
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRADIENT-CONSTRAINED TRAINING FOR DIS-
TRIBUTED LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Computational constraints make distributed architectures essential for working
with large-Language models (LLMs), while inter-node gradient synchronization
often becomes a major bottleneck in the distributed parallel training. Current com-
pression techniques mainly aim to reduce communication volume for the com-
puted gradients, instead of generating gradients with inherent sparsity directly
during training. In this paper, we propose gradient constrained training (GCT), a
novel approach that leverages gradient constraints to generate low-rate gradients.
By balancing performance and rate, we directly form an effectively training-time
gradient source, achieving high compression efficiency with no accuracy degra-
dation. In extensive experiments, we observed that GCT provides at least 70%
average bitrate savings and demonstrates consistent and stable improvements in
coding efficiency across various model tasks and distributed systems, which indi-
cates that GCT have profound implications for next-generation distributed model
training and stable gradient transmission.

1 INTRODUCTION

Distributed training with data, model, and pipeline parallelism has become essential for pre-training
and fine-tuning modern LLMs, as single-GPU setups are infeasible given dataset and model scale.
However, gradient storage, communication, and synchronization in such systems impose substantial
memory and bandwidth overhead, often leading to high latency and bottlenecks that limit training
efficiency and scalability. Gradient compression has thus emerged as a key technique for enabling
efficient large-scale distributed training.

Existing gradient compression techniques can be broadly categorized into sparsification or quan-
tization methods. The core idea of sparsification is to transmit only the most important subset of
gradient values while discarding or accumulating the remaining values for later transmission (Aji
& Heafield, 2017; Stich et al., 2018; Basu et al., 2019). These sparsification practices have shown
that, the communication of most parameter gradients make less contribution for parameter updates.
The essence of quantization is to represent gradients using lower-precision numerical values, thus
reducing the number of bits required per gradient value (Seide et al., 2014; Alistarh et al., 2017;
Wen et al., 2017). Both of them fundamentally leverage the inherent sparsity of natural gradient
distributions by applying numerical processing to the gradient data after it is generated, instead of
considering directly produce a more encoding-friendly gradient source.

BackSlash (Wu et al., 2025) pioneered the introduction of rate-distortion theory (Berger, 2003) into
the field of model compression in training. By adding constraint to the loss function, they achieved
deep compression of parameters during the training process, demonstrating effective parameter com-
pression in most cases, which inspired our further exploration of in-training gradient compression.
We aim to employ a similar approach to deeply optimize the gradient distribution generated during
model training, enabling superior compression performance in subsequent quantization, sparsifica-
tion, or entropy encoding processes.

In this paper, we attempt to integrate the gradient constraint to the loss function and train the LLMs
in this gradient-constrained paradigm. By balancing model performance and gradient bitrate, it
simultaneously reduces the model generalization error and gradient structural error in training and
generate compression-friendly gradient streams, which can notably enhance the performance of
subsequent compression algorithms. Our main contributions can be noted as follows:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1. We observed that the gradients exhibits strong characteristics of a generalized Gaussian
distribution. It led us to develop a distributed training framework that employs exponential
Golomb (EG) coding for gradient-encoded communication. The framework significantly
reduces gradient communication volume, effectively alleviating the bandwidth bottleneck
in distributed training.

2. We propose a novel gradient-constrained training method. By introducing gradient con-
straints, we achieved compression of model training gradients for the first time. Extensive
experiments show that the gradients obtained with this training paradigm exhibit a sparser
distribution, along with smaller and more stable encoding results.

3. We developed an efficient and low-overhead strategy for approximating second-order
derivatives. In practice, this estimation method requires only storing the previous step’s
gradients to compute second-order derivatives, with almost no increase in training time.
It significantly reduces the computational and spatial demands of second-order derivative
backpropagation, enhancing the practicality of gradient-constrained training algorithms.

2 RELATED WORK

2.1 GRADIENT QUANTIZATION

One method to compress gradient information is gradient quantization, whose core idea is to quan-
tize high-precision gradient data into low-precision values to alleviate communication bottlenecks.

Early research focused on the number of quantization bits. Seide et al. (2014) were the first to
propose quantizing gradients to 1-bit to reduce communication volume between models, though this
approach could slow down training convergence. To improve model convergence, TernGrad (Wen
et al., 2017) introduced a ternary quantization method combining gradient clipping and quantization.

Quantization-induced training errors may accumulate and amplify during continued training, lead-
ing to the development of error accumulation methods in gradient quantization. The QSGD scheme
proposed by Alistarh et al. (2017) provided a theoretically provable stochastic and unbiased quanti-
zation function for gradient data, incorporating quantization compensation to mitigate the negative
effects of quantization errors. Wu et al. (2018) proposed an error-compensated quantized stochastic
gradient descent algorithm, which reduces the error bound by accumulating all historical quantiza-
tion errors.

Sign-based quantization algorithms have also continued to evolve. signSGD, introduced by Bern-
stein et al. (2018), adopted an aggressive gradient compression strategy in which each worker node
only transmits the sign of each mini-batch stochastic gradient. Karimireddy et al. (2019) addressed
the bias issue in the signSGD quantization estimator through an error feedback mechanism, resolv-
ing its tendency to diverge from the optimal solution during training and enabling stable convergence
across various model trainings.

Additionally, some studies have explored adaptive quantization level adjustment. For example,
Faghri et al. (2020) approached from the perspective of information rate-distortion theory and pro-
posed the AGQ algorithm, which computes near-optimal quantization levels in an online and low-
cost manner. However, gradient quantization requires reducing the number of bits for transmitting
gradients, which inherently faces limitations due to the loss of gradient precision.

2.2 GRADIENT SPARSIFICATION

Compared to gradient quantization, sparsification can achieve compression benefits that are orders of
magnitude higher. Sparsification operates on the premise that not all gradient components contribute
equally to parameter updates; thus, in each transmission cycle, only a subset of gradients with higher
importance is transmitted.

Active work in this area employs Top-k sparsifiers, which select the k largest gradients for commu-
nication (Aji & Heafield, 2017; Basu et al., 2019) while directly discarding smaller gradients. Stich
et al. (2018) analyzed a method that randomly selects k components, effectively treating all gradi-
ents equally. Song et al. (2021) combined these approaches by proposing a Bayesian prior-based
gradient sampling method, achieving adaptive gradient sparsification. More recently, Wang et al.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(2025) developed a gradient sparsification enhancement method inspired by neural network prun-
ing. Lin et al. (2018) proposed the DGC algorithm, which achieves sparsity during communication
by locally accumulating smaller gradients instead of transmitting them immediately.

Further research has explored the combination of sparsification and quantization. For example, Jiang
& Agrawal (2018) introduced PQASGD, a method that first sparsifies the gradients and then applies
product quantization to the remaining sparse gradients. Yan et al. (2022) established a systematic
approach to dynamically adjust quantization precision and sparsification parameters, addressing the
manual tuning requirement in PQASGD. Their method continuously optimizes these parameters
based on a comprehensive analysis of gradient vector norms, predefined communication resource
allocation, and quantifiable residual iteration counts within the training framework. Additionally,
Xie et al. (2024) conceptualized sparsification as 0-bit quantization, reformulating the problem as
a mixed-precision quantization task and thereby integrating the two-stage approach into a unified
framework.

Essentially, both quantization and sparsification compress gradients at the data level by exploiting
their inherent numerical redundancy. However, they do not actively induce a sparser distribution in
the gradients themselves.

3 GENERALIZED GAUSSIAN DISTRIBUTED TRAINING ARCHITECTURE

3.1 GENERALIZED GAUSSIAN DISTRIBUTION OF GRADIENTS

Prior distributions for model parameters (e.g., Gaussian, Laplace) have been extensively studied and
utilized in tasks like parameter initialization and model compression. In contrast, gradient distri-
butions during training have been less explored, largely due to their stochastic nature, which makes
them difficult to track and regulate. While gradient distributions are often assumed to be Gaussian in
classical stochastic optimization for mathematical convenience, empirical evidence in deep learning
consistently shows that they exhibit significant heavy-tailed characteristics, strongly deviating from
Gaussian assumptions.

Our systematic analysis reveals that gradients across various models and training stages consistently
exhibit peaky, heavy-tailed distributions, well-characterized by generalized Gaussian distributions
with low shape parameters. For instance, during BERT training (Devlin et al., 2019), gradients
sampled at the end of epochs 1, 5, and 10 yield shape parameters of 0.14, 0.27, and 0.32, respectively
(Fig. 1), confirming their close fit to a generalized Gaussian model with low shape parameters.

-4 -2 0 2 4
Value (×10 4)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y 
(×

10
7 )

(a) Epoch 1

-4 -2 0 2 4
Value (×10 4)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y 
(×

10
7 )

(b) Epoch 5

-4 -2 0 2 4
Value (×10 4)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y 
(×

10
7 )

(c) Epoch 10

Figure 1: The gradient distribution collected at different stages when training BERT on the IMDB
dataset.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Research by Wen & Villasenor (1999) pointed out that Exponential Golomb coding offers high
coding efficiency for generalized Gaussian sources. Given that gradient distributions conform to
the characteristics of generalized Gaussian distributions, we are inspired to introduce Exponential
Golomb coding into the distributed training framework for encoding gradients transmitted between
models. Based on this idea, we will design a distributed hardware training framework based on
Exponential Golomb coding.

3.2 EXPONENTIAL GOLOMB CODING FOR GRADIENT COMPRESSION

Exponential-Golomb (EG) coding is a lossless compression technique for encoding sequences of
positive integers into a compact bitstream. It achieves optimal compression efficiency—reaching
the entropy lower bound—when the input symbols follow a geometric distribution. Prior studies,
such as Wen & Villasenor (1999), have extended its evaluation to more general source models,
including the family of Generalized Gaussian distributions.

Compared to traditional Huffman coding, Exponential-Golomb (EG) coding eliminates the need to
construct and transmit code tables, reducing both storage and communication overhead. Moreover,
EG coding is robust to shifts in distribution parameters, allowing it to adapt to dynamic layer-wise
gradient variations during training. This adaptability makes EG coding particularly suitable for
gradient compression in distributed training.

As demonstrated in Algorithm 1, after computing the local layer, the worker node first performs
dynamic range normalization and quantization processing; after the parameter server receives the
compressed layer, it performs EG decoding and inverse quantization, and then performs layer ag-
gregation.

Algorithm 1 Distributed Gradient Compression with Entropy Coding (Concise)

Require: Local gradients {gk}Kk=1, quantization step 2−n, entropy encoder/decoder (Enc,Dec)
1: WORKERS (IN PARALLEL):
2: gk ← ∇Lk(Θ)
3: Qk ← round(2ngk)
4: Hk ← Histogram(Qk); Ck ← BuildCode(Hk)
5: Bk ← Enc(Qk;Ck); SEND (Bk, Ck) TO SERVER
6: SERVER:
7: RECEIVE {(Bk, Ck)}Kk=1
8: for k = 1 TO K do
9: Qk ← Dec(Bk;Ck)

10: gk ← 2−nQk

11: end for
12: g← 1

K

∑K
k=1 gk

13: Θ← Θ− ηg
14: BROADCAST Θ TO ALL WORKERS
15: RETURN Θ

3.3 DISTRIBUTED DATA PARALLEL

Distributed Data Parallel (DDP) (Li et al. (2020)), a distributed training framework implemented in
PyTorch. During each training iteration, every node processes a distinct data subset, independently
executes forward and backward passes. The resulting gradients are then synchronized through an
all-reduce operation. Subsequently, each node performs identical parameter updates using the ag-
gregated gradients, effectively emulating training with a larger batch size while distributing the
computational load.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 DECAYING GRADIENT-CONSTRAINED TRAINING (GCT)

4.1 GRADIENT RD COST

From the perspective of rate-distortion optimization (RDO) theory, constrained training can be
viewed as an RDO process that seeks a balance between model performance and bit-rate. So we
will progressively derive the gradient-constrained training algorithm from the viewpoint of RDO.

We construct the RD Cost based on the Lagrange multiplier method using the model loss and a gra-
dient metric, which serves as the loss function for gradient constrained training. This approach aims
to find the optimal balance between performance and bitrate during model training optimization:

L (x, y;w) = D(x, y;w) + λ ·R(
∂D(x, y;w)

∂w
) (1)

where x, y, and w represent the input, label, and model weights, respectively. And λ denotes the
Lagrange multiplier.

D(·) represents the empirical loss of the model’s fit to the data, which reflects the generalization
error of the model on the dataset. R(·) represents the structural loss of the training gradients, which
measures the bitrate of the gradients generated during training. The ℓ1 was selected for the R(·) im-
plementation due to its closer alignment with the generalized Gaussian distribution of the gradients
and the higher computational efficiency of its derivative.

Assuming the empirical loss function D(·) for the task is Ltask, the number of model parameters is
n, and replacing the R(·) with ℓ1, the gradient RD cost to be optimized can be expressed as:

L (x, y;w) = Ltask(x, y;w) + λ ·
n∑

i=1

|∂Ltask(x, y;w)

∂wi
| (2)

4.2 WEIGHT UPDATE

Compared to the computation of the loss function, the back propagation and weight update require
more complex discussion. If we directly aggregate the absolute values of all gradients and compute
its gradient with respect to each parameter during backpropagation, then the update formula for
parameter wi at step t can be expressed as follows:

w
(t+1)
i = w

(t)
i − η ·

(
∂Ltask(x, y;w)

∂wi
+ λ · Sign(

∂Ltask(x, y;w)

∂wi
) ·

n∑
j=1

∂2Ltask(x, y;w)

∂wj∂wi

)
(3)

Since ∂2Ltask(x,y;w)
∂wj∂wi

maybe depends on various parameters which may reside in different layers, we

can only proceed with the second propagation after the backpropagation of the gradient ∂Ltask(x,y;w)
∂wi

has been completed. In this scenario, the weight update requires computing and storing the full
Hessian matrix of the loss with respect to all parameters, which poses a catastrophic computational
and storage burden.

A common approximation for the Hessian matrix is to retain only its diagonal elements. Specifically,
we set ∂2Ltask(x,y;w)

∂wj∂wi
= 0 when j ̸= i. Then Equation 3 can be simplified as:

w
(t+1)
i = w

(t)
i − η ·

(
∂Ltask(x, y;w)

∂wi
+ λ · Sign(

∂Ltask(x, y;w)

∂wi
) · ∂

2Ltask(x, y;w)

∂w2
i

)
(4)

This technique can significantly reduce memory consumption, simplify the computational graph,
and enable the parallel backpropagation of first and second-order derivatives.

4.3 APPROXIMATION OF SECOND-ORDER DERIVATIVES

Accurately calculating second-order derivatives is computationally prohibitive, as it requires a full
backward pass—a cost unacceptable for billion-parameter LLMs. We therefore developed an esti-
mation method that trades a tolerable precision loss for tractable computation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To simplify notation, we denote the first- and second-order derivatives of parameter wi at step t

as g
(t)
i = ∂Ltask(x,y;w)

∂wi
and h

(t)
i = ∂2Ltask(x,y;w)

∂w2
i

respectively. In parameter update of GCT, the

actual equivalent gradient should be ĝ
(t)
i = g

(t)
i + λ · h(t)

i , which replaces the original gradient g(t)i .
Meanwhile, the learning rate η is typically tiny in LLMs, so the weight change δw = w

(t)
i −w

(t−1)
i

is generally sufficiently small, allowing to approximate ĥ(t)
i using a quasi-Newton method to replace

the true h
(t)
i :

ĥ
(t)
i =

g
(t)
i − ĝ

(t−1)
i

w
(t)
i − w

(t−1)
i

(5)

Since ĥ
(t)
i cannot be determined before estimating ĝ

(t)
i , we temporarily substitute g

(t)
i for ĝ(t)i .

From the weight update for per step:

w
(t)
i − w

(t−1)
i = η · ĝ(t−1)

i (6)

Substituting into Equation 5:

ĥ
(t)
i = −1

η
· g

(t)
i

ĝ
(t−1)
i

+
1

η
(7)

To prevent gradient explosion caused by excessively small gradients ĝ(t−1)
i , we can introduce a small

correction coefficient ϵ for gradient clipping. Then the Equation 7 can be modified as:

ĥ
(t)
i = −1

η
· g

(t)
i

ĝ
(t−1)
i + ϵ

+
1

η
(8)

This method only requires the storage of equivalent gradients from the previous timestep to rapidly
compute second-order derivatives for the current timestep. Although some estimation accuracy is
sacrificed, it significantly optimizes storage and computational efficiency.

When using this approximation method, the weight update formula (4) in backpropagation can be
simplified as:

w
(t+1)
i = w

(t)
i − η · g(t)i − λ · Sign(g(t)i ) · (1− g

(t)
i

ĝ
(t−1)
i + ϵ

) (9)

4.4 CONSTRAINT DECAY

As the model converges, the magnitude of gradients gradually approaches zero, while the second-
order derivatives exhibit no significant or analyzable changes. Employing a fixed Lagrange multi-
plier would thus induce severe oscillations in the loss value during later training stages and signifi-
cantly hinder convergence. To mitigate this, we introduce a decay coefficient 0 < α < 1, allowing
the coefficient λ to gradually diminish as training progresses. Specifically, upon the completion of
the τ -th training epoch, the multiplier is updated as:

λτ+1 = α · λτ (10)

This simple design ensures that, although the code length of the gradients may exhibit slight fluctu-
ations in the later stages of training, loss value oscillations can be effectively resolved.

4.5 OVERALL OF GCT ALGORITHM

Based on the above discussion, we can summarize the decaying gradient-constrained training algo-
rithm in a more engineering-oriented manner as follows:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 Decaying Gradient Constrained Training Algorithm (GCT)

1: Require: Empirical loss function Ltask, model weights w, training step t = 1, learning rate η,
Lagrange multiplier λ, smoothing coefficient ϵ, decaying coefficient α.

2: for each epoch τ do
3: for each batch (xb, yb) do
4: Forward and back propagation to compute the gradients: g(t)i ←

∂Ltask(xb,yb;w
(t))

∂w
(t)
i

.

5: Compute approximate second-order derivatives: ĥ(t)
i ← (− 1

η ·
g
(t)
i

ĝ
(t−1)
i +ϵ

+ 1
η ) · 1t≥2.

6: Compute and store the equivalent gradient: ĝ(t)i ← g
(t)
i + λτ · h(t)

i .
7: Weight update: w(t+1)

i ← w
(t)
i − η · ĝ(t)i , t← t+ 1.

8: end for
9: Constraint decay: λτ+1 = α · λτ .

10: end for
11: Until convergence or max iterations.

5 EXPERIMENT

5.1 TRAINING PROCESS

To evaluate GCT on various tasks, we employ two examples: fine-tuning BERT on the IMDB dataset
for classification, and DeepSeek on the SQuAD for generation. Throughout training, we sampled
the loss and computed the average EG-encoded gradient length at regular intervals, as shown in
Fig 2.

A comparative analysis of Fig 2a and Fig 2c reveals that the training curve of GCT is very stable.
Compared to conventional training, GCT hardly affects the model’s convergence speed. In the
DeepSeek experiment, GCT converges even faster.

A comparative analysis of Fig 2b and Fig 2d indicates that, under the EG encoding, GCT achieves
significantly better gradient compression efficiency throughout the entire training process compared
to conventional training. Although the average code length variability increases during the later
stages of BERT training due to the effects of constraint decay, overall, GCT maintains a more stable
distribution of the gradient code length.

5.2 ABLATION

To investigate the impact of the gradient constraint on model training on later training stages, we
will perform an ablation study on constraint decay. Specifically, we again use the BERT task as an
example, comparing conventional training, decaying GCT (λ = 0.8), and maintained GCT (λ =
1.0). The detailed training processes are recorded in Fig 3.

Observing the training loss, both the decaying GCT and conventional training steadily converge.
However, the maintained GCT exhibits loss fluctuations in the later stages. It indicates that con-
straints adversely affect model convergence, while a simple decay can effectively resolve it.

The variation in gradient code length shows that decaying GCT maintains a significantly lower and
more stable code length than conventional training, especially in the later stages, confirming that the
stabilization effect is positively correlated with the Lagrange coefficient’s magnitude.

5.3 GENERALIZATION

Given that numerous factors like model scale, architecture, and datasets introduce task heterogeneity
and directly impact training outcomes, we will validate the generalization of GCT across various
models and tasks. Specifically, we will conduct classification tasks on BERT and GPT models using
classification accuracy as the metric, and perform generation tasks on LLaMA and DeepSeek models
using classification accuracy as the metric.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
ro

ss
 E

nt
ro

py
 L

os
s (

bi
t)

Conventional Training
Decline Gradient Constrained Training

(a) Loss of BERT.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

Av
er

ag
e 

C
od

e 
Le

ng
th

 (b
it)

Conventional Training
Decline Gradient Constrained Training

(b) EG code length of BERT’s gradients.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
ro

ss
 E

nt
ro

py
 L

os
s (

bi
t)

Conventional Training
Decline Gradient Constrained Training

(c) Loss of DeepSeek.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

Av
er

ag
e 

C
od

e 
Le

ng
th

 (b
it)

Conventional Training
Decline Gradient Constrained Training

(d) EG code length of DeepSeek’s gradients.
Figure 2: Changes in loss values and EG average code length when BERT and DeepSeek models
are trained with conventional training and GCT respectively.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
ro

ss
 E

nt
ro

py
 L

os
s (

bi
t)

Conventional Training
Decline Gradient Constrained Training
Maintained Gradient Constrained Training

(a) Changes of cross entropy loss.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

Av
er

ag
e 

C
od

e 
Le

ng
th

 (b
it)

Conventional Training
Decline Gradient Constrained Training
Maintained Gradient Constrained Training

(b) Changes of EG code length.

Figure 3: The variation of loss and average code length for GCT without decay, with decayed GCT
and conventional training as control groups.

In terms of compression effectiveness, for each model trained with gradient constraints, the aver-
age code length of gradients after EG encoding achieved a compression rate of no less than 70%.
In terms of model performance, GCT models under most configurations achieved higher accuracy
on the test set than conventionally trained models. This phenomenon suggests that, beyond effec-
tively compressing training gradients, the gradient constraint training method may have a potential,
positive effect on improving the model’s generalization capability.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Compression performance of GCT with different model architectures and datasets.

Model Param Size Dataset Method EG (bits) FL (bits) EG Compress Accuracy

BERT 110M IMDB - 6.58 11.16 41% 92.39%
GCT 2.28 10.81 79% 92.46%

GPT 774M IMDB - 5.01 11.12 55% 95.38%
GCT 2.76 11.04 75% 95.53%

LLaMA 1B SQuAD - 7.83 11.96 35% 99.95%
GCT 3.02 10.36 71% 98.80%

DeepSeek 7B SQuAD - 4.64 11.40 59% 99.97%
GCT 2.30 10.80 79% 99.98%

5.4 DISTRIBUTED TRAINING INTEGRATION

The demand for gradient compression arises from the broad application of distributed training ar-
chitectures, making its effectiveness in this setting critical. For validation, we leveraged our custom-
built, EG-coding-based distributed training framework to parallelly train a BERT model on two
A100 GPUs. The training results are presented in Fig 4.

The observed trends align with the single-machine results presented in Section 5.1. GCT and con-
ventional training exhibited similar convergence rates, though GCT appeared to settle at a slightly
higher loss. Tests confirmed it does not harm the model’s generalization capability and accuracy on
the test set showed comparable results: 92.51% for GCT and 92.61% for conventional training.

Meanwhile, the gradient code length of GCT remained significantly lower. This result corrobo-
rates that the effectiveness of GCT is consistent across different computational architectures (single-
machine and distributed), thereby validating the reliability of this method in distributed environ-
ments.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
ro

ss
 E

nt
ro

py
 L

os
s (

bi
t)

Conventional Training
Decline Gradient Constrained Training

(a) Changes of cross entropy loss.

0 1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

12

14

16

Av
er

ag
e 

C
od

e 
Le

ng
th

 (b
it)

Conventional Training
Decline Gradient Constrained Training

(b) Changes of EG code length.

Figure 4: The variation of loss and average code length for GCT in distributed training. Each step
in the graphs represent the average of the loss values and the gradient code lengths from the models
on both GPUs.

6 CONCLUSION

This paper proposes a novel gradient constrained training method based on rate-distortion optimiza-
tion. For the first time, this method introduces a gradient constraint term into the loss function to
generate highly sparse gradients, thereby reducing the compression difficulty for subsequent algo-
rithms such as quantization, sparsification, and entropy coding. Experimental results demonstrate
that, without compromising model training accuracy, the method achieves a gradient compression
rate of no less than 70% using EG encoding. The GCT algorithm also exhibits strong generalization
and robustness across various tasks and in distributed training. This novel method is likely to have a
profound impact on future distributed training and its hardware design.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed
sgd with quantization, sparsification and local computations. Advances in Neural Information
Processing Systems, 32, 2019.

Toby Berger. Rate-distortion theory. Wiley Encyclopedia of Telecommunications, 2003.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International conference on
machine learning, pp. 560–569. PMLR, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M Roy, and Ali Ramezani-
Kebrya. Adaptive gradient quantization for data-parallel sgd. Advances in neural information
processing systems, 33:3174–3185, 2020.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse
and quantized communication. Advances in neural information processing systems, 31, 2018.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International conference on machine
learning, pp. 3252–3261. PMLR, 2019.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experi-
ences on accelerating data parallel training, 2020. URL https://arxiv.org/abs/2006.
15704.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SkhQHMW0W.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Interspeech, volume 2014,
pp. 1058–1062. Singapore, 2014.

Liuyihan Song, Kang Zhao, Pan Pan, Yu Liu, Yingya Zhang, Yinghui Xu, and Rong Jin. Commu-
nication efficient sgd via gradient sampling with bayes prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12065–12074, 2021.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Ad-
vances in neural information processing systems, 31, 2018.

Yisu Wang, Ruilong Wu, Xinjiao Li, and Dirk Kutscher. Pactrain: Pruning and adaptive sparse
gradient compression for efficient collective communication in distributed deep learning. arXiv
preprint arXiv:2505.18563, 2025.

Jiangtao Wen and John D. Villasenor. Structured prefix codes for quantized low-shape-parameter
generalized gaussian sources. IEEE Transactions on Information Theory, 45(4):1307–1314, 1999.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

10

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://openreview.net/forum?id=SkhQHMW0W


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
sgd and its applications to large-scale distributed optimization. In International conference on
machine learning, pp. 5325–5333. PMLR, 2018.

Jun Wu, Jiangtao Wen, and Yuxing Han. Backslash: Rate constrained optimized training of large
language models. arXiv preprint arXiv:2504.16968, 2025.

Weiying Xie, Haowei Li, Jitao Ma, Yunsong Li, Jie Lei, Donglai Liu, and Leyuan Fang. Jointsq:
Joint sparsification-quantization for distributed learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 5778–5787, 2024.

Guangfeng Yan, Tan Li, Shao-Lun Huang, Tian Lan, and Linqi Song. Ac-sgd: Adaptively com-
pressed sgd for communication-efficient distributed learning. IEEE Journal on Selected Areas in
Communications, 40(9):2678–2693, 2022.

A APPENDIX

A.1 USE OF LLMS

In this research, large language models (LLMs) were used as auxiliary tools for text polishing and
selective sentence translation. The AI system assisted in improving the clarity and flow of academic
writing, and provided translation support for certain complex sentences from Chinese to English.

All AI-generated content was carefully reviewed and modified by the authors to ensure accuracy
and maintain the original research intent. The core ideas, methodology, and conclusions remain the
original contributions of the authors.

11


	Introduction
	Related Work
	Gradient Quantization
	Gradient Sparsification

	Generalized Gaussian Distributed Training Architecture
	Generalized Gaussian Distribution of Gradients
	Exponential Golomb Coding for Gradient Compression
	Distributed Data Parallel

	Decaying Gradient-Constrained Training (GCT)
	Gradient RD Cost
	Weight Update
	Approximation of Second-Order Derivatives
	Constraint Decay
	Overall of GCT Algorithm

	Experiment
	Training Process
	Ablation
	Generalization
	Distributed Training Integration

	Conclusion
	Appendix
	Use of LLMs


