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Abstract

The high computational and memory require-
ments of large language model (LLM) inference
make it feasible only with multiple high-end ac-
celerators. Motivated by the emerging demand for
latency-insensitive tasks with batched processing,
this paper initiates the study of high-throughput
LLM inference using limited resources, such as
a single commodity GPU. We present FlexGen,
a high-throughput generation engine for running
LLMs with limited GPU memory. FlexGen can
be flexibly configured under various hardware re-
source constraints by aggregating memory and
computation from the GPU, CPU, and disk. By
solving a linear programming problem, it searches
for efficient patterns to store and access tensors.
FlexGen further compresses the weights and the
attention cache to 4 bits with negligible accu-
racy loss. These techniques enable FlexGen to
have a larger space of batch size choices and
thus significantly increase maximum throughput.
As a result, when running OPT-175B on a sin-
gle 16GB GPU, FlexGen achieves significantly
higher throughput compared to state-of-the-art of-
floading systems, reaching a generation through-
put of 1 token/s for the first time with an effec-
tive batch size of 144. On the HELM bench-
mark, FlexGen can benchmark a 30B model with
a 16GB GPU on 7 representative sub-scenarios
in 21 hours. The code is available at https:
//github.com/FMInference/FlexGen.
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Figure 1. The total latency for a block and throughput trade-offs of
three offloading-based systems for OPT-175B (left) and OPT-30B
(right) on a single NVIDIA T4 (16 GB) GPU with 208 GB CPU
DRAM and 1.5TB SSD. FlexGen achieves a new Pareto-optimal
frontier with 100 x higher maximum throughput for OPT-175B.
Other systems cannot further increase throughput due to out-of-
memory issues. “(c)” denotes compression.

1. Introduction

In recent years, large language models (LLMs) have
demonstrated strong performance across a wide range of
tasks (Brown et al., 2020; Bommasani et al., 2021; Zhang
et al., 2022; Chowdhery et al., 2022). Along with these un-
precedented capabilities, generative LLM inference comes
with unique challenges. These models can have billions, if
not trillions of parameters (Chowdhery et al., 2022; Fedus
et al., 2022), which leads to extremely high computational
and memory requirements to run. For example, GPT-175B
requires 325GB of GPU memory simply to load its model
weights. Fitting this model onto GPUs would require at least
five A100 (80GB) GPUs and complex parallelism strate-
gies (Pope et al., 2022; Aminabadi et al., 2022). Thus,
lowering LLM inference resource requirements has recently
attracted intense interest.

In this paper, we focus on a setting that we call throughput-
oriented generative inference. In addition to interactive
use cases such as chatbots, LLMs are also applied to many
“back-of-house” tasks such as benchmarking (Liang et al.,
2022), information extraction (Narayan et al., 2018), data
wrangling (Narayan et al., 2022), and form processing (Chen
etal., 2021). One key characteristic of these tasks is that they
often require running LLM inference in batches over a large
number of tokens (e.g., all the documents in a company’s
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corpus), and are less sensitive to latency. As a result, it
is possible to trade off latency for higher throughput in
these workloads, providing opportunities to reduce resource
requirements.

Prior efforts to lower resource requirements of LLM infer-
ence correspond to three directions: (1) model compression
to decrease total memory footprint (Dettmers et al., 2022;
Yao et al., 2022; Frantar et al., 2022; Xiao et al., 2022);
(2) collaborative inference to amortize inference cost via
decentralization (Borzunov et al., 2022); and (3) offloading
to utilize memory from CPU and disk (Aminabadi et al.,
2022; HuggingFace, 2022). These techniques have signifi-
cantly lowered the resource requirements for using LLMs,
but there are distinct limitations. Research in the first two
directions often assume that the model fits into the GPU
memory and thereby struggle to run 175B-scale models with
a single commodity GPU. On the other hand, state-of-the-
art offloading-based systems in the third category do not
achieve acceptable throughput on a single GPU due to inef-
ficient I/O scheduling and tensor placement. For example,
these systems can be bottlenecked by small batch sizes (e.g.,
batch sizes of only one or two for OPT-175B in some cases).

Our focus is designing efficient
offloading strategies for high-

GPU
throughput generative inference,
on a single commodity GPU. To CPU
run an LILM with limited GPU

memory, we can offload it to sec- Disk
ondary storage and perform com-

putation part-by-part by partially loading it. On a typical
machine, there are three levels of the memory hierarchy, as
illustrated in the figure to the right. Higher levels are faster
but scarce, while lower levels are slower but abundant. In
throughput-oriented scenarios, we can sacrifice latency by
using a large batch size, and amortize the expensive I/O
operations among different memory hierarchies over a large
batch of inputs, overlapped with computation. Fig. 1 shows
the latency-throughput trade-off of three inference systems
with offloading on a single NVIDIA T4 (16 GB) GPU. Note
that the performance in terms of latency and throughput on
limited resources is significantly inferior to that of the cases
with sufficient resources.

Achieving high-throughput generative inference with lim-
ited GPU memory is challenging even if we can sacrifice
the latency. The first challenge is to design an efficient of-
floading strategy. During generative inference, there are
three kinds of tensors: weights, activations, and key-value
(KV) cache. The strategy should specify what tensors to of-
fload, where to offload them within the three-level memory
hierarchy, and when to offload them during inference. The
batch-by-batch, token-by-token, and layer-by-layer struc-
ture of the computation forms a complex dependency graph

where there are multiple ways to conduct computation. To-
gether, these choices form a complex design space. Existing
offloading-based inference systems (Aminabadi et al., 2022;
HuggingFace, 2022) inherit strategies from training, which
turn out to be some suboptimal points for inference, per-
forming excessive I/0 and achieving throughput far below
theoretical hardware limits.

The second challenge is to develop effective compression
strategies. Previous works have demonstrated promising
results in compressing the weights and activations of LLMs.
However, when combining compression with offloading for
high-throughput inference, the I/O costs and memory reduc-
tion of the weights and KV cache become more important,
motivating alternative compression schemes.

To address these challenges, we present FlexGen, an of-
floading framework for high-throughput LLM inference.
FlexGen aggregates memory from the GPU, CPU, and disk,
and efficiently schedules I/O operations, along with possible
compression methods and distributed pipeline parallelism.

(Contribution 1) We formally define a search space of
possible offloading strategies by considering computation
schedule, tensor placement, and computation delegation.
We prove that our search space captures a computation
order with I/O complexity within 2x of optimality. We
then develop a linear programming-based search algorithm
to optimize the throughput within the search space. This
algorithm can be configured for various hardware specifica-
tions and can be easily extended to incorporate latency and
throughput constraints, thus helping to navigate the trade-
off space smoothly. Compared with existing strategies, our
solution unifies the placement of weights, activations, and
the KV cache, enabling a dramatically higher batch size
upper bound, which is key to achieving high throughput.

(Contribution 2) We show that it is possible to compress
both the weights and KV cache for LLMs like OPT-175B to
4 bits without retraining or calibration, all with negligible
accuracy loss. This is achieved through fine-grained group-
wise quantization (Shen et al., 2020), which is suitable for
reducing I/O costs and memory usage during offloading.

(Contribution 3) We demonstrate the efficiency of FlexGen
by running OPT-175B on NVIDIA T4 (16GB) GPUs. Com-
pared to DeepSpeed Zero-Inference (Aminabadi et al.,
2022) and Hugging Face Accelerate (HuggingFace, 2022),
two state-of-the-art offloading-based inference systems,
FlexGen often allows a batch size that is orders of mag-
nitude larger. As a result, FlexGen can achieve much higher
throughputs. On a single T4 GPU with 208 GB CPU DRAM
and 1.5 TB SSD, input sequence length 512, and output se-
quence length 32:

* With the same latency of 5000 seconds, FlexGen (effec-
tive batch size 64, or 2048 tokens in total) can achieve
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more than 40X higher throughput than DeepSpeed
Zero-Inference (batch size 1, or 32 tokens in total),
while Hugging Face Accelerate cannot complete a sin-
gle batch.

* By allowing a higher latency of 12000 seconds,
FlexGen achieves 69x higher maximum throughput
compared to baselines because it can enlarge the effec-
tive batch size to 256 (8192 tokens generated in total),
while DeepSpeed Zero-Inference and Hugging Face
Accelerate cannot use a batch size larger than 2 due to
out-of-memory issues.

o If allowing 4-bit compression, FlexGen can reach
100x higher maximum throughput with effective batch
size 144 (4608 tokens generated in total) with latency
4000 seconds by holding all weights in CPU and get-
ting rid of disk offloading.

We also compare offloading and decentralized collective
inference based on FlexGen and Petals (Borzunov et al.,
2022) as two representative systems. We conduct compar-
isons between the two systems from the aspects of delay
and bandwidth of the decentralized network and output se-
quence length. The results show that FlexGen outperforms a
decentralized Petals cluster in terms of per-GPU throughput
and can even achieve lower latency in certain cases.

2. Related Work

Given the recent advances of LLMs, LLM inference has
become an important workload, encouraging active research
from both the system side and the algorithm side.

Recent years have witnessed the emergence of systems
specialized for LLM inference, such as FasterTrans-
former (NVIDIA, 2022), Orca (Yu et al., 2022), Light-
Seq (Wang et al., 2021), PaLM inference (Pope et al.,
2022), TurboTransformers (Fang et al., 2021), DeepSpeed
Inference (Aminabadi et al., 2022), and Hugging Face
Accelerate (HuggingFace, 2022). Unfortunately, most of
these systems focus on latency-oriented scenarios with high-
end accelerators, limiting their deployment for throughput-
oriented inference on easily accessible hardware. To enable
LLM inference on such commodity hardware, offloading is
an essential technique — as far as we know, among current
systems, only DeepSpeed Zero-Inference and Hugging Face
Accelerate support offloading. These inference systems
typically inherit the offloading techniques from training sys-
tems (Rajbhandari et al., 2021; Ren et al., 2021; Li et al.,
2022; Huang et al., 2020; Wang et al., 2018) but ignore
the special computational property of generative inference.
They fail to exploit the structure of the throughput-oriented
LLM inference computation and miss great opportunities
for efficient scheduling of I/O traffic. Another attempt to en-
able LLM inference on accessible hardware is collaborative
computing proposed by Petals (Borzunov et al., 2022).

There are also many algorithm-oriented works that relax cer-
tain aspects of computation in LLM inference to accelerate
the computation or reduce the memory footprint. Both spar-
sification (Hoefler et al., 2021; Frantar & Alistarh, 2023)
and quantization (Kwon et al., 2022; Yao et al., 2022; Park
et al., 2022; Xiao et al., 2022; Frantar et al., 2022; Dettmers
et al., 2022) have been adopted for LLM inference. On
the quantization side, prior works have shown weights can
be compressed down to 3 bits without compressing activa-
tions (Frantar et al., 2022), or both weights and activations
can be compressed to 8 bits (Yao et al., 2022; Dettmers
et al., 2022; Xiao et al., 2022). In FlexGen, we compress
both the weights and KV cache to 4 bits and show how to
combine the compression with offloading to make further
improvements.

Within broader domains, memory optimizations and offload-
ing have been studied for training (Huang et al., 2020; Ren
et al., 2021; Steiner et al., 2022) and linear algebra (Jia-Wei
& Kung, 1981; Demmel, 2013).

3. Background: LLM Inference

In this section, we describe the LLM inference workflow
and its memory footprint.

Generative Inference. A typical LLM generative inference
task consists of two stages: i) the prefill stage which takes
a prompt sequence to generate the key-value cache (KV
cache) for each transformer layer of the LLM; and ii) the
decoding stage which utilizes and updates the KV cache
to generate tokens step-by-step, where the current token
generation depends on previously generated tokens.

For a particular inference computation, denote the batch size
by b, the input sequence length by s, the output sequence
length by n, the hidden dimension of the transformer by
h1, the hidden dimension of the second MLP layer by hs,
and the total number of transformer layers by [. Given the
weight matrices of a transformer layer specified by w'., wég,
wi, wh, wi, wh, where w, wiQ, wi wi e RMmxhi
Wi € Rh1><h2, and wy € Rhaxha

During the prefill phase, the input of the i-th layer is speci-
fied by x’, and key, value, query, and output of the
attention layer is specified by x%, xj,, xb, Xou» Where
X', XY, X{,, X, Xby € RP***M . Then, the cached key,
value can be computed by:

i Wi xi — xi . wh
X =X Wi Xy =X -wy,

The rest of the computation in the ¢-th layer is:
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During the decode phase, given t' € RY*1*" a5 the em-
bedding of the current generated token in the ¢-th layer, the
inference computation needs to i) update the KV cache:

xj + Concat (xj, t’ - wi )

xi, + Concat (xi,,t* - wi,)
and ii) compute the output of the current layer:

th =t - wp
i i T

i Q*K
toUt—fSoﬂmax ~Vh

tiHl = Jrelu (té)ut : Wl) “wa + tg)ut

i i i
Xy cWo t+t

Memory Analysis. The memory footprint of LLM infer-
ence mainly comes from the model weights and the KV
cache. Considering the OPT-175B model in FP 16, the total
number of bytes to store the parameters can be roughly !
calculated by I(8h? + 4hyhs). The total number of bytes to
store the KV cache in peak is 4 x blhq(s + n).

In a realistic setting with a sufficient number of GPUs, the
OPT-175B model (I = 96, hy = 12288, hy = 49152) takes
325 GB. With a batch size of b = 512, an input sequence
length s = 512, and an output sequence length of n = 32,
the total memory required to store the KV cache is 1.2 TB,
which is 3.8 x the model weights, making the KV cache a
new bottleneck of large-batch high-throughput inference. In
FlexGen, for OPT-175B, we enlarge the effective batch size
to 256 to achieve the throughput at 0.69 token/s.

Throughput and Latency. Considering an effective batch
size b, an input sequence length s, and an output sequence
length of n, the latency ¢ is defined as the total number of
seconds spent to process the prompts and generate all the
bn tokens. The generation throughput is defined as bn/t.

Token O Token 1 Token 2

Dataset
(infinite)

| [(HHHHHHHHH ]

Figure 2. Computational graph of LLM inference.

4. Offloading Strategy

In this section, we do not relax any computation of LLM
inference and illustrate how to formalize the offloading
procedure under the GPU, CPU, and disk memory hierarchy.
We first formulate the problem and then construct the search
space of the possible offloading strategies in FlexGen. To
find an efficient strategy, FlexGen builds an analytical cost
model and searches for configurations with an optimizer
based on linear programming.

"We ignore the embedding layer(s), which is relatively small.

4.1. Problem Formulation

Consider a machine with three devices: a GPU, a CPU, and
a disk. The GPU and CPU can perform computation while
the disk cannot. The three devices form a three-level mem-
ory hierarchy where the GPU has the smallest but fastest
memory and the disk has the largest but slowest memory.
When an LLM cannot fit entirely within the GPU, we need
to offload it to secondary storage and perform computation
part-by-part by partially loading the LLM.

We formulate the generative inference with offloading as a
graph traversal problem. Fig. 2 shows an example computa-
tional graph, where the model has 4 layers and we generate
3 tokens per prompt. As our focus is throughput-oriented
scenarios, we assume a given dataset with an infinite number
of prompts that need to be processed. In the figure, a square
means the computation of a GPU batch for a layer. The
squares with the same color share the same layer weights.
We define a valid path as a path that traverses (i.e., computes)
all squares, while subject to the following constraints:

* A square can only be computed if all squares to its left
on the same row were computed.

» To compute a square on a device, all its inputs (weights,
activations, cache) must be loaded to the same device.

» After being computed, a square produces two outputs:
activations and KV cache. The activations should be
stored until its right sibling is computed. The KV cache
should be stored until the rightmost square on the same
row is computed.

* At any time, the total size of tensors stored on a device
cannot exceed its memory capacity.

The goal is to find a valid path that minimizes the total
execution time, which includes the compute cost and I/O
cost when moving tensors between devices.

4.2. Search Space

Given the formulation above, we construct a search space
for possible valid strategies in FlexGen.

Compute schedule. Intuitively, there are two orders to
traverse the graph in Fig. 2: row-by-row and column-by-
column. All existing systems (Aminabadi et al., 2022; Hug-
gingFace, 2022) traverse the graph row-by-row, as shown in
Fig. 3(a). This is reasonable because it is the fastest way to
finish the generation for one batch and the KV cache can be
freed immediately after a row. However, because every two
contiguous squares do not share weights, this schedule has
to repeatedly load the weights and incurs huge I/O costs.

To reduce the I/O costs of the weights, we can traverse the
graph column-by-column. All squares in a column share
weights, so we can let the weights stay on GPU for reusing
and only load/unload the activations and KV cache. How-
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(b) Zig-zag block schedule

Figure 3. Two different schedules. The red arrows denote the com-
putation order.

Algorithm 1 Block Schedule with Overlapping

for i = 1 to generation_length do
for j = 1 to num_layers do
// Compute a block with multiple GPU batches
for k = 1 to num_G PU _batches do
/I Load the weight of the next layer
load-weight(i,j + 1,k)
/I Store the cache and activation of the prev batch
store_activation(i,j, k — 1)
store_cache(i,j, k — 1)
/I Load the cache and activation of the next batch
load-cache(s, j, k+ 1)
load-activation(i,j,k+ 1)
// Compute this batch
compute(i, j, k)
/I Synchronize all devices
synchronize()
end for
end for
end for

ever, we cannot traverse a column all the way to the end
because the activations and KV cache still need to be stored.
Hence, we have to stop when they fill the CPU and disk
memory. Taking all this into consideration, we converge to
a zig-zag block schedule, as shown in Fig. 3(b). Besides,
we propose another more advanced and I/O-optimal sched-
ule, but only implement the simpler block schedule due to
the practical implementation difficulty of the optimal one.
However, we prove that the block schedule is at most twice
worse than the optimal schedule in Appendix A.2.

Theorem 4.1. The I/O complexity of the zig-zag
block schedule is within 2x of the optimal solution.

Another typical optimization is overlapping. We can overlap
the weights load of the next layer, cache/activation load of
the next batch, cache/activation store of the previous batch,
and the computation of the current batch. Adding overlap-
ping to the block schedule results in Algorithm 1. The first
six functions in the innermost loop can be seen as launched

in parallel with six logical threads because there are no de-
pendencies. The last function then synchronizes these six
logical threads. We rely on operating systems and CUDA
drivers to resolve the schedule of the underlying hardware
resources. As a conclusion, the algorithm introduces two
parameters into our search space: the GPU batch size and
the number of GPU batches in a block. The product of the
GPU batch size and the number of GPU batches is called
block size (or effective batch size).

Tensor placement. Besides compute schedule, a strategy
should specify how to store these tensors within the memory
hierarchy. We use three variables wg, we, and wd to define
the percentages of weights stored on GPU, CPU, and disk
respectively. Similarly, we use three variables hg, hec, hd to
define the percentages of activations and use cg, cc, cd for
the KV cache. Given the percentages, there are still multiple
ways to partition the tensors. Taking weight tensors as an
example, from coarse grain to fine grain, we can partition
the weights at the model granularity (e.g., assign 50% of
the layers in a model to the GPU), at the layer granularity
(e.g., assign 50% of the tensors in a layer to the GPU), or
at the tensor granularity (e.g., assign 50% of the elements
in a tensor to the GPU). Coarser granularity leads to lower
runtime overhead but it is less flexible and its cost is difficult
to analyze. Considering both the runtime overhead and
desired flexibility, we use layer granularity for weights, and
tensor granularity for activations and the KV cache.

Computation delegation. While CPUs are much slower
than GPUs, we find using CPU compute can still be ben-
eficial in some cases. This is because the computation of
attention scores during decoding is [/O-bounded. Consider a
case where the KV cache is stored on the CPU. Computing
the attention scores on the GPU requires moving the entire
KV cache to the GPU, which incurs a substantial I/O cost as
the KV cache is huge. In contrast, computing the attention
score on the CPU does not require moving the KV cache. It
only requires moving the activations from the GPU to the
CPU. Quantitatively, let b be the GPU batch size, s be the
sequence length, and h be the hidden size. The size of the
moved KV cache is b x s x h; X 4 bytes, and the size of the
moved activation is b X hy X 4 bytes, so computing attention
score on CPU reduces I/O by sx. For long sequences (e.g.,
s > 512), it is better to compute the attention scores on the
CPU if the associated KV cache is not stored on the GPU.

4.3. Cost Model and Policy Search

The schedule and placement in Section 4.2 constructs a
search space with several parameters. Now we develop an
analytical cost model to estimate the execution time given
these algorithm parameters and hardware specifications.

Cost Model. The cost model predicts the latency during
prefill for one layer denoted as 7)., and the averaged la-
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tency during decoding for one layer denoted as T, in one
block. The total latency for computing a block can then be
estimated as T' = Tpye - I + Tyer, - (n — 1) - [, where [ is the
number of layers and n is the number of tokens to generate.

Assuming perfect overlapping, T}, can be estimated as
Tpre = max(ctog?, gtoc?, dtoc?, ctod?, comp?), where
ctogP, gtocP, dtocP, ctodP, comp? denote the latency of
read from CPU to GPU, write from GPU to CPU, read
from disk to CPU, write from CPU to disk, computation,
respectively, during prefill for one layer.

Similarly, Tg., can be estimated as Ty, =
max(ctog?, gtoc?, dtoc?, ctod9, comp?), with  ctog9,
gtocd, dtoc9, ctod?, comp9 denoting the latency of read
from CPU to GPU, write from GPU to CPU, read from disk
to CPU, write from CPU to disk, computation, respectively,
during decoding for one layer.

For I/O terms like dtocY, it is estimated by summing up the
I/0O events, which contain weights, activations, and cache
reads. The size of FP 16 weights for one transformer layer
is 8h2 + 4hy - hy bytes, with hy denoting the hidden size,
and ho denoting the hidden size of the second MLP layer.
Let bls be the block size and s be the prompt length; then
the size of activations for one layer is 2 - bls - hy. The size of
the KV cache for one layer on average is 4 -bls- (s + %) - h1.
We have to load wd, hd, cd percent of weights, activations,
and the KV cache from the disk respectively so that the total
latency of disk read is dtoc? = m(@h% +

4hy o) - wd+4-bls- (s+2) - hy-cd+2-bls-hy - hd).

Similarly for computation terms, we sum up all computation
events, including matrix multiplications and batched matrix
multiplications on the CPU and the GPU.

Besides latency estimation, we also estimate the peak mem-
ory usage of the GPU, CPU, and disk, and then we add
memory constraints. The full cost model is in Appendix A.3.

Policy Search. A policy includes 11 variables: block size
bls, GPU batch size gbs, weight placement wg, we, wd,
activation placement hg, hc, hd, and KV cache placement
cg, cc, cd. In practice, the percentage cannot be an arbitrary
real number between 0 and 1, because the tensor cannot
be split arbitrarily. However, we relax the percentage vari-
ables in the cost model to be any real number between 0
and 1 since it is changing gradually. We solve the problem
as a two-level optimization problem. We first enumerate a
few choices of (bls, gbs) tuple. Typically, gbs is a multi-
ple of 4, and bls is less than 20 so there are not too many
choices. Then with the fixed bls, gbs, finding the best place-
ment p = (wg, we, wd, cg, cc, cd, hg, he, hd) becomes a
linear programming problem shown in Eq. (1). The linear
programming problem can be solved very quickly because
there are only 9 variables. This formulation can also be
flexibly extended to include latency constraints and model

approximate methods such as compression.

rrgn T/bls
s.t.  gpu peak memory <  gpumem capacity
cpu peak memory < cpu mem capacity
disk peak memory < disk mem capacity
wg +wec+wd = 1
cg+cc+ed = 1
hg+hc+hd = 1

)

To use the cost model, we run profiling on the hardware to
sample some data points and fit the hardware parameters.
We then call the optimizer to get an offloading policy. Due to
our relaxation and the hardness of accurately modeling peak
memory usage (e.g., fragmentation), sometimes a strategy
from the policy search can run out of memory. In this case,
we manually adjust the policy slightly. The cost model can
usually return a good policy, but it is common that a better
policy can be obtained by tuning manually.

4.4. Extension to Multiple GPUs

We discuss how to extend the offloading strategy in FlexGen
if there are multiple GPUs. Although we can find a nearly
optimal strategy for one GPU, the strategy is still heavily
limited by I/O and has a low GPU utilization. If we are
given more GPUs and more CPUs, model parallelism can be
utilized to reduce the memory pressure of each GPU, which
can potentially lead to a super-linear scaling in decoding.

There are two kinds of model parallelisms: tensor and
pipeline parallelism (Narayanan et al., 2021; Zheng et al.,
2022). Tensor parallelism can reduce the single-query la-
tency but pipeline parallelism can achieve good scaling on
throughput due to its low communication costs. Since we
target throughput, FlexGen implements pipeline parallelism.

We use pipeline parallelism by equally partitioning an -
layer LLM on m GPUs, and then the execution of all GPUs
follows the same pattern. The problem is reduced to run-
ning an n/m-layer transformer on one GPU. We can di-
rectly reuse the policy search developed for one GPU. To
achieve micro-batch pipelining, a new for-loop is added to
Algorithm 1 to combine the iteration-level pipeline parallel
execution schedule (Huang et al., 2019; Yu et al., 2022) with
our single-device offloading runtime.

5. Approximate Methods

The previous section focuses on the exact computation.
However, the inference throughput can be greatly boosted
with negligible accuracy loss by allowing some approxima-
tions, because LLMs are typically robust to careful approxi-
mations. This section introduces two such approximations:
group-wise quantization and sparse attention.
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Group-wise Quantization. We show that both the weights
and KV cache can be directly quantized into 4-bit integers
without any retraining or calibration on OPT-175B, all while
preserving similar accuracy (Section 6.2). When compared
to some related works (Yao et al., 2022; Dettmers et al.,
2022; Xiao et al., 2022) that try to use integer matrix mul-
tiplication mainly for accelerated computation, the goal of
quantization in our case is primarily for compression and
reducing I/O costs. Therefore, we can choose a fine-grained
quantization format in favor of a high compression ratio and
dequantize the tensors back to FP16 before computation.
We use a fine-grained group-wise asymmetric quantization
method (Shen et al., 2020). Given a tensor, we choose ¢
contiguous elements along a certain dimension as a group.
For each group, we compute the min and max of the group
elements and quantize each element z into b-bit integers by

Tquant = TOUNd (% x (20 — 1))

The tensors are stored in the quantized format and converted
back to FP16 before computation. Since both the weights
and KV cache consume a significant amount of memory, we
compress both to 4 bits with a group size of 64. There are
multiple ways to choose which dimension to group on. We
find that grouping the weights along the output channel di-
mension and the KV cache along the hidden dimension pre-
serves the accuracy while being runtime-efficient in practice.
One thing to mention is that such a fine-grained group-wise
quantization in FlexGen causes some overhead in compres-
sion and decompression. Such an overhead could be very
significant if run on a CPU which makes the CPU delegation
useless, so we turn off the CPU delegation when enabling
quantization. A concurrent work (Dettmers & Zettlemoyer,
2022) also finds that 4-bit precision is almost optimal for
total model bits and zero-shot accuracy on OPT models.
Compared to this previous work, we first propose to com-
press the KV cache and present the results on OPT-175B.

Sparse Attention. We demonstrate that the sparsity of self-
attention can be exploited by only loading the top 10%
attention value cache on OPT-175B, all while maintaining
the model quality. We present one simple Top-K sparse
approximation. After computing the attention matrices, for
each query, we calculate the indices of its Top-K tokens
from the K cache. We then simply drop the other tokens and
only load a subset of the V cache according to the indices.

The application of these approximations is straightforward.
We present these preliminary but interesting results and
intend to emphasize that FlexGen is a general framework
that can seamlessly plug in many approximation methods.

6. Evaluation

Hardware. We run experiments on the NVIDIA T4 GPU in-
stances from Google Cloud. The hardware specifications are

Table 1. Hardware Specs

Device Model Memory
GPU NVIDIA T4 16 GB
CPU Intel Xeon @ 2.00GHz 208 GB
Disk Cloud default SSD (NVMe) 1.5TB

listed in Table 1. The read bandwidth of SSD is about 2GB/s
and the write bandwidth is about 1GB/s. Our methods and
implementations do not depend on specific hardware archi-
tectures. Some architecture (e.g. unified memory) could
be more friendly to our method. See Appendix A.4 for
discussions and experiments on different hardware setups.

Model. OPT models (Zhang et al., 2022) with 6.7B to 175B
parameters are used in the evaluation. Although we do not
evaluate other models, the offloading in FlexGen can be ap-
plied to other transformer LLMs, e.g., GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022), and BLOOM (Scao
et al., 2022) because they all share a similar structure.

Workload. Our focus is high-throughput generation on a
given dataset. We use synthetic datasets where all prompts
are padded to the same length. The system is required to
generate 32 tokens for each prompt. We test two prompt
lengths: 512 and 1024 (for experiments in more settings,
see Appendix A.4). The evaluation metric is generation
throughput, defined as the number of generated tokens /
(prefill time + decoding time). Sometimes running a full
batch takes too long for certain systems — in this cases, we
generate fewer tokens and project the final throughput. We
use dummy model weights in throughput benchmarks for
all systems and real weights for accuracy evaluations.

Baseline. We use DeepSpeed ZeRO-Inference (Aminabadi
et al., 2022) and Hugging Face Accelerate (HuggingFace,
2022) as baselines. They are the only systems that can run
LLMs with offloading when there is not enough GPU mem-
ory. DeepSpeed supports offloading the whole weights to
the CPU or disk. It uses ZeRO data parallelism if there are
multiple GPUs. Accelerate supports offloading a fraction of
the weights. It does not support distributed GPUs on differ-
ent machines. Both of them use the row-by-row schedule
and can only put cache/activations on GPU. These systems
support different quantization methods. However, the quan-
tization in Accelerate is not compatible with offloading, and
the quantization in DeepSpeed cannot preserve accuracy up
to 175B, so we do not enable quantization on these systems.
In addition to offloading, decentralized collaborative infer-
ence is another option to lower the resource requirement for
LLM inference. Thus, we also include Petals (Borzunov
et al., 2022; Ryabinin et al., 2023) as an additional baseline.

Implementation. FlexGen is implemented on top of
PyTorch (Paszke et al., 2019). FlexGen manages multi-
ple CUDA streams and CPU threads to overlap I/O with
compute. FlexGen creates files for tensors stored on the disk
and maps them as virtual memory to access them.
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6.1. Offloading

Maximum throughput benchmark. We first evaluate the
maximum generation throughput the systems can achieve
with one GPU on two prompt lengths. As shown in Table 2,
FlexGen outperforms all baselines in all cases. On OPT-
6.7B, Accelerate and FlexGen can successfully fit the whole
model into a single GPU, so they choose to only use the
GPU. DeepSpeed has a higher memory overhead and cannot
fit OPT-6.7B into the GPU, so it uses slower CPU offload-
ing. On OPT-30B, all systems switch to CPU offloading.
DeepSpeed and Accelerate store the KV cache on the GPU,
so they cannot use a very large batch size, while FlexGen
offloads most weights and all KV cache to the CPU and en-
ables a larger GPU batch size. In addition, FlexGen reuses
the weights by block scheduling. On OPT-175B, all systems
start to offload the weights to the disk. Baseline systems can
only use a maximum batch size of 2, but FlexGen can use
a GPU batch size of 32 and a block size of 32 x &, achiev-
ing a 69x higher throughput. With compression enabled,
FlexGen achieves a 112x higher generation throughput on
a single GPU for prompt sequence length 512. This huge
improvement is because FlexGen uses an effective batch
size of 144 and compresses the weights and KV cache to
fit into CPU memory to avoid slow disk swapping. More
details on the policy setups and effective batch sizes can
be found in Appendix A.4. More experiments on how disk
specification affects the throughput see Appendix A.4.

Table 3 shows the results on 4 machines, with one GPU on
each machine. OPT-30B or OPT-175B still cannot fit into
4 GPUs. Naively, we can run 4 independent FlexGen in
a data-parallel fashion to get a linear scaling on through-
put. But here we show that pipeline parallelism can achieve
super-linear scaling on decoding throughput. With pipeline
parallelism, the memory pressure of each machine is re-
duced so we can switch from small batch sizes to larger
batch sizes, or switch from disk offloading to CPU-only
offloading. In Table 3, FlexGen does not achieve linear
scaling on generation throughput (which counts both prefill
and decoding time costs). This is because there are pipeline
bubbles during the prefill stage and our workload settings
only generate 32 tokens. However, FlexGen achieves super-
linear scaling on decoding throughput (which only counts
decoding time costs assuming the prefill is done). This
means if we generate more tokens, pipeline parallelism will
show its benefits as decoding time will dominate.

Latency-throughput trade-off. We configure these sys-
tems to achieve maximum throughput under various la-
tency constraints and draw their latency-throughput trade-
off curves in Fig. 1. FlexGen sets a new Pareto-optimal
frontier that significantly outperforms baselines. On the
low-latency side, FlexGen supports partial offloading and
uses more space for weights. On the high-throughput side,

Table 2. Generation throughput (token/s) of different systems. Ac-
celerate, DeepSpeed, and FlexGen use 1 GPU. Petals uses 1 GPU
for OPT-6.7B, 4 GPUs for OPT-30B, and 24 GPUs for OPT-175B,
but reports per-GPU throughput. We benchmark Petals under a
good network assumption with a delay of less than 10ms and band-
width of 1 Gbps. The models are run in INTS as the default for
Petals. See Section 6.3 for more details about Petals. FlexGen is
our system without compression; FlexGen (c) uses 4-bit compres-
sion. “OOM” means out-of-memory.

Seq. length 512 1024
Model size 6.7B 30B 175B 6.7B 30B 175B

Accelerate 25.12  0.62 0.01 13.01 0.31 0.01
DeepSpeed 9.28 0.60 0.01 459 029 OOM
Petals 825 2.84 0.08 6.56 1.51 0.06
FlexGen 2526 7.32 0.69 13.72 3.50 0.35

FlexGen (¢) 29.12 8.70 1.12  13.18 3.98 0.42

Table 3. The scaling performance on 4 GPUs. The prompt se-
quence length is 512. The number of GPUs is denoted in the
parenthesis. Generation throughput (token/s) counts the time cost
of both prefill and decoding while decoding throughput only counts
the time cost of decoding assuming prefill is done.

Metric Generation Throughput Decoding Throughput

Model size 6.7B 30B 175B 6.7B 30B 175B
FlexGen (1) 2526 732 0.69 3828 11.52 0.83
FlexGen (4) 201.12  23.61 233 76465 4894 386

DeepSpeed (4) 50.00 640  0.05 50.20 6.40  0.05

FlexGen aggressively offloads all things out of the GPU
to achieve a large GPU batch size and block size. Given
the same latency requirement of 5000 seconds, FlexGen
without compression can achieve a 40x higher through-
put compared to DeepSpeed and Accelerate. If allowing a
higher latency and compression, FlexGen can further boost
throughput and reach a 100x improvement by using an ef-
fective batch size of 144. In this case, compression enables
FlexGen to fit all things in the CPU memory and avoid disk
I/O. The detailed latency, throughput, and policy setup can
be found in Appendix A.4.

Runtime breakdown. We shows the runtime breakdown
of OPT-175B on FlexGen in Table 8 in Appendix A.4. We
disable overlapping and profile the time used for major
components. The GPU compute utilization is 82% and 13%
for prefill and decoding, respectively.

Ablation study. We then isolate the improvement brought
by each individual technique. Table 4 lists the throughput
FlexGen can achieve if disabling one technique at a time.
On OPT-30B, with all optimizations enabled, we put 20%
weights on GPU, 80% weights on CPU, and all activations
and KV cache to CPU. We also choose a GPU batch size of
48 and a block size of 48 x 3. “No policy search” illustrates
the performance of worse strategies, showing the importance
of a good policy. On both models, using CPU compute
and overlapping brings non-trivial improvement. We also
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Table 4. Ablation study of proposed techniques. The numbers are
generation throughput on 1 GPU with prompt length 512. The
gray tuple denotes a policy (GPU batch size x #GPU-batch, wg,
wc). More see Appendix A.4.

Model size | 30B 175B

All optimizations 7.32 (48x3,20,80) 0.69 (32x8, 0, 50)
No policy search 7.26 (48x3,0,100) 027 (32x 1,0, 50)
No overlapping 5.86 0.59

No CPU compute 4.03 0.62

No disk 7.32 OOM

w/ DeepSpeed policy | 1.57 0.01

Table 5. The accuracy (higher is better) and perplexity (lower is
better) with approximate methods.

Dataset Lambada (acc) WikiText (ppl)
Config FP16  4-bit  4-bit-S FP16  4-bit  4-bit-S
OPT-30B  0.725 0.724 0.718 1272 1290 12.90
OPT-175B  0.758 0.756  0.756 10.82 10.94 10.94

port the policy used in DeepSpeed/Accelerate into FlexGen
runtime, showing the suboptimality of their policy. A more
detailed ablation study can be found in Appendix A.4.

HELM and Data wrangling. We tested the interaction of
FlexGen and HELM (Liang et al., 2022) by evaluating a
new model OPT-IML-30B (Iyer et al., 2022), which has
not been included in the official release of HELM. FlexGen
finishes the benchmark of 7 representative sub-scenarios in
21 hours , with all system overhead included, under the hard-
ware setup described in Table 1. Table 9 in Appendix A.4
shows the details of the tasks and the corresponding run-
ning time. We also use FlexGen to run the data wrangling
tasks (Narayan et al., 2022) with OPT models. The detailed
task configurations and running time are in Appendix A.4.

6.2. Approximations

We use two tasks to show that our approximation methods
exhibit negligible accuracy loss: next-word prediction on
Lambada (Paperno et al., 2016) and language modeling on
WikiText (Merity et al., 2016). As shown in Table 5, “4-
bit” means using group-wise quantization to compress both
weights and KV cache into 4-bit integers. “4-bit-S” means
combining the quantization and sparse attention with a 10%
sparsity on the value cache. Both methods show negligible
accuracy loss compared to FP16. The results reveal the
robustness of LLMs against these approximations. We also
tried 3-bit compression but it cannot preserve accuracy.

6.3. Offloading vs. Collaborative Inference

We compare FlexGen and Petals under different network
conditions by setting a private Petals cluster on GCP with 4
nodes having one T4 GPU per node. We use Linux traffic
control to constrain the connections between instances to
simulate a realistic decentralized network and benchmark
the performance of an OPT-30B model (input sequence
length: 512, output sequence length: 32). We tune the batch

size of each request to be 2 and issue requests by 6 paral-
lel client processes to achieve the maximum throughput.
In addition, we normalize the throughput of Petals by the
number of used GPUs. As shown in Fig. 4, we find that
the throughput of FlexGen with a single T4 outperforms the
per-GPU throughput of the Petals cluster under all tested
network conditions. Petals does not utilize offloading, so it
cannot use a very large batch size, which limits its scaling
on throughput. Thus, we believe offloading could be a more
efficient solution for throughput than communicating a large
volume of activations in a long decentralized pipeline; on
the other hand, collaborative inference can be a more viable
option in more latency-sensitive scenarios.

Interestingly, we find that FlexGen can achieve lower latency
than Petals in slow networks with short generation. We
speculate this is because the network bandwidth becomes
the bottleneck for activation transfer, and a large delay incurs
a significant overhead on each communication step in the
pipeline. For the curve of a 100ms delay network, we can
observe a cross point between FlexGen and Petals. This
is because the activations during prefill are larger than the
activations during decoding by a factor of the input sequence
length. Thus, the communication overhead is proportionally
larger, which significantly slows down Petals during prefill.

—+— FlexGen 1xT4
Petals 4xT4 10ms 1Gbps

—+— Petals 4xT4 10ms 0.1Gbps
—#— Petals 4xT4 100ms 0.1Gbps

> 0 o N

Throughput per GPU (token/s)
Now

Full generation |
o

5 10 15 20 25 30 5 10 15 20 25 30
Output sequence length Output sequence length

Figure 4. Full latency and per-GPU throughput of FlexGen and
Petals in different network delay and bandwidth.

7. Conclusion

We introduce FlexGen, a high-throughput generation engine
for LLM inference, which focuses on latency-insensitive
batch-processing tasks for resource-constrained scenarios.
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A. Appendix
A.1. Notations

We use notations in Table 6 in this appendix.

Meaning
l number of layers in the model
s | prompt sequence length

n | output sequence length

bls | block size

hi | hidden size

ho | hidden size of the second MLP layer
nh | number of head in the model

Table 6. Notations

A.2. Compute Schedule Optimality

This subsection discusses the graph traversal problem de-
scribed in Section 4.1 and only considers the case that the
model cannot fit in a single GPU. We assume no application
of CPU computation. To compute a square, the GPU loads
the tensors it needs and offloads the cache and activations
when finished. We will analyze two schedules: the zig-zag
block schedule used in Section 4.2 and an I/O-optimal di-
agonal block schedule introduced in this section. Note that
our analysis only considers the theoretical I/O complexity.
In the real system, the latency and memory consumption
cannot be the same as in the theoretical calculations.

There are three things that need to be stored during the
generation process: weights, activations, and the KV cache.
From the computational graph, we have three observations.
(1) Suppose we need to swap the weights in and out of
the GPU. Whatever the portion is, to finish the generation
for one prompt, we need to swap n times for n tokens.
Therefore, it would be preferable to reuse the loaded weights
for a batch of prompts, amortizing the weights I/O time. (2)
Each square will output activations which will be fed into the
next layer. Each row in the computational graph only needs
to hold activations for one square at the same time. (3) For
each square besides the last [ squares in a row, the KV cache
dumped by the square cannot be released until generating
the last token (the last [ columns in the computational graph).
It is not shared across rows or columns, which will be the
major factor in limiting the batch size.

A.2.1. Z1G-ZAG BLOCK SCHEDULE AND DIAGONAL
BLOCK SCHEDULE

Zig-zag block schedule. Inspired by the three observations
introduced in Section 4.2, we compute the first column in
the computational graph for bls samples, save the dumped
caches and activations, then compute the second column
for bls samples, until the last column for bls samples. We
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Figure 5. diagonal block schedule

call bls as the block size as introduced in Section 4.2. The
computed bls - n - I squares are called a block.

Assume FP16 precision, to generate 7 - bls tokens during
one block computation, we have to load n times the whole
model weights, do I/O operations on activations with 2(2h; -
s-bls-14+2hy-bls-1-(n—1)) bytes in total, and do I/O on
the KV cache with 4h; - bls - 1 - (s - n + n(n — 1)/2) bytes
in total.

Let w denote the size of one-layer weights. The peak mem-
ory used to store the weights, activations, and KV caches
can be estimated as

peak_mem = w + 2h; - bls + 4hy - bls-1- (s +n)

If we only swap with CPU, then there is the constraint that
peak_mem < CPU memory - some overhead. Let cmem
denote the right hand, there is

cmem — w
s <

bl = bls;

Now we show that there is a better schedule that gives the
same I/O efficiency but can enlarge the bls by around 2 in
some cases.

Diagonal block schedule Figure 5 is an illustration of
our diagonal block schedule. We have a block containing 4
GPU batches, and we are going to generate 4 tokens with a
model that has 4 layers. There will be a one-time warm-up
phase (gray area) to compute the area above the diagonal.
Then for each iteration, the system will compute a diagonal
that contains 4 sub-diagonals (4 squares enclosed by red
outlines as the first sub-diagonal, then 4 squares enclosed by
blue outlines as the second sub-diagonal). After finishing
the 4 sub-diagonals, it will repeat the same computation in
the next row.

For simplicity, consider the good case that the memory
capacity is large enough that the diagonal can cover all n
generation iterations for n tokens. The block size bls now is
defined as the number of samples touched by the diagonal.

In total, to compute one diagonal, the weights of each layer
will be loaded once, and the I/O of the activations and KV
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cache will be in size roughly as 1/n as the value in the
zig-zag block schedule. There will be bls tokens generated.
So the I/O per token is the same with the zig-zag block
schedule after the one-time warm-up if for the same bls.

The peak memory needed to hold the necessary weights,
activations, and KV cache is estimated as

peak_mem = w + 2h; - bls
4hy - bls-1(2s +n)(n—1)
_|_
2n

from peak_mem < cmem, we have

bls < n(cmem — w)
s

~ 2h1-n+2h;-1-(25+n)(n—1) = bls

Despite a one-time warm-up at the beginning. The diagonal
block schedule can accommodate a larger block size than
zig-zag block schedule at the ratio of

40

which is close to 2 when n > s, and close to 1 when s > n.

blsy _
bl81 -

25+ 2n
2s+n

A larger bls does not change the activations and KV caches
I/O per token, but can reduce the weights I/O per token
proportionally, while weights I/O can normally occupy a
large portion.

Discussions. In offloading setting, I/O is a significant bot-
tleneck in latency and throughput, so the diagonal block
schedule should be able to give considerable gain when n is
relatively large compared to s and the memory is sufficiently
large to fit n samples.

When the compute resources are sufficient to avoid offload-
ing, the diagonal block schedule can still help to reduce the
peak memory and enlarge the batch size, which increases
GPU utilization.

Another benefit compared to the zig-zag block schedule is
that with the same throughput, the generation latency for
each prompt is reduced. For example, suppose in the zig-zag
block schedule the bls samples finish the generation at the
same time with latency 7. In the diagonal block schedule,
the first bls/n samples finish the generation with latency
T'/n, the second bls/n samples finish with latency 27" /n,
and so on. The average latency of completion is reduced by
half.

Despite its advantages, there are some difficulties in im-
plementing the diagonal block schedule. The major im-
plementation difficulty is the dynamic update of the KV
cache buffer. To improve runtime efficiency, FlexGen now
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pre-allocates continuous buffers for all KV cache at the be-
ginning of a block. This works well for the zig-zag block
schedule. However, for the diagonal block schedule, pre-
allocating continuous buffers make it impossible to save
memory anymore. To utilize the memory-saving property
of the diagonal block schedule, one needs to implement
efficient attention computation on non-contiguous memory.

A.2.2. PROOF OF THEOREM 4.1

Note that in any case when we move from computing a
square to another square, we need to offload and load the
corresponding KV cache. So that the total I/O incurred by
KV cache is constant. The total I/O incurred by activations
could vary, but despite the prefill phase, its size for each
square is much smaller than the KV cache for the same
square. In total, the size of activations is around 1/(2s + n)
of the size of KV cache. We will ignore the I/O incurred by
activations for simplicity, which can cause a multiplicative
error of 1/(2s + n) at most. Then the only thing left is the
weights I/0. Starting from now, the I/O complexity in the
context refers to the I/O complexity incurred by weights.

Definition A.1. We define the working state at any time
when the GPU is computing a square as follows. Suppose
there are k GPU batches working in progress. The column
indices of the last squares that have been computed (includ-
ing the current one) are ay, as, ...,ag, and 1 < a; < n x [.
Different batches are identically independent, so w.l.0.g.,
suppose a; > ag > ... > aj. Then the working state is a
tuple (a1, as, ..., ar). A move that does a computation on a
square is a pair of states s(!), s(2) that means transit from
state s(1) to s(2).

Consider an optimal order denoted as an infinite sequence
mi, Mo, ...., Mo, Where m; is the ¢th move. For each i, let
s; be the current working state.

Lemma A.2. [fthere is a list of moves that start from state
s, and back to state s at the end, the number of computed
squares for every column (one layer for one token) is the
same.

Proof. Suppose the start state s (a1, as,...,ax). For
computations that occupy the whole row, the number of
computed squares for every column is the same. So we only
need to consider the rows that have not been fully traversed
(captured by the end state). For each a;, if the underlying
row has not been finished at the end, and ends with the index
b;, then we pair a; with b;. If the underlying row has been
finished, we pair it with a newly opened but not finished
row, still, let b; denote the new index.

Thus we have transited from state S, = (ay,as, ..., ax) to
another state S, = (by, ba, ..., b;). The indices in S, are
sorted by a; > as > ... > ai. The indices in S, are
not sorted, but b; is paired to a; according to the above
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paragraph. For each i, if b; > a;, we need to count the
squares in (a;, b;] by 1. If b; < a;, we need to count the
squares in (b;, a;] by -1. Now we argue that for each column
index 7 and 1 < 7 < n x [, the count over it is summed
to 0. Suppose not, that there are p positive count and ¢
negative count and p # ¢. Then there are p values lower
than j in state a and ¢ values lower than j in state b. This
contradicts the fact that S, and S}, are the same state with
different orders. Therefore, the number of computed squares
for every column is the same. O

Theorem A.3. The diagonal block schedule is I/0-optimal
asymptotically.

Proof. Notice that since the memory capacity is finite, the
length of the state is finite, thus the number of the possi-
ble state is finite. If each state appears finite times in the
sequence, then the sequence cannot be infinite. Therefore,
there exists a state s that appears in the sequence infinite
times.

Let ji1, 2, .--, Joo be the indices in the sequence that have
state s. The moves between each two neighboring s states
correspond to a throughput. The moves between j; and jo
should create the highest possible throughput that pushes
from state s to s. Otherwise, we can replace it to get a higher
total throughput, which contradicts to that it is an optimal
order. So that we can repeat such a strategy between each
neighboring j;, ;41 to get an optimal compute order.

Now the problem is reduced to finding an optimal compute
order between j; and jo. With infinite loops, the highest
throughput from 7, to jo gives the highest throughput among
the whole sequence.

Assume an optimal compute order between 7; and j». From
Lemma A.2, there is the same number of squares to be
computed for every column denoted as c. With such fixed
¢, the throughput is determined by the I/O time between
71 and j2. The number of times we load weights for each
color in Figure 2 determines the total I/O time. Each time
we load weights, for example, the weights for computing
the yellow squares, we cannot compute two yellow squares
in the same row without other weights swaps, because the
squares between them have not been computed and require
other weights.

Therefore, for one load, we can only compute squares from
different rows, which means all the caches and activations
corresponding to those squares need to be held (either on
the CPU or on the disk). Every square corresponds to some
memory consumption, for example, the squares in the range
of the i-th token cost caches for s + ¢ — 1 tokens. The
sum of the memory consumption of all squares is a constant
denoted as M. Let M’ denote the memory capacity. The
number of weights loading times is at least [M/M']. Let
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t., denote the I/O time for loading weights for one color, the
optimal throughput is at most ¢/[ M /M"] /t,,.

In the diagonal block schedule, after warm-up, each time
with the loaded weights, the peak memory is the sum of the
memory consumption of each computed square, which is the
same each time we load weights. We can set it to hit M3
Take ¢ number of diagonals as the repeated list of moves
denoted as ¢. Set the starting state to be s mentioned before,
¢ will restore the state to s by construction. The number of
weights loading times during ¢'is [M/M"], which meets
the lower bound, and achieves the throughput upper bound
¢/[M/M"]/t,. The warm-up phase can be ignored in the
setting of an infinite sequence. In summary, the diagonal
block schedule is I/O optimal asymptotically. O

The zig-zag block schedule is not optimal, as the peak mem-
ory consumption is not the same each time loading the
weights. When computing the layers for the last token, the
peak memory is scaled with s + n — 1, while for the first
token, it is scaled with s. In order to let the former fit in
M, the latter must be smaller than M’. But the memory
consumption change is linear when generating the tokens,
thus the average memory consumption for each weights
loading can be pushed to at least M’/2. From this, the
zig-zag block schedule can achieve the throughput at least
c/[M/(M'/2)]/t, which is 1/2 of the throughput upper
bound. In the infinite sequence setting, this means the zig-
zag block schedule can achieve an I/O complexity that is at
most 2 x optimal. Therefore, we have:

Theorem 4.1. The I/0 complexity of the zig-zag
block schedule is within 2x of the optimal solution.

A.3. Cost Model

In this section, we present the full cost model. Note that we
use a single variable to represent constants like bandwidth
and TFLOPS to simplify the formulation below. In real
systems, these constants vary according to the total load.
We handle such dynamics by using piece-wise functions and
adding regularization terms. We carefully model the dynam-
ics by depending only on other constants (e.g., hidden size),
so the optimization problem remains a linear programming
problem with respect to policy variables.

Table 6 and Table 7 give the meaning of constants used in
the cost model.

The object is to maximize throughput (token/s), which is
equivalent to minimizing the reciprocal (s/token). Free vari-
ables are colored blue.

3The size value is discrete, we cannot exactly hit M’, but with
large enough parameters, such a gap could be set to only affect the
total value by less than 1%. For example, the layer could be at the
tensor level to make squares extremely fine-grained.
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Var Meaning
ctog_bdw CPU to GPU bandwidth
gtoc_bdw GPU to CPU bandwidth
dtoc_bdw | disk to CPU bandwidth
ctod_bdw CPU to disk bandwidth
mm_flops | GPU flops per second for matrix multi-
plication
bmm_flops | GPU flops per second for batched ma-
trix multiplication
cpu_flops | CPU flops per second
wg percentage of weights on GPU
wce percentage of weights on CPU
wd percentage of weights on disk
cg percentage of KV cache on GPU
cc percentage of KV cache on CPU
cd percentage of KV cache on disk
hg percentage of activations on GPU
hc percentage of activations on CPU
hd percentage of activations on disk
Table 7. Notation Variables
Objective

Minimize 7'/bls

Then the following constraints describe the calculation of

total latency:
T=Tpre-l+Tgen-(n—1)-1
Tpre = max(ctog?, gtoc?, dtoc?, ctod? , comp?)

fod? weights_ctogP + act_ctogP
ctog? =

ctog_bdw

= —— ((we+wd)(8h? + 4hy - h
ctog,bdw((wc—i_w J(8h1 + 4l - ha)
+ 2(hc+ hd)s - hy - bls)

gtoc? — cache_gtoc? + act_gtocP

gtoc_bdw

= m(ﬁl(cc +cd)(s+1)hy - bls

+ 2(hc+ hd)s - hy - bls)

weights_dtocP + act_dtocP
dtoc_bdw
(wd(8h3 + 4h1 - ha)

+ 2hd - s+ hy - bls)

dtoc? =

B 1
"~ dtoc_bdw

cache_ctodP + act_ctodP
ctod_bdw

ded-bls-(s+1)-hy

ctod? =

_ 1 (
" ctod_bdw
+2hd-s-hy-bls)

16

_ linear layer? att?
comp” = mm_flops bmm_flops
_ bls(8s-hi+4s - hy - hy)
n mm_flops
4bls - s% - hy
bmm_flops

Tgen = max(ctog?, gtoc?, dtoc?, ctod?, comp?)

weights_ctog? + act_ctog?

togd =
o9 ctog_bdw
1
= W((wc + wd)(8h3 + 4hy - hy)
+ 2(hc + hd)hy - bls)
act_gtocd
tocd = =227
groe gtoc_bdw
1
=————(2(hc+ hd) - hy - bls
gtoc,bdw( (he + hd) - hy - bls)
dtocd — cache_dtocd + weights_dtocd + act_dtocd
B dtoc_bdw
1
=————(4cd-bls- (s+mn/2) - by

dtoc_bdw
+ wd(8h3 + 4hy - hy)
+ 2hd - hy - bls)

cache_ctod? + act_ctod?
ctod_bdw

1

ctod? =

comp? = gpu_comp? + cpu_comp?

s _ linear_layer? attd
il e — flops bmm_flops
o blS(Sh% + 4h1 . hz)
N mm_flops
deg - bls- (s +mn/2) - hy
bmm_flops
att?d
cpu_compd = —
cpu_flops
_ A(ccHcd)bls - (s +n/2) - hy
N cpu_flops
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Peak Memory Constraints

* GPU peak memory constraints during prefill:
GPU memory used to hold a fixed percentage of
weights, activations, and cache is
gpu_home? = wg - (8h3 + 4hy - hy) - 1
+ hg-2s-hy-bls
+4(s+n)hy -cg-bls- 1.
GPU working memory (omit mask):
qgkv? = gbs - (25 - h1 + 3(2s - hy))
=gbs-8s-hy
att! = cg - gbs - (25 - hy + 25 - hy + 2nh - 5%)
atth = cg - gbs - (2nh - 5% 4+ 25 - hy + 25 - hy)
embed? = gbs - (2s - h1 +2s - hy)
=gbs-4s-hy
mlpy = gbs - 2(s-hy + s h2)
=2gbs - s(hy + h2)
mlph = gbs - 2(s - ha + s - hq)
= 2gbs - s(hy + ha)

gpu_w? = 2(1 —wg)(8h? + 4hy - hy)
+(1—hg)-2s-hy - gbs
+ max(qgkv, atty, atty, embed, mipy, mlps)
gpu_peak? = gpu_home® + gpu_w? < gmem
* GPU peak memory constraints after prefill:
GPU memory used to hold a fixed percentage of
weights, activations, and cache is
gpu_home? = wgq - (8h3 + 4hy - ho) -1
+ hg - 2hy - bls
+4(s+n)hy -cg-bls- 1.
GPU working memory (omit mask):
qkv? = gbs - (2hy + 3(2h1)) = 8gbs - hy
atty = cg - gbs - (2h1 + 2(s +n)hy
+ 2nh(s +n))
atty =cg - gbs - (2nh(s+n)+2(s+n)hy
+2h1)
embed? = gbs - (2h1 + 2h1) = 4gbs - hy
mipd = 2gbs - (hy + ha)
mlp§ = 2gbs - (ha + hy)

gpuw? = 2(1 —wg)(8h3 + 4hy - ho)
+(1—hg)-2s-hy - gbs
+max(gkv?, atty, atty, embed? , mlp], mip3)

gpu_peak? = gpu_home? + gpu_w?d < gmem
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* CPU peak memory constraints during prefill:
CPU memory used to hold a fixed percentage of
weights, activations, and cache is

cpu_home? = wc - (8hi + 4hy - hy) - 1
+ hc-2s-hy - bls
+4(s+n)hy-cc-bls- .

CPU working memory:

cpu_w? = (1 —wg)(8h? + 4hy - ho)
+ (1 —hg)-2s-hy-gbs.

cpu_peak? = cpu_home? + cpu_w? < emem

* CPU peak memory constraints after prefill:
CPU memory used to hold fixed percentage of weights,
activations, and cache is

cpu_home? = wc - (8h3 + 4hy - hy) - 1
+ he - 2hq - bls
+4(s+n)hy - cc-bls - 1.

CPU working memory:

cpu_w? = wd(8h? 4 4hy - hy)
+2hd -2 hy - gbs
+ 2cd - 4(s +n)hy - gbs
+2nh-(s+n)- gbs
+ 2hy - gbs.

cpu_peak? = cpu_home? + cpu_w? < cmem

* NVMe peak memory constraints:

nvme_peak = (8h? + 4hy - hy) - wd - |
+ hd-2s-hy-bls
+ed-4(s+n)hy - bls -1

< nmem

A 4. Tables and Additional Experimental Results

Execution Breakdown Table 8 shows the execution time
breakdown for OPT-175B running on FlexGen with the
setup in Table 1.

HELM and Data Wrangling Table 9 lists the details of
HELM integration experiments. Table 10 and Table 11
shows additional results for the data wrangling task.

Complementary Tables for Policy Details Table 15 and
Table 16 list the concrete policy setups for the results in
Table 2 for prompt length 512 and 1024, from end-to-end
throughput experiments. Table 19 and Table 20 list the
latency and throughput for the data points in Fig. 1 which
demonstrate latency-throughput tradeoff.
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Abalation Study Table 23 list the concrete policy setups
for the main ablation study result in Table 4. Table 21 and
Table 22 shows some additional ablation study on policies.
In Table 23, DeepSpeed chooses to store the KV cache
and activations on GPU. For OPT-30B, the weights will be
stored on the CPU entirely because it cannot fit in GPU. The
corresponding percentage is (0, 100, 100, 0, 100,0). The
computation order of DeepSpeed is row-by-row, so the num-
ber of GPU batches in a block is 1. The GPU batch size is
set to be as large as possible, which is set to 8. For OPT-
175B, the weights will be stored on disk entirely according
to DeepSpeed’s strategy, since it cannot be stored on CPU.
The corresponding percentage is (0,0, 100, 0, 100, 0). The
number of GPU batches in a block is 1, and the GPU batch
size is 2. For “No policy search”, we use different policy
changes for OPT-30B and OPT-175B to demonstrate the
impact of different policy dimensions. For OPT-30B, we
change the percentage for weights from (20, 80) to (0, 100),
and show that the throughput does not change much. For
OPT-175B, we change the number of GPU batches in a
block from 8 to 1 and show that the throughput degrades
significantly. For “No CPU compute”, it degrades OPT-30B
more than OPT-175B because the bottleneck for OPT-175B
is on disk offloading. Therefore, the gain for CPU computa-
tion is small for OPT-175B. While for OPT-30B, the disk
has not been used, so the gain for CPU computation is more
significant.

Different SSD Speed To highlight the limitation and re-
quirements of SSD speed. We tested two kinds of disk on
GCP and report the generation throughput (token/s) in Ta-
ble 24 (input sequence length = 512 and output sequence
length = 32).

Additional Hardware and Sequence Length Our meth-
ods and implementations do not depend on specific hard-
ware architectures. It can work well on different CPU archi-
tectures (e.g., Intel, AMD) and different GPU architectures
(e.g., NVIDIA Ampere, NVIDIA Turing) as long as the
architectures are supported by PyTorch. Some architecture
(e.g. unified memory) could be more friendly to our ap-
proach. To tune the system for different architectures, we
need to fit a cost model and run policy search to generate
offloading policies, which can be different according to
the compute capabilities, memory capacities, and memory
bandwidth of different architectures. The final absolute per-
formance will vary, but FlexGen can be easily adapted to
different architectures. We did additional experiments on a
different hardware setup of 24GB RTX 3090 with 125GB
CPU Memory and 1TB SSD, in addition to our previous
setting of 16GB T4 with 208GB CPU Memory and 1.5TB
SSD, shown in Table 12. The input sequence length is set
to 512 and the output sequence length is set to 32. We
can see the results follow similar trends to the setup in the
main paper. FlexGen outperforms other baselines signifi-
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Table 8. Execution time breakdown (seconds) for OPT-175B. The
prompt length is 512. (R) denotes read and (W) denotes write.

Stage Total Compute  Weight (R)  Cache (R) Cache (W)
Prefill 2711 2220 768 0 261
Decoding 11315 1498 3047 7046 124

cantly. Comparing this 3090 setting with the T4 setting in
the main paper, the performance under the 3090 setting is
worse than the T4 setting for 30B and 175B. This is because
CPU memory also plays a critical role when offloading is
needed, making our T4 setting with larger CPU memory
better.

Table 14 and Table 13 show the results for an additional
prompt length 256. As all of our benchmarks in the main pa-
per are done with output sequence length 32, so we add two
additional fixed sequence lengths in Table 17 and Table 18.
The numbers are generally higher in the former one because
the input sequence length is smaller and the output sequence
length is larger. As the throughput is defined as (number
of generated tokens) / (prefill time + generation time), such
a setting makes the fraction of prefill time smaller. The
numbers are generally lower in the latter one because the
output sequence length is smaller.

In summary, FlexGen outperforms baselines in all newly
added settings. The Compression techniques used in
FlexGen are helpful only for large models that need offload-
ing. CPU memory capacity is essential for large models that
need offloading.

Batches with Various Sequence Length We also add ex-
periments of one realistic use case with a mixture of prompt
and output lengths (HELM benchmark) in Table 25. To
batch sequences of variable lengths, FlexGen simply pads
all inputs to the maximum prompt length, which is a com-
mon method used in many systems. Depending on the
distribution of the prompt length, the efficiency of this sim-
ple padding method varies. For example, if most sequences
have similar lengths, then the baching efficiency should be
very high. if some sequences are very long and some se-
quences are short, then FlexGen will spend a lot of time
on the useless computation of padding tokens. We use two
metrics: padded throughput = (number of tokens in padded
prompts + number of tokens in padded outputs) / latency
and actual throughput = (number of non-padding tokens
in prompts + number of non-padding tokens in outputs) /
latency. To better handle prompts with various lengths, one
can utilize some complementary techniques from Orca(Yu
et al., 2022).
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Table 9. The setup and running time of 7 representative sub-scenarios in the HELM integration. The running time consists of dataset
downloading, model initialization, generation, and metric computation. “Prompt len” denotes the input sequence length, and “Gen len”
denotes the output sequence length. “Num seq” denotes the number of sequences (prompts). “time” denotes the running time in minutes.

Scenario description Promptlen Genlen Numseq time
wikifact: k=5, subject=plaintiff 256 8 288 10
wikifact: k=5, subject=instance_of 256 8 2592 55
mmlu: subject=abstract_algebra 512 1 864 31
mmlu: subject=us_foreign_policy 512 1 1008 33
synthetic_reasoning: mode=pattern_match 256 50 1584 118
synthetic_reasoning_natural: difficulty=easy 512 20 1584 100
summarization_xsum: temperature=0.3 1984 64 1568 902

Table 10. The setup and running time of 6 representative data wrangling tasks with OPT-30B. Because the output seq. length is short for
this task, we use a new metric total throughput = (number of tokens in the prompt + number of generated tokens) / total latency.

Task  Number of seq.  Input seq. length  Output seq. length  Running time (s)  Total throughput (token/s)

EM: Fodors-Zagats 189 744 3 541.550 248.287
EM: Beer 91 592 3 238.58 224.450

EM: iTunes-Amazon 109 529 3 267.639 198.775
DI: Restaurant 86 123 5 60.310 169.790

DI: Buy 65 488 10 185.882 160.747

ED: Hospital 200 200 3 158.329 256.429

Table 11. The setup and running time of 6 representative data wrangling tasks with OPT-175B. Because the output seq. length is short for
this task, we use a new metric total throughput = (number of tokens in the prompt + number of generated tokens) / total latency.

Task  Number of seq.  Input seq. length  Output seq. length  Running time (s)  Total throughput (token/s)

EM: Fodors-Zagats 189 744 3 3928.310 34.228
EM: Beer 91 592 3 1356.786 35.083

EM: iTunes-Amazon 109 529 3 1569.062 33.906
DI: Restaurant 86 123 5 648.762 16.968

DI: Buy 65 488 10 2086.961 14.317

ED: Hospital 200 200 3 1154.133 35.178

Table 12. Generation throughput (token/s) on 1 GPU (RTX 3090) with 125 GB CPU memory and 1TB SSD, run with input sequence
length 512 and output sequence length 32. FlexGen is our system without compression; FlexGen (c) uses 4-bit compression. The gray
tuple denotes a policy (GPU batch size x #GPU-batch, wg, wc, cg, cc, hg, hc).

Seq. length 512 +32

Model size 6.7B 30B 175B

Accelerate 183.177 (16 1, 100, 0, 100, 0, 100, 0) 2.077 (13x1, 0, 100, 100, 0, 100, 0) 0.026 (4% 1,0, 0, 100, 0, 100, 0)
DeepSpeed  38.027 (321, 0, 100, 100, 0, 100, 0) 3.889 (12x 1,0, 100, 100, 0, 100, 0) 0.019 (3x 1,0, 0, 100, 0, 100, 0)
FlexGen 233.756 (28 x 1, 100, 0, 100, 0, 100, 0) 5.726 (4% 15, 25, 75, 40, 60, 100, 0) 0.384 (64 x4, 0, 25,0, 0, 100, 0)
FlexGen (c) 120.178 (1441, 100, 0, 100, 0, 100, 0)  16.547 (96x2, 25,75, 0, 100, 100, 0)  1.114 (241, 0, 100, 0, 100, 100, 0)
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Table 13. Generation throughput (token/s) on 1 GPU with different systems. Accelerate, DeepSpeed, and FlexGen use 1 GPU. Petals uses
1 GPU for OPT-6.7B, 4 GPUs for OPT-30B, and 24 GPUs for OPT-175B, but reports per-GPU throughput. Petals is benchmarked under
different network delay and bandwidth. The models are run in INTS as the default for Petals. We tune the batch size of each request to be
2 and issue requests by 6 parallel client processes to achieve the maximum throughput. FlexGen is our system without compression;
FlexGen (c) uses 4-bit compression. “OOM” means out-of-memory.

Seq. length 256 512 1024

Model size 6.7B  30B 175B 6.7B 30B 175B 6.7B 30B 175B
Accelerate 50.66 134 0.02 2512 0.62 0.01 13.01 031 0.01
DeepSpeed 1452 130 0.01 928 060 001 459 029 OOM
Petals (<5ms, 1Gb/s) 9.03 355 009 825 284 008 656 151 0.06
Petals (<5ms, 100Mb/s)  9.15 253 0.06 8.18 167 0.05 652 0.87 0.03
Petals (100ms, 100Mb/s) 8.64 0.75 001 7.82 064 0.01 589 037 0.01
FlexGen 5329 16.01 136 2526 7.32 0.69 13.72 350 0.35
FlexGen (c) 56.72 1686 226 29.12 870 1.12 13.18 3.98 042

Table 14. Generation throughput (token/s) on 1 GPU with input sequence length 256 and output sequence length 32. FlexGen is our
system without compression; FlexGen (c) uses 4-bit compression. “OOM” means out-of-memory. The gray tuple denotes a policy (GPU
batch size x #GPU-batch, wg, we, cg, cc, hg, hc).

Seq. length 256

Model size  6.7B 30B 175B

Accelerate 50.66 (41, 100, 0, 100, 0, 100, 0) 1.34 (16x1, 0, 100, 100, 0, 100, 0) 0.02 (4x1, 0, 0, 100, 0, 100, 0)
DeepSpeed  14.52 (321, 0, 100, 100, 0, 100, 0) 1.30 (12x1, 0, 100, 100, 0, 100, 0) 0.01 (21, 0,0, 100, 0, 100, 0)
FlexGen 53.29 (4x1, 100, 0, 100, 0, 100, 0) 16.01 (160x2, 10, 90, 0, 100, 0, 100)  1.36 (64 %8, 0, 50, 0, 0, 0, 100)
FlexGen (c) 56.72 (1281, 100, 0, 100, 0, 100, 0)  16.86 (128x8, 0, 100, 0, 100, 0, 100)  2.26 (96x3, 0, 100, 0, 100, 0, 100)

Table 15. Generation throughput (token/s) on 1 T4 GPU with input sequence length 512 and output sequence length 32. FlexGen is
our system without compression; FlexGen (c) uses 4-bit compression. “OOM” means out-of-memory. The gray tuple denotes a policy
(GPU batch size x #GPU-batch, wg, wc, cg, cc, hg, hc).

Seq. length 512

Model size  6.7B 30B 175B

Accelerate 25.12 (2x1, 100, 0, 100, 0, 100, 0) 0.62 (81, 0, 100, 100, 0, 100, 0) 0.01 (21,0, 0, 100, 0, 100, 0)
DeepSpeed  9.28 (161, 0, 100, 100, 0, 100, 0) 0.60 (41,0, 100, 100, 0, 100, 0) 0.01 (1x1,0,0, 100, 0, 100, 0)
FlexGen 25.26 (2x1, 100, 0, 100, 0, 100, 0) 7.32 (48 %3, 20, 80, 0, 100, 0, 100) 0.69 (32x8, 0, 50, 0, 0, 0, 100)
FlexGen (c) 29.12 (72x 1, 100, 0, 100, 0, 100, 0)  8.70 (16x20, 20, 80, 0, 100, 100, 0)  1.12 (48x3, 0, 100, 0, 100, 0, 100)

Table 16. Generation throughput (token/s) on 1 T4 GPU with input sequence length 1024 and output sequence length 32. FlexGen is
our system without compression; FlexGen (c) uses 4-bit compression. “OOM” means out-of-memory. The gray tuple denotes a policy
(GPU batch size x #GPU-batch, wg, wc, cg, cc, hg, hc).

Seq. length 1024

Model size 6.7B 30B 175B

Accelerate 13.01 (1x 1, 100, 0, 100, 0, 100, 0) 0.31 (4x1, 0, 100, 100, 0, 100, 0) 0.01 (1x1,0,0, 100, 0, 100, 0)
DeepSpeed  4.59 (81,0, 100, 100, 0, 100, 0) 0.29 (2x1, 0, 100, 100, 0, 100, 0) OOM

FlexGen 13.72 (1x1, 100, 0, 100, 0, 100, 0) 3.50 (204, 4, 96, 0, 100, 0, 100) 0.35 (12x12, 0, 50, 0, 0, 0, 100)
FlexGen (¢c) 13.18 (281, 100, 0, 100, 0, 100, 0)  3.98 (20x 12, 0, 100, 0, 100, 0, 100)  0.42 (12x4, 0, 100, 0, 100, 0, 100)
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Table 17. Generation throughput (token/s) on 1 T4 GPU with input sequence length 128 and output sequence length 128. FlexGen is
our system without compression; FlexGen (c) uses 4-bit compression. “OOM” means out-of-memory. The gray tuple denotes a policy
(GPU batch size x #GPU-batch, wg, we, cg, cc, hg, hc).

Seq. length 128 + 128

Model size ~ 6.7B 30B 175B

Accelerate 73.411 (5x1, 100, 0, 100, 0, 100, 0) 1.547 (161, 0, 100, 100, 0, 100, 0) 0.021 (4x1, 0, 0, 100, 0, 100, 0)
DeepSpeed  19.193 (361, 0, 100, 100, 0, 100, 0) 1.717 (12x1, 0, 100, 100, 0, 100, 0) 0.024 (3x1, 0.0, 100, 0, 100, 0)
FlexGen 106.404 (71, 100, 0, 100, 0, 100, 0) 24.634 (3210, 25, 75, 0, 100, 100, 0)  2.409 (648, 0, 50, 0, 0, 0, 100)

FlexGen (c) 92.568 (1961, 100, 0, 100, 0, 100, 0)  39.141 (1288, 25,75, 0, 100, 0, 100)  4.264 (803, 0, 100, 0, 100, 100, 0)

Table 18. Generation throughput (token/s) on 1 T4 GPU with input sequence length 512 and output sequence length 8. FlexGen is our
system without compression; FlexGen (c) uses 4-bit compression. “OOM” means out-of-memory. The gray tuple denotes a policy (GPU
batch size x #GPU-batch, wg, we, cg, cc, hg, hc).

Seq. length 512+ 8
Model size ~ 6.7B 30B 175B

Accelerate 17.290 (2x 1, 100, 0, 100, 0, 100, 0) 0.628 (7x 1,0, 100, 100, 0, 100, 0) 0.009 (21, 0,0, 100, 0, 100, 0)
DeepSpeed  9.055 (181, 0, 100, 100, 0, 100, 0) 0.872 (6x1, 0, 100, 100, 0, 100, 0) 0.007 (11, 0.0, 100, 0, 100. 0)
FlexGen 16.425 (2x 1, 100, 0, 100, 0, 100, 0) 3.938 (512x8, 20, 80, 0, 100, 0, 100)  0.451 (32x38, 0, 50, 0, 0, 0, 100)

FlexGen (c) 14.244 (761, 100, 0, 100, 0, 100, 0) ~ 4.019 (16x36, 25,75, 0, 100, 0, 100)  0.559 (48 <3, 0, 100, 0, 100, 0, 100)

Table 19. The Pareto frontier of the latency-throughput trade-off of OPT-175B. The numbers are generation throughput (token/s) and
effective batch latency (s) on 1 GPU with input sequence length 512 and output sequence length 32. The numbers in the parentheses
are corresponding effective batch sizes. The numbers in bold are the best throughput and latency for each model. We organize the table so
that the latency numbers of different methods in each row are similar for each model. The top value of each column corresponds to the
setting of effective batch size 1. (To reach the lowest latency, FlexGen uses an effective batch size of 2 rather than 1 because the latency
difference between batch sizes 1 and 2 is negligible in this case. So, a run with batch size 2 dominates the one with batch size 1 with
higher throughput and similar latency.)

175B (generation throughput / latency)

Accelerate DeepSpeed FlexGen FlexGen (c)

- - - 0.052 /612 (1)
- - - 0.198 / 647 (4)
- - - 0.369 /693 (8)
; . - 077971973 (48)
; . 0.025/2555(2)  1.092/2813 (96)
- - 0.254/4028 (32) 1.122/4072 (144)
- 0.006/5024 (1)  0.421/4864 (64) .
; - 0.572/7159 (128) ;
0.004 / 7508 (1) . - ;
0.008 / 7633 (2) . ;
- - 0.687 /11916 (256) -
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Table 20. The Pareto frontier of the latency-throughput trade-off of OPT-30B. The numbers are generation throughput (token/s) and
effective batch latency (s) on 1 GPU with input sequence length 512 and output sequence length 32. The numbers in the parentheses
are corresponding effective batch sizes. The numbers in bold are the best throughput and latency for each model. We organize the table so
that the latency numbers of different methods in each row are similar for each model. The top value of each column corresponds to the

setting of effective batch size 1.

30B (generation throughput / latency)

Accelerate

DeepSpeed

FlexGen

FlexGen (c)

0.08 /405 (1)
0.31/408 (4)
0.62 /413 (8)

0.16/203 (1)
0.31/204 (2)
0.62 /206 (4)

0.20/ 159 (1)
0.37/172 (2)
0.73 /174 (4)
1.40 /183 (8)
2.70/ 190 (16)
4.05/253 (32)
5.71/359 (64)

0.21/153 (1)
0.42/ 154 (2)
0.82/ 155 (4)
1.58 /162 (8)
2.88 /178 (16)

4.63 /277 (40)
6.72 /381 (80)

7.32/559 (144) -
- - - 7.96/644 (160)
8.49 /904 (240)

8.70 / 1177 (320)

Table 21. Ablation study of policies. The numbers correspond to generation throughput on 1 GPU with input sequence length 512 and
output sequence length 32. All policies have CPU computation turned on. The numbers for OPT-175B show some inconsistency with
the end-to-end evaluation in Table 2 and Table 15 (0.49 vs 0.69) because we turn on the pagecache-mangagement (Morton, 2008) tool to
prevent the automatic disk cache in operating systems, which makes the ablation results more accurate but brings some overheads. This
added some overhead and misses the advantage of using CPU cache. A real run should be expected to have a better throughput. (gbs
denotes the GPU batch size, #gb denotes the number of GPU batches in a block.)

gbs #gb wg wc cg cc hg hc 30B (token/s) 175B (token/s)
48 3 20 80 0 100 0 100 7.32 OOM
48 3 0 100 0 100 0 100 7.26 OOM
48 1 20 80 0 100 0 100 5.40 OOM
32 8 0 50 0 0 0 100 1.66 0.49
32 8 0 0 0 0 0 100 1.55 0.44
32 1 0 50 0 0 0 100 0.88 0.23
1 1 20 80 100 0 100 0 0.20 OOM

1 1 0 50 100 0 100 0 0.04 0.01
8 1 0 100 100 0 100 0 1.57 OOM
2 1 0 0 100 0 100 0 0.05 0.01
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Table 22. Ablation study of policies. The numbers are full generation latency on 1 GPU with input sequence length 512 and output
sequence length 32. All policies have CPU computation turned on. We turn on the pagecache-mangagement (Morton, 2008) tool to
prevent the automatic disk cache in operating systems, which makes the ablation results more accurate but brings some overheads. This
added some overhead and misses the advantage of using CPU cache. A real run should be expected to have a better latency. (gbs denotes
the GPU batch size, #gb denotes the number of GPU batches in a block.)

gbs  #gb wg wc cg cc hg hc 30B(s) 175B (s)

48 320 80 0 100 0 100 559 OOM
48 3 0 100 0 100 0 100 635 OOM
48 1 20 80 0 100 0 100 284 OOM
32 8 0 50 0 0 0 100 4930 16611
32 8 0 0 0 0 0 100 5287 18704
32 1 0 50 0 0 0 100 1164 4476
1 I 20 80 100 0 100 0 160 OOM
1 1 0 50 100 0 100 0 737 3107
8 1 0 100 100 0 100 0 170 OOM
2 1 0 0 100 0 100 0 1215 6072

Table 23. Ablation study of proposed techniques. The numbers are generation throughput on 1 T4 GPU with prompt length 512 and
generating length 32. The gray tuple denotes a policy (GPU batch size x #GPU-batch, wg, we, cg, cc, hg, hc).

Model size ‘ 30B 175B

All optimizations 7.32 (48 %3, 20, 80, 0, 100, 0, 100)  0.69 (32x8, 0, 50, 0, 0, 0, 100)
No policy search 7.26 (48x%3,0, 100, 0, 100, 0, 100) 0.27 (32x1, 0, 50, 0, 0, 0, 100)
No overlapping 5.86 (48 %3, 20, 80, 0, 100, 0, 100) 0.59 (32x8, 0, 50, 0, 0, 0, 100)
No CPU compute 4.03 (483, 20, 80, 0, 100, 0, 100) 0.62 (328, 0, 50, 0, 0, 0, 100)
No disk 7.32 (48 %3, 20, 80, 0, 100, 0, 100)  OOM

w/ DeepSpeed policy | 1.57 (81,0, 100, 100, 0, 100, 0) 0.01 (2x1,0,0, 100, 0, 100, 0)

Table 24. Generation throughput (token/s) on hardware specifed in Table 1 with input sequence length 512 and output sequence length
32. The performance of OPT-30B is not affected because OPT-30B does not use SSD. The disk speed is measured using the Linux
command dd with a block size (bs) of 1IMB and the number of blocks (count) of 16000. The PageCacheManagement tool is used to
disable disk cache in the operating system during measurement.

Disk Specification 30B 175B
1.6GB/s read, 1.3GB/s write (local SSD, the one used in the main paper) 7.32 0.69
0.5GB/s read, 0.5GB/s write (persistent SSD, a new setting) 7.32 0.30
1.6GB/s read, 1.3GB/s write (local SSD, use PageCacheManagement) 7.32 0.49

0.5GB/s read, 0.5GB/s write (persistent SSD, use PageCacheManagement) 7.32 0.292

Table 25. Selected example of FlexGen on real-world tasks from the HELM benchmark, which consists of prompts of various lengths
with different output lengths. We use two metrics: padded throughput = (number of tokens in padded prompts + number of tokens in
padded outputs) / latency, actual throughput = (number of non-padding tokens in prompts + number of non-padding tokens in outputs) /
latency. The throughput are measured in token/s. To batch sequences of variable lengths, FlexGen simply pads all inputs to the maximum
prompt length, which is a common method used in many systems. Depending on the distribution of the prompt length, the efficiency of
this simple padding method varies. For example, if most sequences have similar lengths, then the batching efficiency should be very
high. if some sequences are very long and some sequences are short, then FlexGen will spend a lot of time on the useless computation of
padding tokens.

Task Padded input seq. length ~ Padded output seq. length ~ Padded throughput  Actual throughput Efficiency
MMLU

(abstract_algebra) 512 1 251.5 188.6 75.0%
Xsum 1984 64 60.5 47.6 78.7%
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