

000 001 002 003 004 005 CITY-ADAPTIVE TESTING OF AUTONOMOUS DRIVING 006 WITH TRAFFIC PREDICTION AND SCENARIO FUZZING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Autonomous Driving Systems (ADS) often struggle in complex urban environments because generic testing fails to capture city-specific traffic patterns and behaviors. To address this, we propose a city-adaptive testing framework that systematically evaluates ADS robustness by integrating spatiotemporal traffic prediction and multi-agent behavioral modeling. Our approach first introduces a novel traffic prediction model, called T-DDSTGCN, which combines graph and hypergraph representations to accurately forecast segment-level traffic speed and intersection turning probabilities. It achieves the best performance on both METR-LA and PEMS-BAY datasets, demonstrating its superior ability to capture spatiotemporal dependencies in traffic prediction tasks. Based on the predicted urban traffic flow, we construct diverse simulation scenarios enriched by a behavioral modeling framework called Primary Other Participants (POP), which simulates realistic motorcycle behavior using Level-K game theory and Social Value Orientation. To enhance scenario diversity, we further apply structured perturbations across traffic density, weather, and agent interactions. Our methodology is validated across 180 real-world urban scenarios on three industrial-scale simulation platforms, yielding 662 critical collision cases after multiple rounds of testing. We have conducted an initial manual screening of the 662 simulated accident scenarios, finding that 88.1% of these accidents closely resemble real-world accident videos and reports. Furthermore, ablation studies highlight the critical role of human-like agent behavior in exposing ADS failures. Our findings suggest that incorporating traffic context and behavioral diversity into simulation testing is crucial for ensuring ADS safety and robustness in real-world deployments.

1 INTRODUCTION

In August 2023, after Cruise and Waymo were authorized to deploy robotaxis in San Francisco (cpuc.ca.gov, 2023), a wave of accidents, including construction intrusions and fatal collisions, revealed how vulnerable ADS remain in complex urban settings (Tan et al., 2023). Similar challenges have been reported in other cities with different road structures and traffic cultures, such as Boston’s narrow intersections or Los Angeles’s fast-paced multilane highways. This indicates that existing testing pipelines often lack city adaptiveness, the ability to anticipate and handle the distinct structural, dynamic, and behavioral conditions of each urban region (Karunakaran et al., 2022; Piazzoni et al., 2022).

Simulation-based testing offers a scalable and safe alternative (Huang et al., 2016; Koopman & Wagner, 2016), but existing platforms often rely on generic or mileage-based scenarios that overlook city-specific factors. Yet real-world ADS failures are often rooted in local variations—such as intersection structures, traffic flow dynamics, and the region-specific behaviors of vulnerable road users like motorcycles (Hadj-Bachir et al., 2020; 2019). **To address this, we propose a holistic city-adaptive testing framework that effectively bridges the gap between traffic forecasting and autonomous driving simulation.** Unlike generic simulators that rely on random procedural generation or historical replay, our approach constructs a data-driven pipeline where a predictive model acts as a generative engine. This engine establishes a city-specific traffic baseline, capturing local flow patterns and road topologies, upon which structured fuzzing and behavioral modeling are applied. By integrating spatiotemporal traffic prediction directly with simulation testing, our framework can

054 systematically expose safety-critical failures in complex urban environments that generic testing
 055 paradigms often overlook.
 056

057 Our framework begins by modeling city-specific traffic flows using the **Turning-Dual Dynamic**
 058 **Spatial-Temporal Graph Convolution Network (T-DDSTGCN)**, which integrates a traffic graph
 059 and a hypergraph to capture both local and higher-order spatiotemporal dependencies. The
 060 model predicts road-segment speeds and estimates intersection turning probabilities via a heuristic
 061 Speed2Turning equation that incorporates both entry speed and speed differentials between con-
 062 necting segments, enabling accurate representation of urban traffic dynamics. Building on this traf-
 063 fic foundation, we introduce the Primary Other Participants (POP) model to simulate realistic and
 064 potentially unsafe motorcycle behaviors, formulated with Level-K game theory and Social Value
 065 Orientation to reflect local driving tendencies. Finally, we apply scenario perturbation, a fuzzing-
 066 based method that systematically varies traffic density, environmental conditions, and agent interac-
 067 tions, generating diverse and challenging test scenarios. We evaluate our framework in Los Angeles
 068 and San Francisco, producing 180 city-adaptive scenarios across three simulation platforms, which
 069 resulted in 662 effective collisions. Manual inspection revealed that 88.1% of these simulated acci-
 070 dents closely match real-world incidents, demonstrating that combining city-specific traffic predic-
 071 tion, behavior modeling, and scenario perturbation significantly enhances the realism and robustness
 072 of ADS testing in complex urban environments.
 073

In this paper, we propose a city-adaptive testing framework for evaluating ADS in urban environments. Our main contributions are:

- **Holistic City-Adaptive Framework:** We establish a unified pipeline that organically integrates city-level traffic prediction, intersection turning modeling, and ADS simulation. It serves as a bridge between machine learning-based traffic forecasting and autonomous vehicle testing, enabling the construction of simulation environments that are both structurally accurate and behaviorally realistic.
- **Generative Traffic Prediction Interface:** We deploy the T-DDSTGCN not merely as a forecasting model, but as a structural interface for scenario generation. Its graph and hypergraph architecture is specifically adapted to support downstream tasks—such as the Speed2Turning inference and sub-road flow recovery—providing a deployable and extensible foundation for reconstructing city-scale traffic flows.
- **Realistic Motorcycle Behavior Modeling:** We design the Primary Other Participants (POP) framework, which simulates human-like motorcycle maneuvers based on Level-K game theory and Social Value Orientation, generating realistic disturbance agents for robust ADS testing.
- **Structured Scenario Fuzzing:** Distinct from random parameter perturbation, we introduce a structured fuzzing mechanism driven by the predicted traffic baseline. By systematically varying traffic density and environmental conditions around realistic city-specific means, this approach generates diverse, high-risk scenarios that retain the statistical characteristics of the target urban area. Experiments on 180 city-specific scenarios in Los Angeles and San Francisco, resulting in 662 effective collision cases, validate the scalability and realism of our approach.

095
 096 **Data Availability.** The code of our model is available in supplementary materials; details of scenar-
 097 ios and maps can be found in the Appendix.
 098

100 2 RELATED WORK

101 **Traffic Flow Prediction.** Traffic flow prediction aims to capture complex spatiotemporal depen-
 102 dencies to forecast future traffic states. Temporal modeling has evolved from RNNs (Zhao et al.,
 103 2017) to TCNs (Li et al., 2020) and Transformers (Vaswani et al., 2017), where TCNs improve
 104 efficiency and Transformers leverage long-range self-attention. Spatial modeling progressed from
 105 grid-based CNNs (Pan et al., 2018) to GCNs (Zhang et al., 2019), with STGCN (Yu et al., 2018)
 106 and DCRNN (Li et al., 2018) capturing multi-hop and diffusion effects. Recent works, such as MT-
 107 GNN (Wu et al., 2020) and Graph WaveNet (Wu et al., 2019), introduce dynamic embeddings but
 often neglect higher-order dependencies.

108 **Turning Prediction.** Turning prediction is critical for urban traffic simulation and ADS testing.
 109 Early rule-based and statistical models (Foulaadvand & Belbasi, 2011; Liu et al., 2021) struggle to
 110 adapt to dynamic traffic conditions. Data-driven methods (Ghanim & Shaaban, 2018; Mousavizadeh
 111 et al., 2021) improve accuracy using traffic flow and probe data but often incur high computational
 112 costs. We propose the Speed2Turning equation, which efficiently estimates turning probabilities
 113 from entry speed and segment speed differences, providing a lightweight and interpretable solution
 114 for real-time intersection modeling.

115 **Scene Reconstruction.** One approach to scene reconstruction involves the utilization of real-world
 116 data collected from urban environments (Zhang et al., 2020; Thal et al., 2023; Zhu et al., 2023b).
 117 This data may include information on road layouts, traffic patterns, and infrastructure (Carpin et al.,
 118 2007; Medrano-Berumen & Akbaş, 2020; Tettamanti et al., 2018). By leveraging techniques such as
 119 data fusion and machine learning, researchers can process and analyze this data to generate realistic
 120 simulation scenes (Zhang et al., 2022). Another key aspect of scene reconstruction is the generation
 121 of dynamic and interactive elements within simulation scenes (Ben Abdessalem et al., 2018; Kalra
 122 & Paddock, 2016). This includes modeling the behavior of various road users, such as vehicles,
 123 pedestrians, and cyclists, as well as environmental factors such as weather conditions and road
 124 obstacles (Cheng et al., 2023; Ge et al., 2023; Priisalu et al., 2022). Researchers have developed
 125 sophisticated methods to simulate the complex interactions between these elements (Zhang & Cai,
 126 2023), ensuring that simulation scenes accurately represent real-world scenarios.

127 3 METHOD

128 Our testing framework follows a city-adaptive pipeline that tailors simulation scenarios to the char-
 129 acteristics of specific urban areas. This approach moves beyond generic simulation environments,
 130 such as SUMO or CARLA default traffic models, by explicitly modeling three core aspects of
 131 city-level traffic dynamics: City-Specific Road Topology and Flow Patterns, Spatiotemporal Traf-
 132 fic Prediction, and Behavioral Disturbances via Localized Agent Modeling. By integrating these
 133 components, our city-adaptive scenario generation reconstructs urban environments that are both
 134 structurally accurate and behaviorally realistic (See Figure 1). However, bridging the gap between
 135 simulation and the real-world remains challenging. In the following subsections, we will raise and
 136 solve these challenges one by one.

139 3.1 CITY-ADAPTIVE TRAFFIC PREDICTION

140 We introduce **Turning-Dual Dynamic Spatial-Temporal Graph Convolution Network (T-**
 141 **DDSTGCN)** to forecast both road-segment speeds and intersection turning probabilities (Figure 5).
 142 The model first employs DDSTGCN (Sun et al., 2022) to capture spatiotemporal dependencies
 143 across urban road networks, leveraging graph and hypergraph structures to model both local and
 144 higher-order traffic interactions. A pooling module aggregates neighboring features, while skip
 145 connections preserve gradient flow and feature diversity in deep layers. **We specifically adopt the**
 146 **DDSTGCN backbone because its unique dual graph-hypergraph architecture is intrinsically suited**
 147 **to capturing the higher-order spatial dependencies of complex intersection topologies—capabilities**
 148 **that standard graph models often lack.** To estimate intersection maneuvers, **we extend this backbone**
 149 **into T-DDSTGCN by engineering a generative interface that couples spatiotemporal features with**
 150 **our Speed2Turning heuristic.** This adaptation allows the model to not only forecast segment speeds
 151 **but also structurally infer turning probabilities and propagate flow to unmonitored branch roads.** By
 152 **iteratively updating graph and hypergraph features, T-DDSTGCN acts as the engine for our city-**
 153 **adaptive pipeline, transforming sparse sensor data into a comprehensive, connected traffic state for**
 154 **simulation.**

155 3.1.1 SPEED PREDICTION

156 **Challenge 1: How to accurately predict the traffic flow speed on road segments?** Conventional
 157 graph-based approaches model each road segment as a node and apply GCNs to capture spatial
 158 dependencies (Wu et al., 2019; 2020). However, most focus on first-order node interactions and
 159 overlook higher-order dependencies embedded in dynamic traffic edges (Sun et al., 2022), which
 160 are critical for accurate prediction. To address this, we employ T-DDSTGCN, which jointly models
 161 the traffic graph and its dual hypergraph to capture multi-level spatiotemporal dependencies. The

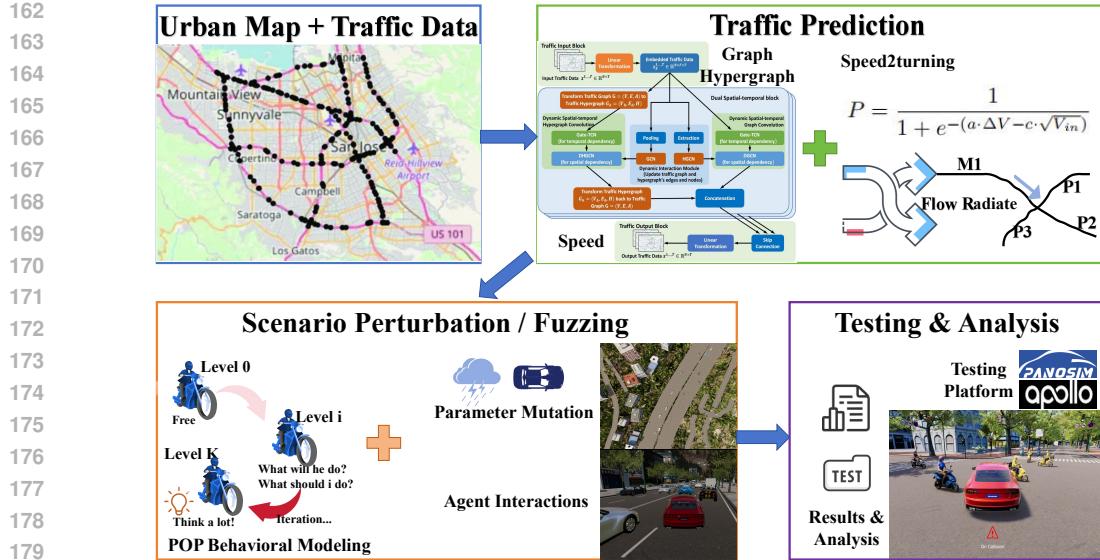


Figure 1: Overview of our City-Adaptive Testing Framework. T-DDSTGCN for traffic speed and turning predictions, followed by city-specific scene reconstruction and POP-based behavioral modeling. Scenario perturbation generates diverse, high-risk scenarios for evaluation on multiple ADS simulation platforms.

network consists of a traffic input layer, multiple Dual Spatial-Temporal (DST) Blocks, and an output layer. Within each DST-Block, traffic features are dynamically transformed between the graph and hypergraph domains, with a Dynamic Interaction Module refining edge representations. Temporal dependencies are learned via Gated Temporal Convolutions (Gate-TCN) (Chen et al., 2020), while GCNs model local node interactions and HGCNs uncover higher-order spatial relationships through hyperedges. By iteratively updating graph and hypergraph features, T-DDSTGCN achieves a deeper understanding of evolving traffic states, leading to more accurate segment speed predictions. Mathematically, these operations are:

$$GCN(X) = \sum_{n=0}^N (A_{forth}^n X \theta_{n,forth} + A_{back}^n X \theta_{n,back}), \quad (1)$$

$$HGCN(X_h) = \sum_{n=0}^N W_h^n X_h \theta_n. \quad (2)$$

where A_{forth}^n and A_{back}^n are the n -th order adjacency matrices for the forward and backward directions, and W_h is the weight matrix for hyperedges in hypergraph G_h . The Dynamic Interaction Module (DIM) is crucial for updating the representations of edges in both the traffic graph and hypergraph. By leveraging updated node features from preceding DST-Blocks, DIM recalculates and refines edge-level features. These updated edge features are then used to dynamically adjust node features in subsequent DST-Blocks through additional GCN and HGCN operations. This iterative process creates a feedback loop, enabling the model to continuously adapt to the evolving traffic network.

Solution 1: We use the proposed T-DDSTGCN for traffic prediction. Simultaneously analyzing traditional traffic network graphs and their dual traffic network hypergraphs can decode and predict traffic behavior through complex analysis of the complex spatiotemporal relationships that permeate the traffic network.

3.1.2 SPEED2TURNING EQUATION

Challenge 2: How can the traffic flow of branch roads be effectively monitored under the influence of sensor distribution? Urban intersections often lack sufficient sensor coverage to

directly observe turning flows, making turning probability estimation crucial for realistic traffic scenario generation (Alexander et al., 2002; Dias et al., 2020). We introduce Speed2Turning, a lightweight heuristic that infers directional turning probabilities from predicted traffic speeds, offering a practical balance between computational efficiency and behavioral realism. Speed2Turning computes an attraction factor P for each candidate turning direction using two key signals: Speed differential ΔV between entering and exiting road segments, where higher differentials indicate smoother downstream flow; Incoming speed V_{in} , which reflects congestion levels and influences driver turning preferences. The attraction factor is modeled with a sigmoid function:

$$P = \frac{1}{1 + e^{-(a \cdot \Delta V - c \cdot \sqrt{V_{in}})}} \quad (3)$$

$$p_i = \frac{e^{P_i}}{\sum_j e^{P_j}} \quad (4)$$

where a and c are tunable coefficients calibrated with empirical data. To obtain normalized turning probabilities p_i for all possible directions, we apply a softmax over the computed attraction factors. This formulation captures the nonlinear influence of traffic speed and congestion on driver turning behavior and can be easily adapted to different traffic conditions via coefficient calibration (More details can be seen in Appendix C).

Solution 2: We introduce a heuristic equation named ‘Speed2Turning’, which aims to effectively estimate turning probabilities using predicted traffic speeds. This formula allows the flow prediction of the branch road network to be transformed into the main road flow multiplied by the intersection’s turning probability.

3.2 POP-ENHANCED SCENE SIMULATION AND SCENARIO FUZZING

Scene simulation builds on predicted traffic flows and real map data to reconstruct urban environments for ADS testing. Dynamic elements, such as vehicles and pedestrians, are generated from traffic flow predictions, while static elements (road geometry, lanes) come from map data. Environmental conditions, such as weather or visibility, are configured in the simulation platform to reflect local characteristics. This setup provides the foundation for scenario perturbation and fuzzing-based generation of diverse urban test cases. The scene simulation algorithm is shown in Algorithm 1.

A key challenge lies in accurately simulating motorcycles, which significantly increase the complexity of urban interactions and contribute to a large proportion of traffic accidents (DMV, 2025a; Berkeley, 2025). Unlike sensor-rich vehicles, motorcycle behavior depends heavily on human judgment and is often unpredictable to ADS (See Figure 7). **Challenge 3: How to accurately simulate motorcycles?** To address this, we introduce the Primary Other Participants (POP) model (See Figure 2), which combines Level-K game theory and Social Value Orientation (SVO) (Schwarting et al., 2019) to generate human-like motorcycle behaviors for interference testing. POP quantifies the degree of selfishness or cooperativeness in driver decision-making, enabling realistic simulation of aggressive or cautious motorcycle strategies. Notably, in this paper, the algorithm is designed to generate motorcycle-type traffic participants as interference groups. In our POP algorithm, integrating interactive motorcycles as interference groups involves two stages. In **stage one** (See Figure 2 part b), for experimental convenience, the generated motorcycle fleet initially appears only on branch roads, avoiding interaction with main roads and large-scale traffic flow. In

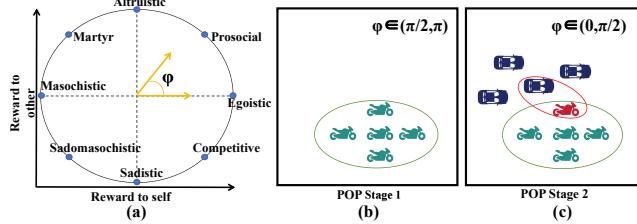


Figure 2: **The POP (Primary Other Participants) Behavioral Modeling Framework.** (a) SVO-Based Decision Logic: The driver’s Social Value Orientation (φ) determines the weights (ω_1, ω_2) in the utility function, dictating whether the generated trajectory is aggressive (competitive) or cautious (prosocial). (b) Stage 1, Initialization: Motorcycles are initially spawned on branch roads to form a background flow without immediate conflict. (c) Stage 2, Leader-Follower Swarm Interaction: Upon entering the interaction zone, the motorcycle nearest to the ADS becomes the Stackelberg Leader (Red), optimizing its trajectory against the ADS via Level-K game theory. The remaining motorcycles act as a Follower Swarm (Green), aligning their movements with the Leader using flocking rules. This hierarchical structure simulates realistic group disturbances.

270 **stage two** (See Figure 2 part *c*), to capture the characteristic swarm-like dynamics of motorcycle
 271 groups while maintaining computational efficiency, we implement a leader-follower hierarchy. The
 272 motorcycle nearest to the ADS is designated as the interaction Leader (Stackelberg leader), opti-
 273 mizing its trajectory via the Level-K utility function to actively challenge the ADS. The remaining
 274 motorcycles act as a Follower Swarm, adjusting their behaviors based on the leader’s movements
 275 using simplified flocking rules (e.g., alignment and separation). This approach effectively simu-
 276 lates complex multi-agent group disturbances without the prohibitive cost of solving a simultaneous
 277 N -player equilibrium for every agent. (more details can be seen in Appendix D)

278 **Solution 3:** We investigate part of ADS accident causes with a focus on modeling motorcycle be-
 279 havior. Our POP model, combining game theory and social psychology, simulates motorcycles as
 280 dynamic disturbance agents, revealing long-tail risks and enhancing the realism of urban ADS test-
 281 ing scenarios.

282 **Algorithm 1** The whole process of scenario simulation.

283 **Input:** Urban area coordinates \mathcal{L} , predicted speeds V_i and turning probabilities P_i , road network processor
 284 \mathcal{M} , ADS simulation platform $\mathcal{P}\text{-ADS}$

285 **Output:** Reconstructed urban scene for ADS testing

- 286 1: Obtain OSM map for \mathcal{L} and parse with \mathcal{M} to generate node and link data
- 287 2: Construct and validate the road network; smooth any disconnected segments
- 288 3: Annotate road segments with predicted speeds V_i and intersection turning probabilities P_i
- 289 4: Initialize main-road traffic flow N and estimate sub-road flow SR_j using::

$$290 \quad SR_j = \sum_{i \in \text{incoming}(j)} P_{i \rightarrow j} \cdot N_i$$

- 293 5: Load reconstructed network into $\mathcal{P}\text{-ADS}$ and verify scene validity

- 294 6: **return** Final urban scene for simulation

295
 296 Based on the reconstructed urban scenes, which incorporate the full road network, main and branch
 297 road traffic, and initial flow predictions, we generate diverse ADS test scenarios through scenario
 298 perturbation and fuzzing. The specific fuzzing testing algorithm is outlined in Algorithm 2. Con-
 299 trolled variations are introduced along three dimensions: traffic density, environmental conditions,
 300 and dynamic interactions. Traffic density ranges from low-flow night conditions to peak-hour con-
 301 gestion, while environmental perturbations, such as rain, fog, or bright sunlight, test the robustness
 302 of ADS perception under adverse conditions. Dynamic interactions leverage the POP-model mo-
 303 torcycles, pedestrian crossings, and occasional vehicle malfunctions to produce realistic, high-risk
 304 scenarios that challenge ADS decision-making. **Especially, we utilize DFS specifically to generate**
 305 **long-horizon, continuous driving routes that cover complex topological structures, such as consec-
 306 utive intersections. This ensures that the ADS is tested against a coherent sequence of traffic chal-
 307 langes rather than isolated, disjointed road segments.** Using the Los Angeles region as an example,
 308 we preprocess OpenStreetMap data to construct a continuous road network, apply T-DDSTGCN
 309 traffic predictions and the Speed2Turning model to establish baseline flows, and then apply per-
 310 turbations such as density changes, POP interference, randomized vehicle positions, and weather
 311 variations. This pipeline yields a wide spectrum of city-adaptive test scenarios, enabling systematic
 312 evaluation of ADS performance and robustness under diverse and realistic urban conditions.

313 4 EVALUATION

314
 315 To evaluate the effectiveness of our city-adaptive testing framework, we designed experiments that
 316 systematically incorporate city-specific traffic dynamics and behavioral disturbances. We select Los
 317 Angeles (LA) and San Francisco Bay (SFB) as our primary testbeds due to their high traffic com-
 318 plexity, availability of high-resolution traffic datasets, and frequent real-world autonomous driving
 319 incidents. And we investigate the following research questions:

- 320 • **RQ1:** How accurately can T-DDSTGCN predict traffic speed compared to existing models?
- 321 • **RQ2:** How effective is the ‘Speed2Turning’ equation in estimating turning probabilities?
- 322 • **RQ3:** To what extent do scenario fuzzing variations improve the robustness of ADS?

324 **Algorithm 2** Scenario Perturbation and Fuzzing Testing

325 **Input:** Scenario S corresponding to urban areas and autonomous driving simulation platform $\mathcal{P} - \mathcal{ADS}$
 326 **Output:** Mutated scene set S_m ;

327 1: Import the original urban scene S obtained from Algorithm 1 into the autonomous driving simulation
 328 platform $\mathcal{P} - \mathcal{ADS}$;
 329 2: Import the autonomous driving algorithm that needs to be tested as the main vehicle and set the parameters
 330 of the main vehicle sensors;
 331 3: Using the traffic flow data N_r from the original map as regular flow, setting different coefficients to obtain
 332 the range of traffic flow during valley N_v and peak N_p periods;
 333 $e.g., N_v = 0.6 \cdot N_r, N_p = 1.5 \cdot N_r$
 334
 335 4: Set up traffic participants of non motorized vehicle types participating in interactions in the scene, including
 336 pedestrians and motorcycles;
 337 5: Adjust the weather environment of the scene;
 338 6: Randomly select a point in the road network as the starting point for the main vehicle, and traverse the
 339 entire road network with DFS (Depth First Search) algorithm;
 340 7: Repeat the above steps to obtain the mutated scene set S_m ;

343 Table 1: The traffic speed prediction results of different methods on METR-LA and PEMS-BAY

345 Models	346 METR-LA						347 PEMS-BAY					
	348 15 min			349 60 min			350 15 min			351 60 min		
352	MAE	353 RMSE	354 MAPE	355 MAE	356 RMSE	357 MAPE	358 MAE	359 RMSE	360 MAPE	361 MAE	362 RMSE	363 MAPE
ARIMA	3.99	8.21	9.60	6.90	13.23	17.40	1.62	3.30	3.50	3.38	6.50	8.30
SAE	4.65	8.74	9.93	6.67	11.34	16.19	1.83	3.27	3.57	3.19	6.37	7.92
DD-PC	3.36	7.15	9.13	4.35	9.82	14.01	2.00	4.12	4.63	2.19	4.56	5.50
VAR	4.22	7.89	10.20	6.52	10.11	15.80	1.74	3.16	3.60	2.93	5.44	6.50
LSTM	3.44	6.30	9.60	4.37	8.69	13.20	2.05	4.19	4.80	2.37	4.96	5.57
STGCN	2.89	5.76	7.63	4.61	9.37	12.68	1.37	2.95	2.86	2.51	5.72	5.81
ASTGCN	4.83	9.25	9.14	3.59	7.47	10.42	2.14	4.37	4.93	3.21	6.79	8.51
STSGCN	3.34	7.63	8.11	5.07	11.69	12.93	1.93	4.14	4.97	2.53	5.71	5.82
GMAN	2.81	5.57	7.42	3.43	7.34	10.01	1.34	2.93	2.83	2.47	5.67	5.73
MTGNN	2.68	5.17	6.92	3.47	7.21	9.93	1.29	2.86	2.79	2.46	5.54	5.67
G-WaveNet	2.69	5.15	6.9	3.53	7.37	10.02	1.28	2.89	2.74	2.45	5.56	5.64
GTS	2.67	5.27	7.21	3.46	7.31	9.93	1.28	2.84	2.76	2.29	5.34	5.47
SAGDFN	2.62	5.03	6.63	3.44	7.21	9.65	1.27	2.79	2.73	2.16	5.17	5.24
T-DDSTGCN	2.64	5.01	6.71	3.44	7.13	9.74	1.27	2.71	2.69	1.89	4.67	4.76

364 4.1 SETUP FOR EXPERIMENTS

365 For traffic speed prediction, we use two widely adopted datasets, METR-LA and PEMS-BAY, which
 366 record 5-minute interval traffic speeds from road sensors in Los Angeles and the San Francisco
 367 Bay Area. Traffic graphs are constructed based on segment distances, and datasets are split into
 368 70%/10%/20% for training, validation, and testing. We evaluate our T-DDSTGCN model against
 369 diverse baselines, including statistical models (ARIMA (Shumway & Stoffer, 2025), VAR (Akkaya,
 370 2021)), neural networks (SAE (Zhao et al., 2019), DD-PC (Liu et al., 2020), LSTM (Zhao et al.,
 371 2017)), and state-of-the-art graph-based models (STGCN (Yu et al., 2018), ASTGCN (Guo et al.,
 372 2019), STSGCN (Wang et al., 2021), GMAN (Zheng et al., 2020), MTGNN (Wu et al., 2020),
 373 G-WaveNet (Wu et al., 2019), GTS (Shang et al., 2021), SAGDFN (Jiang et al., 2024b)). For ur-
 374 ban scene simulation and ADS testing, we select high-risk regions based on California accident
 375 reports (Berkeley, 2025) and sensor distribution (Figure 8). Five subdomains with dense road net-
 376 works are extracted from Los Angeles (LA) and San Francisco Bay (SFB). **These reconstructed city-
 377 adaptive scenes are integrated with three distinct simulation platforms to ensure the generalizability
 378 of our testing results:** Apollo 8.0 (an open-source, industrial-grade Level 4 autonomous driving
 379 stack) (Fan et al., 2018), PanoSim (utilizing its built-in commercial pilot model, xDriver) (Panosim,
 380 2025), and Oasis Sim. This diverse setup allows us to evaluate the generated scenarios against both
 381 open-source research baselines and closed-source commercial solutions.

378 4.2 ANSWERING RQ1: TRAFFIC SPEED PREDICTION PERFORMANCE AND CASE STUDY
379
380

381 Our evaluation employs multiple metrics—Mean Absolute Error (MAE), Root Mean Square Er-
382 rror (RMSE), and Mean Absolute Percentage Error (MAPE)—to ensure a multifaceted analysis
383 of traffic speed prediction accuracy. The three metrics are defined as below, where \mathbf{X}_{ij} denotes
384 the ground-truth values, $\hat{\mathbf{X}}_{ij}$ are the predicted values, and $|\Omega|$ is the amount of predicted entries.

$$386 \text{RMSE} = \sqrt{\frac{\sum_{ij \in \Omega} (\mathbf{X}_{ij} - \hat{\mathbf{X}}_{ij})^2}{|\Omega|}} \quad 387 \text{MAE} = \frac{\sum_{ij \in \Omega} |\mathbf{X}_{ij} - \hat{\mathbf{X}}_{ij}|}{|\Omega|} \quad 388 \text{MAPE} = \sum_{ij \in \Omega} \frac{|\mathbf{X}_{ij} - \hat{\mathbf{X}}_{ij}|}{|\Omega| \cdot |\mathbf{X}_{ij}|} \quad (5) \quad (6) \quad (7)$$

389 Across the METR-LA and PEMS-BAY datasets, we evaluated various models for short-term
390 (15min) and long-term (60min) prediction intervals, with the results summarized in Table 1. Tradi-
391 tional models, such as ARIMA and VAR, demonstrated the lowest predictive accuracy. Meanwhile,
392 neural network-based models, including SAE, DD-PC, and LSTM, showed moderate improvements
393 in performance but remained less competitive compared to Graph Convolutional Network (GCN)-
394 based models. GCN-based models exhibit significant advantages in capturing spatial dependencies
395 within traffic networks. We evaluated T-DDSTGCN on the METR-LA and PEMS-BAY datasets,
396 comparing it with traditional baseline models. As shown in Table 1, T-DDSTGCN reaches the lowest
397 RMSE in the short-term prediction intervals and the lowest MAE and RMSE in the long-term pre-
398 diction intervals of the METR-LA dataset. Meanwhile, T-DDSTGCN achieves the best performance
399 on all metrics in both short-term and long-term prediction intervals of the PEMS-BAY dataset. **This**
400 **consistency validates its reliability as a stable generation engine for our testing framework.** Fur-
401 **thermore, distinct from general-purpose forecasting models, the hypergraph-based architecture of**
402 **T-DDSTGCN provides the necessary structural adaptability for our downstream Speed2Turning in-**
403 **ference, justifying its selection as the framework’s backbone.**

404
405
406 4.3 ANSWERING RQ2: SPEED2TURNING EQUATION EFFECTIVENESS AND CASE STUDY
407
408

409 To validate the Speed2Turning equation, we analyzed its accuracy in estimating turning probabilities
410 by comparing its results with real-world observed turning data from a four-way signalized intersec-
411 tion in a metropolitan area. The dataset consisted of 250,000 recorded vehicle trajectories over a
412 period of six months, capturing variations in turning rates across different traffic conditions (Govern-
413 ment, 2024). The collected data includes entry speeds of vehicles approaching the intersection, exit
414 road selections for turning movements (left, right, or straight). The dataset has been preprocessed
415 to remove anomalies such as incomplete trajectories, extreme outliers in speed values, and incon-
416 sistencies in recorded turning movements. The evaluation highlights that while the Speed2Turning
417 equation provides a foundational approach for estimating turning probabilities, adjustments are nec-
418 essary to improve alignment with real-world behavior. More details can be seen in Appendix C.

419 To assess the effectiveness of our
420 Speed2Turning equation, we analyze turn-
421 ing probabilities at a specific junction segment
422 in Los Angeles during distinct traffic con-
423 ditions: a non-peak period at noon (12:00 PM)
424 and a peak period at 6:00 PM on a weekday,
425 as depicted in Figure 3. It reveals significant
426 differences in turning probabilities between
427 peak and non-peak periods. During peak hours,
428 there’s a notable preference for continuing
429 straight, likely reflecting commuters heading
430 towards downtown or residential areas. For
431 instance, congested northbound traffic on
Highway 405 during peak hours discourages left
turns, aligning with the model’s consideration of
entry speed on traffic behavior.

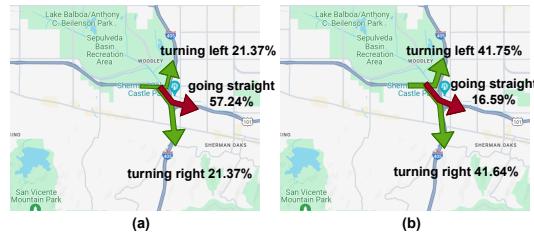


Figure 3: Probabilistic distribution of turning movements in Los Angeles. (a) observed at 18:00 on weekdays, and (b) at 12:00 on weekdays.

432
 433 Table 2: Simulation and fuzzing results across varying traffic densities and environmental conditions.
 434 Each cell reports the **Average Number of Accidents** detected in **PanoSim**, followed by
 435 reproducibility indicators for **Oasis** and **Apollo**. Symbols denote: (✓) The accident scenario was
 436 successfully reproduced on the platform; (＼) The platform does not support the specific scene pa-
 437 rameters (e.g., weather settings in Apollo); (–) The accident was not reproduced.

Urban Data		Traffic Flow - Valley			Traffic Flow - Regular			Traffic Flow - Peak		
		Sunny	Rainy	Foggy	Sunny	Rainy	Foggy	Sunny	Rainy	Foggy
LA-NW	Default	0.4 ✓ –	0.4 –＼	0.4 –＼	0.6 ✓ –	0.6 ✓＼	0.8 ✓＼	0.8 ✓✓	1.0 ✓＼	1.0 ✓＼
	Add POP	0.4 – –	0.4 –＼	0.6 –＼	0.6 ✓ –	0.8 ✓＼	1.0 ✓＼	0.8 ✓✓	1.0 ✓＼	1.6 ✓＼
LA-CCR	Default	0.4 – –	0.4 –＼	0.4 –＼	0.6 – –	0.6 –＼	0.6 –＼	0.8 ✓ –	0.8 ✓＼	1.2 ✓＼
	Add POP	0.4 – –	0.4 –＼	0.4 –＼	0.6 ✓ –	0.6 ✓＼	0.8 ✓＼	0.8 ✓✓	1.0 ✓＼	1.2 ✓＼
LA-ECR	Default	0.2 – –	0.2 –＼	0.2 –＼	0.4 – –	0.4 –＼	0.4 –＼	0.6 ✓ –	0.4 –＼	0.6 ✓＼
	Add POP	0.4 – –	0.4 –＼	0.4 –＼	0.6 ✓ –	0.6 –＼	0.6 ✓＼	1.0 ✓✓	1.0 –＼	1.0 ✓＼
LA-SECR	Default	0.2 – –	0.2 –＼	0.2 –＼	0.2 – –	0.2 –＼	0.4 –＼	0.2 – –	0.4 –＼	0.4 –＼
	Add POP	0.2 – –	0.2 –＼	0.4 –＼	0.2 – –	0.4 ✓＼	0.6 ✓＼	0.2 – –	0.4 –＼	1.0 ✓＼
LA-HW	Default	0.6 ✓ –	0.6 ✓＼	0.6 ✓＼	1.0 ✓ –	1.0 ✓＼	1.0 ✓＼	1.4 ✓ –	1.6 ✓＼	1.4 ✓＼
	Add POP	0.6 ✓✓	0.6 ✓＼	0.8 ✓＼	1.0 ✓✓	1.0 ✓＼	1.6 ✓＼	1.6 ✓✓	1.6 ✓＼	2.6 ✓＼
SFB-NW	Default	1.2 ✓✓	1.2 ✓＼	1.2 ✓＼	1.6 ✓✓	1.6 ✓＼	2.0 ✓＼	2.4 ✓✓	2.6 ✓＼	3.0 ✓＼
	Add POP	1.4 ✓ –	1.2 ✓＼	1.4 ✓＼	2.2 ✓✓	2.0 ✓＼	2.4 ✓＼	3.4 ✓✓	3.2 ✓＼	3.4 ✓＼
SFB-CA	Default	0.4 – –	0.4 –＼	0.6 –＼	0.6 ✓ –	0.8 ✓＼	1.0 ✓＼	1.0 – –	1.0 –＼	1.6 ✓＼
	Add POP	0.6 – –	0.6 –＼	0.6 –＼	0.6 ✓ –	1.0 –＼	1.0 ✓＼	1.6 ✓✓	1.4 ✓＼	1.8 ✓＼
SFB-EA	Default	0.0 – –	0.0 –＼	0.0 –＼	0.4 – –	0.4 –＼	0.4 –＼	0.6 – –	0.4 –＼	0.6 –＼
	Add POP	0.0 – –	0.0 –＼	0.2 –＼	0.4 – –	0.4 –＼	0.6 –＼	0.6 ✓ –	0.4 –＼	0.4 ✓＼
SFB-SA	Default	0.2 – –	0.2 –＼	0.2 –＼	0.4 – –	0.4 –＼	0.2 –＼	0.6 ✓ –	0.8 ✓＼	0.6 –＼
	Add POP	0.2 – –	0.4 –＼	0.4 –＼	0.4 – –	0.6 –＼	0.2 –＼	0.6 ✓✓	0.8 ✓＼	0.6 ✓＼
SFB-NEA	Default	0.8 ✓ –	0.8 ✓＼	0.6 ✓＼	1.0 ✓✓	1.2 ✓＼	1.0 ✓＼	2.2 ✓ –	2.0 ✓＼	2.4 ✓＼
	Add POP	0.8 ✓✓	0.8 ✓＼	1.0 ✓＼	1.4 ✓✓	1.4 ✓＼	1.8 ✓＼	2.0 ✓✓	2.2 ✓＼	2.6 ✓＼

460
 461
 462 **4.4 ANSWERING RQ3: EFFECTIVENESS OF SCENARIO FUZZING AND ANALYSIS FOR SCENE**
 463 **SIMULATION**

464
 465 To evaluate the impact of scenario fuzzing on ADS robustness, we conducted controlled exper-
 466 iments across varying traffic densities (valley, regular, peak), weather conditions (sunny, rainy,
 467 foggy), and interactive participants (default vs. POP-based). Experiments were performed using
 468 PanoSim (Panosim, 2025) on five densely monitored road network regions in Los Angeles (LA) and
 469 San Francisco Bay (SFB) to ensure realistic traffic data. For each city and configuration, the main
 470 vehicle’s behavior was randomized, and each branch scenario was tested for **five rounds**. Results are
 471 summarized in Table 2, which reports the average number of ADS accidents observed in PanoSim
 472 and whether the same accident-inducing scenarios reproduced crashes on Oasis and Apollo. A check
 473 mark (✓) indicates that accidents can occur on the respective platform. A backslash (＼) indicates that
 474 the platform doesn’t support the corresponding scene parameters (Apollo does not support weather
 475 parameter settings).

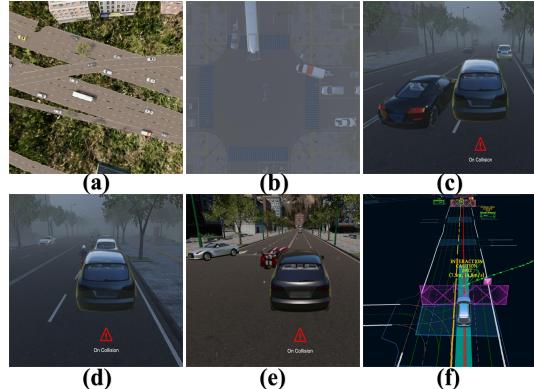
476 We have summarized the experimental results as follows:

477 • A total of 180 test scenarios are obtained through the variation of different traffic flows, traffic
 478 participants, and other scene parameters in 10 sets of test scenarios. After 5 rounds of random
 479 setting of the main vehicle behavior, a total of 775 collision accidents are recorded. Among them,
 480 14.58% of collision accidents are caused by setting conflicts when simulating traffic flow, with a
 481 total of 662 actual effective collision scenarios.

482 • In all effective collision scenarios, we observe that as the traffic density increases, the probability
 483 of collision accidents also increases. After adding the interaction participants generated by the POP
 484 algorithm, the number of accident scenarios caused by their aggressive behavior also significantly
 485 increased. After integrating interference groups generated by the POP algorithm, there is an in-
 crease in the average number of accidents in 52.2% of the test scenarios. Besides, the probability

486 of collision accidents varies with different weather parameters, notably increasing when visibility
 487 decreases. These results show that the deployment of ADS in central cities is indeed facing many
 488 challenges.

489 • In Figure 4, we present several case studies. We can import the road network structure
 490 of the corresponding city and generate urban testing scenarios under different environmental
 491 parameter configurations, like (a) and (b). It can also detect different types of
 492 collision accidents, where (c) represents rear-end collisions caused by aggressive behavior, and
 493 (d) represents collisions between autonomous vehicles and motorcycles generated by POP
 494 algorithms. Due to the randomness of testing parameters, we conduct a qualitative analysis of
 495 the causes of collision accidents. The accidents detected in the scenes we constructed encom-
 496 pass various factors, including incidents where
 497 autonomous vehicles are deemed responsible,
 498 as well as those where other traffic participants bear responsibility. It is particularly notable that
 499 there is a substantial increase in accidents following the addition of interference groups, underscor-
 500 ing the significant challenges inherent in real urban environments. Figure 4 (e) and (f) indicate
 501 that the same testing scenario can be migrated on different testing platforms (Panosim and Apollo,
 502 respectively). These demonstrate the effectiveness and scalability of our method.



503 Figure 4: Simulation Result on Testing Platforms.
 504 To validate the realism of our generated scenarios, we compare both driving behavior distributions
 505 and accident patterns with real-world datasets, including METR-LA, PEMS-BAY, California
 506 DMV (DMV, 2025b), NHTSA crash reports (Administration, 2025), and AV disengagement
 507 logs (Berkeley, 2025). Simulated vehicle speed distributions closely mirror real-world traffic, with
 508 mean and standard deviation deviations within $\pm 5\%$, confirming that our traffic modeling accurately
 509 reproduces urban flow dynamics. Crucially, accident realism is assessed through a rigorous classifi-
 510 cation protocol: a manual review of the 662 simulated accidents confirms that 88.1% of cases align
 511 with real-world incidents in terms of Accident Type distribution (e.g., rear-end vs. side-impact ratios)
 512 and Causal Factors (Table 6). This high statistical alignment demonstrates that our city-adaptive
 513 scenario generation captures authentic urban risk patterns rather than producing random simulation
 514 artifacts. We further conduct an ablation study to quantify each component’s contribution. A fixed
 515 subset of accident scenarios is replayed under identical initial conditions to isolate the effects of
 516 traffic prediction, POP motorcycle modeling, and scenario perturbation. As shown in Table 7 and
 517 Table 8, without POP behavioral modeling, the number of discovered ADS failure rates decreases
 518 from 10.5% to 5.9%, removing scenario perturbation reduces ADS failure rates by 9.7%-25.6%,
 519 showing that fuzzing is critical for exposing diverse long-tail risks. Results confirm that each mod-
 520 ule significantly improves both scenario realism and the exposure of critical ADS failure modes.
 521 The details of the ablation experiment can also be found in the Appendix F.

510 4.5 REALISM VALIDATION AND ABLATION STUDY

511 To validate the realism of our generated scenarios, we compare both driving behavior distributions
 512 and accident patterns with real-world datasets, including METR-LA, PEMS-BAY, California
 513 DMV (DMV, 2025b), NHTSA crash reports (Administration, 2025), and AV disengagement
 514 logs (Berkeley, 2025). Simulated vehicle speed distributions closely mirror real-world traffic, with
 515 mean and standard deviation deviations within $\pm 5\%$, confirming that our traffic modeling accurately
 516 reproduces urban flow dynamics. Crucially, accident realism is assessed through a rigorous classifi-
 517 cation protocol: a manual review of the 662 simulated accidents confirms that 88.1% of cases align
 518 with real-world incidents in terms of Accident Type distribution (e.g., rear-end vs. side-impact ratios)
 519 and Causal Factors (Table 6). This high statistical alignment demonstrates that our city-adaptive
 520 scenario generation captures authentic urban risk patterns rather than producing random simulation
 521 artifacts. We further conduct an ablation study to quantify each component’s contribution. A fixed
 522 subset of accident scenarios is replayed under identical initial conditions to isolate the effects of
 523 traffic prediction, POP motorcycle modeling, and scenario perturbation. As shown in Table 7 and
 524 Table 8, without POP behavioral modeling, the number of discovered ADS failure rates decreases
 525 from 10.5% to 5.9%, removing scenario perturbation reduces ADS failure rates by 9.7%-25.6%,
 526 showing that fuzzing is critical for exposing diverse long-tail risks. Results confirm that each mod-
 527 ule significantly improves both scenario realism and the exposure of critical ADS failure modes.
 528 The details of the ablation experiment can also be found in the Appendix F.

531 5 CONCLUSION

532 We presented a city-adaptive testing framework for autonomous driving systems (ADS) that inte-
 533 grates spatiotemporal traffic prediction, localized behavioral modeling, and scenario perturbation to
 534 improve robustness evaluation in complex urban environments. Our approach combines three key
 535 components: T-DDSTGCN for city-specific traffic flow and turning probability prediction, POP for
 536 modeling realistic motorcycle behaviors that reflect local driving tendencies, and scenario pertur-
 537 bation to systematically generate diverse and challenging test scenarios. The experiments demon-
 538 strate that integrating traffic context and agent behavioral diversity is a key step toward closing the
 539 Sim2Real gap and ensuring the robustness and safety of ADS in real-world deployments.

540 6 ETHICAL DISCUSSION
541542 This work focuses on testing and improving the robustness of autonomous driving systems through
543 city-adaptive scenario generation and multi-agent simulation. All data used are anonymized and
544 publicly available (e.g., OpenStreetMap, open traffic datasets). Risky behaviors are simulated purely
545 in virtual environments to enhance system safety and are not intended for real-world replication. No
546 human subjects or sensitive personal data are involved.
547548 7 REPRODUCIBILITY STATEMENT
549550 We provide code, data sources, and other supplementary files to ensure full reproducibility. All
551 datasets are publicly accessible, and simulation results can be regenerated. The code of our model
552 for predicting urban traffic flow is available at an anonymous repository <https://anonymous.4open.science/r/ASE-T-DDSTGCN-6CE4/README.md>. Details of scenarios and maps
553 can be found in the following Appendix.
554555 REFERENCES
556

558 National Highway Traffic Safety Administration. Crash report sampling system. <https://www.nhtsa.gov/crash-data-systems/crash-report-sampling-system>, 2025.

559

560 Murat Akkaya. *Vector Autoregressive Model and Analysis*, pp. 197–214. Springer International
561 Publishing, Cham, 2021. ISBN 978-3-030-54108-8. doi: 10.1007/978-3-030-54108-8_8. URL
562 https://doi.org/10.1007/978-3-030-54108-8_8.

563

564 Jennifer Alexander, Philip Barham, and Ian Black. Factors influencing the probability of an incident
565 at a junction: results from an interactive driving simulator. *Accident Analysis & Prevention*, 34
566 (6):779–792, 2002.

567

568 Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing vision-based
569 control systems using learnable evolutionary algorithms. In *2018 IEEE/ACM 40th International
570 Conference on Software Engineering (ICSE)*, pp. 1016–1026, Gothenburg, Sweden, 2018. IEEE.
571 doi: 10.1145/3180155.3180160.

572

573 UC Berkeley. California active transportation safety information pages (catsip).
574 <https://catsip.berkeley.edu/resources/crash-data/crash-data-tools-and-resources>, 2025.

575

576 Stefano Carpin, Mike Lewis, Jijun Wang, Stephen Balakirsky, and Chris Scrapper. Usarsim: a robot
577 simulator for research and education. In *Proceedings 2007 IEEE International Conference on
578 Robotics and Automation*, pp. 1400–1405, Roma, Italy, 2007. IEEE. doi: 10.1109/ROBOT.2007.
363180.

579

580 Cen Chen, Kenli Li, Sin G Teo, Xiaofeng Zou, Keqin Li, and Zeng Zeng. Citywide traffic flow
581 prediction based on multiple gated spatio-temporal convolutional neural networks. *ACM Trans-
582 actions on Knowledge Discovery from Data (TKDD)*, 14(4):1–23, 2020.

583

584 Mingfei Cheng, Yuan Zhou, and Xiaofei Xie. Behavexplor: Behavior diversity guided testing for
585 autonomous driving systems. In *Proceedings of the 32nd ACM SIGSOFT International Sym-
586 posium on Software Testing and Analysis, ISSTA 2023*, pp. 488–500, New York, NY, USA, 2023.
587 Association for Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598072.
588 URL <https://doi.org/10.1145/3597926.3598072>.

589

590 cpuc.ca.gov. Cpuc approves permits for cruise and waymo to charge fares for passenger service
591 in san francisco, 2023. <https://www.cpuc.ca.gov/news-and-updates/all-news/>.

592

593 Charitha Dias, Miho Iryo-Asano, Muhammad Abdullah, Takashi Oguchi, and Wael Alhajyaseen.
Modeling trajectories and trajectory variation of turning vehicles at signalized intersections. *IEEE
Access*, 8:109821–109834, 2020.

594 California DMV. Motorcyclists guide. <https://www.dmv.ca.gov/portal/driver-education-and-safety/special-interest-driver-guides/motorcyclists-guide/>, 2025a.

595

596

597 California DMV. Autonomous vehicle collision reports. <https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/>, 2025b.

598

599

600

601 Haoyang Fan, Fan Zhu, Changchun Liu, Liangliang Zhang, Li Zhuang, Dong Li, Weicheng Zhu, Jiangtao Hu, Hongye Li, and Qi Kong. Baidu apollo em motion planner. *arXiv preprint arXiv:1807.08048*, arXiv:1807.08048(arXiv:1807.08048), 2018.

602

603

604

605 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI'19/IAAI'19/EAAI'19*, Honolulu, Hawaii, USA, 2019. AAAI Press. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33013558. URL <https://doi.org/10.1609/aaai.v33i01.33013558>.

606

607

608

609

610

611 M Ebrahim Foulaadvand and Somayyeh Belbasi. Vehicular traffic flow at an intersection with the possibility of turning. *Journal of Physics A: Mathematical and Theoretical*, 44(10):105001, 2011.

612

613

614 Jingwei Ge, Jiawei Zhang, Yi Zhang, Danya Yao, Zuo Zhang, and Rui Zhou. Autonomous vehicles testing considering utility-based operable tasks. *Tsinghua Science and Technology*, 28(5):965–975, 2023. doi: 10.26599/TST.2022.9010037.

615

616

617 Mohammad Shareef Ghanim and Khaled Shaaban. Estimating turning movements at signalized intersections using artificial neural networks. *IEEE Transactions on Intelligent Transportation Systems*, 20(5):1828–1836, 2018.

618

619

620

621 US Government. Next generation simulation (ngsim) vehicle trajectories and supporting data. <https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories-and-supporting-data>, 2024.

622

623

624 Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI'19/IAAI'19/EAAI'19*, Honolulu, Hawaii, USA, 2019. AAAI Press. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.3301922. URL <https://doi.org/10.1609/aaai.v33i01.3301922>.

625

626

627

628

629

630

631 Mokrane Hadj-Bachir, Erik Abenius, Jean-Claude Kedzia, and Philippe de Souza. Full virtual adas testing. application to the typical emergency braking euroncap scenario. working paper or preprint, February 2019. URL <https://hal.archives-ouvertes.fr/hal-02000567>.

632

633

634

635

636 Mokrane Hadj-Bachir, Philippe de Souza, Javed Shaik, and Gruyer Dominique. Evaluating autonomous functions performance through simulation using interoperable sensor, vehicle, and environment models. In *FISITA Web Congress 2020 & World Congress 2021*, Online, 2020. Preprint.

637

638

639

640 Jia Cheng Han and Zhi Quan Zhou. Metamorphic fuzz testing of autonomous vehicles. In *Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW'20*, pp. 380–385, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379632. doi: 10.1145/3387940.3392252. URL <https://doi.org/10.1145/3387940.3392252>.

641

642

643

644

645 WuLing Huang, Kunfeng Wang, Yisheng Lv, and FengHua Zhu. Autonomous vehicles testing methods review. In *2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)*, pp. 163–168, Rio de Janeiro, Brazil, 2016. IEEE. doi: 10.1109/ITSC.2016.7795548.

646

647

648 Yue Jiang, Xiucheng Li, Yile Chen, Shuai Liu, Weilong Kong, Antonis F. Lentzakis, and Gao Cong.
 649 Sagdfn: A scalable adaptive graph diffusion forecasting network for multivariate time series fore-
 650 casting, 2024a. URL <https://arxiv.org/abs/2406.12282>.

651
 652 Yue Jiang, Xiucheng Li, Yile Chen, Shuai Liu, Weilong Kong, Antonis F. Lentzakis, and Gao Cong.
 653 Sagdfn: A scalable adaptive graph diffusion forecasting network for multivariate time series fore-
 654 casting, 2024b. URL <https://arxiv.org/abs/2406.12282>.

655 N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would it take to demon-
 656 strate autonomous vehicle reliability? *Transportation Research Part A Policy & Practice*, 94
 657 (dec.):182–193, 2016.

658 Shuting Kang, Haoyu Hao, Qian Dong, Lingzhong Meng, Yunzhi Xue, and Yanjun Wu. Behavior-
 659 tree based scenario specification and test case generation for autonomous driving simulation. In
 660 *2022 2nd International Conference on Intelligent Technology and Embedded Systems (ICITES)*,
 661 pp. 125–131, Chengdu, China, 2022. IEEE. doi: 10.1109/ICITES56274.2022.9943753.

662 Dhanoop Karunakaran, Julie Stephany Berrio, Stewart Worrall, and Eduardo Nebot. Challenges of
 663 testing highly automated vehicles: A literature review. In *2022 IEEE International Conference on*
 664 *Recent Advances in Systems Science and Engineering (RASSE)*, pp. 1–8, Tainan, Taiwan, 2022.
 665 IEEE. doi: 10.1109/RASSE54974.2022.9989562.

666 Philip Koopman and Michael Wagner. Challenges in autonomous vehicle testing and valida-
 667 tion. *SAE International Journal of Transportation Safety*, 4(1):15–24, apr 2016. ISSN 2327-
 668 5626. doi: <https://doi.org/10.4271/2016-01-0128>. URL <https://doi.org/10.4271/2016-01-0128>.

669 Jacek Krupski, Waldemar Graniszewski, and Marcin Iwanowski. Data transformation schemes for
 670 cnn-based network traffic analysis: A survey. *Electronics*, 10(16):2042, 2021.

671 Dazhou Li, Chuan Lin, Wei Gao, Zeying Chen, Zeshen Wang, Guangqi Liu, and Wei Wang. Cap-
 672 pules tcn network for urban computing and intelligence in urban traffic prediction. *Wirel. Com-
 673 mun. Mob. Comput.*, 2020, January 2020. ISSN 1530-8669. doi: 10.1155/2020/6896579. URL
 674 <https://doi.org/10.1155/2020/6896579>.

675 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural
 676 network: Data-driven traffic forecasting, 2018. URL <https://arxiv.org/abs/1707.01926>.

677
 678 Hao Liu, Christian G Claudel, Randy Machemehl, and Kenneth A Perrine. A robust traffic control
 679 model considering uncertainties in turning ratios. *IEEE Transactions on Intelligent Transporta-
 680 tion Systems*, 23(7):6539–6555, 2021.

681 Shuai Liu, Guojie Song, and Wenhao Huang. Real-time transportation prediction correction using
 682 reconstruction error in deep learning. *ACM Transactions on Knowledge Discovery from Data
 683 (TKDD)*, 14(2):1–20, 2020.

684 Christopher Medrano-Berumen and Mustafa İlhan Akbaş. Scenario generation for validating arti-
 685 ficial intelligence based autonomous vehicles. In Ngoc Thanh Nguyen, Kietikul Jearanaitanakij,
 686 Ali Selamat, Bogdan Trawiński, and Suphamit Chittayasothorn (eds.), *Intelligent Information and
 687 Database Systems*, pp. 481–492, Cham, 2020. Springer International Publishing. ISBN 978-3-030-42058-1.

688 Omid Mousavizadeh, Mehdi Keyvan-Ekbatani, and Tom M Logan. Real-time turning rate estimation
 689 in urban networks using floating car data. *Transportation research part C: emerging technologies*,
 690 133:103457, 2021.

691 Rosemarie Nagel. Unraveling in guessing games: An experimental study. *The American Economic
 692 Review*, 85(5):1313–1326, 1995. ISSN 00028282. URL <http://www.jstor.org/stab/le/2950991>.

693
 694 U.S. Department of Transportation. A study of motorcycle rider braking control behavior, 2023.
 695 <https://www.nhtsa.gov/sites/nhtsa.gov/files/811448.pdf>.

702 Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Spatial as deep: spa-
 703 tial cnn for traffic scene understanding. In *Proceedings of the Thirty-Second AAAI Confer-
 704 ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
 705 Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
 706 AAAI'18/IAAI'18/EAAI'18, New Orleans, Louisiana, USA, 2018. AAAI Press. ISBN 978-
 707 1-57735-800-8.*

708 Panosim. Panosim integrated simulation platform for automotive autonomous driving. <https://www.panosim.com/en/h-default.html>, 2025.

710 Andrea Piazzoni, Roshan Vijay, Jim Cherian, Lyu Chen, and Justin Dauwels. Challenges in vir-
 711 tual testing of autonomous vehicles. In *Proceedings of the 2022 17th International Confer-
 712 ence on Control, Automation, Robotics and Vision (ICARCV)*, 2022 17th International Confer-
 713 ence on Control, Automation, Robotics and Vision, ICARCV 2022, pp. 416–421, United States,
 714 2022. IEEE. ISBN 978-1-6654-7688-1. doi: 10.1109/ICARCV57592.2022.10004249. Green
 715 Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne
 716 project <https://www.openaccess.nl/en/you-share-we-take-care> Otherwise as indicated in the copy-
 717 right section: the publisher is the copyright holder of this work and the author uses the Dutch leg-
 718 islation to make this work public.; 2022 17th International Conference on Control, Automation,
 719 Robotics and Vision (ICARCV) ; Conference date: 11-12-2022 Through 13-12-2022.

720 Maria Priisalu, Aleksis Pirinen, Ciprian Paduraru, and Cristian Sminchisescu. Generating scenarios
 721 with diverse pedestrian behaviors for autonomous vehicle testing. In Aleksandra Faust, David
 722 Hsu, and Gerhard Neumann (eds.), *Proceedings of the 5th Conference on Robot Learning*, volume
 723 164 of *Proceedings of Machine Learning Research*, pp. 1247–1258, London, UK, 08–11 Nov
 724 2022. PMLR. URL <https://proceedings.mlr.press/v164/priisalu22a.html>.

726 Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora, Sertac Karaman, and Daniela Rus. So-
 727 cial behavior for autonomous vehicles. *Proceedings of the National Academy of Sciences*, 116:
 728 201820676, 11 2019. doi: 10.1073/pnas.1820676116.

729 Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
 730 series, 2021. URL <https://arxiv.org/abs/2101.06861>.

732 Robert H. Shumway and David S. Stoffer. *ARIMA Models*, pp. 85–175. Springer Nature Switzer-
 733 land, Cham, 2025. ISBN 978-3-031-70584-7. doi: 10.1007/978-3-031-70584-7_3. URL
 734 https://doi.org/10.1007/978-3-031-70584-7_3.

735 Yanfeng Sun, Xiangheng Jiang, Yongli Hu, Fuqing Duan, Kan Guo, Boyue Wang, Junbin Gao,
 736 and Baocai Yin. Dual dynamic spatial-temporal graph convolution network for traffic prediction.
 737 *IEEE Transactions on Intelligent Transportation Systems*, 23(12):23680–23693, 2022.

739 Yongquan Tan, Yukuan Yang, Hongpin Ren, Zhuokun Yang, Qian Dong, and Yunzhi Xue. Survey on
 740 traffic flow-based autonomous driving simulation tests. In *2023 IEEE 32nd Asian Test Symposium
 (ATS)*, pp. 1–6, Beijing, China, 2023. IEEE. doi: 10.1109/ATS59501.2023.10317945.

742 Yun Tang, Yuan Zhou, Yang Liu, Jun Sun, and Gang Wang. Collision avoidance testing for au-
 743 tonomous driving systems on complete maps. In *2021 IEEE Intelligent Vehicles Symposium (IV)*,
 744 pp. 179–185, Nagoya, Japan, 2021. IEEE, IEEE.

745 Tamás Tettamanti, Mátyás Szalai, Sándor Vass, and Viktor Tihanyi. Vehicle-in-the-loop test envi-
 746 ronment for autonomous driving with microscopic traffic simulation. In *2018 IEEE Interna-
 747 tional Conference on Vehicular Electronics and Safety (ICVES)*, pp. 1–6, Madrid, Spain, 2018. IEEE.

749 Silvia Thal, Philip Wallis, Roman Henze, Ryo Hasegawa, Hiroki Nakamura, Sou Kitajima, and
 750 Genya Abe. Towards realistic, safety-critical and complete test case catalogs for safe automated
 751 driving in urban scenarios. In *2023 IEEE Intelligent Vehicles Symposium (IV)*, pp. 1–8, Anchor-
 752 age, AK, USA, 2023. IEEE. doi: 10.1109/IV55152.2023.10186595.

753 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 754 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st Inter-
 755 national Conference on Neural Information Processing Systems*, NIPS'17, pp. 6000–6010, Red
 Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

756 Xing Wang, Juan Zhao, Lin Zhu, Xu Zhou, Zhao Li, Junlan Feng, Chao Deng, and Yong Zhang.
 757 Adaptive multi-receptive field spatial-temporal graph convolutional network for traffic forecast-
 758 ing. In *2021 IEEE Global Communications Conference (GLOBECOM)*, pp. 1–7, Madrid, Spain,
 759 2021. IEEE, IEEE.

760 Xinpeng Wang, Songan Zhang, and Huei Peng. Comprehensive safety evaluation of highly au-
 761 tomated vehicles at the roundabout scenario. *IEEE Transactions on Intelligent Transportation*
 762 *Systems*, 23(11):20873–20888, 2022. doi: 10.1109/TITS.2022.3190201.

764 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
 765 spatial-temporal graph modeling. In *Proceedings of the Twenty-Eighth International Joint Con-
 766 ference on Artificial Intelligence, IJCAI-19*, pp. 1907–1913, Macao, China, 7 2019. International
 767 Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2019/264. URL
 768 <https://doi.org/10.24963/ijcai.2019/264>.

769 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
 770 nnecting the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings*
 771 *of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*,
 772 KDD '20, pp. 753–763, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
 773 9781450379984. doi: 10.1145/3394486.3403118. URL <https://doi.org/10.1145/3394486.3403118>.

775 Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
 776 deep learning framework for traffic forecasting. In *Proceedings of the Twenty-Seventh In-
 777 ternational Joint Conference on Artificial Intelligence, IJCAI-18*, pp. 3634–3640, Stockholm,
 778 Sweden, 7 2018. International Joint Conferences on Artificial Intelligence Organization. doi:
 779 10.24963/ijcai.2018/505. URL <https://doi.org/10.24963/ijcai.2018/505>.

781 Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a
 782 comprehensive review. *Computational Social Networks*, 6(1):1–23, 2019.

783 Xudong Zhang and Yan Cai. Building critical testing scenarios for autonomous driving from real
 784 accidents. In *Proceedings of the 32nd ACM SIGSOFT International Symposium on Software*
 785 *Testing and Analysis*, ISSTA 2023, pp. 462–474, New York, NY, USA, 2023. Association for
 786 Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598070. URL <https://doi.org/10.1145/3597926.3598070>.

788 Xudong Zhang, Yan Cai, and Zijiang Yang. A study on testing autonomous driving systems. In *2020*
 789 *IEEE 20th International Conference on Software Quality, Reliability and Security Companion*
 790 *(QRS-C)*, pp. 241–244, Macau, China, 2020. IEEE. doi: 10.1109/QRS-C51114.2020.00048.

792 Yufei Zhang, Sun Bohua, Yang Zhai, Yaxin Li, Hongyu Liang, and Qiang Liu. Machine learning
 793 based testing scenario space and its safety boundary evaluation for automated vehicles. *Journal*
 794 *of Physics: Conference Series*, 2337:012017, 09 2022. doi: 10.1088/1742-6596/2337/1/012017.

796 Xinran Zhao, Yuanli Gu, Lun Chen, and Zhuangzhuang Shao. Urban short-term traffic flow predic-
 797 tion based on stacked autoencoder. In *CICTP 2019*, pp. 5178–5188, Nanjing, China, 07 2019.
 798 Chinese Overseas Transportation Association. doi: 10.1061/9780784482292.446.

799 Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu. Lstm network: a
 800 deep learning approach for short-term traffic forecast. *IET intelligent transport systems*, 11(2):
 801 68–75, 2017.

802 Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. Gman: A graph multi-attention
 803 network for traffic prediction. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34
 804 (01):1234–1241, Apr. 2020. doi: 10.1609/aaai.v34i01.5477. URL <https://ojs.aaai.org/index.php/AAAI/article/view/5477>.

807 Yuan Zhou, Gengjie Lin, Yun Tang, Kairui Yang, Wei Jing, Ping Zhang, Junbo Chen, Liang Gong,
 808 and Yang Liu. Flyover: A model-driven method to generate diverse highway interchanges for
 809 autonomous vehicle testing. In *2023 IEEE International Conference on Robotics and Automation*
 (ICRA), pp. 11389–11395, London, UK, 2023. IEEE. doi: 10.1109/ICRA48891.2023.10160868.

810 Yu Zhu, Jian Wang, Xinyu Guo, Fanqiang Meng, and Tongtao Liu. Functional testing scenario
811 library generation framework for connected and automated vehicles. *IEEE Transactions on Intel-*
812 *ligent Transportation Systems*, 24(9):9712–9724, 2023a. doi: 10.1109/TITS.2023.3266639.

813 Zhijing Zhu, Robin Philipp, Yongqi Zhao, Constanze Hungar, Jürgen Pannek, and Falk Howar. Au-
814 tomatic disengagement scenario reconstruction based on urban test drives of automated vehicles.
815 In *2023 IEEE Intelligent Vehicles Symposium (IV)*, pp. 1–8, Anchorage, AK, USA, 2023b. IEEE.
816 doi: 10.1109/IV55152.2023.10186640.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A DATA AVAILABILITY**
865866 The code of our model for predicting urban traffic flow is available at an anonymous repository [ht
867 tps://anonymous.4open.science/r/ASE-T-DDSTGCN-6CE4/README.md](https://anonymous.4open.science/r/ASE-T-DDSTGCN-6CE4/README.md). Details
868 of scenarios and maps can be found in the following Appendix.
869870 **B MORE BACKGROUND AND RELATED WORK**
871872 **B.1 RESEARCH MOTIVATION AND BACKGROUND**
873874 As an important part of ADS testing, simulation testing has irreplaceable advantages in terms of
875 safety, controllability, and cost-effectiveness. Therefore, with the iterative development of technol-
876 ogy, researchers are committed to deploying simulation scenarios that are closer to the real environ-
877 ment, from model training to finished product testing. Scenario refers to the sequence of scenarios
878 and their interaction methods related to autonomous vehicles during the execution of dynamic driv-
879 ing tasks. It describes external conditions such as roads, traffic facilities, weather conditions, traffic
880 participants, as well as information on the driving tasks and status of autonomous vehicles. Scenarios
881 describe the complex dynamic relationship model among people, vehicles, roads, and environments
882 in terms of space and time, which is the basis of autonomous vehicle product development and func-
883 tion realization. There are many methods to obtain simulation scenarios that are close to the real
884 urban traffic environment. On the one hand, the emergence of AI Large language models has opened
885 the door to AGI. Car companies represented by Tesla have proposed the Large World Model, which
886 can generate future scenarios through generating models based on a large amount of real-time video
887 data collected by autonomous vehicles, thereby achieving training and testing of models without
888 relying on annotation information. On the other hand, researchers are also committed to collect-
889 ing accident cases from real-life sources and reproducing large-scale simulation data, covering the
890 largest possible testing space. However, these methods are too broad, and the testing method of win-
891 ning by quantity is somewhat inadequate for promoting the large-scale deployment of autonomous
892 driving technology in cities. Taking inspiration from the California case, we carefully compared
893 the differences between closed field testing and open urban environments, and proposed a targeted
894 regional level testing concept. Our method consists of two main parts. First, the city is regarded as
895 a test area with a large span. Considering that the deployment of auto drive system in the middle of
896 the city needs to meet higher safety standards, the traffic flow data of the corresponding city is used
897 to predict the traffic flow density and other information in urban roads in different periods of time;
898 Secondly, the predicted traffic flow information is used to restore the simulation scene of a specific
899 city, and on this basis, scene variation is carried out to test the adaptability of the auto drive system
900 in different urban environments.900 For the first stage, we concentrate on elucidating the traffic flow characteristics within the urban road
901 network. To achieve this, we introduce a pioneering architecture known as **Turning-Dual Dynamic**
902 **Spatial-Temporal Graph Convolution Network (T-DDSTGCN)**. The T-DDSTGCN framework op-
903 erates through two main stages: predicting the speed of traffic flow (by deploying the DDSTGCN
904 module) and calculating the turning probability of intersections to obtain the distribution of the
905 entire road network. Predicting traffic speeds on road segments is a hot area of research, with nu-
906 merous models proposed in recent years (Pan et al., 2018; Krupski et al., 2021; Yu et al., 2018;
907 Guo et al., 2019). The accuracy of these predictions hinges on the model’s grasp of spatial depen-
908 dencies. Nevertheless, effectively capturing the dynamic dependencies inherent in traffic graphs re-
909 mains challenging (Wu et al., 2020; 2019). Our adopted DDSTGCN model addresses this challenge
910 by considering both the traffic graph and its dual, employing temporal-spatial graph convolution
911 and temporal-spatial hypergraph neural network techniques. This comprehensive approach enables
912 precise traffic flow prediction for road segments by accurately capturing dependencies within the
913 traffic network (Sun et al., 2022). Moreover, for predicting turning probabilities at intersections, we
914 introduce an innovative heuristic speed-to-turning equation. It estimates turning probabilities based
915 on the predicted speed of vehicles entering the segment and the speed differential between entry
916 and exit segments, enhancing the reliability of the overall traffic flow prediction model. We conduct
917 thorough evaluations of the short-term and long-term traffic flow predictions using the DDSTGCN
918 model, yielding improved SOTA results compared with the baseline model. Additionally, we present
919 a case study focusing on the anticipated turning probabilities at specific intersection segments in Los
920 Angeles. This case study serves to showcase the effectiveness of the speed-to-turning equation.

918 For the second stage, we leverage the previously predicted data to determine the traffic flow and
 919 speed of the corresponding urban area. However, in addition to simulating large-scale traffic flow,
 920 it's crucial to consider interference groups composed of other traffic participants, which can signifi-
 921 cantly impact the dynamics of urban traffic scenarios (Wang et al., 2022). We turn to data from
 922 fatal car and motorcycle collisions provided by the National Highway Traffic Safety Adminis-
 923 tration (of Transportation, 2023). Shockingly, over 30,843 passengers have lost their lives in such
 924 accidents in the US since 2017, accounting for 17.4% of vehicle fatalities during the same period.
 925 To simulate the real-world challenges posed by interference groups, we deliberately design a motor-
 926 cycle driving behavior model based on Level-K game theory (Nagel, 1995) and SVO (Social Value
 927 Orientation) (Schwarting et al., 2019), to serve as a disturbance group in urban traffic scenarios.
 928 Subsequently, we develop a scenario fuzzing algorithm tailored for scene generation corresponding
 929 to different cities. This algorithm incorporates static information from real map data to accurately
 930 represent road layers and other environmental factors. To validate the effectiveness of our approach,
 931 we have conducted five sets of experiments for Los Angeles (LA) and San Francisco (SFB) respec-
 932 tively. Through these experiments, we assess the robustness of ADS across different traffic flows
 933 and urban environments. We have tested a total of 180 city scenarios and, after 5 rounds of random
 934 setting, recorded a total of 775 collision accidents, of which 662 were actually effective collision
 935 scenarios. The experimental results unequivocally demonstrate the effectiveness of our methodol-
 936 ogy in enhancing the ADS's adaptability and performance in complex urban settings.

937 B.2 RELATED WORK ON TRAFFIC FLOW PREDICTION AND TURING PREDICTION

938 **Traffic flow prediction** aims to forecast future traffic conditions, such as vehicle speeds and traffic
 939 volumes, based on historical traffic data. The primary challenge lies in simultaneously capturing
 940 complex temporal and spatial dependencies. In addressing temporal dependencies, a variety of tech-
 941 niques have been widely adopted, including Recurrent Neural Networks (RNNs (Zhao et al., 2017)),
 942 Temporal Convolutional Networks (TCNs (Li et al., 2020)), and Transformers (Vaswani et al., 2017).
 943 RNNs capture long-term dependencies in time series through their recursive structure but are limited
 944 by vanishing gradient issues, making them less effective for long-sequence modeling. In contrast,
 945 TCNs efficiently handle long-range data dependencies through convolutional operations, offering
 946 superior performance in temporal modeling. Transformer-based models further improve efficiency
 947 and accuracy by leveraging self-attention mechanisms to model entire time series dependencies in
 948 parallel. In terms of spatial dimensions, earlier studies often divide the traffic network into grids
 949 and utilizing CNNs (Pan et al., 2018; Krupski et al., 2021) and their derivatives to capture spatial
 950 dependencies. However, such grid-based approaches struggle to effectively represent the complex
 951 non-Euclidean spatial structures inherent in real-world traffic networks. Recent researchers have
 952 turned to Graph Convolutional Networks (GCNs (Zhang et al., 2019)) to capture spatial dependen-
 953 cies among different road segments. STGCN (Yu et al., 2018) leverages multiple layers of graph
 954 convolutions to capture the spatial influence of neighboring segments over multiple hops, utilizing
 955 a first-order Chebyshev polynomial approximation for enhanced graph convolution efficiency.
 956 DCRNN (Li et al., 2018) conceptualizes traffic flow as a diffusion process on a directed graph, intro-
 957 ducing a bidirectional random walk mechanism to effectively model spatial dependencies. However,
 958 these methods often assume a static traffic network structure, making them ill-suited for scenarios
 959 involving dynamic changes, such as traffic incidents or seasonal variations. To address the limi-
 960 tations of static assumptions, recent advancements, including MTGNN (Wu et al., 2020), Graph
 961 WaveNet (Wu et al., 2019), and SAGDFN (Jiang et al., 2024a) have made significant progress in
 962 this direction by utilizing continuously updated node embeddings to model spatial dependencies.
 963 Nevertheless, current dynamic graph models primarily focus on the intuitive dependencies between
 964 nodes and often overlook the higher-order dependencies that exist between edges in dynamic traffic
 965 graphs. To bridge this gap, we employ DDSTGCN, which integrates dynamic graph convolution
 966 and dynamic hypergraph convolution to achieve unified modeling of multi-level dynamic relation-
 967 ships between nodes and edges. This approach significantly enhances the capability to predict traffic
 968 flow in complex and evolving traffic networks.

969 **Turning prediction** is another critical task in urban traffic modeling, focusing on inferring vehicle
 970 turning behaviors at intersections, such as left turns, right turns, or going straight. This task typically
 971 requires integrating traffic dynamics, road geometry, and vehicle behavior features. Early methods
 972 often relied on rule-based or statistical models. (Foulaadvand & Belbasi, 2011) develops a Nagel-
 973 Schreckenberg cellular automaton model to describe vehicular traffic flow at a single intersection.

(Liu et al., 2021) addresses the uncertainty in turning ratio estimation by employing distributionally robust chance constraints. However, these methods often fail to adapt to complex and dynamic traffic scenarios. The rise of data-driven methods has introduced new perspectives for improving turning prediction. (Ghanim & Shaaban, 2018) utilizes input and output traffic flows from intersection links as inputs to an Artificial Neural Network (ANN) model, enabling flow exchange recognition at intersections without relying on prior assumptions. (Mousavizadeh et al., 2021) proposed a hybrid approach that combines sparse stationary measurements with probe vehicle data to train models for turning prediction. While these data-driven methods have shown promising results, they are often associated with high observational costs and computational delays, making them unsuitable for real-time decision-making in autonomous driving scenarios where rapid inference is crucial. To overcome these challenges, we propose an efficient and interpretable turning prediction method, the Speed2Turning equation. This approach estimates turning probabilities based on the entering speed of vehicles at intersections and the speed variation between entry and exit road segments. By modeling turning flow distributions with high efficiency, the Speed2Turning equation not only enhances the reliability of turning predictions but also provides an intuitive tool for modeling complex intersection traffic dynamics. In autonomous driving scenarios, this method enables rapid turning probability estimation at low computational costs, offering robust support for real-time traffic control in dynamic environments.

B.3 RELATED WORK ON SCENARIO SIMULATION AND TESTING

Scenario-based testing is foundational for evaluating the performance of ADS by systematically generating diverse driving scenarios. This approach ensures comprehensive coverage of real-world conditions that an autonomous vehicle might encounter. The primary techniques in scenario-based testing include Behavior Trees, Topology-Based Scenario Classification, Bisection Method, and Data-Driven Assurance. Each technique offers a unique approach to generating test scenarios, providing comprehensive coverage and addressing specific challenges in autonomous driving.

Behavior Trees are a powerful tool for modeling the behavior of actors within a driving scenario. They allow for the precise control and description of both temporal and spatial behaviors, making them ideal for creating complex and realistic scenarios. (Han & Zhou, 2020) explores the use of behavior trees to enhance the realism and control of test scenarios. By focusing on the temporal behaviors of vehicles and pedestrians, this method improves the adaptability of scenarios in different testing environments. (Kang et al., 2022) leverages behavior trees to generate diverse and challenging scenarios for ADS, highlighting their effectiveness in varying testing contexts. Topology-Based Scenario Classification utilizes the physical layout of road networks to create diverse and representative test scenarios. This technique ensures that various road structures and conditions are covered, which is critical for comprehensive ADS testing. (Zhou et al., 2023) focuses on using road network topology to generate varied scenarios for ADS testing, ensuring comprehensive coverage of different road conditions. (Zhu et al., 2023a) discusses a method to classify junction lanes based on topology, enhancing the diversity of generated scenarios. The Bisection Method is a systematic approach to reducing the scenario space while maintaining diversity. This technique is often used in conjunction with topology-based classification to streamline the generation of diverse and challenging scenarios. (Tang et al., 2021) integrates the bisection method with topology-based classification to streamline the generation of diverse and challenging scenarios for ADS testing. Data-Driven Assurance involves creating quality criteria for parameterized scenarios to ensure they cover real traffic data instances. This approach uses search-based techniques to validate and refine test scenarios, ensuring comprehensive coverage and high quality. Scenario-based testing provides a robust framework for evaluating ADS by generating diverse and realistic driving scenarios. Techniques like behavior trees, topology-based classification, and data-driven assurance ensure comprehensive coverage and relevance, contributing significantly to the robustness and reliability of ADS testing. By systematically addressing different aspects of scenario generation, these techniques ensure that all possible driving conditions and interactions are thoroughly tested, providing a solid foundation for ADS development and validation.

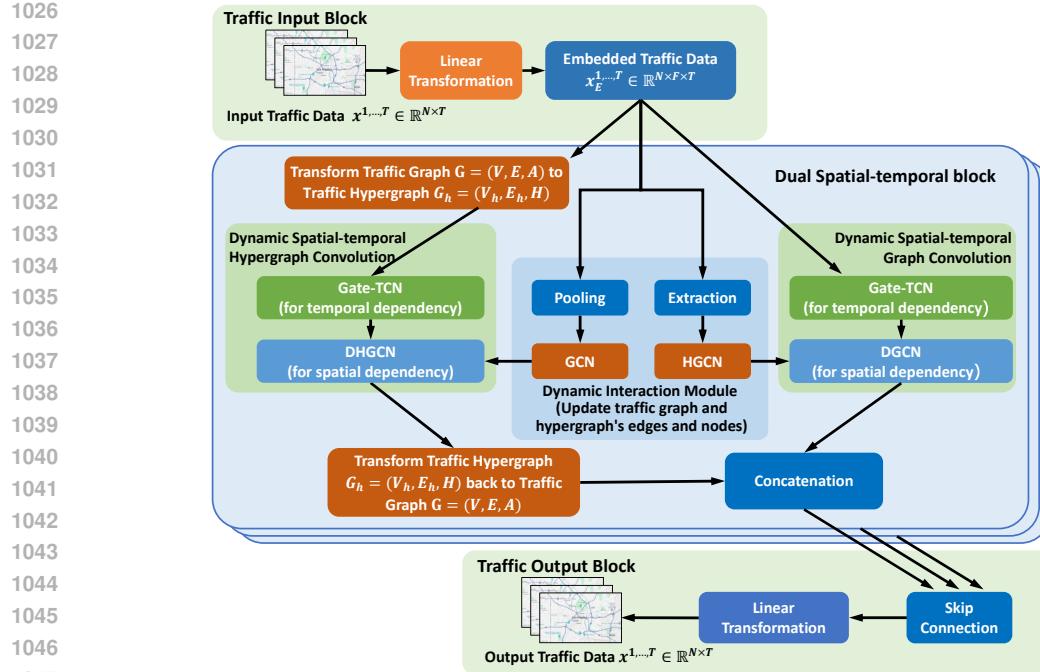


Figure 5: Framework of Dual Dynamic Spatial-Temporal Graph Convolution Network, for traffic segment speed prediction

C MORE DETAILS OF TRAFFIC PREDICTION

Traffic in different cities has different styles, and accurate modeling of urban traffic flow for testing plays a vital role in the deployment of ADS in cities. Open-source data offers insight into predicting traffic speed within urban road networks, yet accurately modeling the entire network's flow presents challenges. To address this, we innovatively reframe the issue by predicting vehicles' turning probabilities at intersections, effectively model branch road flow as the product of main road flow and turning probability. We introduce **Turning-Dual Dynamic Spatial-Temporal Graph Convolution Network (T-DDSTGCN)**, a novel model specifically designed to forecast these turning probabilities (See Figure 5). This model initially forecasts traffic speed for each road segment leading into and out of an intersection. Subsequently, it leverages these speed predictions to calculate the likelihood of vehicles turning in various directions. For the initial step of traffic speed prediction, we incorporate DDSTGCN (Sun et al., 2022) that utilizes both the spatial graph representing physical layout of the intersection and its corresponding dual hypergraph. It can enrich the model's understanding of traffic dynamics and enable precise traffic speed forecasts. To derive turning probabilities from these speed forecasts, we propose a novel heuristic equation. This equation calculates turning probabilities based on the observed speeds of the entering road segments and the differential speeds between entering and exiting segments. This approach provides a direct method for estimating vehicle behavior at intersections which can assist in predicting traffic flow in urban road networks.

The T-DDSTGCN architecture, depicted in Fig. 5, comprises three main components: the traffic input layer, Dual Spatial-Temporal Blocks, and the traffic output layer. The Dual Spatial-Temporal Blocks facilitate the transformation of traffic data from graph to hypergraph representations, utilizing dynamic convolutions across both structures and integrating a Dynamic Interaction Module. This module continuously updates edge representations within the graph and hypergraph, allowing the DDSTGCN model to decode and predict traffic behaviors by intricately analyzing the complex spatiotemporal relationships inherent in traffic networks.

- **Traffic Graph-Hypergraph Transformation.** Central to DDSTGCN is its proficient Graph-Hypergraph Transformation mechanism. This mechanism is crucial for extracting spatial dependency information from traffic flows by incorporating both the traditional traffic graph and its dual. In this dual setup, nodes in the traffic graph correspond to edges in its dual, and vice versa. This

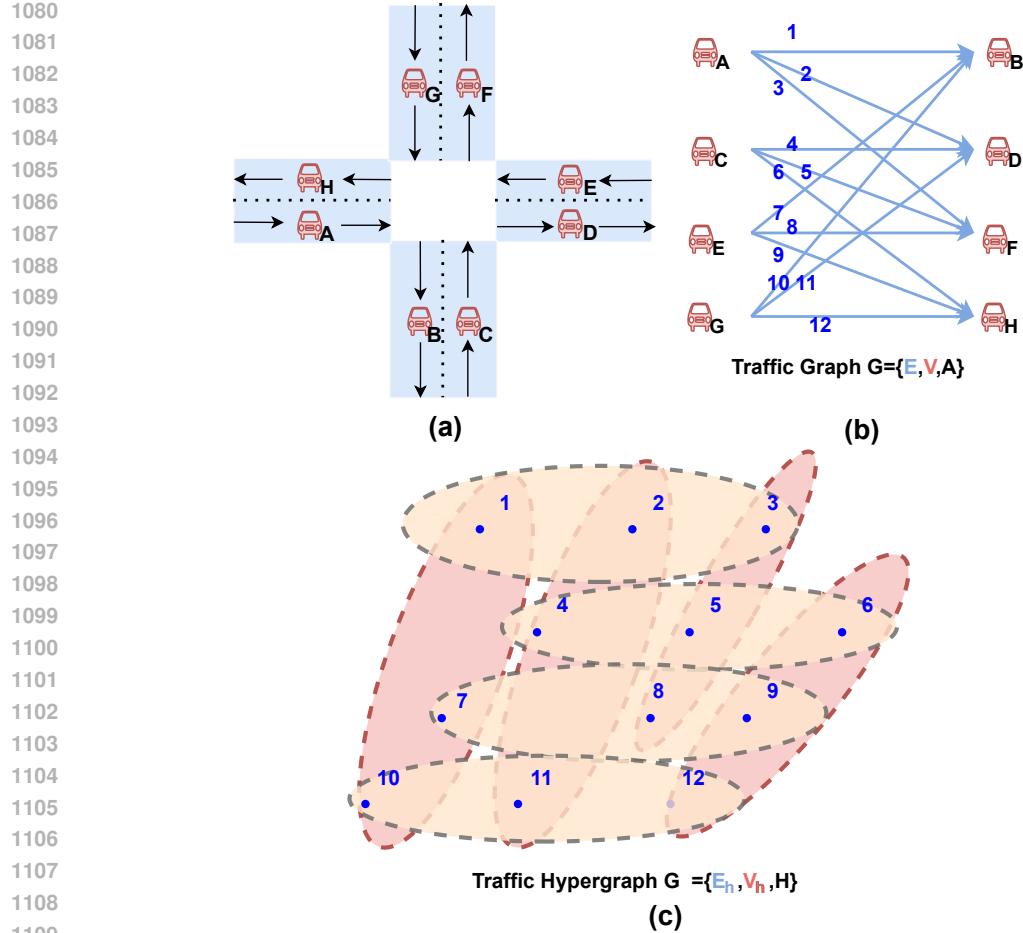


Figure 6: Example of traffic graph/hypergraph. (a) One Typical road crossing. (b) Traffic graph of this road crossing. (c) Corresponding traffic hypergraph of this road crossing. Black points in (b) and red dashed ellipses in (c) represent nodes in (a). Blue edges in (b) and blue points in (c) represent connections between nodes in (a).

mapping allows for the creation of a dual hypergraph from the original graph, where a single edge in the dual hypergraph may represent multiple nodes from the original graph, enabling it to connect more than two nodes in the original graph. This transformation is depicted in Fig.6, illustrating an example of a road intersection and highlighting both its traffic graph and corresponding hypergraph. Formally, for a traffic graph $G = (V, E, A)$ with N nodes, E edges, and its adjacency matrix A , the equivalent traffic hypergraph is denoted as $G_h = (V_h, E_h, H)$, where $|V_h| = E$, $|E_h| = N$, and H is G_h 's incidence matrix, which is defined as:

$$H_{ij} = \begin{cases} 1 & \text{if } v_{h_i} \in e_{h_j}, \\ 0 & \text{otherwise.} \end{cases} \quad (8)$$

Given the directed nature of traffic graphs, H must account for bidirectional connectivity along each edge. Consequently, H is the summation of H_{forth} and H_{back} , representing the incidence matrices for forward and backward directions, respectively. With the provided information, we can formalize the feature transformation from traffic graph to hypergraph. Given traffic graph nodes with F features spanning over T time periods $X \in \mathbb{R}^{N \times F \times T}$, $H_{forth}, H_{back} \in \mathbb{R}^{E \times N}$, and road distance matrix $X_{dis} \in \mathbb{R}^E$, the hyper-nodes features of G_h , $X_h \in \mathbb{R}^{E \times (2F+1) \times T}$, is calculated as

$$X_h = [(\theta_1 \cdot H_{forth})X | (\theta_2 \cdot H_{back})X | X_{dis}] \quad (9)$$

where \cdot represents element-wise multiplication, $|$ refers to concatenation, and θ are learnable parameters. Reversely, to transform hypergraph nodes features $X'_h \in \mathbb{R}^{E \times F' \times T}$ back to graph nodes

$$X' = (\theta_3 \cdot H)^\top X'_h \quad (10)$$

- **Dual Spatial Temporal Blocks.** T-DDSTGCN incorporates an innovative sequence of Dual Spatial-Temporal Blocks (DST-Blocks) to facilitate a profound analysis of traffic data. These blocks integrate Gate-Temporal Convolutional Networks (Gate-TCN (Chen et al., 2020)), Graph Convolutional Networks (GCN (Zhang et al., 2019)), Hypergraph Convolutional Networks (HGCN (Feng et al., 2019)), and Dynamic Interaction Modules (DIM), each playing a unique role in capturing the dynamic and complex spatial-temporal patterns of traffic flow. The Gate-TCN component is specifically designed to model temporal dependencies. It captures the variations in traffic flow over time through a gating mechanism that regulates the flow of information, combined with one-dimensional convolutions across temporal dimension. The operation is formulated as:

$$TCN_{\theta}(X) = Conv_{\theta}(X) \in \mathbf{R}^{N \times F \times (T-k(T_0-1))} \quad (11)$$

$$G - TCN(X) = f1(TCN_{\theta 1}(X)) \cdot f2(TCN_{\theta 2}(X)) \quad (12)$$

where k represents dilation factor, T_0 is kernal size, $f1, f2$ denote the \tanh and sigmoid activation function, respectively. For capturing spatial dependencies, GCN and HGCN process the traffic graph and hypergraph, respectively. GCN focuses on direct interactions between nodes to analyze connections between road segments. In parallel, HGCN explores complex combinations of nodes, or hyperedges, to uncover hidden higher-order spatial relationships. Their operations are mathematically represented as: where A_{forth}^n and A_{back}^n are the n -th order adjacency matrices for the forward and backward directions, and W_h is the weight matrix for hyperedges in hypergraph G_h . The Dynamic Interaction Module (DIM) is crucial for updating the representations of edges in both the traffic graph and hypergraph. By leveraging updated node features from preceding DST-Blocks, DIM processes and refreshes edge features, which, in turn, inform the dynamic updates of node features in subsequent DST-Blocks through GCN and HGCN operations.

To reconstruct urban-scale traffic flow based on sparse sensor data, we leverage the fact that most traffic sensors are deployed on major arterial roads (main roads), while minor streets or sub-roads (e.g., residential lanes) are often not instrumented. To enable flow estimation on sub-roads, we propagate traffic counts from main roads using estimated turning probabilities at intersections. Specifically, for each sub-road SR_j , we estimate its flow as:

$$SR_j = \sum_{i \in \text{incoming}(j)} P_{i \rightarrow j} \cdot N_i$$

where: N_i is the observed or estimated flow on an incoming main road segment i , $P_{i \rightarrow j}$ is the turning probability from road i to sub-road j , $incoming(j)$ denotes all upstream road segments connected to j . This formulation allows us to approximate unobserved sub-road traffic by redistributing main-road flows based on city-specific turning behavior, which is estimated via our Speed2Turning model. The propagation step is critical in enabling city-adaptive scenario construction, as it supports traffic realism beyond the limited sensor coverage. Compared to approaches that uniformly distribute flow or use synthetic assumptions, this probabilistic mapping respects local traffic norms—e.g., a higher $P_{i \rightarrow j}$ in cities where U-turns or sharp left turns are common, or lower in regions with one-way constraints.

To validate our Speed2Turning equation, we have conducted an accuracy analysis by comparing its estimated turning probabilities with real-world observed turning data collected from a four-way signalized intersection in a metropolitan area, as shown in Table 3. The dataset consists of 250,000 recorded vehicle trajectories over a six-month period, capturing variations in turning rates under different traffic conditions. The collected data includes, entry speeds of vehicles approaching the intersections, and exit road selections for turning movements (left, right, or straight). The dataset has preprocessed to remove anomalies such as incomplete trajectories, extreme outliers in speed values, and inconsistencies in recorded turning movements. To assess the accuracy of the Speed2Turning equation, we compare its estimated turning probabilities against observed distributions using the following statistical measures.

$$KS = \sup_x |F_{pred}(x) - F_{obs}(x)| \quad (13)$$

Kolmogorov-Smirnov (KS) test measures the maximum difference between the cumulative distribution functions (CDFs) of the predicted and observed turning probabilities. A lower KS statistic

1188 indicates a closer match between predicted and observed distributions.
 1189

$$1190 \quad MAE = \frac{1}{N} \sum_{i=1}^N |P_{pred,i} - P_{obs,i}| \quad (14)$$

$$1191$$

$$1192$$

1193 Mean Absolute Error (MAE) evaluates the average absolute deviation between the predicted and
 1194 observed turning probabilities.
 1195

$$1196 \quad RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^N (P_{pred,i} - P_{obs,i})^2} \quad (15)$$

$$1197$$

$$1198$$

1199 Root Mean Squared Error (RMSE) captures the square root of the mean of the squared deviations to
 1200 emphasize larger errors.
 1201

$$1202 \quad r = \frac{\sum (P_{pred} - \bar{P}_{pred})(P_{obs} - \bar{P}_{obs})}{\sqrt{\sum (P_{pred} - \bar{P}_{pred})^2} \sqrt{\sum (P_{obs} - \bar{P}_{obs})^2}} \quad (16)$$

$$1203$$

1204 Pearson Correlation Coefficient (r) measures the strength and direction of the linear relationship be-
 1205 tween predicted and observed turning probabilities, with values close to 1 indicating a strong corre-
 1206 lation. The Speed2Turning equation provides a reasonable approximation but tends to overestimate
 1207

1208 **Table 3: Evaluation results of Speed2Turning equation**
 1209

Metric	Left Turn	Right Turn	Straight
Observed Probability	24.8%	36.7%	38.5%
Predicted Probability	34.1%	28.3%	37.6%
KS Statistic	0.28	0.22	0.14
MAE	9.3%	8.4%	6.1%
RMSE	12.1%	10.5%	7.8%
Pearson r	0.82	0.79	0.87

1210 left turns and underestimate right turns. Observed data shows a higher prevalence of right turns,
 1211 possibly influenced by dedicated turn lanes and signal timing. The model's overestimation of left
 1212 turns suggests that external factors such as gaps in opposing traffic and driver caution play a signifi-
 1213 cant role. The evaluation highlights that while the Speed2Turning equation provides a foundational
 1214 approach for estimating turning probabilities, adjustments are necessary to improve alignment with
 1215 real-world behavior. Incorporating intersection-specific parameters and real-time adaptive elements
 1216 could enhance its predictive capability for autonomous driving scenario testing.
 1217

D POP EXTENSION MATERIALS

1228 In current testing of autonomous driving systems, it is crucial to consider motorcycles as significant
 1229 traffic participants due to their unique behavioral patterns and potential interference factors. Motor-
 1230 cycles, with their smaller size, higher maneuverability, and varying speeds, often present challenges
 1231 for perception and decision-making algorithms. Their ability to quickly change lanes, filter through
 1232 traffic, and occupy blind spots can lead to unexpected scenarios that autonomous systems must ac-
 1233 curately detect and respond to. Additionally, as shown in Figure 7, motorcycles are involved in a
 1234 significant number of traffic accidents (DMV, 2025a; Berkeley, 2025), often due to the difficulty
 1235 other drivers face in predicting their movements. Incorporating motorcycles into testing scenarios
 1236 ensures that these systems are robust and capable of handling real-world complexities, ultimately
 1237 enhancing safety for all road users.
 1238

D.1 BASIC DEFINITIONS

1239 1) SVO (Social Value Orientation) (See Figure 2) quantifies the degree of selfishness exhibited by
 1240 drivers, reflecting individuals' inclination toward prioritizing either their own interests or those of
 1241

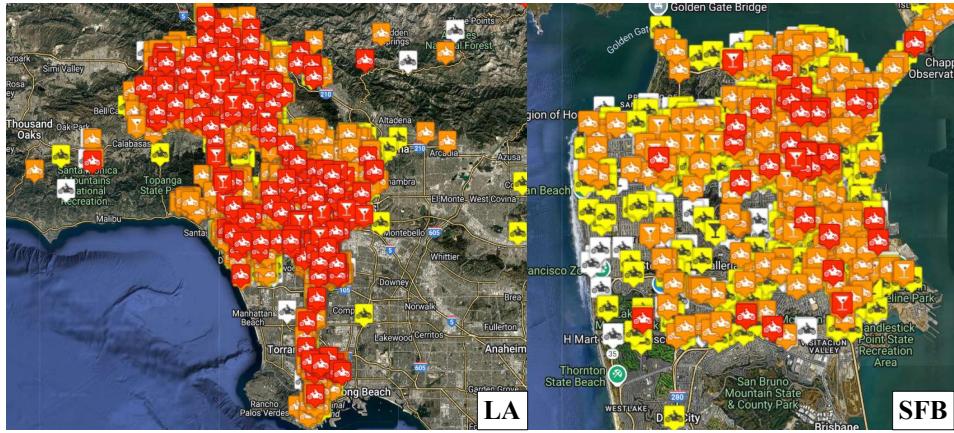


Figure 7: Motorcycle Crash Map in LA and SFB. It records 9414 formal accident reports involving motorcycles during 2020-2024, and records 3742 formal accident reports involving vehicles during 2020-2024.

others in social interactions (Schwarting et al., 2019). Unlike ADS, which relies on inference, SVO serves as an effective means to account for the impact of social suggestion and driver personality on driving behavior. 2) The Level-K game theory model first assumes that the level 0 strategy is a priori known, immature strategy that operates in a non interactive manner (Nagel, 1995). Then, a k -level driver ($k > 0$) follows a utility maximization strategy, assuming the opponent is a $(k - 1)$ -level driver. Starting from the 0-level strategy, the optimal strategy for k -level drivers can be recursively generated. 3) $X = [X_1^T, X_2^T, \dots, X_n^T]$ refers to the state trajectory of all drivers, $U = [U_1^T, U_2^T, \dots, U_n^T]$ refers to the control trajectory of all drivers, for each driver $i = 1, \dots, n$, its state at time k is represented as X_i^k , its individual control strategy is represented as U_i^k . In our algorithm, the utility function of driver i with social attributes is defined as $g_i = \cos(\varphi_i)\omega_1 + \sin(\varphi_i)\omega_2$, where ω_1 and ω_2 are the ‘reward to self’ and ‘reward to others’ that defined by the driver’s reward function. So the instantaneous utility function of n drivers is

$$g_i(X, U_i, U_{-i}, \varphi_i) = \frac{1}{n-1} \sum_{j \in -i} (\cos(\varphi_i)\omega_1(X, U_i, U_j) + \sin(\varphi_i)\omega_2(X, U_j, U_i)) \quad (17)$$

Then we discretizing the time range into T steps and accumulating the instantaneous utility encountered at each time point can obtain the cumulative utility function, which is

$$G_i(X^0, U, \varphi) = \sum_{k=0}^{T-1} g_i(X^k, U^k, \varphi_i) + g_i^T(X^T, \varphi_i) \quad (18)$$

Here we define the utility of the final step as the euclidean distance from the set endpoint, so the optimization problem of the algorithm is to maximize the cumulative utility function

$$\begin{aligned} U_i^* &= \arg \max_{u_i} G_i(X^0, U, \varphi) \\ &= \arg \max_{u_i} \left(\sum_{k=0}^{T-1} g_i(X^k, U^k, \varphi_i) + g_i^T(X^T, \varphi_i) \right) \\ &= \arg \max_{u_i} \left(\sum_{k=0}^{T-1} g_i(X^k, U^k, \varphi_i) - \sqrt{(\vec{X}^T - \vec{EP})^2} \right) \end{aligned} \quad (19)$$

In our POP algorithm, integrating interactive motorcycles as interference groups involves two stages, and the kinetic data comes from official sources (DMV, 2025a). In stage one (See Figure 2 part b), for experimental convenience, the generated motorcycle fleet initially appears only on branch roads, avoiding interaction with main roads and large-scale traffic flow. These motorcycles adhere

1296 to a fixed speed configuration, do not incorporate additional sensors, and proceed directly to their
 1297 destination. In **stage two** (See Figure 2 part *c*), upon interaction with main vehicles, the closest
 1298 driver to the main vehicle assumes the role of navigator. Their trajectory and strategy optimization
 1299 are guided by maximizing a utility function, while other drivers maintain basic following strategies.
 1300 A minimum safe distance between motorcycles and main vehicles is enforced, typically set at a fixed
 1301 value (e.g., half a meter).

1302 D.2 NASH EQUILIBRIUM AND STACKELBERG STRATEGY

1303 Nash equilibrium is a fundamental concept in game theory, named after the mathematician John
 1304 Nash. It refers to a situation in a game where each player's strategy is optimal given the strategies
 1305 of the other players. In other words, no player has an incentive to unilaterally change their strategy,
 1306 as doing so would not lead to a better outcome for them. In game theory, Nash equilibrium is typi-
 1307 cally described using mathematical formulas. For a two-player zero-sum game (where one player's
 1308 gain is exactly balanced by the other player's loss), Nash equilibrium can be defined as follows:
 1309 For Player 1, their best response strategy is to maximize their expected payoff, which can be repre-
 1310 sented as: $\max_{s_1} \min_{s_2} u_1(s_1, s_2)$ For Player 2, their best response strategy is to maximize their ex-
 1311 pected payoff, which can be represented as: $\max_{s_2} \min_{s_1} u_2(s_1, s_2)$ Here, $u_1(s_1, s_2)$ and $u_2(s_1, s_2)$
 1312 represent the payoffs for Player 1 and Player 2, respectively, given the strategy combination s_1
 1313 and s_2 . In Nash equilibrium, the following conditions are satisfied: $\max_{s_1} \min_{s_2} u_1(s_1, s_2) =$
 1314 $\min_{s_2} \max_{s_1} u_1(s_1, s_2)$, $\max_{s_2} \min_{s_1} u_2(s_1, s_2) = \min_{s_1} \max_{s_2} u_2(s_1, s_2)$. In other words, at
 1315 Nash equilibrium, each player's strategy maximizes their payoff given the strategies chosen by the
 1316 other players.

1317 Stackelberg strategy is a concept derived from game theory, named after German economist Heinrich
 1318 Stackelberg. It is a strategic model where one player, known as the leader, makes decisions first,
 1319 and then the other player, known as the follower, observes these decisions and makes their own
 1320 decisions accordingly. The leader-player takes into account the anticipated response of the follower
 1321 when determining their strategy, aiming to maximize their own payoff. Here's how Stackelberg
 1322 strategy works and its application in decision-making: **Step 1.** Leader-Follower Dynamic: In a
 1323 Stackelberg game, one player (the leader) has the advantage of moving first, while the other player
 1324 (the follower) observes the leader's action before making their own decision. **Step 2.** Sequential
 1325 Decision-Making: The leader makes their decision, taking into consideration the reaction of the
 1326 follower. The follower, knowing the leader's decision, then selects their own strategy to maximize
 1327 their payoff given the leader's action. **Step 3.** Strategic Advantage: The leader's advantage lies in
 1328 their ability to anticipate and influence the follower's behavior through their initial decision. This
 1329 allows the leader to strategically shape the outcome of the game in their favor. **Step 4.** Mathematical
 1330 Representation: In a mathematical formulation, let S denote the strategy space of the leader and T
 1331 denote the strategy space of the follower. The leader's payoff function is represented as $\Pi_L(S, T)$,
 1332 and the follower's payoff function is represented as $\Pi_F(S, T)$. The leader aims to maximize their
 1333 payoff by selecting the optimal strategy S^* , taking into account the follower's best response T^* .
 1334 **Step 5.** Finding Equilibrium: The equilibrium in a Stackelberg game occurs when the leader's
 1335 strategy and the follower's best response form a stable solution, where neither player has an incentive
 1336 to unilaterally deviate from their chosen strategy.

1337 D.3 GAME THEORY AND POP ALGORITHM

1338 With the background knowledge of game theory, the foundation of our proposed POP algorithm is as
 1339 follows: $X = [X_1^T, X_2^T, \dots, X_n^T]$ refers to the state trajectory of all drivers, $U = [U_1^T, U_2^T, \dots, U_n^T]$
 1340 refers to the control trajectory of all drivers, for each driver $i = 1, \dots, n$, its state at time k is
 1341 represented as X_i^k , its individual control strategy is represented as U_i^k . In our algorithm, the utility
 1342 function of driver i with social attributes is defined as $g_i = \cos(\varphi_i)\omega_1 + \sin(\varphi_i)\omega_2$, where ω_1 and
 1343 ω_2 are the 'reward to self' and 'reward to others' that defined by the driver's reward function. So the
 1344 instantaneous utility function of n drivers is

$$1345 \begin{aligned} g_i(X, U_i, U_{-i}, \varphi_i) &= \frac{1}{n-1} \sum_{j \in -i} (\cos(\varphi_i)\omega_1(X, U_i, U_j) \\ 1346 &\quad + \sin(\varphi_i)\omega_2(X, U_j, U_i)) \end{aligned} \quad (20)$$

1350 Then we discretizing the time range into T steps and accumulating the instantaneous utility encountered
 1351 at each time point can obtain the cumulative utility function, which is
 1352

$$1353 \quad 1354 \quad 1355 \quad G_i(X^0, U, \varphi) = \sum_{k=0}^{T-1} g_i(X^k, U^k, \varphi_i) + g_i^T(X^T, \varphi_i) \quad (21)$$

1356 Here we define the utility of the final step as the euclidean distance from the set endpoint, so the
 1357 optimization problem of the algorithm is to maximize the cumulative utility function
 1358

$$1358 \quad 1359 \quad 1360 \quad 1361 \quad 1362 \quad 1363 \quad 1364 \quad 1365 \quad U_i^* = \arg \max_{u_i} G_i(X^0, U, \varphi) \\ = \arg \max_{u_i} \left(\sum_{k=0}^{T-1} g_i(X^k, U^k, \varphi_i) + g_i^T(X^T, \varphi_i) \right) \\ = \arg \max_{u_i} \left(\sum_{k=0}^{T-1} g_i(X^k, U^k, \varphi_i) - \sqrt{(X^T - EP)^2} \right)$$

1366 Considering that in actual traffic environments, there is a swarm effect among traffic participants
 1367 represented by motorcycles, and most members will decide their behavior based on the leader's
 1368 decision. Therefore, it is necessary to use multi-agent constraints to solve.

$$1369 \quad 1370 \quad 1371 \quad 1372 \quad 1373 \quad 1374 \quad \mathbf{U}_1^* = \arg \max_{\mathbf{u}_1} G_1(\mathbf{X}^0, \mathbf{U}_1, \mathbf{U}_2^*(\mathbf{U}_1), \varphi_1) \\ \text{s.t.} \quad \mathbf{X}_1^{k+1} = \mathcal{F}_1(\mathbf{X}_1^k, \mathbf{U}_1^k) \\ c_1(\mathbf{X}, \mathbf{U}_1, \mathbf{U}_2^*(\mathbf{U}_1)) \leq 0 \\ \mathbf{U}_2^*(\mathbf{U}_1) = \arg \max_{\mathbf{u}_2} G_2(\mathbf{X}^0, \mathbf{U}_1, \mathbf{U}_2, \varphi_2) \quad (23)$$

$$1375 \quad 1376 \quad 1377 \quad \text{s.t.} \quad \mathbf{X}_2^{k+1} = \mathcal{F}_2(\mathbf{X}_2^k, \mathbf{U}_2^k) \\ c_2(\mathbf{X}, \mathbf{U}) \leq 0$$

1378 This form indicates that Agent 1 can influence Agent 2's behavior by changing its own control. Thus
 1379 indirectly controlling the behavior of Agent 2. Considering this interaction, Agent 1 can now proac-
 1380 tively consider how to influence Agent 2's behavior to maximize their own assistance. This involves
 1381 a two-layer optimization, which involves optimizing at a higher level, including a lower level op-
 1382 timization problem. For each step of a high-level optimization algorithm, it is necessary to solve
 1383 a low-level optimization problem. Obviously, this method cannot be extended to situations where
 1384 there are more than two agents, so in this article, only the motorcycle closest to the main vehicle
 1385 will be identified as the leader, and other motorcycles will be considered as a group interacting with
 1386 the leader's decisions.

1387 E SCENE SIMULATION EXTENSION MATERIALS

1388 E.1 ROAD NETWORK DATA IN THE EXPERIMENTAL URBAN AREA

1389 Based on California's accident statistics report (Berkeley, 2025) and the distribution of road sensors,
 1390 we selected the area with the highest density of sensors and the highest frequency of accidents for
 1391 testing, as shown in Figure 8. We select 5 areas with dense road networks in both LA (Los Angeles)
 1392 and SFB (San Francisco Bay) for experiments. The detailed data of each experimental area is shown
 1393 in the Table 4.

1394 And the road network data for 10 sets of experiments are shown in the Figure 9.

1395 E.2 COMPREHENSIVE SCENARIO TESTING RESULTS

1396 Utilizing the aforementioned algorithm, we can reconstruct the initial scene of the corresponding ur-
 1397 ban area, encompassing all road network data and the initial traffic flow on main and branch roads.
 1398 Building upon this foundation, parameter mutation is executed on the original scene to generate a
 1399 diverse array of testing scenarios. The specific scenario fuzzing algorithm is outlined in Algorithm
 1400 2. Take the scene simulation result of Los Angeles as an example, see Figure 10. We first define
 1401

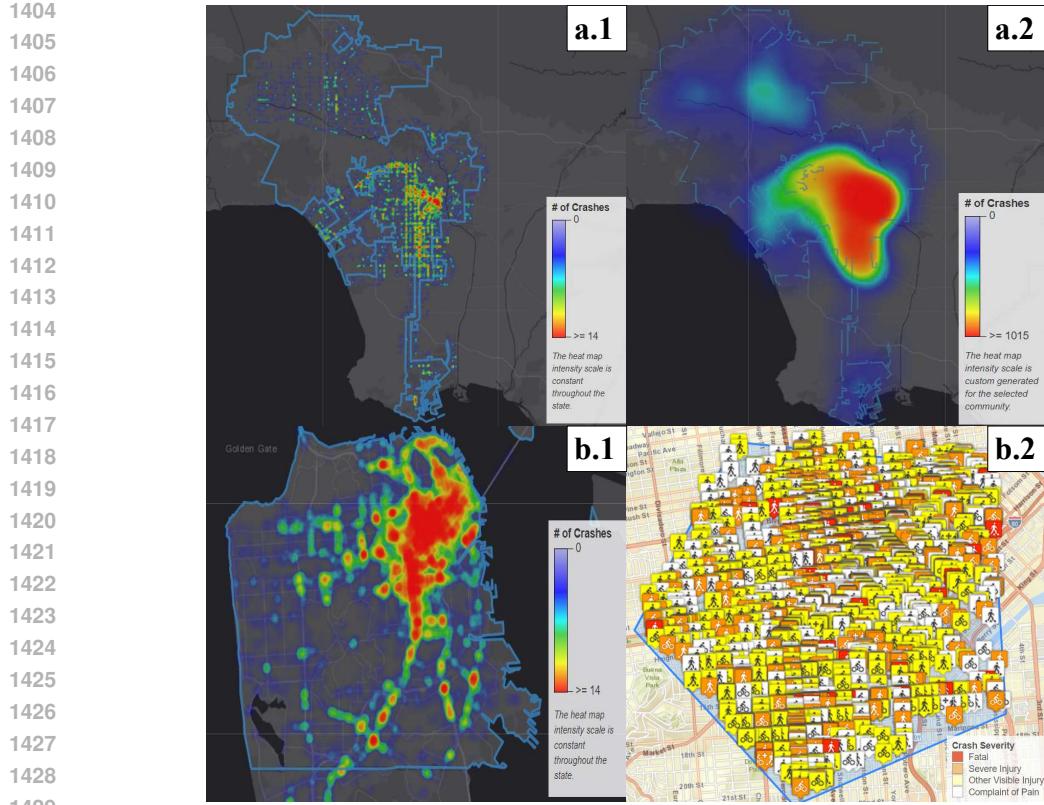


Figure 8: Number of Crashes and Community Heat Map. a.1 and a.2 show the crash heat map in LA, it records 25977 formal accident reports involving vehicles during 2018-2024, a.3 and a.4 show the crash heat map and area crash map in SFB, it records 7594 formal accident reports involving vehicles during 2018-2024.

Table 4: Simulation urban area dataset.

Urban Data	Longitude-Left-Edge	Longitude-Right-Edge	Latitude-Top-Edge	Latitude-Bottom-Edge	Node-Num	Link-Num	Square
LA-NW	-118.4844	-118.4636	34.1767	34.1539	414	744	5542 × 4066
LA-CCR	-118.3859	-118.3710	34.1614	34.1478	272	573	2591 × 2626
LA-ECR	-118.2341	-118.2217	34.1528	34.1401	301	498	4510 × 2013
LA-SECR	-118.2585	-118.2345	34.0662	34.0550	618	1125	3199 × 2588
LA-HW	-118.3357	-118.3133	34.1056	34.0938	445	984	7864 × 11927
SFB-NW	-122.0730	-122.0546	37.4111	37.3895	495	821	5549 × 4797
SFB-CA	-122.0526	-122.0313	37.3238	37.3098	388	698	3615 × 3904
SFB-EA	-121.8975	-121.8800	37.3340	37.3206	522	798	2723 × 3130
SFB-SA	-121.9565	-121.9383	37.2860	37.2702	313	570	2654 × 4447
SFB-NEA	-121.8687	-121.8528	37.3917	37.3800	292	493	4745 × 5107

• LA refers to Los Angeles, NW refers to the city's North West part, CCR refers to the city's Central Cross Road part, ECR refers to the city's Eastern Cross Road part, SECR refers to the city's Southeast Cross Road part, HW refers to the city's Hollywood part.

• SFB refers to San Francisco Bay, NW refers to the city's North West part, CA refers to the city's Central Area part, EA refers to the city's Eastern Area part, SA refers to the city's Southern Area part, NEA refers to the city's Northeast Area part.

the geographical scope of the simulation experiment, selecting the latitude and longitude range corresponding to the city under study. Then access the OpenStreetMap official website to procure the OSM map of the designated city within the specified range. Using the custom Python program, we preprocess the acquired OSM map, filtering out extraneous information to retain solely the city's road network data. This involves parsing the map to extract pertinent node and connection files, which are then inputted into the simulation platform to construct the city map. In cases where discontinuities exist within the urban road network, we employ smooth curve interpolation techniques to seamlessly connect branch roads, ensuring the network's continuity. Building upon prior predictions of traffic flow on main urban roads, we proceed to determine the speed and flow distribution at major traffic intersections. Leveraging the probability formula for speed-steering prediction, we

Figure 9: Road network of tested urban environments.

allocate traffic flow from main roads to branch roads, establishing a foundational urban testing scenario. Subsequently, we execute a fuzzing program within the established scenario. This involves varying the scale of traffic flow, introducing a suitable number of interference vehicles generated by the POP model, randomly selecting the starting point of the tested main vehicle, and selecting a random weather environment for the scenario. Through this process, we generate a diverse and extensive set of mutation scenarios, facilitating comprehensive testing of the ADS under various conditions.

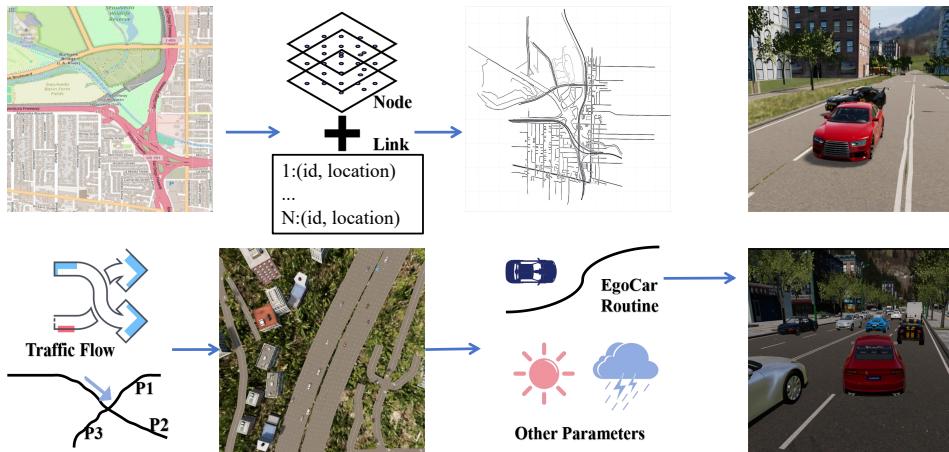


Figure 10: Scene Simulation and Scenario Fuzzing Algorithm.

In this section, we will release more experimental results, as shown in the Figure 11. Our method provides a diverse array of environmental variation parameters, as showcased in the first row of the result graph. With this approach, we can tailor urban scenes to encompass various weather conditions, including sunny, rainy, foggy, or nighttime settings. In the second row of the result graph, we observe a plethora of scene element variation parameters. Our method enables the generation of urban traffic scenes under different flow rates, with the inclusion of pedestrian and motorcycle interference groups generated by POP algorithms. The third line in the result chart presents a comprehensive array of test results for accident scenarios. Through our method, we identify a spectrum of scenarios leading to accidents in the autonomous driving system. These scenarios cover common accident modes such as lane changes and rear-end collisions, as well as conflicts with pedestrians or motorcycle interference groups generated by the POP algorithm. Collectively, these results underscore the effectiveness of our method.

Figure 11: Comprehensive scenario testing results of various urban environments.

F REALISM VALIDATION AND ABLATION STUDY

F.1 REALISM VALIDATION

To validate the realism of our generated scenarios, we compare key behavioral and accident statistics between our simulated test cases and real-world urban traffic datasets (DMV, 2025b; Administration, 2025; Berkeley, 2025). We have analyzed vehicle speed distributions in our simulation and compared them with real-world datasets collected from local transportation reports. Table 5 presents a statistical comparison. These results indicate that our simulation closely aligns with real-world

Table 5: Comparison of traffic flow metrics between real and simulated data for METR-LA and PEM-S-BAY

Metric	Real-LA	Sim-LA	Deviation(%)	Real-BAY	Sim-BAY	Deviation(%)
Mean Speed (m/s)	13.2	12.9	-2.3%	14.0	13.6	-2.9%
Speed Standard Deviation	3.5	3.7	+5.7%	3.8	4.0	+5.3%
Peak Hour Flow (veh/hr)	1850	1805	-2.4%	1920	1875	-2.3%
Off-Peak Flow (veh/hr)	920	940	+2.2%	980	960	-2.0%

traffic flow conditions in different urban regions, with deviations within $\pm 5\%$ across key metrics. The small deviation in speed and flow metrics suggests that the underlying traffic models in our simulation effectively capture real-world dynamics. The slightly higher speed standard deviation in our simulation might be due to the broader range of behavioral variability introduced in synthetic

agents. Notably, the consistency in deviation percentages between METR-LA and PEMS-BAY regions suggests that our framework generalizes well to multiple urban environments.

To ensure an accurate comparison, we obtain real-world accident data from sources such as California DMV (DMV, 2025b), NHTSA crash reports (Administration, 2025), and autonomous vehicle disengagement logs from Waymo and Cruise (Berkeley, 2025). We preprocess this data by filtering relevant urban driving incidents, excluding non-traffic-related events. Then we extract accident types, severity, and cause factors for statistical aggregation. By normalizing traffic volume differences, we aim to ensure a fair comparison between real-world and simulated data. Simulated accident data is obtained from our ADS test framework, which generates diverse traffic scenarios involving varied road users and driving behaviors. The dataset includes 662 simulated accident cases, of which 88.1% (583 cases) are valid, while the remaining cases were discarded due to platform setup errors or incomplete data. The real-world dataset consists of 2,500 urban traffic accident cases, sampled to ensure diverse road conditions and accident types. Table 6 presents the accident type distribution and accident causes frequencies. The presence of overlapping accident types and

Table 6: Comparison of accident type distributions and accident causes frequencies.

Metric	Category	Real-World Data (%)	Simulated Data (%)
Accident Type Distribution	Rear-End Collision	34.5% (863/2500)	30.0% (175/583)
	Side-Impact Collision	21.7% (542/2500)	24.0% (140/583)
	Intersection-Related	38.1% (953/2500)	28.0% (163/583)
	Single-Vehicle Crash	16.2% (405/2500)	10.0% (58/583)
	Pedestrian-Involved	12.1% (302/2500)	8.0% (47/583)
	Other	8.5% (213/2500)	-
Accident Causes	Sudden Lane Change	22.8% (570/2500)	20.0% (117/583)
	Hard Braking (Rear-End)	26.3% (658/2500)	25.0% (146/583)
	Intersection Running Red Light	25.7% (643/2500)	22.0% (128/583)
	Distracted Driving	15.9% (398/2500)	18.0% (105/583)
	Speeding	18.3% (458/2500)	15.0% (87/583)
	Other	9.4% (235/2500)	-

• The total percentages in the Accident Type Distribution and Accident Causes category exceed 100% as multiple contributing factors can be associated with a single incident. This reflects the complexity of real-world traffic scenarios, where accidents often result from a combination of driver behaviors, environmental conditions, and roadway dynamics. The simulated data maintains a strict total of 100% due to controlled scenario configurations.

causes in real-world data (e.g., speeding combined with hard braking) results in percentages exceeding 100%, as multiple contributing factors are often present in a single incident. The distribution of accident types and causes in real-world data exhibits higher variability, reflecting the stochastic nature of urban driving conditions and external influences such as road design and traffic flow dynamics. Simulated accident distributions demonstrate strong alignment with real-world data, confirming that the scenario fuzzing methodology effectively replicates real-world risk scenarios. The close alignment of accident type distributions and accident causes demonstrates that our scenario generation effectively mimics real-world accident patterns. The minor variations are expected due to the inherent stochastic nature of human driving behavior.

F.2 ROOT CAUSE ANALYSIS OF SIMULATED COLLISIONS

To provide deeper insights into the specific vulnerabilities of Autonomous Driving Systems (ADS) exposed by our framework, we conducted a comprehensive root cause analysis of the 662 valid collision cases. We categorize the primary failure mechanisms into three distinct classes: Behavioral Prediction Failures, Perception Degradation, and Flow Dynamics Instability.

Behavioral Prediction Failures (Interaction-Driven) The most prevalent failure mechanism, accounting for approximately 45% of collisions, stems from **Behavioral Prediction Failures** driven by the **POP (Primary Other Participants)** model. Current ADS often rely on conservative prediction models that assume rational, rule-abiding behavior from surrounding agents. However, our POP model, utilizing Level-K game theory and competitive SVO ($\varphi \in (0, \pi/2)$), simulates aggressive

1620 actions such as sudden cut-ins, filtering between lanes, and forced gap acceptance. In these cases,
 1621 the ADS fails to anticipate the "irrational" trajectory of the Stackelberg leader motorcycle. By the
 1622 time the prediction module updates the agent's intent from "Lane Keeping" to "Cut-In," the Time-
 1623 to-Collision (TTC) has often dropped below the critical braking threshold, resulting in unavoidable
 1624 side-impact or oblique collisions. This underscores the fragility of rule-based prediction modules
 1625 when facing socially competitive agents in complex urban settings.

1626 **Perception Degradation (Environment-Driven)** The second major category involves **Perception**
 1627 **Degradation**, triggered by the **Structured Scenario Fuzzing** module (approx. 30%). When sce-
 1628 narios are configured with adverse environmental parameters, such as rain or fog, the simulation
 1629 platform introduces noise to Lidar point clouds and reduces the effective detection range of cameras.
 1630 Consequently, the ADS's effective look-ahead distance is significantly compromised. In observed
 1631 case studies, the system failed to detect static obstacles or slow-moving motorcycles emerging from
 1632 fog until they were within emergency braking distance. This detection latency, compounded by re-
 1633 duced road friction coefficients modeled in the simulator under rainy conditions, frequently leads
 1634 to rear-end collisions. These scenarios serve as critical regression tests for the robustness of the
 1635 Perception-Control loop and validate the necessity of resilient multi-modal sensor fusion.

1636 **Flow Dynamics Instability (Traffic-Driven)** Finally, **Flow Dynamics Instability** accounts for
 1637 approximately 25% of failures, originating from the high-density traffic states predicted by **T-**
 1638 **DDSTGCN**. In peak flow scenarios, the simulated traffic stream exhibits non-linear "stop-and-
 1639 go" waves where the average spatial headway between vehicles is drastically reduced. The ADS,
 1640 while proficient in steady-state car following, often struggles with these rapid oscillations in traffic
 1641 speed. Specifically, when a lead vehicle performs hard braking (as modeled by the background traf-
 1642 fic physics), the ADS's Adaptive Cruise Control (ACC) logic may exhibit delayed response times or
 1643 insufficient deceleration jerk, resulting in rear-end collisions. This highlights the necessity of val-
 1644 iduating ADS performance within realistic, city-specific traffic densities rather than ideal free-flow
 1645 conditions, as congestion dynamics introduce unique control challenges.

1646 F.3 ABLATION STUDY

1647 Given that scenario fuzzing introduces a degree of randomness, we ensure that all ablation study
 1648 scenarios are conducted with the same set of traffic participants and identical initial conditions. This
 1649 guarantees that performance variations are solely due to the modifications in the tested components,
 1650 eliminating external variability and ensuring reliable comparisons. To assess the contributions of in-
 1651 dividual components within our framework, we have conducted an ablation study by systematically
 1652 removing or modifying key elements and measuring their impact on performance. We randomly
 1653

1654 1655 Table 7: Impact of scenario fuzzing on ADS performance

1656 Scenario Variant	1657 Accident Detection (\uparrow)	1658 ADS Failure (\downarrow)	1659 Obstacle Avoidance Success Rate (\uparrow)
1660 Full Scenario Fuzzing	85.3%	8.2%	71.5%
1661 Without Environmental Variability	80.5%	7.4%	72.3%
1662 Without Traffic Density Variability	82.1%	6.8%	75.6%
1663 Without Behavioral Variability	79.4%	6.1%	78.2%

1664 select a subset of effective accident scenarios as the testing subset for ablation experiments. The
 1665 scenario fuzzing ablation (in Table 7) demonstrates that increasing the number of mutation factors
 1666 increases the ADS failure rate and decreases the obstacle avoidance success rate, confirming that
 1667 more complex scenarios significantly challenge ADS performance. Removing behavioral variabil-
 1668 ity results in a much lower ADS failure rate and a higher avoidance success rate, suggesting that
 1669 unpredictable human-like behaviors introduce critical decision-making challenges for ADS. Sim-
 1670 ilarly, removing environmental variability leads to a decrease in accident detection, implying that
 1671 weather and lighting variations play an important role in robust perception testing. The impact of
 1672 traffic density variations further supports the necessity of testing ADS under different congestion
 1673 levels, as higher density environments tend to increase failure rates due to more interactions with
 1674 other vehicles and pedestrians. The ablation study on the POP motorcycle model clearly demon-
 1675 strates its significant impact on ADS performance in complex urban traffic scenarios. The presence
 1676 of POP motorcycles increases both the ADS failure rate and accident detection rate, as their unpre-
 1677 dictable movements challenge the ADS's decision-making process. Without the POP model, the

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685 accident detection rate drops significantly to 78.6%, indicating that ADS may fail to correctly pre-
1686 dict and react to high-risk motorcycle behaviors. Introducing POP motorcycles leads to a dramatic
1687 increase in the ADS failure rate from 4.7% (default vehicles & pedestrians only) to 10.5%, em-
1688 phasizing the critical role of unpredictable motorcycle behaviors in increasing scenario complexity.
16891690 The obstacle avoidance success rate declines correspondingly from 85.6% to 65.8%, reinforcing the
1691 importance of including diverse traffic participants in ADS testing. When removing aggressive POP
1692 behaviors, the ADS failure rate decreases from 10.5% to 8.1%, and the obstacle avoidance success
1693 rate improves slightly to 72.4%, suggesting that high-speed lane-cutting and unexpected maneu-
1694 vers introduce substantial difficulties for ADS models. Conversely, removing defensive behaviors
1695 (e.g., slow lane changes, hesitation at intersections) results in a failure rate of 9.3%, implying that
1696 defensive motorcycles still contribute to complex ADS decisions, especially in multi-agent inter-
1697 actions. These results demonstrate that ADS models perform significantly worse in environments
1698 that include motorcycles with diverse behaviors, validating the necessity of incorporating realistic
1699 motorcycle interactions in autonomous driving scenario testing. The high accident detection rate in
1700 full POP scenarios further supports the argument that ADS models require improved predictive and
1701 reactive capabilities to handle dynamic urban environments with motorcycles.1702

G LLM USAGE STATEMENT

1703 During the preparation of this manuscript, we made selective use of Large Language Models
1704 (LLMs), specifically OpenAI’s ChatGPT, as a writing assistant for grammar correction and stylistic
1705 refinement. While all scientific contributions—including research ideas, model design, theoreti-
1706 cal formulations, experiments, and result analysis—were conceived and executed entirely by the
1707 authors, the LLM was helpful in improving the clarity, fluency, and precision of the written pre-
1708 sentation. The LLM did not contribute to any substantive intellectual content. Rather, it served as
1709 an intelligent editor—one that occasionally helped us rephrase complex sentences, refine paragraph
1710 transitions, or restructure explanations for better readability. We found this collaboration especially
1711 useful in enhancing the accessibility of our work to a broader audience. All final content was re-
1712 viewed, validated, and approved by the authors.

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Table 8: Impact of POP motorcycle model on ADS performance

Scenario Variant	Accident Detection (\uparrow)	ADS Failure (\downarrow)	Obstacle Avoidance Success Rate (\uparrow)
Default Vehicles & Pedestrians Only	75.3%	4.7%	85.6%
With POP Model (Full)	90.1%	10.5%	65.8%
Without POP Model	78.6%	5.9%	82.3%
Without Aggressive POP Behavior	85.2%	8.1%	72.4%
Without Defensive POP Behavior	87.4%	9.3%	69.7%