDF wider can improve performance; on the other hand, 
controlling the depth of DCDF facilitates efficient training 
and good interpretability. Therefore, the depth and width of 
DCDF should be balanced to enable the model with better 
performance, training efficiency and interpretability, which 
is the original idea of creating FRF.

3.3  System model of FRF

Based on DCDF, the system model of FRF is presented in 
Fig. 6. As can be seen, Level-1 RF layer, named as the fea-
ture-mapping layer (FML), is firstly horizontally expanded. 
On top of the FML, we design the enhancement layer (EL) 
that is combined with the FML to form a two-layer RF cas-
cade. Moreover, the output of the FML is concatenated with 
the input feature vector to serve as the input of the EL, and 
both outputs are used for the final prediction.

Of note, FRF transfers every neuron node in FNN into 
RF node, such that it can be regarded as a special kind of 
FNN. As is well known, it is very important for ensemble 
algorithms to have model diversity [25]. Therefore, the pro-
posed FRF utilizes a full-random tree forest and an ordinary 
random forest to form a composite node to increase model 
diversity.

Specifically, the feature-mapping layer of FRF is com-
posed of n nodes, shown in Fig. 6, and the input feature 
vector of this layer is generated by original input data after 
PCA scanning (as shown in Fig. 9, PCA scanning will be 
described in Sect. 3.5). Through the feature-mapping layer, 
a total of n feature mappings can be obtained, which are 
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denoted as F1, F2,… , F
n
 . Moreover, each  Fi is a k-dim vector 

(for k classification, k = 3 in Fig. 6). Then we concatenate the 
output of feature-mapping layer and the input feature vector 
to serve as the input of enhancement layer. Next, through the 
enhancement layer, the outputs can be obtained and denoted 
as E1,E2,… ,E

m
, E

m+1,… , E
m+S , where m is the initial num-

ber of enhancement nodes, s is the dynamically added num-
ber of enhancement nodes, and m + s is the final number 
of enhancement nodes till the end of training process. The 
output layer uses the weighted sum of all outputs of feature-
mapping nodes and enhancement nodes to obtain the final 
output. Moreover, the output of feature-mapping node and 
enhancement node are all k-dim vectors (for k classification, 
k = 3 in Fig. 6). Each element of the output vector repre-
sents the probability of input feature vector belonging to 
the corresponding class. At last, the final class is the largest 
element in the final output vector. The computation process 
of the output for each RF is shown in Fig. 7. It is clear that 
the output of RF is the average of all decision trees’ outputs.

3.4  Training process of FRF

As shown in Fig. 6, the input matrix of output layer is set as 
the combination of feature-mapping layer and enhancement 
layer, defined as � = [F1, F2,… , F

n
, E1,… , E

m+s] , where 

F1, F2,… , F
n
, E1,… , E

m+s are column vectors composed 
of k elements (k = 3 in Fig. 6). The output weight vector is 
defined as � =

[
W1,W2,… ,W

n+m+s

]T . Hence, the following 
equation can be obtained:

where Y denotes the final output vector of FRF.
The training process of FRF consists of three parts: gen-

eration of feature-mapping layer, generation of enhancement 
layer and computation of output weight. The complete train-
ing procedure of FRF is as follows.
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Next, the output weight vector � = [W1,W2,… ,W
n+m]

T 
can be calculated through local weights as follows.

For new enhancement nodes, Eq. 3-4 shows that each 
Wi only needs to multiply a coefficient. Denote the number 
of additional enhancement nodes as s, each node’s output 
weight can be updated as follows.

From the discussion mentioned above, it can be seen that 
the training process of FRF only involves forward opera-
tions. In addition, the elimination mechanism and local 
weights are introduced to guarantee all RFs contribute to 
the final prediction vector. Moreover, by different values of 
output weights, the contribution of each node to the final 
prediction vector can be measured directly. Thus, the theo-
retical analysis of FRF becomes relatively easier.

(3-3)� =

∑N

i=1
O

T

i
⋅ C

i

N
=

∑N

i=1
�

ii

N

(3-4)W
i
=

�
i∑n+m

i=1
�
i

, i = 1, 2,… n + m

(3-5)W
t

i
=

⎧
⎪⎨⎪⎩

�i∑n+m+s

i=1
�i

=
�i∑n+m

i=1
�i

×
∑n+m

i=1
�i∑n+m+s

i=1
�i

= W
t−1
i

×
∑n+m

i=1
�i∑n+m+s

i=1
�i

, i = 1, 2,… n + m

�i∑n+m+s

i=1
�i

, i = n + m + 1,… , n + m + s

In Algorithm 1, the process of calculation and update for 
W is as follows.

First, denote the output matrix of sample set in this node as 
� =

[
�1,�2,… ,�

N

]T
, �

i
= [O

i1,Oi2,… ,O
ik
]T , i = 1, 2,…N , 

where Oip denotes the probability of the ith sample belong-
ing to the pth category predicted by this node. For the 
sample set, its corresponding target category matrix is 
� =

[
�1,�2,… ,�

N

]
, �

i
= [c

i1, ci2,… , c
ik
]T , i = 1, 2,…N 

(only if the ith sample belongs to the pth category, then 
cip = 1, else, cip = 0). Then the local weight is calculated as 
Eq. 3-2.

where �T

i
∙ �i denotes the probability of the ith sample 

belonging to the target category predicted by this node. 
To calculate the average probability on the training set, 
vectorization calculation is employed here. In Eq. 3-2, let 
� = � ∙ � , Eq. 3-3 will be obtained.

(3-2)� =

∑N

i=1
�

T

i
∙ �

i

N
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3.5  PCA scanning

The gcForest [7] adopts Multi-grained scanning (MGS), as 
shown in Fig. 8, to extract one-dimensional feature vector 
that is then used as the input of cascade module. However, 
through the experiments, it is discovered that this scan-
ning method requires high expense of CPU and memory 
and is time-consuming meanwhile. In this paper, inspired 
by PCANet, as shown in Fig. 9, we adopt PCA scanning 
instead of MGS. The experiment demonstrates the scanning 
efficiency greatly rises while the model accuracy even fur-
ther improved by PCA scanning. More details about PCA 
scanning will be discussed in Sect. 3.6.

3.6  Combination of PCA scanning and FRF

The overall running procedure of proposed model is actually 
divided into two parts, as shown in Fig. 10, named as PCA 
scanning and Flat Random Forest (FRF) training.

Suppose we input N training images sized at 32 × 32 and 
the size of scanning window is k1 × k2. Through padding and 
scanning, 32 × 32 × N vectors can be generated with dimen-
sion of k1 × k2. Then PCA scanning will be performed after 
averaging removed to extract L1 principal component feature 

vectors via the parameter of L1 convolution kernels in the 
first stage (the size of convolution kernel is k1 × k2). Thus, 
the original input image is transformed to N × L1 images of 
size 32 × 32 by the first-stage scanning. Moreover, based on 
the first-stage scanning, the second-stage scanning conducts 
the same operation to obtain L2 principal component feature 
vectors as the parameter of second-stage convolution kernel 
(the size of convolution kernel is k1 × k2). The second con-
volutional layer outputs N × L1 × L2 images of size 32 × 32, 
which are divided into N groups (each original image corre-
sponds to one group). Then conduct hashing and histogram 
statistics for each group to obtain the feature vector output 
with the length of 2L2 ∗ L1 ∗ B (where B denotes the block 
number when partitioning each image to carry out hashing 
and histogram statistics, which is not detailed in this part. 
Please refer to PCANet [10]). Thus, after PCA scanning, for 
N input images, N feature vectors with length of 2L2 ∗ L1 ∗ B 
are obtained.

After PCA scanning, the obtained feature vector and the 
original input label are used to train the RFs to generate the 
feature-mapping layer. Actually, the feature-mapping layer 
contains n nodes, and to enhance diversity of ensemble 
algorithms, each node is composed of a completely random 
tree forest and an ordinary RF. The output of each node 
is the mean value of two random forests’ output. Through 
the feature-mapping layer, each training sample can obtain 
� =

[
�1,�2,… ,�

n

]
 , in which Fi is a k-dim prediction vec-

tor (in Fig. 6, k = 3). Then F and the PCA-obtained feature 
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vector are concatenated into the new feature (the labels 
still keep the same) to generate the enhancement layer of 
m enhancement nodes. Similarly, each node is composed 
of a completely random tree forest and an ordinary random 
forest, and the output of each enhancement node is the mean 
value of two random forests’ outputs. Through the enhance-
ment layer, each training sample can obtain m instances of 
k-dim prediction vector. Next, as mentioned in Fig. 6, the 
proposed training method is adopted to increase the number 
of enhancement node dynamically until the end of training. 
Finally, the output weight of each node is obtained.

At the FRF testing phase, each input sample passes 
through the PCA scanning, feature-mapping layer and 
enhancement layer to generate the input of output layer, 
i.e. � =

[
�1,�2,… ,�

n
,�1,… ,�

m+s

]
 (given that the train-

ing process ends with m + s enhancement nodes). Then the 
inner product of A and W can be easily computed to obtain 
the final category prediction Y.

Lastly, we focus on the FRF’s hyper-parameters, includ-
ing the size of PCA scanning window, the number of deci-
sion trees contained in each RF, the minimum sample num-
ber of decision tree’s leaf nodes and the node number of the 
feature-mapping layer. Among the four hyper-parameters, 
the former two can be determined empirically and the lat-
ter two need manual fine-tuning. More detailed discussions 
about hyper-parameters will be given in the experiments.

4  Experiments

In this section, to validate the effectiveness of the proposed 
method, we compare FRF with DCDF, gcForest and some 
other models on different datasets. Furthermore, the training 
efficiency of FRF and other methods are compared by using 
the same ratio of training data to testing data. Finally, three 

experiments are designed to study the influence of hyper-
parameters on FRF.

4.1  Configuration

Firstly, as shown in Table 1, the common hyper-parameters 
of gcForest, DCDF and FRF in the experiments are listed 
as follows.

Secondly, the detailed hyper-parameters for FRF only are 
shown as follows:

1. For PCA scanning, the corresponding hyper-parameters 
are set as k1 = k2 = 5, L1 = L2 = 8, B = (H∕8) × (W∕8)

(refer to Sect. 3.6) while those of MGS are set just the 
same as gcForest.

2. For the feature-mapping layer, the node number is 8, and 
each node consists of a completely random tree forest 
and a RF. Each RF contains 200 decision trees and the 
minimum sample number of decision tree’s leaf nodes 
is 40.

3. For the enhancement layer, correspondingly, each RF 
includes 200 decision trees and the minimum sample 
number of decision tree’s leaf node is 40.

Next, for other machine learning methods, we mainly 
refer to the experiment data of gcForest reported in [7], and 
the relevant hyper-parameters are specified.

Finally, we divide the training sample set into three parts 
in the proportion of 60%, 20% and 20%, respectively. Then, 
60% training data is utilized to generate RF. Then 80% (60% 
plus 20%) data is used to calculate the local weight of each 
node. Lastly, the left 20% is adopted to carry out accuracy 
test. When the accuracy reaches the expected value or the 
accuracy does not increase any more, the model training 
process is terminated.

Table 1  Summary of common hyper-parameters

GcForest Densely-connected deep forest Flat random forest

Type of forests Type of forests Type of forests
Complete random tree forest, random forest, 

etc.
Complete random tree forest, random forest, 

etc.
Complete random tree forest, random forest, 

etc.
Forest in multi-grained scanning Forest in multi-grained scanning Forest in feature Mapping layer
No.Forests:{2} No.Forests:{2} No.Forests:{8}
No.trees in each Forest:{30} No.trees in each Forest:{30} No.trees in each Forest:{200}
Tree growth: till pure leaf, or ≤ 20 instances Tree growth: till pure leaf, or ≤ 20 instances Tree growth: till pure leaf, or ≤ 40 instances
Sliding window size: {⌊d∕16⌋, ⌊d∕9⌋, ⌊d∕4⌋} Sliding window size: {⌊d∕16⌋, ⌊d∕9⌋, ⌊d∕4⌋}
Forest in cascade Forest in cascade Forest in Enhancement layer
No.Forests:{4} No.Forests:{4} No.Forests: self-adaption during training 

process
No.trees in each Forest:{1000} No.trees in each Forest:{1000} No.trees in each Forest:{300}
Tree growth: till pure leaf, or ≤ 10 instances Tree growth: till pure leaf, or ≤ 10 instances Tree growth: till pure leaf, or ≤ 40 instances
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4.2  Experimental results

4.2.1  Accuracy

4.2.1.1 Image classification The following four kinds of 
data sets are employed for image classification. Digits data 
set is composed of 1797 samples, where each sample is a 
handwriting of 0–9. MNIST is also a handwriting recogni-
tion data set sized at 28 × 28 that includes 60,000 training 
samples and 10,000 test samples. Cifar10 data set contains 
50,000 training images sized at 32 × 32 and 10,000 test 
images of the same size, in which the number of object cat-
egory is 10. Moreover, for Cifar100 data set, the number 
and size of training images and test images are the same 
as Cifar10 except that it contains 100 object categories. In 
the experiment, we use these four kinds of data sets to test 
RF, gcForest, DCDF and FRF. Meanwhile, the experiment 
results of LeNet-5 in gcForest [7], EC3 [23], DBN [26] and 
BRF [27] are also compared together as shown in Table 2. 

From Table 2, it can be observed that the accuracy of 
DCDF is 1.94% higher than that of gcForest on average, 
which means DCDF, with dense connection, has stronger 
feature representation ability than gcForest. Most impor-
tantly, compared with DCDF and LeNet-5, FRF achieves 
more competitive accuracy (11.5% higher than DCDF 
and 3.34% higher than LeNet-5 on average), which proves 
effectiveness of the transformation from depth to width. In 

Table 2  Prediction accuracies 
on various image data sets

Bold indicates the best results

Digits (%) MNIST Cifar10 (%) Cifar100 (%)

Flat random forest (PCA scanning) 99.81 99.36% 89.01 74.32
Flat random forest (multi-grained scanning) 99.75 99.01% 71.52 62.09
Densely-connected deep forest 99.73 99.02% 68.55 59.14
gcForest 99.69 98.96% [7] 63.82 51.00
BRF 98.98 98.75% 65.12 58.37
EC3 99.46 99.61% 70.36 67.45
DBN [13] 99.31 98.75% 62.27 55.77
DNN (Le-Net5) 99.77 99.05% [7] 80.59 68.73
Random forest 98.73 96.80% [7] 50.23 32.25

Table 3  Prediction accuracies 
on ORL face data set

Bold indicates the best results

1 image 5 images 9 images

Flat random forest (PCA scanning) 66.94% 96.95% 99.30%
Flat random forest (multi-grained scanning) 66.38% 96.10% 98.50%
Densely-connected deep forest 65.83% 95.05% 98.60%
gcForest 63.06% [7] 94.25% [7] 98.30% [7]
BRF 66.48% 92.79% 98.18%
EC3 68.16% 96.32% 99.08%
Random forest 61.70% [7] 91.20% [7] 97.00% [7]
DNN (CNN) 3.30% [7] 86.50% [7] 92.50% [7]
SVM (RBF kernel) 57.90% [7] 78.95% [7] 82.50% [7]

Table 4  Small-scale classification data sets

Instances Features Classes

Iris 150 4 3
Letter 20,000 16 26
Adult 48,842 14 2
Yeast 1484 8 10
Zoo 101 17 7
Breast 106 10 6
Echocardiogram 132 12 2
Wine 178 13 3
Vertebral 310 6 3
Cvr 435 16 2
Bands 512 39 2
WDBC 569 32 2
Land-cover 675 148 9
Credit 690 15 2
Transfusion 748 5 2
Vehicle 946 18 4
Mammographic 961 6 2
CMC 1473 9 3
Car 1728 6 4
Image 2310 19 7
Madelon 2600 500 2
Chess 3196 36 2
ADS 3279 1558 2
Abalone 4177 8 29
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addition, for FRF, compared with MGS, the accuracy is fur-
ther improved based on PCA scanning.

4.2.1.2 Face recognition ORL data set [28] consists of 
faces of 40 people of different ages, genders and races. 
Each person has 10 images sized at 92 × 112, and there 
are 400 grayscale images in total with black background. 
Each person’s facial expression is different, such as smil-
ing or not, eyes opening or closing, wearing or not wearing 
glasses, etc. The face pose is different too, of which the 
depth and plane rotation can both reach 20 degree. Moreo-
ver, the maximum variation of face size can be 10%. For 
ORL data set, we compare the test results of random for-
est, gcForest, SVM, DCDF and FRF (with PCA scanning 
and MGS respectively). In the experiment, for each object, 
this paper selects 1, 5 and 9 face images to conduct model 
training, while the remaining images are used to test. After 
careful fine-tuning of hyper-parameters, the node number 
of feature-mapping layer in FRF is set as 15. Table 3 gives 
the test results.

As can be seen from Table 3, EC3 displays a superior test 
accuracy when the training data are relatively insufficient. 
This is mainly because that EC3 has a stronger learning abil-
ity when dealing with insufficient manually labeled data. 
However, with sufficient training data, the proposed FRF is 
superior to all the other methods.

4.2.1.3 Small‑scale data sets Classification experiments are 
further carried out on twenty-four small-scale data sets. The 
results are shown in Table 4 [29] and displayed in Fig. 11, 
respectively. In Fig. 11, the X-axis represents various mod-

els on various data sets and the Y-axis denotes prediction 
accuracies (percentage).

As shown in Table 4 and Fig. 11, compared with gcForest, 
DCDF displays a slight rise of accuracy rate in most datasets 
(a rise by 0.13% on average), and shows more superiority 
over other competitive algorithms. The accuracy rate of FRF 
is quite similar to that of DCDF in these small-scale data 
sets, which demonstrates the accuracy does not get worse by 
decreasing the model depth while increasing the model width.

4.2.2  Training efficiency

To validate the high training efficiency of FRF, we compare 
the running time of FRF, BRF, EC3, DNN, MLP and gcFor-
est on the same data sets (detailed in the next paragraph), 
and on the same computing resources as GPU GTX1080ti X 
2 with 22G video memory, CPU Intel E5-2640 v4, Memory 
32G and Hard Disk 1 TB.

Six image datasets and two small non-image datasets are 
selected for this experiment. The six image datasets include 
Digits, Minist, Cifar10, Cifar100, Fer and Adience; the non-
image datasets include Adult dataset and Letter dataset. 
Hereinto, compared with the preceding experiments, this 
section adds two new data sets, Fer and Adience, where Fer 
is a Facial Expression Recognition data set with 35,888 pic-
tures and Adience has 26,580 human images with distributed 
ages between 0 and 60. During the experiment, whenever the 
accuracy variation tends to be stable, the training time and the 
accuracy rate are recorded respectively, as shown in Fig. 12.

As can be seen from Fig. 12, in both large datasets and 
small datasets, while maintaining competitive accuracy 

Fig. 11  Prediction accuracies on small-scale data sets
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rates, FRF demonstrates a sensible advantage over other 
methods in running time. Specifically, compared with gcFor-
est, the running time of FRF has been shortened by 24.3% 
on average. Compared with that of other algorithms, the 
running time of FRF is much faster. Therefore, it can be 
concluded that FRF model has excellent scalability in terms 
of running time. It is noted that the accuracies of FRF on 
Cifar10 and Cifar100 are significantly better than that of 
gcForest, due to the advantage of PCANet (for FRF) over 
MGS (for gcForest) on large-scale image data sets.

4.2.3  Influence of hyper‑parameters

Three experiments are conducted to study the influence 
of hyper-parameters on FRF, including node number in 

feature-mapping layer, minimum samples of decision tree’s 
leaf nodes and number of decision trees in RF, respec-
tively. For each experiment, cifar10 and IMDB data set are 
employed to obtain two curves of accuracy variation. See 
Figs. 13, 14 and 15.

As shown in Fig. 13, when the node number of feature-
mapping layer is not large enough, the accuracy rate can be 
improved by increasing the node number. However, when 
the node number reaches a threshold value, the improvement 
of accuracy rate is no longer obvious. Therefore, during the 
experiments, it is suggested that the node number of feature-
mapping layer should keep increasing until the performance 
becomes steady.

Fig. 12  Training efficiency with 
accuracy on various data sets

Fig. 13  Accuracy influence by node number of feature-mapping layer

Fig. 14  Accuracy influence by minimum sample amount of decision 
tree’s leaf node
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We can observe in Fig. 14 that the minimum sample 
amount of decision tree’s leaf node should be in appropri-
ate range. If it is smaller than 30, the model will tends to 
overfit. On the contrary, if it is larger than 80, under-fit-
ting will occur to the model. Thus, it is necessary to adjust 
this parameter for different data sets to appropriate ranges, 
respectively.

As illustrated in Fig. 15, the generalization ability of 
the model is poor when the number of decision trees in RF 
is smaller than 200. Hence, the final accuracy rate is low. 
When the number surpasses a threshold (≥ 200), the final 
accuracy rate tends to be relatively stable. Thus, based on 
our experiment settings, the number of decision trees in RF 
should not be smaller than 200.

5  Conclusion

In summary, this paper proposes a novel ensemble-learning 
model to overcome the shortcomings of gcForest. By virtue 
of dense connection and FNN, the proposed Flat Random 
Forest model has the ability of adaptively learning the model 
size, which enables the balance between the model depth 
and width. Experimental results show that compared with 
other popular methods our method achieves sensibly higher 
training efficiency while maintaining competitive accuracy.

In the process of applying FNN to RF ensemble learn-
ing, we find that more studies need to be done in this area. 
Could FRF be adopted to replace the fully connected layer 
of CNN to solve the issue of too many parameters? Could 
size-adaptive training of the model be implemented in other 
way? How to use FRF to conduct transfer learning? And so 
on. Moreover, the parallelization and theoretical analysis of 
FRF still need to be investigated further.
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