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ABSTRACT

Deep research agents, which synthesize information across diverse sources, are
significantly constrained by their sequential reasoning processes. This architec-
tural bottleneck results in high latency, poor runtime adaptability, and inefficient
resource allocation, making them impractical for interactive applications. To over-
come this, we introduce FlashResearch, a novel framework for efficient deep re-
search that transforms sequential processing into parallel, runtime orchestration
by dynamically decomposing complex queries into tree-structured sub-tasks. Our
core contributions are threefold: (1) an adaptive planner that dynamically allo-
cates computational resources by determining research breadth and depth based
on query complexity; (2) a real-time orchestration layer that monitors research
progress and prunes redundant paths to reallocate resources and optimize effi-
ciency; and (3) a multi-dimensional parallelization framework that enables
concurrency across both research breadth and depth. Experiments show that
FlashResearch consistently improves final report quality within fixed time bud-
gets, and can deliver up to a 5× speedup while maintaining comparable quality.

1 INTRODUCTION

Deep research tasks, which involve synthesizing information from diverse sources and navigating
complex, interdependent concepts, pose significant challenges for existing AI systems. These tasks
often demand knowledge retrieval, advanced reasoning, sophisticated tool use, and dynamic plan-
ning over multiple steps under structural uncertainty and evolving objectives (Du et al., 2025). Ap-
plications include literature review (Haman & Školnı́k, 2025), open-domain question answering,
and policy analysis (Gambrell, 2025), where the ability to evaluate conflicting perspectives, explore
hypotheses, and revise beliefs as new evidence emerges is essential. However, current systems of-
ten take tens of minutes to respond. This latency can break users’ cognitive flow (Iqbal & Horvitz,
2007), incur high context-switching costs (Mark et al., 2008), and degrade overall experience.

Much of this inefficiency stems from poor orchestration. Existing systems typically rely on sequen-
tial processing (Xu & Peng, 2025), leading to unnecessary latency when subproblems are indepen-
dent, leaving parallelizable evidence gathering, hypothesis branching, and speculative exploration
underexploited. Moreover, static planning strategies in these systems also fail to adapt to the dy-
namic nature of research (Zheng et al., 2025b). The value of subqueries or deeper investigation
often becomes clear only during execution, but current systems rarely prune low-value paths or
reallocate effort during runtime.

To address these challenges, we propose FlashResearch, a framework designed for efficient deep re-
search that integrates adaptive planning, real-time orchestration, and concurrent execution. FlashRe-
search treats deep research as a dynamic, tree-structured traversal, where a complex query is decom-
posed into concurrent subqueries that dynamically populate the research tree. The objective is to
maximize response quality under a time budget by adjusting the tree structure and reallocating effort
across promising research directions.

At the core of FlashResearch is an adaptive planner that decides, at each step, how many subqueries
to open and whether to explore further depth, based on the complexity of the input query. It weighs
the expected marginal utility of each branch, expanding breadth when broad exploration is valu-
able and deepening paths selectively when the information gain justifies further effort. This allows
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FlashResearch to flexibly allocate resources depending on whether the query is on a broad topic that
demands diverse perspectives, or a specific one that requires deeper investigation.

However, planning alone is insufficient. Since research is inherently iterative and non-linear, newly
emerged evidence may reshape priorities mid-execution. FlashResearch incorporates a real-time
orchestration layer that monitors ongoing research outputs, evaluates them against goal satisfaction
and quality metrics, and makes live adjustments. This mechanism allows the system to terminate
low-value or redundant branches early and reallocate computational resources toward more promis-
ing paths. More importantly, it allows speculative execution by launching child tasks before parent-
level planning decisions are finalized, thereby reducing idle time and accelerating throughput.

This tight feedback loop between planning and execution produces a highly dynamic research tree
that evolves in response to both query structure and emergent information. To handle this, FlashRe-
search employs a multi-dimensional parallelization framework to schedule tasks across breadth and
depth through a unified task pool. Built on a fully asynchronous infrastructure with thread-safe state
management, the system enables simultaneous exploration of multiple research paths and allows
non-blocking orchestration to adapt the tree structure as new findings emerge.

To evaluate the effectiveness of FlashResearch, we conduct experiments on two recent deep research
benchmarks, DeepResearchGym and DeepResearch Bench (Coelho et al., 2025; Alzubi et al., 2025).
Compared to the baseline, FlashResearch can consistently accomplish deeper and wider research
within fixed time constraints, producing research reports of better comprehensiveness and insights.

The key contributions of this work are:

• A formal formalization of deep research tasks as a tree-structured optimization problem.
• An adaptive planning module for real-time, context-aware decisions on task branching,

recursion, and termination.
• A real-time orchestration framework for dynamic task monitoring, speculative execution,

and intelligent resource reallocation.
• A fully asynchronous and parallelized execution architecture enabling concurrent research

execution across multiple dimensions.
• A comprehensive empirical evaluation demonstrating FlashResearch’s superior improve-

ments in terms of throughput, quality, and efficiency on complex research tasks.

2 RELATED WORKS

2.1 DEEP RESEARCH AGENTS

Building on earlier tool-use frameworks like WebGPT (Nakano et al., 2021) and ReAct (Yao et al.,
2023b), recent deep research agents – including GPT-Researcher (Elovic, 2023), Open Deep Search
(Alzubi et al., 2025), and LangChain’s Open Deep Research (Langchain, 2025) – decompose com-
plex queries into tool-augmented subtasks. To standardize evaluation, emerging benchmarks like
DeepResearchGym (Coelho et al., 2025) and DeepResearch Bench (Du et al., 2025) introduce LLM-
as-a-judge protocols tailored for complex research questions.

Despite these advances, current systems typically rely on fixed, pre-specified parameters for con-
trolling the research structure. Their orchestration strategies are dominated by sequential execution
or coarse-grained parallelism (Xu & Peng, 2025), which limits adaptability. As a result, when in-
formation quality shifts during execution, these systems either waste compute or incur unnecessary
latency. FlashResearch addresses these limitations by introducing a real-time orchestration layer
that couples multi-dimensional parallelism across both depth and breadth. Unlike prior static ap-
proaches, it adaptively expands or prunes subqueries in real time based on intermediate evidence,
enabling more efficient and responsive deep research.

2.2 AGENTIC WORKFLOW ORCHESTRATION

Recent work compiles high-level goals into executable agent graphs via MCTS-guided code search
(Zhang et al., 2024), evolutionary populations of heterogeneous workflows (Niu et al., 2025), and
modular activity-on-vertex graphs (Zhang et al., 2025). These systems mainly optimize offline and
then execute largely fixed graphs, and their runtime control over partially executed graphs remains

2
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Figure 1: Overview of FlashResearch: the Planning Nodes adaptively decompose queries into paral-
lel subqueries executed by Research Nodes for findings, which may recursively trigger deeper plan-
ning. The adaptive planner expands (1) breadth to explore prior-research and regulates (2) depth
to pursue promising paths post-research. The real-time orchestration layer monitors progress and
reallocates resources through (3) scheduling signals mid-research. A multi-dimensional paral-
lelization framework enables flexible concurrency across both breadth and depth.

limited. Production frameworks such as AutoGen (Wu et al., 2023), LangGraph (LangChain, 2024),
DSPy (Khattab et al., 2024), and OpenAI Swarm (OpenAI, 2024) provide valuable abstractions for
multi-agent pipeline control. However, they lack support for real-time replanning and cross-branch
compute reallocation. FlashResearch addresses this gap with an real-time orchestrator that continu-
ously monitors task states and reallocates resources on the fly, enabling suspension, escalation, and
replanning during execution rather than only before execution.

2.3 PARALLEL AND SPECULATIVE REASONING

Token- and action-level acceleration methods such as speculative decoding (Leviathan et al., 2023;
Miao et al., 2023; Cai et al., 2024) and speculative reasoning for fast inference (Pan et al., 2025;
Yang et al., 2025) reduce latency via draft-and-verify or multi-token prediction. At the reasoning
level, Dynamic Parallel Tree Search (Ding et al., 2025) accelerates Tree-of-Thoughts by expanding
and pruning nodes in parallel, while ParaThinker (Wen et al., 2025) and Parallel-R1 (Zheng et al.,
2025a) instill native parallel reasoning. These improve efficiency and accuracy but still rely on
static branching. Inspired by these works, FlashResearch advances parallelism to the workflow
level: it not only reallocates compute and prunes branches dynamically, but also supports speculative
execution—allowing branches to expand without delay and later discarding them if evidence shows
they are unnecessary.

3 BACKGROUND

3.1 FORMULATING DEEP RESEARCH

Deep research tasks involve tackling complex, open-ended queries by multi-step reasoning, gath-
ering diverse information, and synthesizing knowledge into comprehensive responses. We for-
malize such a task as follows: a user query q ∈ Q, where Q is the space of natural language
queries. The goal is to produce a response r ∈ R by integrating knowledge from retrieved context
C = {c1, c2, . . . , cn} sourced from a corpus D (e.g., web searches or local documents). During this
process, research findings F = {f1, f2, . . . , fm}, comprising reasoning artifacts and key insights,
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are iteratively derived from the context. Consequently, the response is generated as

r = σ(q, C, F ), (1)

where σ : Q × 2C × 2F → R is a synthesis function that aggregates and refines the inputs to
maximize factual accuracy, comprehensiveness, and relevance. Here, 2C and 2F denote the power
sets of C and F , representing all possible subsets of contexts and findings, respectively. In practice,
these are subsets selected based on relevance constraints, and σ is typically realized by an LLM
agent.

To solve such tasks scalably, a deep research framework must balance the thoroughness of explo-
ration with computational overheads. Conventional sequential pipelines—such as linear chains of
retrieval-augmented generation (RAG) steps—often falter under intricate queries, incurring high
costs from redundant traversals or premature convergence to suboptimal paths. Given the hierarchi-
cal and multi-faceted nature of deep research, it is natural to model the process as a tree structure,
like in Tree of Thoughts (Yao et al., 2023a).

Formally, we model the process as a directed tree T = (NP ∪ NR, E) with disjoint node sets of
planning nodes NP and research nodes NR.

A planning node nP decomposes a query qn into a finite set of subqueries:

nP (qn)→ {qn1 , . . . , qnbn}, qnj ∈ Q. (2)

Here, qn can be either the initial query or a subquery generated by a previous planning node. Each
qnj ∈ nP (qn) instantiates a research node nR(qnj ). The value bn = |nP (qn)| is the breadth chosen
at that level. The tree root is therefore the planning node nP0 that receives the initial query q.

A research node nR(qnj ) executes retrieval and localized reasoning for its particular subquery qnj :

nR(qnj )→ (Cqnj
, Fqnj

), (3)

producing local contexts Cqnj
⊆ C and findings Fqnj

⊆ F . Optionally, a research node may trigger
recursion by spawning a single child planning node that further decomposes qnj , after which the
alternating pattern continues. The depth d of the tree is defined by the number of research-node
layers along the longest root-to-leaf path.

The final response rT can then be synthesized as

rT = σ

q, ⋃
ni∈NR

Ci,
⋃

ni∈NR

Fi

 , (4)

by aggregating each research node’s local contexts and findings across the tree. The quality of the
response can be subsequently measured by a utility function U(r).

However, using fixed depths and breadths for the tree can lead to suboptimal performance: shallow
trees might insufficiently explore the topic, while excessively deep or broad trees incur high costs
with diminishing returns on quality. Therefore, the core challenge is to orchestrate the tree structure
at runtime to maximize the response quality while adhering to a time budget tmax. Formally, we aim
to solve:

max
T

U(rT ) s.t. t(T ) ≤ tmax, (5)

where t(T ) represents the total latency of the research process across all nodes and edges in the tree.

3.2 MOTIVATING EXPERIMENTS

Following the above formulation, we investigate how the tree structure can affect response quality
in deep research tasks. We evaluated a tree-based deep research framework, GPT-Researcher, on a
set of 100 complex queries randomly sampled from DeepResearchGym (Coelho et al., 2025). We
varied the tree’s maximum depth and breadth hyperparameters and measured performance across
multiple metrics.
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(b) Breadth trade-off

Figure 2: Trade-offs between deep research tree structure and response quality. Left figure (a)
varies depth (breadth fixed at 4) and right figure (b) varies breadth (depth fixed at 3); in each, the top
plot shows Quality metrics with sub-metric Support on the right y-axis, while the bottom plot shows
Relevance (left) and Faithfulness (right). The red labels along the x-axis give total node counts as a
proxy for computational cost. Early increases raise quality, but gains saturate as cost escalates.

Depth In Figure 2(a), increasing depth from 1 to 2 yields the largest gain, with overall quality
score rising sharply from 77.00 to 80.95. Beyond depth 3, the curves flatten. Extra depth produces
only marginal quality improvements while node number grows exponentially. Notably, Relevance
and Faithfulness peak at depth 3 and then decline, as deeper searches bring in peripheral sources and
redundant materials, diluting core evidence and complicating the write-up compression.

Breadth A similar pattern can be observed when varying the breadth. In Figure 2(b), widening
the tree from breadth 1 to 2 delivers a substantial quality gain with a moderate increase in nodes.
Quality continues to improve up to breadth 4, after which the gains taper off.

To summarize, initial increases in depth or breadth are valuable, but returns diminish as node counts
escalate. This highlights that a one-size-fits-all approach is inefficient. Adaptive planning is essential
to tailor depth and breadth to each query’s complexity, optimizing the quality-cost tradeoff.

4 FLASHRESEARCH

FlashResearch consists of three core components: (1) an Adaptive Research Planner, (2) a Real-
Time Orchestration Layer, and (3) a Multi-Dimensional Parallelization Framework. Together,
these components dynamically expand and prune the research tree T in real time and execute sub-
tasks concurrently.

4.1 ADAPTIVE RESEARCH PLANNING

To efficiently navigate vast information spaces, it is essential to adapt the breadth and depth of
research to the scope, nature, and complexity of each query. For example, broad queries like “What
is the impact of climate change?” can be decomposed into multiple subqueries that address distinct
aspects.In contrast, narrower questions like “What’s the process for developing film in a darkroom?”
require less exploration but demand greater focus and precision.

Therefore, we propose an adaptive research planner that decomposes the query qn into bn sub-
queries at each node nP ∈ NP , adjusting exploration breadth with a policy πb contextualized on
the accumulated research findings F :

nP (qn) = πb(q
n, F ) = (bn, {qn1 , . . . , qnbn}), (6)

where bn is the number of subqueries, {qn1 , . . . , qnbn} are the generated subqueries. A utility model
guides the decision:

bn = argmax
b∈[1,bmax]

E[U(b | qn, F )], (7)

5
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Algorithm 1 Real-time Orchestration

1: function RESEARCHORCHESTRATOR(nRi , qi, Ci, Fi, Φmin, Ψmin)
2: τi.should terminate← False ▷ Initialize termination flag for current subtree
3: Async Execute research node nRi , updating Ci, Fi and parent node ▷ Interruptible
4: Async Plan child queries
5: for each child query qj do
6: Async Create nRj with Cj , Fj ▷ Speculative execution
7: Async RESEARCHORCHESTRATOR(nRj , qj , Cj , Fj , Φmin, Ψmin) ▷ Recursive monitor
8: end for
9: while not τi.should terminate do ▷ Continuous monitor at current level

10: Update Ci, Fi from node nRi and descendant nodes nRj
11: Async Evaluate (δi, ϕi, ψi)← πo(q

i, Ci, Fi)
12: if δi = 0 and ϕi ≥ Φmin and ψi ≥ Ψmin then
13: τi.should terminate← True
14: Interrupt node nRi if ongoing ▷ Early termination
15: for each descendant nRj do
16: Terminate τj recursively ▷ Prune the descendant subtrees
17: end for
18: end if
19: if nRi ’s task completed and all children completed/terminated then
20: τi.should terminate← True
21: end if
22: end while
23: return Aggregated results from Ci, Fi and children
24: end function

where U represents a utility function estimating the expected information gain and relevance of
decomposing into b subqueries given the current context.

Once the breadth of exploration is set and the corresponding research is conducted, a policy πd
assesses whether to deepen the current research path based on the localized research findings Fi at
each node nRi ∈ NR:

πd(q
i, Fi) = I{E[U(Fd+1 | q, Fi)− U(Fd)] > τ}, (8)

where Fd represents the accumulated research findings at depth d, τ is a threshold for diminishing
returns, and the output is a binary decision whether further exploration yields sufficient information
gains to justify the continued exploitation of the current research path. In our work, πb and πd are
instantiated with LLM agents to support adaptive and intelligent decision-making (see Appendix
A.1 for details), though in principle such policies could also be realized through supervised training
or reinforcement learning.

4.2 REAL-TIME ORCHESTRATION

To address the dynamic and iterative nature of research, where priorities can shift as new evidence
emerges, breadth planning conducted prior-research and depth planning performed post-research
can be limiting. Furthermore, depth planning can also delay the exploitation of promising research
paths until decisions are finalized.

To mitigate these, we introduce a real-time orchestration layer that dynamically manages the re-
search tree T based on mid-research signals, enabling speculative execution and resource realloca-
tion. Each research node nR(qi) is continuously monitored by the orchestration policy πo based on
the local query qi, real-time context Ci, and accumulated findings Fi:

πo(qi, Ci, Fi) = (δi, ϕi, ψi) =

{
(0, ϕi, ψi) if ϕi ≥ Φmin and ψi ≥ Ψmin,

(1, ϕi, ψi) otherwise,
(9)

where δi ∈ {0, 1} indicates task scheduling signals for continuation (δi = 1) or termination (δi = 0),
based on whether the goal satisfaction score ϕi ∈ [0, 1] satisfies the goal satisfaction threshold Φmin,

6
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Figure 3: Sequential processing and group/layer parallelization introduce unnecessary latency by
forcing nodes to wait for slow dependencies. FlashResearch supports multi-dimensional paralleliza-
tion by submitting research nodes to a global task pool, where they are executed as soon as resources
are available—so child nodes (e.g., D, E, F) can start immediately once their parents (A, B) finish,
without being delayed by unrelated nodes like C.

and the quality score ψi ∈ [0, 1] satisfies the quality threshold Ψmin. The policy is also implemented
via an LLM agent, detailed in Appendix A.2.

More importantly, this mechanism enables speculative execution: child nodes can be spawned and
deepen the tree without awaiting the parent’s planning decision. Child nodes’ findings update the
parent’s Ci and Fi, even after the parent’s research completes, enabling recursive and adaptive task
management. As shown in Algorithm 1, upon evaluation at each hierarchy, low-yield nodes and their
descendants are terminated early once the research goal is satisfied, pruning the subtree dynamically.

4.3 MULTI-DIMENSIONAL PARALLELIZATION

To maximize efficiency in traversing the adaptive research tree T , FlashResearch incorporates a
multi-dimensional parallel execution engine that enables concurrent processing across multiple axes:
breadth (parallel subqueries at the same level), depth (speculative deepening of paths), and across
the real-time orchestrators at different recursive hierarchies in Algorithm 1.

The engine operates by submitting all research nodes nRi to a global asynchronous task pool as
soon as they are planned and orchestrated. Each node is parameterized by its local query qi, depth
di, parent identifier pi, and a unique task identifier ti. Dependencies are enforced dynamically: a
child node nRj (with pj = ti) becomes eligible for execution only once its parent nRi completes
its initial research phase, but speculative spawning allows planning and partial execution to begin
earlier under the real-time orchestrator’s guidance.

FlashResearch’s engine leverages non-blocking asynchronous calls, allowing tasks to progress in-
dependently. This approach mitigates bottlenecks inherent in sequential or coarse-grained parallel
execution, where nodes must wait for unrelated dependencies to complete. For instance, as illus-
trated in Figure 3, child nodes (e.g., D, E, F) can initiate immediately upon their respective parents’
(A, B) completion, without delays from slower siblings like C.

5 EXPERIMENTS

5.1 BENCHMARKS AND EVALUATION METRICS

We evaluate our method on two recent deep research benchmarks.

7
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DeepResearchGym (Coelho et al., 2025) is an open-source evaluation sandbox for deep research
systems. The benchmark consists of the top 1,000 complex, high-engagement non-factoid queries
from the Researchy Questions dataset (Rosset et al., 2025). We randomly sampled 100 for evalua-
tion. It employs an LLM-as-a-judge protocol to assess generated reports along three dimensions:

• Quality Rates organization, clarity, and coherence of the synthesis. Prefers well-structured, read-
able reports that integrate evidence into concise, actionable takeaways.

• Relevance Judges whether the report directly answers the user’s intent, covering the key sub-
questions and constraints in the prompt. Penalizes omissions and off-topic content.

• Faithfulness Assesses whether the cited evidence supports claims. Rewards correctly grounded
statements and flags contradictions, unsupported claims, or hallucinations.

DeepResearch Bench (Du et al., 2025) comprises 100 PhD-level research tasks across 22 distinct
fields. These tasks were designed by domain experts based on a statistical analysis of over 96,000
real-world user queries from web search–enabled LLM interactions. The benchmark includes 50
English and 50 Chinese tasks. We focus on the English subset in evaluation. The benchmark pro-
poses two evaluation frameworks: RACE for report quality and FACT for citation trustworthiness.

• RACE:

– Comprehensiveness: Evaluates thorough coverage of relevant aspects, including diverse per-
spectives and key subtopics, ensuring understanding without omissions.

– Depth: Assesses level of detail, analysis, and insights beyond surface-level, including causes,
impacts, and trends.

– Instruction following: Checks adherence to query requirements, ensuring alignment with intent
by following the topic and answering directly.

– Readability: Assesses clarity through structure, language, and ease of understanding.

• FACT:

– Effective citation count: Measures factual abundance by counting the number of unique, rele-
vant citations that effectively support key statements in the report.

– Citation accuracy: Evaluates citation trustworthiness by assessing the proportion of citations
that effectively support the referenced claims.

5.2 EVALUATION SETUP

To ensure a fair comparison, we build FlashResearch on top of GPT-Researcher’s agentic workflow
(Elovic, 2023), and evaluate FlashResearch against the original GPT-Researcher, using FineWeb
(Penedo et al., 2024) as the static web corpora to improve reproducibility. On DeepResearchGym,
we fix maximum execution times at 2 and 10 minutes to reflect realistic usage scenarios:

• The 2-minute cutoff reflects human multitasking behavior, where information workers spend an
average of ∼2–3 minutes on events or tools before task switching (González & Mark, 2004).

• The 10-minute threshold matches the average duration of a “working sphere” (González & Mark,
2004) and is supported by evidence from high-performance computing (Schlagkamp & Renker,
2015) and crowdsourcing tasks (Bernstein et al., 2011), indicating that a 10-minute window pre-
serves task continuity without losing human-in-the-loop coordination.

5.3 RESULTS

DeepResearchGym. We evaluated FlashResearch against both GPT-Researcher and an ablated
variant, FlashResearch*, which omits adaptive research planning and real-time orchestration. The
results in Table 1 show that FlashResearch consistently delivers superior throughput, processing
substantially more research than the GPT-Researcher baseline (up to 4.11× in the 10-minute setup).
This efficiency gain arises from adaptive planning and real-time orchestration, which enable specu-
lative execution without compromising quality.

Beyond throughput, FlashResearch also improves overall response quality, with clear improvements
in balance, breadth, and insight metrics. These gains highlight its ability to maintain a robust trade-
off between expansive coverage and focused analysis, particularly under tight time constraints.

8
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Table 1: Evaluation of deep research frameworks on DeepResearchGym under fixed time budgets.
Scores are assessed by gpt-4.1-mini-2025-04-14, adhering to the benchmark’s practice.

Throughput Quality Relevance Faithfulness

# Nodes Overall Clarity Depth Balance Breadth Support Insight KPR + KPC Cit. Recall

2 minutes
GPT-Researcher 8.00 76.14 79.40 89.30 83.77 91.17 32.23 81.00 55.75 85.84
FlashResearch* 21.14 80.70 81.40 89.00 86.50 89.70 51.10 86.50 68.00 94.21
FlashResearch 19.42 82.13 83.30 89.70 88.10 91.40 52.40 87.90 62.41 94.37

10 minutes
GPT-Researcher 23.94 81.19 81.77 90.10 86.77 91.40 49.03 88.07 64.56 95.51
FlashResearch* 68.00 85.25 83.40 89.70 87.40 94.10 68.80 88.10 67.98 96.86
FlashResearch 98.43 85.40 81.70 90.10 88.10 95.40 67.70 89.40 65.41 96.15

Table 2: Overall evaluation results on DeepResearch Bench under flexible time budgets, judged by
Gemini-2.5-flash and Gemini-2.5-pro. Commercial deep research agents’ results are
directly from the DeepResearch Bench Leaderboard1, which has no latency statistics reported.

Method Throughput RACE FACT

# Nodes Latency Overall Comp. Depth Inst. Read. Cit. Acc. Eff. Cit.

Grok Deeper Search - - 38.22 36.08 30.89 46.59 42.17 73.08 8.58
Perplexity Research - - 40.46 39.10 35.65 46.11 43.08 82.63 31.20
OpenAI Deep Research - - 46.45 46.46 43.73 49.39 47.22 75.01 39.79
Gemini-2.5-Pro Deep Research - - 49.71 49.51 49.45 50.12 50.00 78.30 165.34

GPT-Researcher 23.12 554.41 s 41.15 38.58 37.55 46.03 45.62 65.58 9.40
FlashResearch* 27.88 207.06 s 41.33 38.61 38.09 46.01 45.80 70.06 17.35
FlashResearch 39.30 367.88 s 41.92 39.55 38.61 46.36 45.83 58.25 22.94

Notably, the overall quality of FlashResearch with 2-minute execution even surpasses that of the
GPT-Researcher baseline with 10 minutes, demonstrating a 5× speed-up while preserving quality.
Overall, these results underscore FlashResearch ’s capacity for dynamic adaptation, producing more
comprehensive and higher-quality research outputs under constrained budgets.

DeepResearch Bench. To better assess our system’s performance relative to other deep research
agents, we also evaluate it under flexible time budgets on DeepResearch Bench. As shown in Ta-
ble 2, FlashResearch achieves substantial efficiency gains, processing 39.3 nodes on average while
reducing latency by 1.51× compared to the GPT-Researcher baseline.

In terms of quality, our proposed framework also consistently improves across all RACE sub-
metrics. Compared to the ablated method, FlashResearch incurs higher latency but conducts more
research at a comparable throughput, highlighting a favorable trade-off between efficiency and com-
prehensiveness. Importantly, FlashResearch also achieves a performance competitive with commer-
cial systems like Grok Deeper Search and Perplexity Research, narrowing the gap with state-of-
the-art proprietary agents. Beyond quantitative metrics, we also provide a detailed case analysis of
FlashResearch’s adaptability across diverse query conditions in Appendix B.

6 CONCLUSION

We present FlashResearch to enhance the efficiency of deep research tasks through adaptive plan-
ning, real-time orchestration, and multi-dimensional parallelization. By formulating deep research
as a tree-structured process and dynamically allocating resources to promising paths, FlashResearch
achieves significant improvements in research throughput and response quality, as demonstrated
through extensive evaluations on two deep research benchmarks. Future work includes incorporating
richer modalities beyond text and exploring tighter integration with human-in-the-loop monitoring
and interruption to further improve transparency and usability.

1https://huggingface.co/spaces/Ayanami0730/DeepResearch-Leaderboard
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REPRODUCIBILITY STATEMENT

Additional implementation details and experimental setups are included in the Appendix A. The
complete source code and instructions for reproducing all experiments are available at the following
anonymous repository: https://anonymous.4open.science/r/FlashResearch/.

ETHICS STATEMENT

This work does not involve human subjects, private data, or sensitive information. Experiments were
conducted using publicly available datasets. While our framework aims to improve the efficiency
and quality of deep research systems, we acknowledge the broader risks of misuse, including the
potential amplification of biased or unreliable information. Responsible deployment requires careful
selection of data sources, robust fact-checking, and adherence to ethical standards.
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A IMPLEMENTATION DETAILS

A.1 ADAPTIVE RESEARCH PLANNING

The adaptive research planner dynamically decomposes queries into subqueries using LLM-based
policies πb and πd. The following prompt is used by πb to determine the optimal number of sub-
queries bn, balancing exploration breadth based on the utility model in Equation (7):

Prompt 1

You are an expert researcher generating search queries. Your task is to determine the OPTIMAL
number of clear, non-overlapping search queries.
EFFICIENCY IS CRITICAL: More subqueries do not necessarily lead to better research.
Minimize waste and redundancy. Highly specific queries need fewer subqueries. Broad topics
may need more.

SUBQUERY REQUIREMENTS:
- Do not exceed [max breadth+flex breadth] subqueries
- Keep queries clear and concise
- Make each subquery target a DISTINCT aspect
- Avoid near-duplicates and trivial variants
- Prefer fewer subqueries if coverage is maintained
- Ensure queries are relevant to the high-level research goal: [initial query]
- Exclude overlap with existing learnings: [accumulated learnings]

This prompt enables the generation of subqueries, adjusting the breadth bn based on the query and
accumulated research findings F , as described in Equation (6).

A.2 REAL-TIME ORCHESTRATION

The real-time orchestration layer monitors task execution with a policy πo to assess goal satisfaction
and quality. The following prompt implements πo to compute goal satisfaction (ϕn) and quality
(ψn) scores, enabling speculative execution and early termination as per Equation (9):

Prompt 2

You are an expert research quality evaluator. Determine if a research goal has been sufficiently
satisfied based on current findings.

EVALUATION CRITERIA:
1. GOAL COVERAGE: Does the research adequately address the stated goal?
2. INFORMATION QUALITY: Are the findings comprehensive and reliable?
3. DEPTH SUFFICIENCY: Is there enough detail to answer the research question?
4. SOURCE DIVERSITY: Are findings from multiple credible sources?
5. COMPLETENESS: Are major aspects of the topic covered?

SATISFACTION SCORE:
- HIGH SATISFACTION (0.8-1.0): Goal fully satisfied, comprehensive coverage
- MEDIUM SATISFACTION (0.5-0.8): Goal mostly satisfied, minor gaps acceptable
- LOW SATISFACTION (0.3-0.5): Goal partially satisfied, significant gaps remain
- INSUFFICIENT (0.0-0.3): Goal not satisfied, major research needed

QUALITY SCORING:
- EXCELLENT (0.8-1.0): Comprehensive, well-sourced, detailed
- GOOD (0.5-0.8): Adequate coverage, some depth
- FAIR (0.3-0.5): Basic coverage, limited depth
- POOR (0.0-0.3): Insufficient information

Be conservative - only mark as satisfied if the research truly addresses the goal comprehensively.
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This prompt facilitates the evaluation of task outputs against thresholds Φmin and Ψmin, pruning
low-yield paths dynamically. In our experiments, both thresholds Φmin and Ψmin are set to 0.8.

A.3 EXPERIMENTAL SETUPS

For model configuration, we use gpt-4.1-mini-2025-04-14 for the main research process-
ing, and o3-mini-2025-01-31 for major policy decisions, including adaptive research planning
and real-time orchestration.

To ensure fair comparisons among deep research systems, we impose a maximum execution time
for research trees. Once the time cut-off is reached, the research process terminates immediately,
and the system generates a response based on the findings and context gathered up to that point. To
allow all systems to fully utilize their time budgets, we set the maximum tree depth to 10 and the
maximum breadth to 4 within the GPT-Researcher framework. To provide additional flexibility, the
adaptive research planning module may expand the breadth up to 6 when necessary.

Additionally, to control the computational costs introduced by the real-time orchestration layer, we
set an interval of 8 seconds between successive evaluations of goal satisfaction and research quality.

B CASE ANALYSIS

To illustrate how FlashResearch adapts its research process to different query conditions, we present
the research trees from three cases in DeepResearch Bench. For a controlled comparison, we stan-
dardize the time cutoff to 2 minutes across all cases.

In Case 1 (Figure 4), the query concerns a broad topic: investigating current non-alcoholic cocktails.
The tree expands widely across multiple layers of branching, encompassing diverse angles such as
ingredient sourcing, sustainability, AI-driven methods, and integration with fine dining. This high-
lights FlashResearch ’s ability to surface complementary perspectives when the query is exploratory
and open-ended.

In contrast, Case 2 yields a more compact tree in Figure 5 for a narrow, domain-specific query on
cislunar situational awareness. The decomposition focuses on specialized aspects, including hybrid
sensor fusion, bias-correction methods, and federated filtering. With the research goal achievable
through limited exploration, FlashResearch terminates at depth 2 to avoid redundant effort.

Finally, Case 3 depicts a common scenario where users explicitly specify particular focuses for a
deeper investigation. As shown in Figure 6, FlashResearch tailors the tree to these requirements,
deepening its analysis of AI’s disruptions across various industries.

Collectively, these cases demonstrate FlashResearch ’s adaptability: expanding broadly for open
domains, conserving resources when goals can be met with focused research, and tailoring scope
when users impose explicit constraints.

C USE OF LLMS

We used LLMs as assistive tools for (i) polishing the manuscript; (ii) revising the phrasing of afore-
mentioned LLM prompts, and (iii) refining code. LLMs did not contribute to research ideation,
experimentation, or the formulation of claims.
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