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ABSTRACT

Autonomous Driving Systems (ADS) often struggle in complex urban environ-
ments because generic testing fails to capture city-specific traffic patterns and be-
haviors. To address this, we propose a city-adaptive testing framework that sys-
tematically evaluates ADS robustness by integrating spatiotemporal traffic predic-
tion and multi-agent behavioral modeling. Our approach first introduces a novel
traffic prediction model, called T-DDSTGCN, which combines graph and hyper-
graph representations to accurately forecast segment-level traffic speed and inter-
section turning probabilities. It achieves the best performance on both METR-LA
and PEMS-BAY datasets, demonstrating its superior ability to capture spatiotem-
poral dependencies in traffic prediction tasks. Based on the predicted urban traffic
flow, we construct diverse simulation scenarios enriched by a behavioral model-
ing framework called Primary Other Participants (POP), which simulates realistic
motorcycle behavior using Level-K game theory and Social Value Orientation. To
enhance scenario diversity, we further apply structured perturbations across traffic
density, weather, and agent interactions. Our methodology is validated across 180
real-world urban scenarios on three industrial-scale simulation platforms, yielding
662 critical collision cases after multiple rounds of testing. We have conducted
an initial manual screening of the 662 simulated accident scenarios, finding that
88.1% of these accidents closely resemble real-world accident videos and reports.
Furthermore, ablation studies highlight the critical role of human-like agent be-
havior in exposing ADS failures. Our findings suggest that incorporating traf-
fic context and behavioral diversity into simulation testing is crucial for ensuring
ADS safety and robustness in real-world deployments.

1 INTRODUCTION

In August 2023, after Cruise and Waymo were authorized to deploy robotaxis in San Fran-
cisco (cpuc.ca.gov, 2023), a wave of accidents, including construction intrusions and fatal colli-
sions, revealed how vulnerable ADS remain in complex urban settings (Tan et al., 2023). Similar
challenges have been reported in other cities with different road structures and traffic cultures, such
as Boston’s narrow intersections or Los Angeles’s fast-paced multilane highways. This indicates
that existing testing pipelines often lack city adaptiveness, the ability to anticipate and handle the
distinct structural, dynamic, and behavioral conditions of each urban region (Karunakaran et al.,
2022; Piazzoni et al., 2022).

Simulation-based testing offers a scalable and safe alternative (Huang et al., 2016; Koopman &
Wagner, 2016), but existing platforms often rely on generic or mileage-based scenarios that over-
look city-specific factors. Yet real-world ADS failures are often rooted in local variations—such as
intersection structures, traffic flow dynamics, and the region-specific behaviors of vulnerable road
users like motorcycles (Hadj-Bachir et al., 2020; 2019). To address this, we propose a holistic
city-adaptive testing framework that effectively bridges the gap between traffic forecasting and au-
tonomous driving simulation. Unlike generic simulators that rely on random procedural generation
or historical replay, our approach constructs a data-driven pipeline where a predictive model acts
as a generative engine. This engine establishes a city-specific traffic baseline, capturing local flow
patterns and road topologies, upon which structured fuzzing and behavioral modeling are applied.
By integrating spatiotemporal traffic prediction directly with simulation testing, our framework can
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systematically expose safety-critical failures in complex urban environments that generic testing
paradigms often overlook.

Our framework begins by modeling city-specific traffic flows using the Turning-Dual Dynamic
Spatial-Temporal Graph Convolution Network (T-DDSTGCN), which integrates a traffic graph
and a hypergraph to capture both local and higher-order spatiotemporal dependencies. The
model predicts road-segment speeds and estimates intersection turning probabilities via a heuristic
Speed2Turning equation that incorporates both entry speed and speed differentials between con-
necting segments, enabling accurate representation of urban traffic dynamics. Building on this traf-
fic foundation, we introduce the Primary Other Participants (POP) model to simulate realistic and
potentially unsafe motorcycle behaviors, formulated with Level-K game theory and Social Value
Orientation to reflect local driving tendencies. Finally, we apply scenario perturbation, a fuzzing-
based method that systematically varies traffic density, environmental conditions, and agent interac-
tions, generating diverse and challenging test scenarios. We evaluate our framework in Los Angeles
and San Francisco, producing 180 city-adaptive scenarios across three simulation platforms, which
resulted in 662 effective collisions. Manual inspection revealed that 88.1% of these simulated acci-
dents closely match real-world incidents, demonstrating that combining city-specific traffic predic-
tion, behavior modeling, and scenario perturbation significantly enhances the realism and robustness
of ADS testing in complex urban environments.

In this paper, we propose a city-adaptive testing framework for evaluating ADS in urban environ-
ments. Our main contributions are:

• Holistic City-Adaptive Framework: We establish a unified pipeline that organically in-
tegrates city-level traffic prediction, intersection turning modeling, and ADS simulation.
It serves as a bridge between machine learning-based traffic forecasting and autonomous
vehicle testing, enabling the construction of simulation environments that are both struc-
turally accurate and behaviorally realistic.

• Generative Traffic Prediction Interface: We deploy the T-DDSTGCN not merely as
a forecasting model, but as a structural interface for scenario generation. Its graph and
hypergraph architecture is specifically adapted to support downstream tasks—such as the
Speed2Turning inference and sub-road flow recovery—providing a deployable and exten-
sible foundation for reconstructing city-scale traffic flows.

• Realistic Motorcycle Behavior Modeling: We design the Primary Other Participants
(POP) framework, which simulates human-like motorcycle maneuvers based on Level-K
game theory and Social Value Orientation, generating realistic disturbance agents for robust
ADS testing.

• Structured Scenario Fuzzing: Distinct from random parameter perturbation, we intro-
duce a structured fuzzing mechanism driven by the predicted traffic baseline. By system-
atically varying traffic density and environmental conditions around realistic city-specific
means, this approach generates diverse, high-risk scenarios that retain the statistical charac-
teristics of the target urban area. Experiments on 180 city-specific scenarios in Los Angeles
and San Francisco, resulting in 662 effective collision cases, validate the scalability and re-
alism of our approach.

Data Availability. The code of our model is available in supplementary materials; details of scenar-
ios and maps can be found in the Appendix.

2 RELATED WORK

Traffic Flow Prediction. Traffic flow prediction aims to capture complex spatiotemporal depen-
dencies to forecast future traffic states. Temporal modeling has evolved from RNNs (Zhao et al.,
2017) to TCNs (Li et al., 2020) and Transformers (Vaswani et al., 2017), where TCNs improve
efficiency and Transformers leverage long-range self-attention. Spatial modeling progressed from
grid-based CNNs (Pan et al., 2018) to GCNs (Zhang et al., 2019), with STGCN (Yu et al., 2018)
and DCRNN (Li et al., 2018) capturing multi-hop and diffusion effects. Recent works, such as MT-
GNN (Wu et al., 2020) and Graph WaveNet (Wu et al., 2019), introduce dynamic embeddings but
often neglect higher-order dependencies.
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Turning Prediction. Turning prediction is critical for urban traffic simulation and ADS testing.
Early rule-based and statistical models (Foulaadvand & Belbasi, 2011; Liu et al., 2021) struggle to
adapt to dynamic traffic conditions. Data-driven methods (Ghanim & Shaaban, 2018; Mousavizadeh
et al., 2021) improve accuracy using traffic flow and probe data but often incur high computational
costs. We propose the Speed2Turning equation, which efficiently estimates turning probabilities
from entry speed and segment speed differences, providing a lightweight and interpretable solution
for real-time intersection modeling.

Scene Reconstruction. One approach to scene reconstruction involves the utilization of real-world
data collected from urban environments (Zhang et al., 2020; Thal et al., 2023; Zhu et al., 2023b).
This data may include information on road layouts, traffic patterns, and infrastructure (Carpin et al.,
2007; Medrano-Berumen & Akbaş, 2020; Tettamanti et al., 2018). By leveraging techniques such as
data fusion and machine learning, researchers can process and analyze this data to generate realistic
simulation scenes (Zhang et al., 2022). Another key aspect of scene reconstruction is the generation
of dynamic and interactive elements within simulation scenes (Ben Abdessalem et al., 2018; Kalra
& Paddock, 2016). This includes modeling the behavior of various road users, such as vehicles,
pedestrians, and cyclists, as well as environmental factors such as weather conditions and road
obstacles (Cheng et al., 2023; Ge et al., 2023; Priisalu et al., 2022). Researchers have developed
sophisticated methods to simulate the complex interactions between these elements (Zhang & Cai,
2023), ensuring that simulation scenes accurately represent real-world scenarios.

3 METHOD

Our testing framework follows a city-adaptive pipeline that tailors simulation scenarios to the char-
acteristics of specific urban areas. This approach moves beyond generic simulation environments,
such as SUMO or CARLA default traffic models, by explicitly modeling three core aspects of
city-level traffic dynamics: City-Specific Road Topology and Flow Patterns, Spatiotemporal Traf-
fic Prediction, and Behavioral Disturbances via Localized Agent Modeling. By integrating these
components, our city-adaptive scenario generation reconstructs urban environments that are both
structurally accurate and behaviorally realistic (See Figure 1). However, bridging the gap between
simulation and the real-world remains challenging. In the following subsections, we will raise and
solve these challenges one by one.

3.1 CITY-ADAPTIVE TRAFFIC PREDICTION

We introduce Turning-Dual Dynamic Spatial-Temporal Graph Convolution Network (T-
DDSTGCN) to forecast both road-segment speeds and intersection turning probabilities (Figure 5).
The model first employs DDSTGCN (Sun et al., 2022) to capture spatiotemporal dependencies
across urban road networks, leveraging graph and hypergraph structures to model both local and
higher-order traffic interactions. A pooling module aggregates neighboring features, while skip
connections preserve gradient flow and feature diversity in deep layers. We specifically adopt the
DDSTGCN backbone because its unique dual graph-hypergraph architecture is intrinsically suited
to capturing the higher-order spatial dependencies of complex intersection topologies—capabilities
that standard graph models often lack. To estimate intersection maneuvers, we extend this backbone
into T-DDSTGCN by engineering a generative interface that couples spatiotemporal features with
our Speed2Turning heuristic. This adaptation allows the model to not only forecast segment speeds
but also structurally infer turning probabilities and propagate flow to unmonitored branch roads. By
iteratively updating graph and hypergraph features, T-DDSTGCN acts as the engine for our city-
adaptive pipeline, transforming sparse sensor data into a comprehensive, connected traffic state for
simulation.

3.1.1 SPEED PREDICTION

Challenge 1: How to accurately predict the traffic flow speed on road segments? Conventional
graph-based approaches model each road segment as a node and apply GCNs to capture spatial
dependencies (Wu et al., 2019; 2020). However, most focus on first-order node interactions and
overlook higher-order dependencies embedded in dynamic traffic edges (Sun et al., 2022), which
are critical for accurate prediction. To address this, we employ T-DDSTGCN, which jointly models
the traffic graph and its dual hypergraph to capture multi-level spatiotemporal dependencies. The
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Figure 1: Overview of our City-Adaptive Testing Framework. T-DDSTGCN for traffic speed and
turning predictions, followed by city-specific scene reconstruction and POP-based behavioral mod-
eling. Scenario perturbation generates diverse, high-risk scenarios for evaluation on multiple ADS
simulation platforms.

network consists of a traffic input layer, multiple Dual Spatial-Temporal (DST) Blocks, and an out-
put layer. Within each DST-Block, traffic features are dynamically transformed between the graph
and hypergraph domains, with a Dynamic Interaction Module refining edge representations. Tem-
poral dependencies are learned via Gated Temporal Convolutions (Gate-TCN) (Chen et al., 2020),
while GCNs model local node interactions and HGCNs uncover higher-order spatial relationships
through hyperedges. By iteratively updating graph and hypergraph features, T-DDSTGCN achieves
a deeper understanding of evolving traffic states, leading to more accurate segment speed predic-
tions. Mathematically, these operations are:

GCN(X) =

N∑
n=0

(An
forthXθn,forth +An

backXθn,back), (1)

HGCN(Xh) =

N∑
n=0

Wn
h Xhθn. (2)

where An
forth and An

back are the n-th order adjacency matrices for the forward and backward di-
rections, and Wh is the weight matrix for hyperedges in hypergraph Gh. The Dynamic Interaction
Module (DIM) is crucial for updating the representations of edges in both the traffic graph and hy-
pergraph. By leveraging updated node features from preceding DST-Blocks, DIM recalculates and
refines edge-level features. These updated edge features are then used to dynamically adjust node
features in subsequent DST-Blocks through additional GCN and HGCN operations. This iterative
process creates a feedback loop, enabling the model to continuously adapt to the evolving traffic
network.

Solution 1: We use the proposed T-DDSTGCN for traffic prediction. Simultaneously analyzing
traditional traffic network graphs and their dual traffic network hypergraphs can decode and predict
traffic behavior through complex analysis of the complex spatiotemporal relationships that permeate
the traffic network.

3.1.2 SPEED2TURNING EQUATION

Challenge 2: How can the traffic flow of branch roads be effectively monitored under the
influence of sensor distribution? Urban intersections often lack sufficient sensor coverage to
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directly observe turning flows, making turning probability estimation crucial for realistic traffic
scenario generation (Alexander et al., 2002; Dias et al., 2020). We introduce Speed2Turning, a
lightweight heuristic that infers directional turning probabilities from predicted traffic speeds, of-
fering a practical balance between computational efficiency and behavioral realism. Speed2Turning
computes an attraction factor P for each candidate turning direction using two key signals: Speed
differential ∆V between entering and exiting road segments, where higher differentials indi-
cate smoother downstream flow; Incoming speed Vin, which reflects congestion levels and in-
fluences driver turning preferences. The attraction factor is modeled with a sigmoid function:

P =
1

1 + e−(a·∆V−c·
√
Vin)

(3) pi =
ePi∑
j e

Pj
(4)

where a and c are tunable coefficients calibrated with empirical data. To obtain normalized turning
probabilities pi for all possible directions, we apply a softmax over the computed attraction factors.
This formulation captures the nonlinear influence of traffic speed and congestion on driver turning
behavior and can be easily adapted to different traffic conditions via coefficient calibration (More
details can be seen in Appendix C).

Solution 2: We introduce a heuristic equation named ‘Speed2Turning’, which aims to effectively
estimate turning probabilities using predicted traffic speeds. This formula allows the flow prediction
of the branch road network to be transformed into the main road flow multiplied by the intersection’s
turning probability.

3.2 POP-ENHANCED SCENE SIMULATION AND SCENARIO FUZZING
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Figure 2: The POP (Primary Other Participants) Behav-
ioral Modeling Framework. (a) SVO-Based Decision Logic:
The driver’s Social Value Orientation (φ) determines the
weights (ω1, ω2) in the utility function, dictating whether the
generated trajectory is aggressive (competitive) or cautious
(prosocial). (b) Stage 1, Initialization: Motorcycles are ini-
tially spawned on branch roads to form a background flow
without immediate conflict. (c) Stage 2, Leader-Follower
Swarm Interaction: Upon entering the interaction zone, the
motorcycle nearest to the ADS becomes the Stackelberg
Leader (Red), optimizing its trajectory against the ADS via
Level-K game theory. The remaining motorcycles act as a
Follower Swarm (Green), aligning their movements with the
Leader using flocking rules. This hierarchical structure sim-
ulates realistic group disturbances.

Scene simulation builds on predicted
traffic flows and real map data to
reconstruct urban environments for
ADS testing. Dynamic elements,
such as vehicles and pedestrians, are
generated from traffic flow predic-
tions, while static elements (road ge-
ometry, lanes) come from map data.
Environmental conditions, such as
weather or visibility, are configured
in the simulation platform to reflect
local characteristics. This setup pro-
vides the foundation for scenario per-
turbation and fuzzing-based genera-
tion of diverse urban test cases. The
scene simulation algorithm is shown
in Algorithm 1.

A key challenge lies in accurately
simulating motorcycles, which sig-
nificantly increase the complexity
of urban interactions and contribute
to a large proportion of traffic
accidents (DMV, 2025a; Berkeley,
2025). Unlike sensor-rich vehicles,
motorcycle behavior depends heavily
on human judgment and is often unpredictable to ADS (See Figure 7). Challenge 3: How to
accurately simulate motorcycles? To address this, we introduce the Primary Other Participants
(POP) model (See Figure 2), which combines Level-K game theory and Social Value Orientation
(SVO) (Schwarting et al., 2019) to generate human-like motorcycle behaviors for interference test-
ing. POP quantifies the degree of selfishness or cooperativeness in driver decision-making, enabling
realistic simulation of aggressive or cautious motorcycle strategies. Notably, in this paper, the algo-
rithm is designed to generate motorcycle-type traffic participants as interference groups. In our POP
algorithm, integrating interactive motorcycles as interference groups involves two stages. In stage
one (See Figure 2 part b), for experimental convenience, the generated motorcycle fleet initially
appears only on branch roads, avoiding interaction with main roads and large-scale traffic flow. In
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stage two (See Figure 2 part c), to capture the characteristic swarm-like dynamics of motorcycle
groups while maintaining computational efficiency, we implement a leader-follower hierarchy. The
motorcycle nearest to the ADS is designated as the interaction Leader (Stackelberg leader), opti-
mizing its trajectory via the Level-K utility function to actively challenge the ADS. The remaining
motorcycles act as a Follower Swarm, adjusting their behaviors based on the leader’s movements
using simplified flocking rules (e.g., alignment and separation). This approach effectively simu-
lates complex multi-agent group disturbances without the prohibitive cost of solving a simultaneous
N-player equilibrium for every agent. (more details can be seen in Appendix D)

Solution 3: We investigate part of ADS accident causes with a focus on modeling motorcycle be-
havior. Our POP model, combining game theory and social psychology, simulates motorcycles as
dynamic disturbance agents, revealing long-tail risks and enhancing the realism of urban ADS test-
ing scenarios.

Algorithm 1 The whole process of scenario simulation.
Input: Urban area coordinates L, predicted speeds Vi and turning probabilities Pi, road network processor

M, ADS simulation platform P-ADS
Output: Reconstructed urban scene for ADS testing
1: Obtain OSM map for L and parse with M to generate node and link data
2: Construct and validate the road network; smooth any disconnected segments
3: Annotate road segments with predicted speeds Vi and intersection turning probabilities Pi

4: Initialize main-road traffic flow N and estimate sub-road flow SRj using::

SRj =
∑

i∈incoming(j)

Pi→j ·Ni

5: Load reconstructed network into P-ADS and verify scene validity
6: return Final urban scene for simulation

Based on the reconstructed urban scenes, which incorporate the full road network, main and branch
road traffic, and initial flow predictions, we generate diverse ADS test scenarios through scenario
perturbation and fuzzing. The specific fuzzing testing algorithm is outlined in Algorithm 2. Con-
trolled variations are introduced along three dimensions: traffic density, environmental conditions,
and dynamic interactions. Traffic density ranges from low-flow night conditions to peak-hour con-
gestion, while environmental perturbations, such as rain, fog, or bright sunlight, test the robustness
of ADS perception under adverse conditions. Dynamic interactions leverage the POP-model mo-
torcycles, pedestrian crossings, and occasional vehicle malfunctions to produce realistic, high-risk
scenarios that challenge ADS decision-making. Especially, we utilize DFS specifically to generate
long-horizon, continuous driving routes that cover complex topological structures, such as consec-
utive intersections. This ensures that the ADS is tested against a coherent sequence of traffic chal-
lenges rather than isolated, disjointed road segments. Using the Los Angeles region as an example,
we preprocess OpenStreetMap data to construct a continuous road network, apply T-DDSTGCN
traffic predictions and the Speed2Turning model to establish baseline flows, and then apply per-
turbations such as density changes, POP interference, randomized vehicle positions, and weather
variations. This pipeline yields a wide spectrum of city-adaptive test scenarios, enabling systematic
evaluation of ADS performance and robustness under diverse and realistic urban conditions.

4 EVALUATION

To evaluate the effectiveness of our city-adaptive testing framework, we designed experiments that
systematically incorporate city-specific traffic dynamics and behavioral disturbances. We select Los
Angeles (LA) and San Francisco Bay (SFB) as our primary testbeds due to their high traffic com-
plexity, availability of high-resolution traffic datasets, and frequent real-world autonomous driving
incidents. And we investigate the following research questions:

• RQ1: How accurately can T-DDSTGCN predict traffic speed compared to existing models?

• RQ2: How effective is the ‘Speed2Turning’ equation in estimating turning probabilities?

• RQ3: To what extent do scenario fuzzing variations improve the robustness of ADS?
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Algorithm 2 Scenario Perturbation and Fuzzing Testing
Input: Scenario S corresponding to urban areas and autonomous driving simulation platform P −ADS
Output: Mutated scene set Sm;
1: Import the original urban scene S obtained from Algorithm 1 into the autonomous driving simulation

platform P −ADS;
2: Import the autonomous driving algorithm that needs to be tested as the main vehicle and set the parameters

of the main vehicle sensors;
3: Using the traffic flow data Nr from the original map as regular flow, setting different coefficients to obtain

the range of traffic flow during valley Nv and peak Np periods;

e.g.,Nv = 0.6 ·Nr, Np = 1.5 ·Nr

4: Set up traffic participants of non motorized vehicle types participating in interactions in the scene, including
pedestrians and motorcycles;

5: Adjust the weather environment of the scene;
6: Randomly select a point in the road network as the starting point for the main vehicle, and traverse the

entire road network with DFS (Depth First Search) algorithm;
7: Repeat the above steps to obtain the mutated scene set Sm;

Table 1: The traffic speed prediction results of different methods on METR-LA and PEMS-BAY

METR-LA PEMS-BAY
Models 15 min 60 min 15 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 3.99 8.21 9.60 6.90 13.23 17.40 1.62 3.30 3.50 3.38 6.50 8.30
SAE 4.65 8.74 9.93 6.67 11.34 16.19 1.83 3.27 3.57 3.19 6.37 7.92
DD-PC 3.36 7.15 9.13 4.35 9.82 14.01 2.00 4.12 4.63 2.19 4.56 5.50
VAR 4.22 7.89 10.20 6.52 10.11 15.80 1.74 3.16 3.60 2.93 5.44 6.50
LSTM 3.44 6.30 9.60 4.37 8.69 13.20 2.05 4.19 4.80 2.37 4.96 5.57
STGCN 2.89 5.76 7.63 4.61 9.37 12.68 1.37 2.95 2.86 2.51 5.72 5.81
ASTGCN 4.83 9.25 9.14 3.59 7.47 10.42 2.14 4.37 4.93 3.21 6.79 8.51
STSGCN 3.34 7.63 8.11 5.07 11.69 12.93 1.93 4.14 4.97 2.53 5.71 5.82
GMAN 2.81 5.57 7.42 3.43 7.34 10.01 1.34 2.93 2.83 2.47 5.67 5.73
MTGNN 2.68 5.17 6.92 3.47 7.21 9.93 1.29 2.86 2.79 2.46 5.54 5.67
G-WaveNet 2.69 5.15 6.9 3.53 7.37 10.02 1.28 2.89 2.74 2.45 5.56 5.64
GTS 2.67 5.27 7.21 3.46 7.31 9.93 1.28 2.84 2.76 2.29 5.34 5.47
SAGDFN 2.62 5.03 6.63 3.44 7.21 9.65 1.27 2.79 2.73 2.16 5.17 5.24
T-DDSTGCN 2.64 5.01 6.71 3.44 7.13 9.74 1.27 2.71 2.69 1.89 4.67 4.76

4.1 SETUP FOR EXPERIMENTS

For traffic speed prediction, we use two widely adopted datasets, METR-LA and PEMS-BAY, which
record 5-minute interval traffic speeds from road sensors in Los Angeles and the San Francisco
Bay Area. Traffic graphs are constructed based on segment distances, and datasets are split into
70%/10%/20% for training, validation, and testing. We evaluate our T-DDSTGCN model against
diverse baselines, including statistical models (ARIMA (Shumway & Stoffer, 2025), VAR (Akkaya,
2021)), neural networks (SAE (Zhao et al., 2019), DD-PC (Liu et al., 2020), LSTM (Zhao et al.,
2017)), and state-of-the-art graph-based models (STGCN (Yu et al., 2018), ASTGCN (Guo et al.,
2019), STSGCN (Wang et al., 2021), GMAN (Zheng et al., 2020), MTGNN (Wu et al., 2020),
G-WaveNet (Wu et al., 2019), GTS (Shang et al., 2021), SAGDFN (Jiang et al., 2024b)). For ur-
ban scene simulation and ADS testing, we select high-risk regions based on California accident
reports (Berkeley, 2025) and sensor distribution (Figure 8). Five subdomains with dense road net-
works are extracted from Los Angeles (LA) and San Francisco Bay (SFB). These reconstructed city-
adaptive scenes are integrated with three distinct simulation platforms to ensure the generalizability
of our testing results: Apollo 8.0 (an open-source, industrial-grade Level 4 autonomous driving
stack) (Fan et al., 2018), PanoSim (utilizing its built-in commercial pilot model, xDriver) (Panosim,
2025), and Oasis Sim. This diverse setup allows us to evaluate the generated scenarios against both
open-source research baselines and closed-source commercial solutions.
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4.2 ANSWERING RQ1: TRAFFIC SPEED PREDICTION PERFORMANCE AND CASE STUDY

Our evaluation employs multiple metrics—Mean Absolute Error (MAE), Root Mean Square Er-
ror (RMSE), and Mean Absolute Percentage Error (MAPE)—to ensure a multifaceted analysis
of traffic speed prediction accuracy. The three metrics are defined as below, where Xij denotes
the ground-truth values, X̂ij are the predicted values, and |Ω| is the amount of predicted entries.

RMSE =

√∑
ij∈Ω(Xij − X̂ij)2

|Ω|
(5)

MAE =

∑
ij∈Ω |Xij − X̂ij |

|Ω|
(6)

MAPE =
∑
ij∈Ω

|Xij − X̂ij |
|Ω| · |Xij |

(7)

Across the METR-LA and PEMS-BAY datasets, we evaluated various models for short-term
(15min) and long-term (60min) prediction intervals, with the results summarized in Table 1. Tradi-
tional models, such as ARIMA and VAR, demonstrated the lowest predictive accuracy. Meanwhile,
neural network-based models, including SAE, DD-PC, and LSTM, showed moderate improvements
in performance but remained less competitive compared to Graph Convolutional Network (GCN)-
based models. GCN-based models exhibit significant advantages in capturing spatial dependencies
within traffic networks. We evaluated T-DDSTGCN on the METR-LA and PEMS-BAY datasets,
comparing it with traditional baseline models. As shown in Table 1, T-DDSTGCN reaches the lowest
RMSE in the short-term prediction intervals and the lowest MAE and RMSE in the long-term pre-
diction intervals of the METR-LA dataset. Meanwhile, T-DDSTGCN achieves the best performance
on all metrics in both short-term and long-term prediction intervals of the PEMS-BAY dataset. This
consistency validates its reliability as a stable generation engine for our testing framework. Fur-
thermore, distinct from general-purpose forecasting models, the hypergraph-based architecture of
T-DDSTGCN provides the necessary structural adaptability for our downstream Speed2Turning in-
ference, justifying its selection as the framework’s backbone.

4.3 ANSWERING RQ2: SPEED2TURNING EQUATION EFFECTIVENESS AND CASE STUDY

To validate the Speed2Turning equation, we analyzed its accuracy in estimating turning probabilities
by comparing its results with real-world observed turning data from a four-way signalized intersec-
tion in a metropolitan area. The dataset consisted of 250,000 recorded vehicle trajectories over a
period of six months, capturing variations in turning rates across different traffic conditions (Govern-
ment, 2024). The collected data includes entry speeds of vehicles approaching the intersection, exit
road selections for turning movements (left, right, or straight). The dataset has been preprocessed
to remove anomalies such as incomplete trajectories, extreme outliers in speed values, and incon-
sistencies in recorded turning movements. The evaluation highlights that while the Speed2Turning
equation provides a foundational approach for estimating turning probabilities, adjustments are nec-
essary to improve alignment with real-world behavior. More details can be seen in Appendix C.

going straight
57.24%

turning left 21.37%

turning right 21.37%

(a)

going straight
16.59%

turning left 41.75%

turning right 41.64%

(b)

Figure 3: Probabilistic distribution of turning
movements in Los Angeles. (a) observed at 18:00
on weekdays, and (b) at 12:00 on weekdays.

To assess the effectiveness of our
Speed2Turning equation, we analyze turn-
ing probabilities at a specific junction segment
in Los Angeles during distinct traffic condi-
tions: a non-peak period at noon (12:00 PM)
and a peak period at 6:00 PM on a weekday,
as depicted in Figure 3. It reveals significant
differences in turning probabilities between
peak and non-peak periods. During peak hours,
there’s a notable preference for continuing
straight, likely reflecting commuters heading
towards downtown or residential areas. For
instance, congested northbound traffic on
Highway 405 during peak hours discourages left turns, aligning with the model’s consideration of
entry speed on traffic behavior.
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Table 2: Simulation and fuzzing results across varying traffic densities and environmental condi-
tions. Each cell reports the Average Number of Accidents detected in PanoSim, followed by
reproducibility indicators for Oasis and Apollo. Symbols denote: (✓) The accident scenario was
successfully reproduced on the platform; (\) The platform does not support the specific scene pa-
rameters (e.g., weather settings in Apollo); (−) The accident was not reproduced.

Urban Data Traffic Flow - Valley Traffic Flow - Regular Traffic Flow - Peak
Sunny Rainy Foggy Sunny Rainy Foggy Sunny Rainy Foggy

LA-NW Default 0.4 ✓− 0.4 −\ 0.4 −\ 0.6 ✓− 0.6 ✓\ 0.8 ✓\ 0.8 ✓✓ 1.0 ✓\ 1.0 ✓\
Add POP 0.4 −− 0.4 −\ 0.6 −\ 0.6 ✓− 0.8 ✓\ 1.0 ✓\ 0.8 ✓✓ 1.0 ✓\ 1.6 ✓\

LA-CCR Default 0.4 −− 0.4 −\ 0.4 −\ 0.6 −− 0.6 −\ 0.6 −\ 0.8 ✓− 0.8 ✓\ 1.2 ✓\
Add POP 0.4 −− 0.4 −\ 0.4 −\ 0.6 ✓− 0.6 ✓\ 0.8 ✓\ 0.8 ✓✓ 1.0 ✓\ 1.2 ✓\

LA-ECR Default 0.2 −− 0.2 −\ 0.2 −\ 0.4 −− 0.4 −\ 0.4 −\ 0.6 ✓− 0.4 −\ 0.6 ✓\
Add POP 0.4 −− 0.4 −\ 0.4 −\ 0.6 ✓− 0.6 −\ 0.6 ✓\ 1.0 ✓✓ 1.0 −\ 1.0 ✓\

LA-SECR Default 0.2 −− 0.2 −\ 0.2 −\ 0.2 −− 0.2 −\ 0.4 −\ 0.2 −− 0.4 −\ 0.4 −\
Add POP 0.2 −− 0.2 −\ 0.4 −\ 0.2 −− 0.4 ✓\ 0.6 ✓\ 0.2 −− 0.4 −\ 1.0 ✓\

LA-HW Default 0.6 ✓− 0.6 ✓\ 0.6 ✓\ 1.0 ✓− 1.0 ✓\ 1.0 ✓\ 1.4 ✓− 1.6 ✓\ 1.4 ✓\
Add POP 0.6 ✓✓ 0.6 ✓\ 0.8 ✓\ 1.0 ✓✓ 1.0 ✓\ 1.6 ✓\ 1.6 ✓✓ 1.6 ✓\ 2.6 ✓\

SFB-NW Default 1.2 ✓✓ 1.2 ✓\ 1.2 ✓\ 1.6 ✓✓ 1.6 ✓\ 2.0 ✓\ 2.4 ✓✓ 2.6 ✓\ 3.0 ✓\
Add POP 1.4 ✓− 1.2 ✓\ 1.4 ✓\ 2.2 ✓✓ 2.0 ✓\ 2.4 ✓\ 3.4 ✓✓ 3.2 ✓\ 3.4 ✓\

SFB-CA Default 0.4 −− 0.4 −\ 0.6 −\ 0.6 ✓− 0.8 ✓\ 1.0 ✓\ 1.0 −− 1.0 −\ 1.6 ✓\
Add POP 0.6 −− 0.6 −\ 0.6 −\ 0.6 ✓− 1.0 −\ 1.0 ✓\ 1.6 ✓✓ 1.4 ✓\ 1.8 ✓\

SFB-EA Default 0.0 −− 0.0 −\ 0.0 −\ 0.4 −− 0.4 −\ 0.4 −\ 0.6 −− 0.4 −\ 0.6 −\
Add POP 0.0 −− 0.0 −\ 0.2 −\ 0.4 −− 0.4 −\ 0.6 −\ 0.6 ✓− 0.4 −\ 0.4 ✓\

SFB-SA Default 0.2 −− 0.2 −\ 0.2 −\ 0.4 −− 0.4 −\ 0.2 −\ 0.6 ✓− 0.8 ✓\ 0.6 −\
Add POP 0.2 −− 0.4 −\ 0.4 −\ 0.4 −− 0.6 −\ 0.2 −\ 0.6 ✓✓ 0.8 ✓\ 0.6 ✓\

SFB-NEA Default 0.8 ✓− 0.8 ✓\ 0.6 ✓\ 1.0 ✓✓ 1.2 ✓\ 1.0 ✓\ 2.2 ✓− 2.0 ✓\ 2.4 ✓\
Add POP 0.8 ✓✓ 0.8 ✓\ 1.0 ✓\ 1.4 ✓✓ 1.4 ✓\ 1.8 ✓\ 2.0 ✓✓ 2.2 ✓\ 2.6 ✓\

4.4 ANSWERING RQ3: EFFECTIVENESS OF SCENARIO FUZZING AND ANALYSIS FOR SCENE
SIMULATION

To evaluate the impact of scenario fuzzing on ADS robustness, we conducted controlled exper-
iments across varying traffic densities (valley, regular, peak), weather conditions (sunny, rainy,
foggy), and interactive participants (default vs. POP-based). Experiments were performed using
PanoSim (Panosim, 2025) on five densely monitored road network regions in Los Angeles (LA) and
San Francisco Bay (SFB) to ensure realistic traffic data. For each city and configuration, the main
vehicle’s behavior was randomized, and each branch scenario was tested for five rounds. Results are
summarized in Table 2, which reports the average number of ADS accidents observed in PanoSim
and whether the same accident-inducing scenarios reproduced crashes on Oasis and Apollo. A check
mark (✓) indicates that accidents can occur on the respective platform. A backslash (\) indicates that
the platform doesn’t support the corresponding scene parameters (Apollo does not support weather
parameter settings).

We have summarized the experimental results as follows:

• A total of 180 test scenarios are obtained through the variation of different traffic flows, traffic
participants, and other scene parameters in 10 sets of test scenarios. After 5 rounds of random
setting of the main vehicle behavior, a total of 775 collision accidents are recorded. Among them,
14.58% of collision accidents are caused by setting conflicts when simulating traffic flow, with a
total of 662 actual effective collision scenarios.

• In all effective collision scenarios, we observe that as the traffic density increases, the probability
of collision accidents also increases. After adding the interaction participants generated by the POP
algorithm, the number of accident scenarios caused by their aggressive behavior also significantly
increased. After integrating interference groups generated by the POP algorithm, there is an in-
crease in the average number of accidents in 52.2% of the test scenarios. Besides, the probability
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of collision accidents varies with different weather parameters, notably increasing when visibility
decreases. These results show that the deployment of ADS in central cities is indeed facing many
challenges.

Figure 4: Simulation Result on Testing Platforms.

• In Figure 4, we present several case stud-
ies. We can import the road network struc-
ture of the corresponding city and generate ur-
ban testing scenarios under different environ-
mental parameter configurations, like (a) and
(b). It can also detect different types of col-
lision accidents, where (c) represents rear-end
collisions caused by aggressive behavior, and
(d) represents collisions between autonomous
vehicles and motorcycles generated by POP al-
gorithms. Due to the randomness of testing pa-
rameters, we conduct a qualitative analysis of
the causes of collision accidents. The accidents
detected in the scenes we constructed encom-
pass various factors, including incidents where
autonomous vehicles are deemed responsible,
as well as those where other traffic participants bear responsibility. It is particularly notable that
there is a substantial increase in accidents following the addition of interference groups, underscor-
ing the significant challenges inherent in real urban environments. Figure 4 (e) and (f) indicate
that the same testing scenario can be migrated on different testing platforms (Panosim and Apollo,
respectively). These demonstrate the effectiveness and scalability of our method.

4.5 REALISM VALIDATION AND ABLATION STUDY

To validate the realism of our generated scenarios, we compare both driving behavior distribu-
tions and accident patterns with real-world datasets, including METR-LA, PEMS-BAY, Califor-
nia DMV (DMV, 2025b), NHTSA crash reports (Administration, 2025), and AV disengagement
logs (Berkeley, 2025). Simulated vehicle speed distributions closely mirror real-world traffic, with
mean and standard deviation deviations within ±5%, confirming that our traffic modeling accurately
reproduces urban flow dynamics. Crucially, accident realism is assessed through a rigorous classifi-
cation protocol: a manual review of the 662 simulated accidents confirms that 88.1% of cases align
with real-world incidents in terms of Accident Type distribution (e.g., rear-end vs. side-impact ra-
tios) and Causal Factors (Table 6). This high statistical alignment demonstrates that our city-adaptive
scenario generation captures authentic urban risk patterns rather than producing random simulation
artifacts. We further conduct an ablation study to quantify each component’s contribution. A fixed
subset of accident scenarios is replayed under identical initial conditions to isolate the effects of
traffic prediction, POP motorcycle modeling, and scenario perturbation. As shown in Table 7 and
Table 8, without POP behavioral modeling, the number of discovered ADS failure rates decreases
from 10.5% to 5.9%, removing scenario perturbation reduces ADS failure rates by 9.7%-25.6%,
showing that fuzzing is critical for exposing diverse long-tail risks. Results confirm that each mod-
ule significantly improves both scenario realism and the exposure of critical ADS failure modes.
The details of the ablation experiment can also be found in the Appendix F.

5 CONCLUSION

We presented a city-adaptive testing framework for autonomous driving systems (ADS) that inte-
grates spatiotemporal traffic prediction, localized behavioral modeling, and scenario perturbation to
improve robustness evaluation in complex urban environments. Our approach combines three key
components: T-DDSTGCN for city-specific traffic flow and turning probability prediction, POP for
modeling realistic motorcycle behaviors that reflect local driving tendencies, and scenario pertur-
bation to systematically generate diverse and challenging test scenarios. The experiments demon-
strate that integrating traffic context and agent behavioral diversity is a key step toward closing the
Sim2Real gap and ensuring the robustness and safety of ADS in real-world deployments.
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6 ETHICAL DISCUSSION

This work focuses on testing and improving the robustness of autonomous driving systems through
city-adaptive scenario generation and multi-agent simulation. All data used are anonymized and
publicly available (e.g., OpenStreetMap, open traffic datasets). Risky behaviors are simulated purely
in virtual environments to enhance system safety and are not intended for real-world replication. No
human subjects or sensitive personal data are involved.

7 REPRODUCIBILITY STATEMENT

We provide code, data sources, and other supplementary files to ensure full reproducibility. All
datasets are publicly accessible, and simulation results can be regenerated. The code of our model
for predicting urban traffic flow is available at an anonymous repository https://anonymous.
4open.science/r/ASE-T-DDSTGCN-6CE4/README.md. Details of scenarios and maps
can be found in the following Appendix.
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Tamás Tettamanti, Mátyás Szalai, Sándor Vass, and Viktor Tihanyi. Vehicle-in-the-loop test envi-
ronment for autonomous driving with microscopic traffic simulation. In 2018 IEEE International
Conference on Vehicular Electronics and Safety (ICVES), pp. 1–6, Madrid, Spain, 2018. IEEE.

Silvia Thal, Philip Wallis, Roman Henze, Ryo Hasegawa, Hiroki Nakamura, Sou Kitajima, and
Genya Abe. Towards realistic, safety-critical and complete test case catalogs for safe automated
driving in urban scenarios. In 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1–8, Anchor-
age, AK, USA, 2023. IEEE. doi: 10.1109/IV55152.2023.10186595.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

14

https://www.panosim.com/en/h-default.html
https://www.panosim.com/en/h-default.html
https://proceedings.mlr.press/v164/priisalu22a.html
https://proceedings.mlr.press/v164/priisalu22a.html
https://arxiv.org/abs/2101.06861
https://doi.org/10.1007/978-3-031-70584-7_3
https://doi.org/10.1007/978-3-031-70584-7_3


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xing Wang, Juan Zhao, Lin Zhu, Xu Zhou, Zhao Li, Junlan Feng, Chao Deng, and Yong Zhang.
Adaptive multi-receptive field spatial-temporal graph convolutional network for traffic forecast-
ing. In 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–7, Madrid, Spain,
2021. IEEE, IEEE.

Xinpeng Wang, Songan Zhang, and Huei Peng. Comprehensive safety evaluation of highly au-
tomated vehicles at the roundabout scenario. IEEE Transactions on Intelligent Transportation
Systems, 23(11):20873–20888, 2022. doi: 10.1109/TITS.2022.3190201.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI-19, pp. 1907–1913, Macao, China, 7 2019. International
Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2019/264. URL
https://doi.org/10.24963/ijcai.2019/264.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 753–763, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450379984. doi: 10.1145/3394486.3403118. URL https://doi.org/10.1145/
3394486.3403118.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3634–3640, Stockholm,
Sweden, 7 2018. International Joint Conferences on Artificial Intelligence Organization. doi:
10.24963/ijcai.2018/505. URL https://doi.org/10.24963/ijcai.2018/505.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a
comprehensive review. Computational Social Networks, 6(1):1–23, 2019.

Xudong Zhang and Yan Cai. Building critical testing scenarios for autonomous driving from real
accidents. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2023, pp. 462–474, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598070. URL https:
//doi.org/10.1145/3597926.3598070.

Xudong Zhang, Yan Cai, and Zijiang Yang. A study on testing autonomous driving systems. In 2020
IEEE 20th International Conference on Software Quality, Reliability and Security Companion
(QRS-C), pp. 241–244, Macau, China, 2020. IEEE. doi: 10.1109/QRS-C51114.2020.00048.

Yufei Zhang, Sun Bohua, Yang Zhai, Yaxin Li, Hongyu Liang, and Qiang Liu. Machine learning
based testing scenario space and its safety boundary evaluation for automated vehicles. Journal
of Physics: Conference Series, 2337:012017, 09 2022. doi: 10.1088/1742-6596/2337/1/012017.

Xinran Zhao, Yuanli Gu, Lun Chen, and Zhuangzhuang Shao. Urban short-term traffic flow predic-
tion based on stacked autoencoder. In CICTP 2019, pp. 5178–5188, Nanjing, China, 07 2019.
Chinese Overseas Transportation Association. doi: 10.1061/9780784482292.446.

Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu. Lstm network: a
deep learning approach for short-term traffic forecast. IET intelligent transport systems, 11(2):
68–75, 2017.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multi-attention
network for traffic prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 34
(01):1234–1241, Apr. 2020. doi: 10.1609/aaai.v34i01.5477. URL https://ojs.aaai.o
rg/index.php/AAAI/article/view/5477.

Yuan Zhou, Gengjie Lin, Yun Tang, Kairui Yang, Wei Jing, Ping Zhang, Junbo Chen, Liang Gong,
and Yang Liu. Flyover: A model-driven method to generate diverse highway interchanges for
autonomous vehicle testing. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11389–11395, London, UK, 2023. IEEE. doi: 10.1109/ICRA48891.2023.10160868.

15

https://doi.org/10.24963/ijcai.2019/264
https://doi.org/10.24963/ijcai.2019/264
https://doi.org/10.1145/3394486.3403118
https://doi.org/10.1145/3394486.3403118
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1145/3597926.3598070
https://doi.org/10.1145/3597926.3598070
https://ojs.aaai.org/index.php/AAAI/article/view/5477
https://ojs.aaai.org/index.php/AAAI/article/view/5477


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yu Zhu, Jian Wang, Xinyu Guo, Fanqiang Meng, and Tongtao Liu. Functional testing scenario
library generation framework for connected and automated vehicles. IEEE Transactions on Intel-
ligent Transportation Systems, 24(9):9712–9724, 2023a. doi: 10.1109/TITS.2023.3266639.

Zhijing Zhu, Robin Philipp, Yongqi Zhao, Constanze Hungar, Jürgen Pannek, and Falk Howar. Au-
tomatic disengagement scenario reconstruction based on urban test drives of automated vehicles.
In 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1–8, Anchorage, AK, USA, 2023b. IEEE.
doi: 10.1109/IV55152.2023.10186640.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DATA AVAILABILITY

The code of our model for predicting urban traffic flow is available at an anonymous repository ht
tps://anonymous.4open.science/r/ASE-T-DDSTGCN-6CE4/README.md. Details
of scenarios and maps can be found in the following Appendix.

B MORE BACKGROUND AND RELATED WORK

B.1 RESEARCH MOTIVATION AND BACKGROUND

As an important part of ADS testing, simulation testing has irreplaceable advantages in terms of
safety, controllability, and cost-effectiveness. Therefore, with the iterative development of technol-
ogy, researchers are committed to deploying simulation scenarios that are closer to the real environ-
ment, from model training to finished product testing. Scenario refers to the sequence of scenarios
and their interaction methods related to autonomous vehicles during the execution of dynamic driv-
ing tasks. It describes external conditions such as roads, traffic facilities, weather conditions, traffic
participants, as well as information on the driving tasks and status of autonomous vehicles. Scenarios
describe the complex dynamic relationship model among people, vehicles, roads, and environments
in terms of space and time, which is the basis of autonomous vehicle product development and func-
tion realization. There are many methods to obtain simulation scenarios that are close to the real
urban traffic environment. On the one hand, the emergence of AI Large language models has opened
the door to AGI. Car companies represented by Tesla have proposed the Large World Model, which
can generate future scenarios through generating models based on a large amount of real-time video
data collected by autonomous vehicles, thereby achieving training and testing of models without
relying on annotation information. On the other hand, researchers are also committed to collect-
ing accident cases from real-life sources and reproducing large-scale simulation data, covering the
largest possible testing space. However, these methods are too broad, and the testing method of win-
ning by quantity is somewhat inadequate for promoting the large-scale deployment of autonomous
driving technology in cities. Taking inspiration from the California case, we carefully compared
the differences between closed field testing and open urban environments, and proposed a targeted
regional level testing concept. Our method consists of two main parts. First, the city is regarded as
a test area with a large span. Considering that the deployment of auto drive system in the middle of
the city needs to meet higher safety standards, the traffic flow data of the corresponding city is used
to predict the traffic flow density and other information in urban roads in different periods of time;
Secondly, the predicted traffic flow information is used to restore the simulation scene of a specific
city, and on this basis, scene variation is carried out to test the adaptability of the auto drive system
in different urban environments.

For the first stage, we concentrate on elucidating the traffic flow characteristics within the urban road
network. To achieve this, we introduce a pioneering architecture known as Turning-Dual Dynamic
Spatial-Temporal Graph Convolution Network (T-DDSTGCN). The T-DDSTGCN framework op-
erates through two main stages: predicting the speed of traffic flow (by deploying the DDSTGCN
module) and calculating the turning probability of intersections to obtain the distribution of the
entire road network. Predicting traffic speeds on road segments is a hot area of research, with nu-
merous models proposed in recent years (Pan et al., 2018; Krupski et al., 2021; Yu et al., 2018;
Guo et al., 2019). The accuracy of these predictions hinges on the model’s grasp of spatial depen-
dencies. Nevertheless, effectively capturing the dynamic dependencies inherent in traffic graphs re-
mains challenging (Wu et al., 2020; 2019). Our adopted DDSTGCN model addresses this challenge
by considering both the traffic graph and its dual, employing temporal-spatial graph convolution
and temporal-spatial hypergraph neural network techniques. This comprehensive approach enables
precise traffic flow prediction for road segments by accurately capturing dependencies within the
traffic network (Sun et al., 2022). Moreover, for predicting turning probabilities at intersections, we
introduce an innovative heuristic speed-to-turning equation. It estimates turning probabilities based
on the predicted speed of vehicles entering the segment and the speed differential between entry
and exit segments, enhancing the reliability of the overall traffic flow prediction model. We conduct
thorough evaluations of the short-term and long-term traffic flow predictions using the DDSTGCN
model, yielding improved SOTA results compared with the baseline model. Additionally, we present
a case study focusing on the anticipated turning probabilities at specific intersection segments in Los
Angeles. This case study serves to showcase the effectiveness of the speed-to-turning equation.

17

https://anonymous.4open.science/r/ASE-T-DDSTGCN-6CE4/README.md
https://anonymous.4open.science/r/ASE-T-DDSTGCN-6CE4/README.md


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For the second stage, we leverage the previously predicted data to determine the traffic flow and
speed of the corresponding urban area. However, in addition to simulating large-scale traffic flow,
it’s crucial to consider interference groups composed of other traffic participants, which can signif-
icantly impact the dynamics of urban traffic scenarios (Wang et al., 2022). We turn to data from
fatal car and motorcycle collisions provided by the National Highway Traffic Safety Administra-
tion (of Transportation, 2023). Shockingly, over 30,843 passengers have lost their lives in such
accidents in the US since 2017, accounting for 17.4% of vehicle fatalities during the same period.
To simulate the real-world challenges posed by interference groups, we deliberately design a motor-
cycle driving behavior model based on Level-K game theory (Nagel, 1995) and SVO (Social Value
Orientation) (Schwarting et al., 2019), to serve as a disturbance group in urban traffic scenarios.
Subsequently, we develop a scenario fuzzing algorithm tailored for scene generation corresponding
to different cities. This algorithm incorporates static information from real map data to accurately
represent road layers and other environmental factors. To validate the effectiveness of our approach,
we have conducted five sets of experiments for Los Angeles (LA) and San Francisco (SFB) respec-
tively. Through these experiments, we assess the robustness of ADS across different traffic flows
and urban environments. We have tested a total of 180 city scenarios and, after 5 rounds of random
setting, recorded a total of 775 collision accidents, of which 662 were actually effective collision
scenarios. The experimental results unequivocally demonstrate the effectiveness of our methodol-
ogy in enhancing the ADS’s adaptability and performance in complex urban settings.

B.2 RELATED WORK ON TRAFFIC FLOW PREDICTION AND TURING PREDICTION

Traffic flow prediction aims to forecast future traffic conditions, such as vehicle speeds and traffic
volumes, based on historical traffic data. The primary challenge lies in simultaneously capturing
complex temporal and spatial dependencies. In addressing temporal dependencies, a variety of tech-
niques have been widely adopted, including Recurrent Neural Networks (RNNs (Zhao et al., 2017)),
Temporal Convolutional Networks (TCNs (Li et al., 2020)), and Transformers (Vaswani et al., 2017).
RNNs capture long-term dependencies in time series through their recursive structure but are limited
by vanishing gradient issues, making them less effective for long-sequence modeling. In contrast,
TCNs efficiently handle long-range data dependencies through convolutional operations, offering
superior performance in temporal modeling. Transformer-based models further improve efficiency
and accuracy by leveraging self-attention mechanisms to model entire time series dependencies in
parallel. In terms of spatial dimensions, earlier studies often divide the traffic network into grids
and utilizing CNNs (Pan et al., 2018; Krupski et al., 2021) and their derivatives to capture spatial
dependencies. However, such grid-based approaches struggle to effectively represent the complex
non-Euclidean spatial structures inherent in real-world traffic networks. Recent researchers have
turned to Graph Convolutional Networks (GCNs (Zhang et al., 2019)) to capture spatial dependen-
cies among different road segments. STGCN (Yu et al., 2018) leverages multiple layers of graph
convolutions to capture the spatial influence of neighboring segments over multiple hops, utiliz-
ing a first-order Chebyshev polynomial approximation for enhanced graph convolution efficiency.
DCRNN (Li et al., 2018) conceptualizes traffic flow as a diffusion process on a directed graph, intro-
ducing a bidirectional random walk mechanism to effectively model spatial dependencies. However,
these methods often assume a static traffic network structure, making them ill-suited for scenarios
involving dynamic changes, such as traffic incidents or seasonal variations. To address the limi-
tations of static assumptions, recent advancements, including MTGNN (Wu et al., 2020), Graph
WaveNet (Wu et al., 2019), and SAGDFN (Jiang et al., 2024a) have made significant progress in
this direction by utilizing continuously updated node embeddings to model spatial dependencies.
Nevertheless, current dynamic graph models primarily focus on the intuitive dependencies between
nodes and often overlook the higher-order dependencies that exist between edges in dynamic traffic
graphs. To bridge this gap, we employ DDSTGCN, which integrates dynamic graph convolution
and dynamic hypergraph convolution to achieve unified modeling of multi-level dynamic relation-
ships between nodes and edges. This approach significantly enhances the capability to predict traffic
flow in complex and evolving traffic networks.

Turning prediction is another critical task in urban traffic modeling, focusing on inferring vehicle
turning behaviors at intersections, such as left turns, right turns, or going straight. This task typically
requires integrating traffic dynamics, road geometry, and vehicle behavior features. Early methods
often relied on rule-based or statistical models. (Foulaadvand & Belbasi, 2011) develops a Nagel-
Schreckenberg cellular automaton model to describe vehicular traffic flow at a single intersection.
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(Liu et al., 2021) addresses the uncertainty in turning ratio estimation by employing distributionally
robust chance constraints. However, these methods often fail to adapt to complex and dynamic traffic
scenarios. The rise of data-driven methods has introduced new perspectives for improving turning
prediction. (Ghanim & Shaaban, 2018) utilizes input and output traffic flows from intersection
links as inputs to an Artificial Neural Network (ANN) model, enabling flow exchange recognition
at intersections without relying on prior assumptions. (Mousavizadeh et al., 2021) proposed a hy-
brid approach that combines sparse stationary measurements with probe vehicle data to train models
for turning prediction. While these data-driven methods have shown promising results, they are
often associated with high observational costs and computational delays, making them unsuitable
for real-time decision-making in autonomous driving scenarios where rapid inference is crucial. To
overcome these challenges, we propose an efficient and interpretable turning prediction method,
the Speed2Turning equation. This approach estimates turning probabilities based on the entering
speed of vehicles at intersections and the speed variation between entry and exit road segments. By
modeling turning flow distributions with high efficiency, the Speed2Turning equation not only en-
hances the reliability of turning predictions but also provides an intuitive tool for modeling complex
intersection traffic dynamics. In autonomous driving scenarios, this method enables rapid turning
probability estimation at low computational costs, offering robust support for real-time traffic control
in dynamic environments.

B.3 RELATED WORK ON SCENARIO SIMULATION AND TESTING

Scenario-based testing is foundational for evaluating the performance of ADS by systematically
generating diverse driving scenarios. This approach ensures comprehensive coverage of real-world
conditions that an autonomous vehicle might encounter. The primary techniques in scenario-based
testing include Behavior Trees, Topology-Based Scenario Classification, Bisection Method, and
Data-Driven Assurance. Each technique offers a unique approach to generating test scenarios, pro-
viding comprehensive coverage and addressing specific challenges in autonomous driving.

Behavior Trees are a powerful tool for modeling the behavior of actors within a driving scenario.
They allow for the precise control and description of both temporal and spatial behaviors, making
them ideal for creating complex and realistic scenarios. (Han & Zhou, 2020) explores the use of
behavior trees to enhance the realism and control of test scenarios. By focusing on the temporal be-
haviors of vehicles and pedestrians, this method improves the adaptability of scenarios in different
testing environments. (Kang et al., 2022) leverages behavior trees to generate diverse and challeng-
ing scenarios for ADS, highlighting their effectiveness in varying testing contexts. Topology-Based
Scenario Classification utilizes the physical layout of road networks to create diverse and represen-
tative test scenarios. This technique ensures that various road structures and conditions are covered,
which is critical for comprehensive ADS testing. (Zhou et al., 2023) focuses on using road net-
work topology to generate varied scenarios for ADS testing, ensuring comprehensive coverage of
different road conditions. (Zhu et al., 2023a) discusses a method to classify junction lanes based
on topology, enhancing the diversity of generated scenarios. The Bisection Method is a systematic
approach to reducing the scenario space while maintaining diversity. This technique is often used in
conjunction with topology-based classification to streamline the generation of diverse and challeng-
ing scenarios. (Tang et al., 2021) integrates the bisection method with topology-based classification
to streamline the generation of diverse and challenging scenarios for ADS testing. Data-Driven
Assurance involves creating quality criteria for parameterized scenarios to ensure they cover real
traffic data instances. This approach uses search-based techniques to validate and refine test sce-
narios, ensuring comprehensive coverage and high quality. Scenario-based testing provides a robust
framework for evaluating ADS by generating diverse and realistic driving scenarios. Techniques
like behavior trees, topology-based classification, and data-driven assurance ensure comprehensive
coverage and relevance, contributing significantly to the robustness and reliability of ADS testing.
By systematically addressing different aspects of scenario generation, these techniques ensure that
all possible driving conditions and interactions are thoroughly tested, providing a solid foundation
for ADS development and validation.
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Figure 5: Framework of Dual Dynamic Spatial-Temporal Graph Convolution Network, for traffic
segment speed prediction

C MORE DETAILS OF TRAFFIC PREDICTION

Traffic in different cities has different styles, and accurate modeling of urban traffic flow for testing
plays a vital role in the deployment of ADS in cities. Open-source data offers insight into predicting
traffic speed within urban road networks, yet accurately modeling the entire network’s flow presents
challenges. To address this, we innovatively reframe the issue by predicting vehicles’ turning prob-
abilities at intersections, effectively model branch road flow as the product of main road flow and
turning probability. We introduce Turning-Dual Dynamic Spatial-Temporal Graph Convolution
Network (T-DDSTGCN), a novel model specifically designed to forecast these turning probabilities
(See Figure 5). This model initially forecasts traffic speed for each road segment leading into and
out of an intersection. Subsequently, it leverages these speed predictions to calculate the likelihood
of vehicles turning in various directions. For the initial step of traffic speed prediction, we incorpo-
rate DDSTGCN (Sun et al., 2022) that utilizes both the spatial graph representing physical layout of
the intersection and its corresponding dual hypergraph. It can enrich the model’s understanding of
traffic dynamics and enable precise traffic speed forecasts. To derive turning probabilities from these
speed forecasts, we propose a novel heuristic equation. This equation calculates turning probabilities
based on the observed speeds of the entering road segments and the differential speeds between en-
tering and exiting segments. This approach provides a direct method for estimating vehicle behavior
at intersections which can assist in predicting traffic flow in urban road networks.

The T-DDSTGCN architecture, depicted in Fig. 5, comprises three main components: the traffic
input layer, Dual Spatial-Temporal Blocks, and the traffic output layer. The Dual Spatial-Temporal
Blocks facilitate the transformation of traffic data from graph to hypergraph representations, uti-
lizing dynamic convolutions across both structures and integrating a Dynamic Interaction Module.
This module continuously updates edge representations within the graph and hypergraph, allowing
the DDSTGCN model to decode and predict traffic behaviors by intricately analyzing the complex
spatiotemporal relationships inherent in traffic networks.

• Traffic Graph-Hypergraph Transformation. Central to DDSTGCN is its proficient Graph-
Hypergraph Transformation mechanism. This mechanism is crucial for extracting spatial depen-
dency information from traffic flows by incorporating both the traditional traffic graph and its dual.
In this dual setup, nodes in the traffic graph correspond to edges in its dual, and vice versa. This
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Figure 6: Example of traffic graph/hypergraph. (a) One Typical road crossing. (b) Traffic graph
of this road crossing. (c) Corresponding traffic hypergraph of this road crossing. Black points in
(b) and red dashed ellipses in (c) represent nodes in (a). Blue edges in (b) and blue points in (c)
represent connections between nodes in (a).

mapping allows for the creation of a dual hypergraph from the original graph, where a single edge
in the dual hypergraph may represent multiple nodes from the original graph, enabling it to connect
more than two nodes in the original graph. This transformation is depicted in Fig.6, illustrating an
example of a road intersection and highlighting both its traffic graph and corresponding hypergraph.
Formally, for a traffic graph G = (V,E,A) with N nodes, E edges, and its adjacency matrix A, the
equivalent traffic hypergraph is denoted as Gh = (Vh, Eh, H), where |Vh| = E, |Eh| = N , and H
is Gh’s incidence matrix, which is defined as:

Hij =

{
1 if vhi ∈ ehj ,

0 otherwise.
(8)

Given the directed nature of traffic graphs, H must account for bidirectional connectivity along
each edge. Consequently, H is the summation of Hforth and Hback, representing the incidence
matrices for forward and backward directions, respectively. With the provided information, we can
formalize the feature transformation from traffic graph to hypergraph. Given traffic graph nodes
with F features spanning over T time periods X ∈ RN×F×T , Hforth, Hback ∈ RE×N , and road
distance matrix Xdis ∈ RE , the hyper-nodes features of Gh, Xh ∈ RE×(2F+1)×T , is calculated as

Xh = [(θ1 ·Hforth)X|(θ2 ·Hback)X|Xdis] (9)

where · represents element-wise multiplication, | refers to concatenation, and θ are learnable pa-
rameters. Reversely, to transform hypergraph nodes features X ′

h ∈ RE×F ′×T back to graph nodes
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features X ′ ∈ RN×F ′×T , we have
X ′ = (θ3 ·H)⊤X ′

h (10)

• Dual Spatial Temporal Blocks. T-DDSTGCN incorporates an innovative sequence of Dual
Spatial-Temporal Blocks (DST-Blocks) to facilitate a profound analysis of traffic data. These blocks
integrate Gate-Temporal Convolutional Networks (Gate-TCN (Chen et al., 2020)), Graph Convolu-
tional Networks (GCN (Zhang et al., 2019)), Hypergraph Convolutional Networks (HGCN (Feng
et al., 2019)), and Dynamic Interaction Modules (DIM), each playing a unique role in capturing the
dynamic and complex spatial-temporal patterns of traffic flow. The Gate-TCN component is specif-
ically designed to model temporal dependencies. It captures the variations in traffic flow over time
through a gating mechanism that regulates the flow of information, combined with one-dimensional
convolutions across temporal dimension. The operation is formulated as:

TCNθ(X) = Convθ(X) ∈ RN×F×(T−k(T0−1)) (11)

G− TCN(X) = f1(TCNθ1(X)) · f2(TCNθ2(X)) (12)
where k represents dilation factor, T0 is kernal size, f1, f2 denote the tanh and sigmoid activa-
tion function, respectively. For capturing spatial dependencies, GCN and HGCN process the traffic
graph and hypergraph, respectively. GCN focuses on direct interactions between nodes to analyze
connections between road segments. In parallel, HGCN explores complex combinations of nodes,
or hyperedges, to uncover hidden higher-order spatial relationships. Their operations are mathe-
matically represented as: where An

forth and An
back are the n-th order adjacency matrices for the

forward and backward directions, and Wh is the weight matrix for hyperedges in hypergraph Gh.
The Dynamic Interaction Module (DIM) is crucial for updating the representations of edges in both
the traffic graph and hypergraph. By leveraging updated node features from preceding DST-Blocks,
DIM processes and refreshes edge features, which, in turn, inform the dynamic updates of node
features in subsequent DST-Blocks through GCN and HGCN operations.

To reconstruct urban-scale traffic flow based on sparse sensor data, we leverage the fact that most
traffic sensors are deployed on major arterial roads (main roads), while minor streets or sub-roads
(e.g., residential lanes) are often not instrumented. To enable flow estimation on sub-roads, we prop-
agate traffic counts from main roads using estimated turning probabilities at intersections. Specifi-
cally, for each sub-road SRj , we estimate its flow as:

SRj =
∑

i∈incoming(j)

Pi→j ·Ni

where: Ni is the observed or estimated flow on an incoming main road segment i, Pi→j is the turning
probability from road i to sub-road j, incoming(j) denotes all upstream road segments connected
to j. This formulation allows us to approximate unobserved sub-road traffic by redistributing main-
road flows based on city-specific turning behavior, which is estimated via our Speed2Turning model.
The propagation step is critical in enabling city-adaptive scenario construction, as it supports traffic
realism beyond the limited sensor coverage. Compared to approaches that uniformly distribute flow
or use synthetic assumptions, this probabilistic mapping respects local traffic norms—e.g., a higher
Pi→j in cities where U-turns or sharp left turns are common, or lower in regions with one-way
constraints.

To validate our Speed2Turning equation, we have conducted an accuracy analysis by comparing
its estimated turning probabilities with real-world observed turning data collected from a four-way
signalized intersection in a metropolitan area, as shown in Table 3. The dataset consists of 250,000
recorded vehicle trajectories over a six-month period, capturing variations in turning rates under
different traffic conditions. The collected data includes, entry speeds of vehicles approaching the
intersections, and exit road selections for turning movements (left, right, or straight). The dataset has
preprocessed to remove anomalies such as incomplete trajectories, extreme outliers in speed values,
and inconsistencies in recorded turning movements. To assess the accuracy of the Speed2Turning
equation, we compare its estimated turning probabilities against observed distributions using the
following statistical measures.

KS = sup
x

|Fpred(x)− Fobs(x)| (13)

Kolmogorov-Smirnov (KS) test measures the maximum difference between the cumulative distri-
bution functions (CDFs) of the predicted and observed turning probabilities. A lower KS statistic
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indicates a closer match between predicted and observed distributions.

MAE =
1

N

N∑
i=1

|Ppred,i − Pobs,i| (14)

Mean Absolute Error (MAE) evaluates the average absolute deviation between the predicted and
observed turning probabilities.

RMSE =

√√√√ 1

N

N∑
i=1

(Ppred,i − Pobs,i)2 (15)

Root Mean Squared Error (RMSE) captures the square root of the mean of the squared deviations to
emphasize larger errors.

r =

∑
(Ppred − P̄pred)(Pobs − P̄obs)√∑

(Ppred − P̄pred)2
√∑

(Pobs − P̄obs)2
(16)

Pearson Correlation Coefficient (r) measures the strength and direction of the linear relationship be-
tween predicted and observed turning probabilities, with values close to 1 indicating a strong corre-
lation. The Speed2Turning equation provides a reasonable approximation but tends to overestimate

Table 3: Evaluation results of Speed2Turning equation

Metric Left Turn Right Turn Straight
Observed Probability 24.8% 36.7% 38.5%
Predicted Probability 34.1% 28.3% 37.6%
KS Statistic 0.28 0.22 0.14
MAE 9.3% 8.4% 6.1%
RMSE 12.1% 10.5% 7.8%
Pearson r 0.82 0.79 0.87

left turns and underestimate right turns. Observed data shows a higher prevalence of right turns,
possibly influenced by dedicated turn lanes and signal timing. The model’s overestimation of left
turns suggests that external factors such as gaps in opposing traffic and driver caution play a signifi-
cant role. The evaluation highlights that while the Speed2Turning equation provides a foundational
approach for estimating turning probabilities, adjustments are necessary to improve alignment with
real-world behavior. Incorporating intersection-specific parameters and real-time adaptive elements
could enhance its predictive capability for autonomous driving scenario testing.

D POP EXTENSION MATERIALS

In current testing of autonomous driving systems, it is crucial to consider motorcycles as significant
traffic participants due to their unique behavioral patterns and potential interference factors. Motor-
cycles, with their smaller size, higher maneuverability, and varying speeds, often present challenges
for perception and decision-making algorithms. Their ability to quickly change lanes, filter through
traffic, and occupy blind spots can lead to unexpected scenarios that autonomous systems must ac-
curately detect and respond to. Additionally, as shown in Figure 7, motorcycles are involved in a
significant number of traffic accidents (DMV, 2025a; Berkeley, 2025), often due to the difficulty
other drivers face in predicting their movements. Incorporating motorcycles into testing scenarios
ensures that these systems are robust and capable of handling real-world complexities, ultimately
enhancing safety for all road users.

D.1 BASIC DEFINITIONS

1) SVO (Social Value Orientation) (See Figure 2) quantifies the degree of selfishness exhibited by
drivers, reflecting individuals’ inclination toward prioritizing either their own interests or those of
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LA SFB

Figure 7: Motorcycle Crash Map in LA and SFB. It records 9414 formal accident reports involving
motorcycles during 2020-2024, and records 3742 formal accident reports involving vehicles during
2020-2024.

others in social interactions (Schwarting et al., 2019). Unlike ADS, which relies on inference, SVO
serves as an effective means to account for the impact of social suggestion and driver personality
on driving behavior. 2) The Level-K game theory model first assumes that the level 0 strategy is
a priori known, immature strategy that operates in a non interactive manner (Nagel, 1995). Then,
a k-level driver (k > 0) follows a utility maximization strategy, assuming the opponent is a (k −
1)-level driver. Starting from the 0-level strategy, the optimal strategy for k-level drivers can be
recursively generated. 3) X = [X

T
1 , X

T
2 , ..., X

T
n ] refers to the state trajectory of all drivers, U =

[U
T
1 , U

T
2 , ..., UT

n ] refers to the control trajectory of all drivers, for each driver i = 1, ..., n, its state
at time k is represented as Xk

i , its individual control strategy is represented as Uk
i . In our algorithm,

the utility function of driver i with social attributes is defined as gi = cos (φi)ω1 + sin (φi)ω2,
where ω1 and ω2 are the ‘reward to self’ and ‘reward to others’ that defined by the driver’s reward
function. So the instantaneous utility function of n drivers is

gi(X,Ui, U¬i, φi) =
1

n− 1

∑
j∈¬i

(cos (φi)ω1(X,Ui, Uj)

+ sin (φi)ω2(X,Uj , Ui))

(17)

Then we discretizing the time range into T steps and accumulating the instantaneous utility encoun-
tered at each time point can obtain the cumulative utility function, which is

Gi(X
0, U, φ) =

T−1∑
k=0

gi(X
k, Uk, φi) + gTi (X

T , φi) (18)

Here we define the utility of the final step as the euclidean distance from the set endpoint, so the
optimization problem of the algorithm is to maximize the cumulative utility function

U∗
i = argmaxui

Gi(X
0, U, φ)

= argmaxui
(

T−1∑
k=0

gi(X
k, Uk, φi) + gTi (X

T , φi))

= argmaxui
(

T−1∑
k=0

gi(X
k, Uk, φi)−

√
(X⃗T − E⃗P )

2
)

(19)

In our POP algorithm, integrating interactive motorcycles as interference groups involves two stages,
and the kinetic data comes from official sources (DMV, 2025a). In stage one (See Figure 2 part
b), for experimental convenience, the generated motorcycle fleet initially appears only on branch
roads, avoiding interaction with main roads and large-scale traffic flow. These motorcycles adhere
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to a fixed speed configuration, do not incorporate additional sensors, and proceed directly to their
destination. In stage two (See Figure 2 part c), upon interaction with main vehicles, the closest
driver to the main vehicle assumes the role of navigator. Their trajectory and strategy optimization
are guided by maximizing a utility function, while other drivers maintain basic following strategies.
A minimum safe distance between motorcycles and main vehicles is enforced, typically set at a fixed
value (e.g., half a meter).

D.2 NASH EQUILIBRIUM AND STACKELBERG STRATEGY

Nash equilibrium is a fundamental concept in game theory, named after the mathematician John
Nash. It refers to a situation in a game where each player’s strategy is optimal given the strategies
of the other players. In other words, no player has an incentive to unilaterally change their strategy,
as doing so would not lead to a better outcome for them. In game theory, Nash equilibrium is typi-
cally described using mathematical formulas. For a two-player zero-sum game (where one player’s
gain is exactly balanced by the other player’s loss), Nash equilibrium can be defined as follows:
For Player 1, their best response strategy is to maximize their expected payoff, which can be repre-
sented as: maxs1 mins2 u1(s1, s2) For Player 2, their best response strategy is to maximize their ex-
pected payoff, which can be represented as: maxs2 mins1 u2(s1, s2) Here, u1(s1, s2) and u2(s1, s2)
represent the payoffs for Player 1 and Player 2, respectively, given the strategy combination s1
and s2. In Nash equilibrium, the following conditions are satisfied: maxs1 mins2 u1(s1, s2) =
mins2 maxs1 u1(s1, s2), maxs2 mins1 u2(s1, s2) = mins1 maxs2 u2(s1, s2). In other words, at
Nash equilibrium, each player’s strategy maximizes their payoff given the strategies chosen by the
other players.

Stackelberg strategy is a concept derived from game theory, named after German economist Heinrich
Stackelberg. It is a strategic model where one player, known as the leader, makes decisions first,
and then the other player, known as the follower, observes these decisions and makes their own
decisions accordingly. The leader-player takes into account the anticipated response of the follower
when determining their strategy, aiming to maximize their own payoff. Here’s how Stackelberg
strategy works and its application in decision-making: Step 1. Leader-Follower Dynamic: In a
Stackelberg game, one player (the leader) has the advantage of moving first, while the other player
(the follower) observes the leader’s action before making their own decision. Step 2. Sequential
Decision-Making: The leader makes their decision, taking into consideration the reaction of the
follower. The follower, knowing the leader’s decision, then selects their own strategy to maximize
their payoff given the leader’s action. Step 3. Strategic Advantage: The leader’s advantage lies in
their ability to anticipate and influence the follower’s behavior through their initial decision. This
allows the leader to strategically shape the outcome of the game in their favor. Step 4. Mathematical
Representation: In a mathematical formulation, let S denote the strategy space of the leader and T
denote the strategy space of the follower. The leader’s payoff function is represented as ΠL(S, T ),
and the follower’s payoff function is represented as ΠF (S, T ). The leader aims to maximize their
payoff by selecting the optimal strategy S∗, taking into account the follower’s best response T ∗.
Step 5. Finding Equilibrium: The equilibrium in a Stackelberg game occurs when the leader’s
strategy and the follower’s best response form a stable solution, where neither player has an incentive
to unilaterally deviate from their chosen strategy.

D.3 GAME THEORY AND POP ALGORITHM

With the background knowledge of game theory, the foundation of our proposed POP algorithm is as
follows: X = [X

T
1 , X

T
2 , ..., X

T
n ] refers to the state trajectory of all drivers, U = [U

T
1 , U

T
2 , ..., UT

n ]
refers to the control trajectory of all drivers, for each driver i = 1, ..., n, its state at time k is
represented as Xk

i , its individual control strategy is represented as Uk
i . In our algorithm, the utility

function of driver i with social attributes is defined as gi = cos (φi)ω1 + sin (φi)ω2, where ω1 and
ω2 are the ’reward to self’ and ’reward to others’ that defined by the driver’s reward function. So the
instantaneous utility function of n drivers is

gi(X,Ui, U¬i, φi) =
1

n− 1

∑
j∈¬i

(cos (φi)ω1(X,Ui, Uj)

+ sin (φi)ω2(X,Uj , Ui))

(20)
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Then we discretizing the time range into T steps and accumulating the instantaneous utility encoun-
tered at each time point can obtain the cumulative utility function, which is

Gi(X
0, U, φ) =

T−1∑
k=0

gi(X
k, Uk, φi) + gTi (X

T , φi) (21)

Here we define the utility of the final step as the euclidean distance from the set endpoint, so the
optimization problem of the algorithm is to maximize the cumulative utility function

U∗
i = argmaxui

Gi(X
0, U, φ)

= argmaxui
(

T−1∑
k=0

gi(X
k, Uk, φi) + gTi (X

T , φi))

= argmaxui
(

T−1∑
k=0

gi(X
k, Uk, φi)−

√
(X⃗T − E⃗P )

2
)

(22)

Considering that in actual traffic environments, there is a swarm effect among traffic participants
represented by motorcycles, and most members will decide their behavior based on the leader’s
decision. Therefore, it is necessary to use multi-agent constraints to solve.

U∗
1 = argmax

u1

G1

(
X0,U1,U

∗
2 (U1) , φ1

)
s.t. Xk+1

1 = F1

(
Xk

1 ,U
k
1

)
c1 (X,U1,U

∗
2 (U1)) ≤ 0

U∗
2 (U1) = argmax

u2

G2

(
X0,U1,U2, φ2

)
s.t. Xk+1

2 = F2

(
Xk

2 ,U
k
2

)
c2(X,U) ≤ 0

(23)

This form indicates that Agent 1 can influence Agent 2’s behavior by changing its own control Thus
indirectly controlling the behavior of Agent 2. Considering this interaction, Agent 1 can now proac-
tively consider how to influence Agent 2’s behavior to maximize their own assistance. This involves
a two-layer optimization, which involves optimizing at a higher level, including a lower level op-
timization problem. For each step of a high-level optimization algorithm, it is necessary to solve
a low-level optimization problem. Obviously, this method cannot be extended to situations where
there are more than two agents, so in this article, only the motorcycle closest to the main vehicle
will be identified as the leader, and other motorcycles will be considered as a group interacting with
the leader’s decisions.

E SCENE SIMULATION EXTENSION MATERIALS

E.1 ROAD NETWORK DATA IN THE EXPERIMENTAL URBAN AREA

Based on California’s accident statistics report (Berkeley, 2025) and the distribution of road sensors,
we selected the area with the highest density of sensors and the highest frequency of accidents for
testing, as shown in Figure 8. We select 5 areas with dense road networks in both LA (Los Angeles)
and SFB (San Francisco Bay) for experiments. The detailed data of each experimental area is shown
in the Table 4.

And the road network data for 10 sets of experiments are shown in the Figure 9.

E.2 COMPREHENSIVE SCENARIO TESTING RESULTS

Utilizing the aforementioned algorithm, we can reconstruct the initial scene of the corresponding ur-
ban area, encompassing all road network data and the initial traffic flow on main and branch roads.
Building upon this foundation, parameter mutation is executed on the original scene to generate a
diverse array of testing scenarios. The specific scenario fuzzing algorithm is outlined in Algorithm
2. Take the scene simulation result of Los Angeles as an example, see Figure 10. We first define
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a.1 a.2

b.1 b.2

Figure 8: Number of Crashes and Community Heat Map. a.1 and a.2 show the crash heat map in
LA, it records 25977 formal accident reports involving vehicles during 2018-2024, a.3 and a.4 show
the crash heat map and area crash map in SFB, it records 7594 formal accident reports involving
vehicles during 2018-2024.

Table 4: Simulation urban area dataset.

Urban Data Longitude-Left-Edge Longitude-Right-Edge Latitude-Top-Edge Latitude-Bottom-Edge Node-Num Link-Num Square

LA-NW -118.4844 -118.4636 34.1767 34.1539 414 744 5542× 4066
LA-CCR -118.3859 -118.3710 34.1614 34.1478 272 573 2591× 2626
LA-ECR -118.2341 -118.2217 34.1528 34.1401 301 498 4510× 2013

LA-SECR -118.2585 -118.2345 34.0662 34.0550 618 1125 3199× 2588
LA-HW -118.3357 -118.3133 34.1056 34.0938 445 984 7864× 11927

SFB-NW -122.0730 -122.0546 37.4111 37.3895 495 821 5549× 4797
SFB-CA -122.0526 -122.0313 37.3238 37.3098 388 698 3615× 3904
SFB-EA -121.8975 -121.8800 37.3340 37.3206 522 798 2723× 3130
SFB-SA -121.9565 -121.9383 37.2860 37.2702 313 570 2654× 4447

SFB-NEA -121.8687 -121.8528 37.3917 37.3800 292 493 4745× 5107

• LA refers to Los Angeles, NW refers to the city’s North West part, CCR refers to the city’s Central Cross Road part, ECR refers to the city’s Eastern Cross
Road part, SECR refers to the city’s Southeast Cross Road part, HW refers to the city’s Hollywood part.
• SFB refers to San Francisco Bay, NW refers to the city’s North West part, CA refers to the city’s Central Area part, EA refers to the city’s Eastern Area part,
SA refers to the city’s Southern Area part, NEA refers to the city’s Northeast Area part.

the geographical scope of the simulation experiment, selecting the latitude and longitude range cor-
responding to the city under study. Then access the OpenStreetMap official website to procure the
OSM map of the designated city within the specified range. Using the custom Python program, we
preprocess the acquired OSM map, filtering out extraneous information to retain solely the city’s
road network data. This involves parsing the map to extract pertinent node and connection files,
which are then inputted into the simulation platform to construct the city map. In cases where dis-
continuities exist within the urban road network, we employ smooth curve interpolation techniques
to seamlessly connect branch roads, ensuring the network’s continuity. Building upon prior predic-
tions of traffic flow on main urban roads, we proceed to determine the speed and flow distribution
at major traffic intersections. Leveraging the probability formula for speed-steering prediction, we
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LA-P1-NW LA-P2-CCR LA-P3-ECR LA-P4-SECR LA-P5-HW

SFB-P1-NW SFB-P2-CA SFB-P3-EA SFB-P4-SA SFB-P5-NEA

Figure 9: Road network of tested urban environments.

allocate traffic flow from main roads to branch roads, establishing a foundational urban testing sce-
nario. Subsequently, we execute a fuzzing program within the established scenario. This involves
varying the scale of traffic flow, introducing a suitable number of interference vehicles generated
by the POP model, randomly selecting the starting point of the tested main vehicle, and selecting
a random weather environment for the scenario. Through this process, we generate a diverse and
extensive set of mutation scenarios, facilitating comprehensive testing of the ADS under various
conditions.

1:(id, location)
...
N:(id, location)

Figure 10: Scene Simulation and Scenario Fuzzing Algorithm.

In this section, we will release more experimental results, as shown in the Figure 11. Our method
provides a diverse array of environmental variation parameters, as showcased in the first row of the
result graph. With this approach, we can tailor urban scenes to encompass various weather condi-
tions, including sunny, rainy, foggy, or nighttime settings. In the second row of the result graph,
we observe a plethora of scene element variation parameters. Our method enables the generation
of urban traffic scenes under different flow rates, with the inclusion of pedestrian and motorcycle
interference groups generated by POP algorithms. The third line in the result chart presents a com-
prehensive array of test results for accident scenarios. Through our method, we identify a spectrum
of scenarios leading to accidents in the autonomous driving system. These scenarios cover common
accident modes such as lane changes and rear-end collisions, as well as conflicts with pedestrians or
motorcycle interference groups generated by the POP algorithm. Collectively, these results under-
score the effectiveness of our method.
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Figure 11: Comprehensive scenario testing results of various urban environments.

F REALISM VALIDATION AND ABLATION STUDY

F.1 REALISM VALIDATION

To validate the realism of our generated scenarios, we compare key behavioral and accident statistics
between our simulated test cases and real-world urban traffic datasets (DMV, 2025b; Administration,
2025; Berkeley, 2025). We have analyzed vehicle speed distributions in our simulation and com-
pared them with real-world datasets collected from local transportation reports. Table 5 presents
a statistical comparison. These results indicate that our simulation closely aligns with real-world

Table 5: Comparison of traffic flow metrics between real and simulated data for METR-LA and
PEMS-BAY

Metric Real-LA Sim-LA Deviation(%) Real-BAY Sim-BAY Deviation(%)
Mean Speed (m/s) 13.2 12.9 -2.3% 14.0 13.6 -2.9%
Speed Standard Deviation 3.5 3.7 +5.7% 3.8 4.0 +5.3%
Peak Hour Flow (veh/hr) 1850 1805 -2.4% 1920 1875 -2.3%
Off-Peak Flow (veh/hr) 920 940 +2.2% 980 960 -2.0%

traffic flow conditions in different urban regions, with deviations within ±5% across key metrics.
The small deviation in speed and flow metrics suggests that the underlying traffic models in our
simulation effectively capture real-world dynamics. The slightly higher speed standard deviation in
our simulation might be due to the broader range of behavioral variability introduced in synthetic

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

agents. Notably, the consistency in deviation percentages between METR-LA and PEMS-BAY re-
gions suggests that our framework generalizes well to multiple urban environments.

To ensure an accurate comparison, we obtain real-world accident data from sources such as Califor-
nia DMV (DMV, 2025b), NHTSA crash reports (Administration, 2025), and autonomous vehicle
disengagement logs from Waymo and Cruise (Berkeley, 2025). We preprocess this data by filter-
ing relevant urban driving incidents, excluding non-traffic-related events. Then we extract accident
types, severity, and cause factors for statistical aggregation. By normalizing traffic volume dif-
ferences, we aim to ensure a fair comparison between real-world and simulated data. Simulated
accident data is obtained from our ADS test framework, which generates diverse traffic scenarios
involving varied road users and driving behaviors. The dataset includes 662 simulated accident
cases, of which 88.1% (583 cases) are valid, while the remaining cases were discarded due to plat-
form setup errors or incomplete data. The real-world dataset consists of 2,500 urban traffic accident
cases, sampled to ensure diverse road conditions and accident types. Table 6 presents the accident
type distribution and accident causes frequencies. The presence of overlapping accident types and

Table 6: Comparison of accident type distributions and accident causes frequencies.

Metric Category Real-World Data (%) Simulated Data (%)

Accident Type Distribution

Rear-End Collision 34.5% (863/2500) 30.0% (175/583)
Side-Impact Collision 21.7% (542/2500) 24.0% (140/583)
Intersection-Related 38.1% (953/2500) 28.0% (163/583)
Single-Vehicle Crash 16.2% (405/2500) 10.0% (58/583)
Pedestrian-Involved 12.1% (302/2500) 8.0% (47/583)
Other 8.5% (213/2500) -

Accident Causes

Sudden Lane Change 22.8% (570/2500) 20.0% (117/583)
Hard Braking (Rear-End) 26.3% (658/2500) 25.0% (146/583)
Intersection Running Red Light 25.7% (643/2500) 22.0% (128/583)
Distracted Driving 15.9% (398/2500) 18.0% (105/583)
Speeding 18.3% (458/2500) 15.0% (87/583)
Other 9.4% (235/2500) -

• The total percentages in the Accident Type Distribution and Accident Causes category exceed 100% as multiple contributing
factors can be associated with a single incident. This reflects the complexity of real-world traffic scenarios, where accidents
often result from a combination of driver behaviors, environmental conditions, and roadway dynamics. The simulated data
maintains a strict total of 100% due to controlled scenario configurations.

causes in real-world data (e.g., speeding combined with hard braking) results in percentages exceed-
ing 100%, as multiple contributing factors are often present in a single incident. The distribution
of accident types and causes in real-world data exhibits higher variability, reflecting the stochas-
tic nature of urban driving conditions and external influences such as road design and traffic flow
dynamics. Simulated accident distributions demonstrate strong alignment with real-world data, con-
firming that the scenario fuzzing methodology effectively replicates real-world risk scenarios. The
close alignment of accident type distributions and accident causes demonstrates that our scenario
generation effectively mimics real-world accident patterns. The minor variations are expected due
to the inherent stochastic nature of human driving behavior.

F.2 ROOT CAUSE ANALYSIS OF SIMULATED COLLISIONS

To provide deeper insights into the specific vulnerabilities of Autonomous Driving Systems (ADS)
exposed by our framework, we conducted a comprehensive root cause analysis of the 662 valid
collision cases. We categorize the primary failure mechanisms into three distinct classes: Behavioral
Prediction Failures, Perception Degradation, and Flow Dynamics Instability.

Behavioral Prediction Failures (Interaction-Driven) The most prevalent failure mechanism, ac-
counting for approximately 45% of collisions, stems from Behavioral Prediction Failures driven
by the POP (Primary Other Participants) model. Current ADS often rely on conservative predic-
tion models that assume rational, rule-abiding behavior from surrounding agents. However, our POP
model, utilizing Level-K game theory and competitive SVO (φ ∈ (0, π/2)), simulates aggressive
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actions such as sudden cut-ins, filtering between lanes, and forced gap acceptance. In these cases,
the ADS fails to anticipate the ”irrational” trajectory of the Stackelberg leader motorcycle. By the
time the prediction module updates the agent’s intent from ”Lane Keeping” to ”Cut-In,” the Time-
to-Collision (TTC) has often dropped below the critical braking threshold, resulting in unavoidable
side-impact or oblique collisions. This underscores the fragility of rule-based prediction modules
when facing socially competitive agents in complex urban settings.

Perception Degradation (Environment-Driven) The second major category involves Perception
Degradation, triggered by the Structured Scenario Fuzzing module (approx. 30%). When sce-
narios are configured with adverse environmental parameters, such as rain or fog, the simulation
platform introduces noise to Lidar point clouds and reduces the effective detection range of cameras.
Consequently, the ADS’s effective look-ahead distance is significantly compromised. In observed
case studies, the system failed to detect static obstacles or slow-moving motorcycles emerging from
fog until they were within emergency braking distance. This detection latency, compounded by re-
duced road friction coefficients modeled in the simulator under rainy conditions, frequently leads
to rear-end collisions. These scenarios serve as critical regression tests for the robustness of the
Perception-Control loop and validate the necessity of resilient multi-modal sensor fusion.

Flow Dynamics Instability (Traffic-Driven) Finally, Flow Dynamics Instability accounts for
approximately 25% of failures, originating from the high-density traffic states predicted by T-
DDSTGCN. In peak flow scenarios, the simulated traffic stream exhibits non-linear ”stop-and-
go” waves where the average spatial headway between vehicles is drastically reduced. The ADS,
while proficient in steady-state car following, often struggles with these rapid oscillations in traffic
speed. Specifically, when a lead vehicle performs hard braking (as modeled by the background traf-
fic physics), the ADS’s Adaptive Cruise Control (ACC) logic may exhibit delayed response times or
insufficient deceleration jerk, resulting in rear-end collisions. This highlights the necessity of val-
idating ADS performance within realistic, city-specific traffic densities rather than ideal free-flow
conditions, as congestion dynamics introduce unique control challenges.

F.3 ABLATION STUDY

Given that scenario fuzzing introduces a degree of randomness, we ensure that all ablation study
scenarios are conducted with the same set of traffic participants and identical initial conditions. This
guarantees that performance variations are solely due to the modifications in the tested components,
eliminating external variability and ensuring reliable comparisons. To assess the contributions of in-
dividual components within our framework, we have conducted an ablation study by systematically
removing or modifying key elements and measuring their impact on performance. We randomly

Table 7: Impact of scenario fuzzing on ADS performance

Scenario Variant Accident Detection (↑) ADS Failure (↓) Obstacle Avoidance Success Rate (↑)
Full Scenario Fuzzing 85.3% 8.2% 71.5%
Without Environmental Variability 80.5% 7.4% 72.3%
Without Traffic Density Variability 82.1% 6.8% 75.6%
Without Behavioral Variability 79.4% 6.1% 78.2%

select a subset of effective accident scenarios as the testing subset for ablation experiments. The
scenario fuzzing ablation (in Table 7) demonstrates that increasing the number of mutation factors
increases the ADS failure rate and decreases the obstacle avoidance success rate, confirming that
more complex scenarios significantly challenge ADS performance. Removing behavioral variabil-
ity results in a much lower ADS failure rate and a higher avoidance success rate, suggesting that
unpredictable human-like behaviors introduce critical decision-making challenges for ADS. Sim-
ilarly, removing environmental variability leads to a decrease in accident detection, implying that
weather and lighting variations play an important role in robust perception testing. The impact of
traffic density variations further supports the necessity of testing ADS under different congestion
levels, as higher density environments tend to increase failure rates due to more interactions with
other vehicles and pedestrians. The ablation study on the POP motorcycle model clearly demon-
strates its significant impact on ADS performance in complex urban traffic scenarios. The presence
of POP motorcycles increases both the ADS failure rate and accident detection rate, as their unpre-
dictable movements challenge the ADS’s decision-making process. Without the POP model, the
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Table 8: Impact of POP motorcycle model on ADS performance

Scenario Variant Accident Detection (↑) ADS Failure (↓) Obstacle Avoidance Success Rate (↑)
Default Vehicles & Pedestrians Only 75.3% 4.7% 85.6%
With POP Model (Full) 90.1% 10.5% 65.8%
Without POP Model 78.6% 5.9% 82.3%
Without Aggressive POP Behavior 85.2% 8.1% 72.4%
Without Defensive POP Behavior 87.4% 9.3% 69.7%

accident detection rate drops significantly to 78.6%, indicating that ADS may fail to correctly pre-
dict and react to high-risk motorcycle behaviors. Introducing POP motorcycles leads to a dramatic
increase in the ADS failure rate from 4.7% (default vehicles & pedestrians only) to 10.5%, em-
phasizing the critical role of unpredictable motorcycle behaviors in increasing scenario complexity.
The obstacle avoidance success rate declines correspondingly from 85.6% to 65.8%, reinforcing the
importance of including diverse traffic participants in ADS testing. When removing aggressive POP
behaviors, the ADS failure rate decreases from 10.5% to 8.1%, and the obstacle avoidance success
rate improves slightly to 72.4%, suggesting that high-speed lane-cutting and unexpected maneu-
vers introduce substantial difficulties for ADS models. Conversely, removing defensive behaviors
(e.g., slow lane changes, hesitation at intersections) results in a failure rate of 9.3%, implying that
defensive motorcycles still contribute to complex ADS decisions, especially in multi-agent inter-
actions. These results demonstrate that ADS models perform significantly worse in environments
that include motorcycles with diverse behaviors, validating the necessity of incorporating realistic
motorcycle interactions in autonomous driving scenario testing. The high accident detection rate in
full POP scenarios further supports the argument that ADS models require improved predictive and
reactive capabilities to handle dynamic urban environments with motorcycles.
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