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Abstract
Algorithms to find optimal alignments among strings, or to find a parsimonious summary of a

collection of strings, are well studied in a variety of contexts, addressing a wide range of interesting
applications. In this paper, we consider chain letters, which contain a growing sequence of signatories
added as the letter propagates. The unusual constellation of features exhibited by chain letters
(one-ended growth, divergence, and mutation) make their propagation, and thus the corresponding
reconstruction problem, both distinctive and rich. Here, inspired by these chain letters, we formally
define the problem of computing an optimal summary of a set of diverging string sequences. From
a collection of these sequences of names, with each sequence noisily corresponding to a branch of
the unknown tree T representing the letter’s true dissemination, can we efficiently and accurately
reconstruct a tree T ′ ≈ T? In this paper, we give efficient exact algorithms for this summarization
problem when the number of sequences is small; for larger sets of sequences, we prove hardness and
provide an efficient heuristic algorithm. We evaluate this heuristic on synthetic data sets chosen to
emulate real chain letters, showing that our algorithm is competitive with or better than previous
approaches, and that it also comes close to finding the true trees in these synthetic datasets.
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2 Summarizing Diverging String Sequences

1 Introduction

In a range of computational settings, we are given a collection of strings and asked to
construct some kind of parsimonious representation of the given set. The task becomes more
interesting if the strings result from a generative process, especially if new strings arise from
a mechanism involving both replication and mutation of old strings. Now the parsimonious
representation might be a tree describing the generative history of this population, with nodes
corresponding to the strings and the branching structure representing the evolutionary events
that produced that population. At this level of description, a host of applications fall under
this rubric: reconstructing a phylogeny from a set of genes, tracing the spread of a textual
meme in a social network, inferring the version history of a document from its many copies.
These domains differ in the way that replication and mutation occur—sometimes randomly
(“by nature”) and sometimes intentionally by humans embedded in a social structure—and,
perhaps, whether some kind of selective pressure affects which strings survive or replicate.

Here, we consider a specific—and surprisingly rich—social setting in which a population
of strings is generated: chain letters. Chain letters often feature an outlandish claim (“send
a copy of this letter to ten friends, or you will have bad luck forever!”), but, more crucially,
recipients are instructed to add their names to the document’s end, make a copy, and send
those copies to multiple friends. Importantly, every subsequent recipient may modify any
part of the document, or copy it imprecisely; thus each document contains a list of signatures,
representing an ordered (if noisy) trace of its particular path through the social network.
In the present work, we study the problem of accurately reconstructing the underlying
propagation tree from a set of signature lists. If the lists of signatures contained no errors, the
problem would be trivial, but errors abound, including both point mutations and structural
variants. (In real email-based chain-letter data, some signatories retyped names, often
incorrectly, and both block deletions and duplications appear [29]. Worse, some copies of the
emails are only available as low-quality scanned images, introducing further errors.)

The propagation of chain letters. There are three crucial properties in chain-letter–like
contexts that, together, make this data intriguingly different from other settings:
(i) chain letters grow (at one end). A document has an “active end,” and a document

typically changes via the deposition of additional text (another name) at its active end.
(ii) chain letters diverge. A document can split to create multiple “children” documents,

which share a prefix up to the split but have differing suffixes below. The split is at the
active end; two documents that diverge grow independently after the branching point.

(iii) chain letters mutate. Actors introduce noise: an individual sending a chain letter to
a friend makes a (potentially imperfect) copy of that document, possibly introducing
errors—and those errors are “inherited” by subsequent copies of the letter.

Given a collection of many copies of “the same” chain letter, each with its own sequence
of names, one can seek to reconstruct the underlying true record of the propagation—both
the structure of the propagation tree and the strings representing the true names of the
signatories. Together, the above properties make this chain-letter reconstruction problem a
tantalizing domain for parsimonious reconstruction: as the rate of noise in document copying
increases, naturally the reconstruction problem becomes difficult, but there is a great deal of
repetition in the input data, particularly near the root of the propagation tree.

The present work. We formally introduce the Diverging String Sequence Summarization
Problem (DSSSP): given a collection X of sequences of strings (strings correspond to names,
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and each sequence is a noisy list of names in an instantiation of a chain letter), we seek a tree
T that optimally summarizes X. (Rather than using the language of chain letters, we will
abstract away the particular application and discuss diverging string sequences in general.)1

What counts as an “optimal” summary depends on a tradeoff between two competing goods:
the accuracy of T in representing the strings in the given sequences, and the efficiency of T in
representing the given string sequences without too much redundancy. Our formal definition
of the problem is parameterized to reflect the tradeoff between these two competing goods.

Our main theoretical results on DSSSP are (1) an efficient optimal algorithm for the case
ofm = 2 sequences, based on an approach we call edit distance with give-up (Theorem 4.1); (2)
a proof of hardness for large m (Theorem 5.1); and (3) an exact polynomial-time algorithm for
any fixed value of m (Theorem 5.2). We also give a much more efficient heuristic algorithm for
large m—using a combination of divergence-aware pairwise alignment and iterative merging,
inspired by progressive alignment algorithms [13]—and show empirically that it does a good
job of reconstructing synthetically generated trees.

2 Related Work

Chain-letter data. In joint work with Jon Kleinberg, the second author studied the prop-
agation of a widespread email-based anti-war petition [29]. This work focused on the
topological structure of the underlying propagation tree; subsequent research sought to
explain the shape of the tree through stochastic branching processes [17] or the rarity of
sampled email copies [8]. The present work differs in that here we study the problem of
accurately reconstructing the propagation tree from signature lists, rather than seeking to
understand the structure of that tree. Still, examining the structure of the propagation tree
presupposes a reconstructed tree, which in [29] was done using a hard edit distance cutoff to
decide whether two signatures belong to the same signatory. (See Section 7.2.) This specific
aspect of our problem—do multiple signatures belong to the same signatory?—has been
considered in other forms in the past, including error-tolerant recognition of strings with
various error models [4, 34], error correction of strings of regular languages [41], and block
edit models for approximate string matching [30], all of which use various versions of edit
distance.

Chain letters in paper form have also been investigated in the context of constructing
a phylogeny based on variations in the text of the document itself (rather than a list of
signatories) [3], or the propagation of stories as a network [21].

Other forms of propagation. In rare cases, a situation matching all three key features of
chain letters has been studied—including a (controversial) model of the origin of life, based on
layered clay accreting over time and even diverging and mutating [5,6]. More common settings
share two of the three features. For example, absent any errors, our reconstruction task is
solved by a trie [10,15] summarizing a set of diverging strings. Online conversations [24] (e.g.,
comment threads or especially email threads) have an active end at which new contributions
appear, and threads can diverge, but there is no obvious notion of mutation.

1 There is another layer of complication, literally: rather than viewing a document as a sequence of
characters, we instead view it as a sequence of signatures (each of which is a string that consists of a
sequence of characters). Thus there is a “two-level” view of edits, in which either an individual character
can be corrupted (a single character-level edit within a particular signature) or an individual signature
can be corrupted (an entire signature is deleted, inserted, or replaced by a different signature).
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There are also applications in which the objects of interest are strings that grow at one
end, with noise but without meaningful divergence. In dendrochronology (the science of
dating wood), approaches based on edit distance can be used to study sequences of growth
rings in trees, which accumulate on one end, adjacent to the bark [44].

By far, though, the best-studied settings that match two of our three features have strings
that mutate and replicate, but have no “active end” at which growth occurs. This is the
classical setting of phylogenetic reconstruction, but it also appears in many other contexts.
Most prominent is the spread of news, memes, and rumors that evolve as versions are created
and shared (e.g., [1, 16, 20, 25, 39]). Mutations in these cases differ from ours, though, in
that the content of the information being spread can affect the type of mutations that occur,
thereby affecting the likelihood of further propagation (and therefore the structure of the
tree). Much of this work seeks to understand various types of dissemination and what
factors may impact the propagation structure—different from the goal of reconstructing
the underlying tree. Reconstruction of the evolutionary history of a collection of divergent
objects is also well studied in a bafflingly wide variety of contexts, from version histories of
code snippets in Stack Overflow [2], to variations of the story “Little Red Riding Hood” [40],
to diverging cultural histories using textile data [31].

Reconstruction algorithms. In addition to the algorithmic approaches to these various
other forms of data, there is a voluminous literature on string alignment in the computational
biology literature. The multiple sequence alignment problem is closely related to DSSSP,
and many algorithms target a variety of challenges related to it (see [7, 22, 27, 36, 37, 42],
among many others). There is also work involving the alignment of amino acid sequences to
reconstruct the history of proteins, including mutations and divergence events [12].

3 Summarizing Diverging String Sequences

Before we formally define our abstract problem, we begin with some intuition, with terminol-
ogy drawn from chain letters. Informally, a name is a string over a finite alphabet, and a
petition is a sequence of names. We are given a set of petitions X = {x1, . . . , xm}, and we
seek the tree T that best summarizes the set X. But the “best” tree depends on a tradeoff
between two competing goods: (i) the efficiency of T (its number of nodes), and (ii) the
accuracy of T in representing the petitions in X.

Consider petitions x1 = Aaa Bbb Ccc Ddd Eee and x2 = Aaa Bbx Ccc Dxx Fff, with
spaces separating names, as an example. Depending on the relative importance of efficiency
and accuracy, there are four distinct “best” trees (see Figure 1): a trivial tree that never
diverges (if efficiency matters much more than accuracy); a tree that diverges upon any
textual discrepancy (if accuracy matters much more); or two intermediate trees that diverge

Aaa Bb? Ccc D?? ???

Aaa Bb? Ccc D?? Eee

Fff

Aaa Bb? Ccc Ddd Eee

Dxx Fff

Aaa Bbb Ccc Ddd Eee

Bbx Ccc Dxx Fff

Figure 1 Four “best” trees for x1 = Aaa Bbb Ccc Ddd Eee and x2 = Aaa Bbx Ccc Dxx Fff.
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after the Cccs or the D??s (depending on the cost–benefit of adding one node vs. paying for
two textual errors).

3.1 Distance between a Summary Tree and a String Sequence
To begin, we need to quantify how accurately a set X of string sequences is represented by a
summary structure—and, more fundamentally, what it means to summarize X.

I Definition 3.1 (Labeled Summary Tree). Let X be a set of string sequences. A labeled
summary tree of X is a pair 〈T, f〉, where T is a tree with each node labeled with a string,
and f is a function mapping each x ∈ X to a node vx in T .

Let labelseqT (vx) denote the sequence of node labels on the path from the root of T to vx.

That is, a summary of X consists of a labeled tree T , with a node of T designated to
correspond to each sequence in X. To assess how accurately a string sequence x ∈ X is
represented, we will compare x with labelseqT (vx). Our metric will be a variation on the
classical Levenshtein edit distance [26], with two adjustments:
1. Edit distance is usually defined between two strings, but we wish to compare two sequences

of strings. We cannot simply concatenate the strings within each sequence and then use
standard edit distance, as the edits would no longer respect string boundaries. As such,
we need to define an edit distance with two levels of granularity.

2. We insist that every string in each sequence x ∈ X be represented (perhaps with some
error) in the tree. Thus, when we align x to its path in the tree, we do not allow deletion
of strings in the sequence. (We forbid deletions from x ∈ X to preserve the intuition
that the optimal summary tree for a singleton sequence X = {x} is a nonbranching path
successively labeled by the strings in x even when the cost of nodes is very high.)

Let x be a string sequence, and let y = labelseqT (vx). Our metric, then, is an asymmetric
two-level variant of the edit distance between x and y, allowing deletions from y but not x:

IDefinition 3.2 (Asymmetric Edit Distance). Let x and y be string sequences. The asymmetric
edit distance of x with respect to y, denoted AED(x, y), is the cost of the cheapest sequence
of operations transforming x into y, where the allowable operations are inserting a string
into x and substituting a string. (No string can be deleted from x.)

These operations’ costs are given by (classical) edit distance ED: substituting w′ for w
costs ED(w,w′); inserting a string w into x costs ED(w, ε), where ε is the empty string.
(Unless otherwise specified, all ED edits have unit cost, but we allow arbitrary cost matrices.)

We compute AED(x, y) with a variation on the classical dynamic program for edit distance,
forbidding deletions and using ED to compute the cost of inserting or substituting a string.

The distance between a string sequence x and summary tree 〈T, f〉, then, is given by
AED(x, labelseqT (f(x)))—i.e., the asymmetric edit distance between x and the label sequence
on the path from root to the node corresponding to x in T .

3.2 The Problem: Summary Trees for a Set of String Sequences
We can now formally define our problem, where our objective function is—in the style of
regularization in machine learning [18]—a weighted sum of the accuracy of the summary tree
(as measured by AED) and the simplicity of the tree (as measured by its number of nodes):

I Definition 3.3 (Diverging String Sequence Summarization Problem [DSSSP]).
Input: A set X = {x1, x2, ..., xm} of string sequences and a nonnegative node cost λ.
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x1 x2 x3

Alice
Bot
Carol
Eve

Alice
Bob
Carl
Frank

Alyce
Bob
Dan

(a) Three
string
sequences to
summarize.

•
Alice

Bob

Carl

Even

v3

v1, v2

(b) An optimal
tree for λ ≥ 5.

•
Alice

Bob

Carl

Eve Frank

v3

v1 v2

(c) The optimal
tree for 3 < λ < 5.

•
Alice

Bob

Carol Dan

Eve Frank
v1

v2

v3

(d) An optimal tree
for 1 ≤ λ ≤ 3.

•
Alice

Bot

Carol

Eve

Alice

Bob

Carl

Frank

Alyce

Bob

Dan

v2

v3

v1

(e) An optimal tree for
λ = 0.

Figure 2 A set of string sequences and their optimal summary trees, for different ranges of λ.
The • root node denotes the sentinel string starting every sequence; nodes marked by {v1, v2, v3}
correspond to the sequences {x1, x2, x3}. The choice about whether to split Eve and Frank into two
nodes (Figure 2b vs. 2c) is a function of their edit distance, ED(Eve, Frank) = 5. When λ > 5, then
it is cheaper to accept the cost of aligning both to a single label than to pay for an extra node.

Output: A labeled summary tree 〈T, f〉 (i.e., a tree T and a function f mapping each xi to
a node vi in T ) minimizing the following, where |T | denotes the number of nodes in T :

errλ(T ) :=
[ ∑m

i=1
AED(xi, labelseqT (vi))

]
+ λ · |T |. (1)

To ensure that T is a tree with a single root, we place sentinel values at the start of
each sequence xi. (Denote by |T | the number of non-sentinel nodes in T .) Note that
AED(xi, labelseqT (vi)) is defined only if |xi| ≤ |labelseqT (vi)|—that is, the depth of the
node vi in T is at least the number of strings in the sequence xi—as it would otherwise be
impossible to convert xi into labelseqT (vi) without deleting strings.

The parameter λ controls the tradeoff between trees that represent the input sequences
accurately and trees that provide more concise summaries of the input set. When λ = 0, a
trivial branch-immediately tree T is optimal; when λ =∞, a trivial never-branching tree of
depth maxi |xi| is. Intermediate values of λ give more interesting structures. See Figure 2.

4 Solving DSSSP for Two Sequences: Edit Distance with Give-up

Consider first the case of just two input sequences, m = |X| = 2. (Even with m = 2, the
problem has interesting subtleties.) We can compute an optimal tree through an alignment
algorithm we call edit distance with give-up. The resulting tree has exactly one leaf or two
leaves; in the latter case, we call the tree a bifurcation.

As with AED, the idea is similar to the classical dynamic program for edit distance, but
with one additional operation permitted: give up entirely on aligning the remaining portions
of the sequences, and declare a split at this point. We also modify the costs in the edit
distance dynamic program to reflect the λ per-node cost of each operation, corresponding to
the node-cost term in errλ(T ). Writing EDG(i, j, λ) to denote the cost of the best alignment
of xi,...,|x| and yj,...,|y| under node cost λ, and writing EDG(x, y, λ) = EDG(1, 1, λ), we have

EDG(|x|+ 1, |y|+ 1, λ) = 0 (2)
EDG(i, |y|+ 1, λ) = λ(|x| − i+ 1) for any 0 ≤ i ≤ |x|
EDG(|x|+ 1, j, λ) = λ(|y| − j + 1) for any 0 ≤ j ≤ |y|
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x = ε or y1 is inserted y = ε or x1 is inserted substitute x1 for y1 give up (= diverge)

y1

BB(x1...|x|, y2...|y|, λ)

x1

BB(x2...|x|, y1...|y|, λ)

x1 or y1

BB(x2...|x|, y2...|y|, λ)

x1

x2

.

.

.
x|x|

y1

y2

.

.

.
y|y|

Figure 3 Constructing the tree in BuildBifurcation(x, y, λ). Whenever a node corresponding
to x|x| or y|y| is placed, we map the corresponding input sequence to that node of the bifurcation.
We write “BB” to abbreviate BuildBifurcation, and we output an empty tree when x = y = ε.

and, for any 0 ≤ i ≤ |x| and any 0 ≤ j ≤ |y|,

EDG(i, j, λ) = min


EDG(i+ 1, j + 1, λ) + λ+ ED(xi, yj) (substitution)
EDG(i, j + 1, λ) + λ+ ED(ε, yj) (insertion)
EDG(i+ 1, j, λ) + λ+ ED(xi, ε) (deletion)
λ(|x| − i+ 1) + λ(|y| − j + 1) (give up)

For example, consider the insertion case of the minimum. Here we match the string yj with
no corresponding entry in x, and recursively align yj+1,...,|y| with xi,...,|x|, with a total cost of

EDG(i, j + 1, λ)︸ ︷︷ ︸
cost of alignment of remaining strings

+ λ︸︷︷︸
cost of creating the root node

+ ED(ε, yj).︸ ︷︷ ︸
cost of inserting yj into labelseqT (x)

The cost of “giving up”—i.e., declaring a split in the alignment—is large, requiring (|x|− i+1)
nodes on the x branch and (|y| − j + 1) on the y branch, each of which incurs cost λ.

Denote by BuildBifurcation the natural dynamic programming algorithm that com-
putes EDG using (2). (We abuse notation: BuildBifurcation(x, y, λ) denotes either the
resulting bifurcation or its cost. We can construct this bifurcation simultaneously with the
construction of the alignment; see Figure 3.)

BuildBifurcation optimally solves DSSSP for m = 2 sequences—i.e., the tree T built
by BuildBifurcation(x, y, λ) minimizes errλ(T ). (The proof is deferred to Appendix A.)

I Theorem 4.1. The tree T ∗ := BuildBifurcation(x, y, λ) is an optimal summary tree
for the string sequences {x, y} with node cost λ. Specifically, errλ(T ∗) = EDG(x, y, λ).

Writing n = max(|x|, |y|) to denote the length of the longer of the two sequences, and
k = max(maxi |xi|,maxj |yj |) to denote the length of the longest string in either sequence,
then the running time of BuildBifurcation(x, y, λ) is O(n2k2).

5 Optimal Summaries of Larger Sets of String Sequences

BuildBifurcation efficiently finds the optimal summary tree for m = 2 sequences, but
DSSSP with large m is computationally intractable.

I Theorem 5.1. DSSSP (for an arbitrary number m of string sequences) is NP-hard.

Proof (idea). For large λ, hardness follows from a reduction from String Median, which we
will encounter shortly.

While the reduction from Median String is simpler, we can also give an alternative
reduction from Shortest Common Supersequence (SCS) [35], which applies for smaller λ as
well. (Note that SCS is hard in general, but for a small number of strings it is efficiently
solvable [14].) The details of the latter proof are in the appendix. J
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Alice

Bob

DanCarol

FrankEve

Alice 
Bob 
Carol 
Eve

Alice 
Bob 
Carol 
Frank

Alice 
Bob 
Dan

T X1 X2 X3

Alice 
Bot 
Carol 
Eve

Alice 
Bob 
Carl 
Frank

Alyce 
Bob 
Dan 

x1 x2 x3 All pairwise  
EDG(x, y, 2) 
alignments

Alice  
Bob 
Carl 
Frank

Alice  
Bob 
Carol 
Eve

= 
= 
= 

Alyce  
Bob 
Dan 

Alice  
Bot 
Carol 
Eve

= 
= 

Alyce  
Bob 
Dan 

Alice  
Bob 
Carl 
Frank

= 
= 

x1, x2 x1, x3 x2, x3

Merge prefix 
of x1, x2

[Alice, Alice] 
[Bot, Bob] 
[Carol, Carl]

Alyce 
Bob 
Dan

{x1, x2} x3
Alyce  
Bob 
Dan 

[Alice, Alice]  
[Bot, Bob] 
[Carol, Carl] 

= 
= 

{x1, x2}, x3

Alice

Bob

DanCarol

FrankEve

Use alignments 
to build tree

All pairwise 
EDG(x, y, 2) 
alignments

Figure 4 An example run of BuildTree(X,λ) for λ = 2 and the sequences from Figure 2.

On the other hand, if we are willing to tolerate running times that are exponential in m (but
polynomial in the other measures of input size), we can solve DSSSP in polynomial time:

I Theorem 5.2. Let X be a set of string sequences, where m = |X| is the number of
sequences, n = maxi |xi| is the length of the longest sequence, and k = maxj maxi |xi,j | is
the length of the longest string in any of the sequences. Then there is an algorithm solving
DSSSP on X (for any λ) that runs in time O(nm2 · 2m · km · poly(k,m, n)).

Proof. The approach (see Figure 6 in Appendix A) is brute force: we look at every possible
tree topology τ , which specifies, for any x, x′ ∈ X, the indices i and i′ into x and x′ at
which they diverge. Every τ defines a set of nonbranching segments between divergences; the
summary tree problem is then a collection of summary “path” problems, one per segment.

The path problem can be seen as multiple sequence alignment (MSA) [37], solvable via
dynamic programming [7] (see also [22,36,42]). To implement the MSA dynamic program,
we must compute the cost of assigning a set of strings S = {s1, s2, . . . , s`} to a single node u.
If we label u with the string z, then the alignment cost of this node is λ+

∑
i ED(si, z); thus

the best label is the string median of S—that is, the string z minimizing the summed edit
distance to the strings in S. While string median is NP-hard [11], a dynamic programming
algorithm solves string median for a fixed number of strings [37] (see also [23,33,38]).

There are O(nm·(m−1)) tree topologies. Each defines a tree with ≤m leaves and thus
≤ 2m nonbranching segments.

Each segment contains ≤m subsequences, each of length ≤n; thus each multiple sequence
alignment requires O(nm) time [7]. Whenever we compute the string median of a candidate
node, we have ≤m strings each of length ≤ k; computing these medians takes O((2k)m)
time [37]. Finally, it takes poly(k,m, n) time to compute errλ(T ) for each tree. Thus the
overall running time is O(nm·(m−1) · nm · (2k)m · poly(n,m, k)). J

6 An Efficient Heuristic for Larger Sets of Sequences

Given DSSSP’s hardness (Theorem 5.1) and the abominable running time of our exact
algorithm (Theorem 5.2), we turn here to an efficient heuristic for DSSSP with larger m.
Our algorithm is greedy, and seeks to repeatedly identify the pair of sequences in X with
the longest shared prefix, and then merge that shared prefix into a single sequence (as in
BuildBifurcation). See Figure 4. There are several issues that we must resolve:

Measuring and merging the shared prefix of xi and xj . To calculate how well xi and xj
match, we compute the EDG(xi, xj , λ) alignment. Define the number of substitutions
(ignoring insertions and deletions) in the pre-divergence section pi,j of this alignment as
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their overlap. Then, for the pair {xi, xj} with the largest overlap, replace {xi, xj} with
pi,j in X. Note that pi,j is a sequence of lists of strings, not a sequence of strings; thus
we need to generalize EDG to sequences of lists of strings, not just individual strings.

Reconciling labels in the final resulting tree. Repeating this merging process will define a
tree, except that each node is labeled by a list of strings, not just one.
To produce the final labels, we use the medoid string. For a list of strings A, the medoid
of A is the string in A whose sum of edit distances to strings in A is minimized.2

Generalizing EDG to lists of strings. Define the edit distance between a string x and a set of
strings X as ED(x,X) := ED(x,medoid(X))—using the medoid of X as its representative
string. Then, letting C(A,B) denote the cost of merging lists A and B, we define

C(A,B) :=
∑

x∈A∪B
ED(x,A ∪B)−

∑
x∈A

ED(x,A)−
∑
y∈B

ED(y,B). (3)

This cost quantifies the amount of additional disagreement incurred by merging the lists,
relative to leaving them separate. Insertion and deletion costs are found using (3) with a
list of empty strings of appropriate length in place of xi or yj . We thus define the EDG
recurrence (cf. Equation (2)) for sequences of lists of strings x and y as follows:

EDG(i, j, λ) = min


EDG(i+ 1, j + 1, λ) + λ+ C(xi, yj) (substitution)
EDG(i, j + 1, λ) + λ+ C({|xi| copies of ε}, yj) (insertion)
EDG(i+ 1, j, λ) + λ+ C(xi, {|yj | copies of ε}) (deletion)
λ(|x| − i+ 1) + λ(|y| − j + 1) (give up)

Define BuildTree(X,λ) as the greedy iterative algorithm suggested above: until there
is only one sequence left in X, find the pair of sequences xi, xj ∈ X with the largest number
of substitutions in EDG(xi, xj , λ), and replace {xi, xj} by their merged prefix pi,j . (Save the
post-divergence branches of the bifurcation; we will reattach those branches at the bottom of
pi,j in the final tree.) When there is only one sequence left, reattach all of the saved branches,
and replace each node’s list-of-strings label by the medoid of that label list. (See Figure 4.)

7 Evaluation and Parameter Selection

BuildTree is suboptimal both because greedy merging can yield a poor topology and
because medoids can be poor node labels; see Examples 7.1 and 7.2. Still, we will show that
it nonetheless performs well on simulated data, suggesting that it is a good heuristic.

I Example 7.1 (A bad example for greedy merging). Consider the instance

x1 = a b c x2 = a b d x3 = a e d x4 = a e f

with 0.5 < λ < 1. The optimal tree T ∗ is shown below, with errλ(T ∗) = 7λ. However,
BuildTree will choose to merge sequences with the most closely aligned pair of sequences
according to the EDG alignment. In this case, it would choose to merge x2 and x3 first. The
tree T returned by BuildTree has errλ(T ) = 5λ+ 2, making it suboptimal.

2 When we say “the” medoid of A, we mean the lexicographically first medoid of A. (Which medoid
we choose never affects the sum of the distances at hand—e.g., in the sums in (3)—but we need to
identify one in particular for the summands to be well-defined.) Note that the medoid, unlike the
median, must be an element of A; we use it because it is efficiently computable (unlike median) and is a
(2− o(1))-approximation to the median (an implication of the triangle inequality).
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I Example 7.2 (A bad example for medoids). Consider the set S = {XABC, AXBC, ABXC, ABCX},
where each string sequence contains just one string. For large λ, the optimal tree is just a
single node. Here the optimal label is the median ABC, which has total edit distance 4 to the
set S; the medoid label ABCX has total edit distance 6 to S.

7.1 Generating Synthetic Data
We will generate synthetic data based on several parameters: the numberm of string sequences,
the string length k, a string substitution probability σs, a string deletion probability δs, a
character substitution probability σc, and a character deletion probability δc.

We generate trees using branching processes (i.e., Galton–Watson trees [43]): each node
chooses to have exactly i children with probability pi; we fix p0 = 0.03, p1 = 0.94, and
p2 = 0.03 to approximate real email petition data [17,29]. We generate a Galton–Watson tree
T until it has m leaves, restarting if the branching process terminates early. We label each
node u ∈ T with a random alphabetic string `(u) of length k. Let xi denote labelseqT (ui)
for the ith leaf ui. Call T the true tree, ` the true labels, and xi the true sequences.

Now, we simulate noisy propagation. To mirror petition data derived from low-quality
scans of printed emails, we introduce string- and character-level errors in separate phases:
(1) string-level errors (which are inherited). Each node u inherits from its parent p the noisy

history hp of its ancestral labels. (The root “inherits” an empty sequence.) The node u
(further) corrupts hp: for each string in hp, substitute it with a random alphabetic string
of length k with probability σs, and delete it with probability δs. Finally, node u appends
its true label `(u) to hp; call the resulting sequence hu. Now each leaf u stores hu, a noisy
version of labelseqT (u). Let X ′ = {x′1, . . . , x′m} be the set of histories at the leaves.

(2) character-level errors (which appear independently). For each x′i ∈ X ′, substitute each
character in each string in x′i with a random character with probability σc, and delete
the character with probability δc. Let X ′′ = {x′′1 , . . . , x′′m} be the resulting sequences.

Our experiments use string length k = 25, string error rates σs = δs = 0.001, character error
rates σc = δc = 0.1, and m ∈ {15, 100}. Because string-level errors compound, 0.001 is a
nontrivial error rate (roughly comparable to the 10% character-level error rate).

7.2 Comparing Reconstruction to Synthetic Ground Truth
We generate a true tree T , with true sequences X = {x1, . . . , xm} and corrupted sequences
X ′′ = {x′′1 , . . . , x′′m}. We then use our heuristic algorithm to build a reconstructed tree T ′ =
BuildTree(X ′′, α), for some choice of a node-cost parameter α to use in the reconstruction
algorithm. (See Section 7.3 regarding how to choose α.) Note the distinction between the
reconstruction parameter α and the evaluation parameter λ: BuildTree seeks to optimize
errα(T ′) for some value of α, but we can assess the quality of T ′ using errλ(T ′) whether or
not α = λ, to evaluate sensitivity to α.

We will compare the quality of BuildTree to the threshold-based reconstruction algo-
rithm from [29], which we briefly describe here. (1) Construct a weighted directed graph G
with nodes labeled by all strings in all x ∈ X, and with an a→ b edge if string a immediately
precedes string b in any sequence x ∈ X. The weight of this edge is the number of sequences
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(b) Error under err10(T ) with |X| = 15, averaged
across 500 trials. Smaller X makes the error smaller
than in (a), but the trend is similar.
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(c) Error under ordered tree edit distance (TED)
on a |X| = 15 dataset. The dash-dotted line shows
TED between T̃ and the real tree.

Figure 5 Comparing BuildTree(X,α) to the algorithm from [29] with edit-distance threshold β.
Shaded regions in (a) and (b) show standard deviations across the stated number of trials. Observe
the flat-bottomed basin shape of the error curve for BuildTree(X,α) as α varies: high error rates
when α < 5 and when α > 20, and roughly constant low error for all α in between.

x ∈ X containing a and b successively. (2) To handle minor signature errors, treat two
signatures as equivalent if they follow equivalent signatories and have an edit distance below
a fixed threshold β. (3) Compute the tree as a max-weight spanning arborescence of G, with
extraneous nodes pruned away. (Note that β is on the same scale as α; it defines a cutoff of
ED(a, a′) indicating when a and a′ should be assigned to two nodes versus one.)

Measures of performance. We assess the quality of our reconstructed trees T ′ in two ways.
First, we use the errλ(T ′) measure from (1), the sum of λ · |T ′| and all label distances.

Second, we use tree edit distance (TED) to compare the structure of T ′ to the true tree T .
Edit distance between unordered trees is NP-hard [46], so we estimate the distance by
ordering our trees and computing ordered TED using Zhang–Shasha [45], as implemented by
Henderson [19]. (Specifically, we recursively order sibling nodes in T ′ to minimize the number
of leaf order inversions with respect to T . As the number of siblings is typically small, this
order is not expensive to compute.) To better interpret our results, we also compute TED
to a tree with the correct structure but with label corruptions, denoted T̃ ; this represents
the best reconstruction we could hope for (without computing medians). We construct T̃
by labeling the ancestors of each leaf ui using the noisy history hui

(picking the medoid for
nodes assigned multiple labels), deleting nodes with empty labels.

Evaluation results. We generated a tree T withm = 100 sequences, and corrupted sequences
X ′′ (with 8 independent trials generating different X ′′ from T ). Figure 5a compares errλ(·) of
our reconstruction with the method from [29], showing that BuildTree performs significantly
better over a range of λ values. These trees were too big to compute tree edit distance, which
is computationally prohibitive.
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In addition, we generated a tree with m = 15 sequences and introduced error in 500 trials.
Figure 5 shows both err10(T ) (Figure 5b) and TED (Figure 5c) between the reconstructed
tree T̂ and the true tree T . For many values of α, BuildTree(X ′′, α) produces significantly
better solutions than the method from [29], as shown by the err10(T ) measure. It is also
competitive at α = 20 according to (ordered) tree edit distance, a metric BuildTree was
not designed to optimize.

7.3 How Should the Node Cost be Selected?

To reconstruct a tree from real sequence data, we must select a value for the reconstruction
parameter α. If α is too low, nodes are too cheap and trees diverge too early; if α is too
high, nodes are too costly and trees branch too rarely. But what value should we choose?

Intuitively, we wish to map two (corrupted) strings to the same node if they are (corrup-
tions of) the same true string. Imagine two strings u and v 6= u, and let u′, u′′, and v′ be the
result of independently introducing errors to u, u, and v, respectively. We desire a value of α
so that u′ and u′′ would probably be mapped to the same node, but u′ and v′ probably diverge.
That is, the cost of creating a new node should be greater than the cost of aligning two
corrupted versions of the same string, but the cost of diverging should be less than the cost
of deleting/inserting all remaining strings. Thus we want E[ED(u′, u′′)] < α < E[ED(u′, v′)].

E[ED(u′, u′′)] depends on the error rate of the corruption process and must be estimated
from data. But estimates of E[ED(u′, v′)] appear in the literature if the true strings u and
v are uniformly random and have equal length. If the cost of substitution is twice that of
insertion/deletion, then we can calculate E[ED(u′, v′)] using Chvátal–Sankoff numbers [9]
(the expected longest common subsequence length for two equal-length random strings); for
unit edit costs, it is conjectured that E[ED(u′, v′)] ≈ |u′|(1− 1

|Σ| ) for random equal-length
strings over Σ [32]. If strings are not uniformly random or have different lengths, then we
can estimate E[ED(u′, v′)] from data and subsequently select an α between the upper and
lower bounds. (In fact, there is some evidence that many values of α in this range perform
well; see the flat-bottomed basin shape of Figure 5b.)

8 Discussion and Future Work

We described an efficient, practical heuristic to reconstruct a propagation tree from a noisy
set of diverging string sequences—and in Section 7 we showed that BuildTree performs well
on synthetic data. But, after all, the motivation for introducing this particular theoretical
problem was for its application to real data, particularly chain-letter petitions. Rigorously
testing BuildTree on real data, then, is perhaps the most natural direction for future
work. (Testing on more realistic synthetic data is also an interesting future direction. Our
data-generation process in Section 7.1 is unrealistic in a number of ways, perhaps most
strikingly in its assumption that a name is a length-k alphabetic string chosen uniformly at
random. More realistic randomized name-generation processes would make the synthetic
task more similar to the real one.)

That said, there are several potentially interesting theoretical avenues for further explo-
ration of DSSSP, too. The problem is (at least theoretically) tractable for any fixed number
m of string sequences—but the dependence on m in our brute-force algorithm is brutal. Is
there a more efficient algorithm for small m? Or are there efficient algorithms with provable
approximation guarantees for general m? We can approximate the best labels for a fixed tree
topology using medoids or, even better, using a PTAS for the string median problem [28].
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Identifying the best tree topology seems more challenging, but perhaps this topological source
of error in BuildTree (or some other heuristic) can be bounded.

There is another set of interesting open questions related to efficient algorithms for DSSSP
when λ is small. (At the other extreme, the problem remains intractable when λ is very large:
even if the optimal tree’s topology is the trivial non-branching one, as in Figure 2b, choosing
the labels requires repeatedly solving instances of the NP-hard string median problem.)

DSSSP is trivial when λ = 0; the diverge-at-the-root tree (as in Figure 2e) is optimal,
with total cost 0. Even for strictly positive but small values of λ, there is an easy solution: if
λ ≤ 1

nm , it optimal to diverge upon encountering even a one-character difference between
strings (i.e., the optimal summary tree is precisely the trie representation of the set X). Do
related approaches make the problem tractable for bigger values of λ—e.g., if λ is small
enough that we can only afford a bounded budget of edits in node labels? For how large a
value of λ are there exact polynomial-time algorithms?
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A Proofs Omitted from the Main Paper

A.1 Proofs from Section 3
I Theorem 4.1. The tree T ∗ := BuildBifurcation(x, y, λ) is an optimal summary tree
for the string sequences {x, y} with node cost λ. Specifically, errλ(T ∗) = EDG(x, y, λ).

Proof. We show that T ∗ := BuildBifurcation(x, y, λ) satisfies errλ(T ∗) ≤ EDG(x, y, λ)
(Lemma A.1), and that errλ(T ) ≥ EDG(x, y, λ) for any valid summary tree T (Lemma A.2).
Thus T ∗ is optimal. J

I Lemma A.1. The tree T ∗ built by BuildBifurcation(x, y, λ) has errλ(T ∗) ≤ EDG(x, y, λ).

Proof. By induction on the lengths of x and y.
Base Case: If at least one of x and y are empty, then suppose without loss of generality

that x is empty. Then the optimal EDG alignment of x and y diverges immediately, with
a cost of EDG(x, y, λ) = λ|y|. Thus, BuildBifurcation returns the path T ∗ labeled by y,
which has errλ(T ∗) = λ|y|. Therefore errλ(T ∗) ≤ EDG(x, y).

Inductive Case: Assume x and y are both non-empty sequences. Consider the possible
cases for the EDG alignment:
a. EDG chooses to align x1 and y1 with each other. Then EDG(1, 1, λ) = EDG(2, 2, λ) + λ+

ED(x1, y1). The tree produced in this case has its top non-sentinel node labeled by x1
followed by the subtree BuildBifurcation(x2...|x|, y2...|y|, λ). By inductive hypothesis,
the error of the subtree is at most EDG(2, 2, λ). One possible AED alignment of x
to labelseqT∗(vx) substitutes x1 for [labelseqT∗(vx)]1 = x1, and a possible alignment
of y to labelseqT∗(vy) substitutes y1 for [labelseqT∗(vy)]1 = x1. Using these (potentially
suboptimal) alignments, the error of the tree would be at most EDG(2, 2, λ)+λ+ED(x1, y1),
which is exactly the cost of EDG(x, y, λ). The optimal AED alignment must have cost less
than or equal to this particular alignment, so errλ(T ∗) ≤ EDG(x, y, λ).

b. EDG chooses to align y1 with ε. Then EDG(1, 1, λ) = EDG(1, 2, λ) + λ+ ED(ε, y1). The
tree produced in this case has its top non-sentinel node labeled by y1 with the subtree
produced by BuildBifurcation(x1...|x|, y2...|y|, λ). By the inductive hypothesis, the error
of the subtree is at most EDG(1, 2, λ). One possible AED alignment of x to labelseqT∗(vx)
inserts [labelseqT∗(vx)]1 = y1 and then optimally aligns x to the rest of labelseqT∗(vx).
Similarly, one alignment of y to labelseqT∗(vy) substitutes y1 for [labelseqT∗(vy)]1 = y1 and
optimally aligns the rest. Therefore, the total error of the tree produced by EDG(1, 1, λ)
with this alignment is at most EDG(1, 2, λ) + λ + ED(ε, y1), which is indeed the cost
of EDG(x, y, λ). The optimal AED alignment must have cost less than or equal to this
alignment, so errλ(T ∗) ≤ EDG(x, y, λ).

c. EDG chooses to align x1 with ε. This case is symmetric to Case (b).
d. EDG chooses to diverge immediately. Then EDG(x, y, λ) = λ|x|+λ|y|. BuildBifurcation

constructs T ∗ by labeling two paths by x and y and placing them under a sentinel root.
This tree T ∗ has errλ(T ∗) = λ|x|+ λ|y| ≤ EDG(x, y, λ). J

I Lemma A.2. EDG(x, y, λ) ≤ errλ(T ) for any valid tree T representing x and y.

Proof. We proceed by induction on the lengths of x and y.
Base Case: If at least one of x and y are empty sequences, then suppose without loss of

generality that x is empty. The optimal EDG alignment gives up immediately, for a cost of
λ|y|. Any tree T representing x and y must have at least |y| nodes for AED(y, labelseqT (vy))
to be defined, so errλ(T ) ≥ λ|y|. Thus EDG(x, y, λ) ≤ errλ(T ).
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Inductive Case: Assume x and y are both non-empty sequences and let T be any valid
tree representing x and y. If the root of T has more than two children, we can strictly decrease
errλ(T ) by deleting the children (and their subtrees) that do not contribute to labelseqT (vx)
or labelseqT (vy), bringing the number of children down to at most two. We can therefore
ignore this case. If the (sentinel) root of T has exactly two children, then T must have at least
|x|+ |y| non-sentinel nodes to be valid, so errλ(T ) ≥ λ|x|+λ|y|. One possible EDG alignment
gives up immediately for a cost of λ|x|+ λ|y|, so EDG(x, y, λ) ≤ λ|x|+ λ|y| ≤ errλ(T ).

Now suppose the sentinel root of T has one child labeled `. Call the subtree under this
node T ′ (adding a sentinel root to T ′ to ensure it is a tree). Consider the cases for the
optimal AED alignments of x and y to their paths in T , with respect to `.
a. If x1 and y1 are both substituted for ` in the optimal alignments, then errλ(T ) = errλ(T ′)+

λ+ ED(x1, `) + ED(y1, `). Notice that T ′ is a summary tree of x2...|x| and y2...|y|. By the
inductive hypothesis, EDG(2, 2, λ) ≤ errλ(T ′). One possible EDG alignment substitutes x1
for y1, with a cost of EDG(2, 2, λ) + λ+ ED(x1, y1) ≤ errλ(T ′) + λ+ ED(x1, `) + ED(y1, `)
(using the triangle inequality for edit distance). Thus EDG(x, y, λ) ≤ errλ(T ).

b. If x1 is substituted for ` and ` is inserted against y in the optimal alignment, then
errλ(T ) = errλ(T ′)+λ+ED(x1, `)+ED(`, ε). Notice that T ′ is a summary tree of x2...|x| and
y1...|y|. By the inductive hypothesis, EDG(2, 1, λ) ≤ errλ(T ′). One possible EDG alignment
deletes x1, with a cost of EDG(2, 1, λ) +λ+ ED(x1, ε) ≤ errλ(T ′) +λ+ ED(x1, `) + ED(`, ε)
(using the triangle inequality for edit distance). Thus EDG(x, y, λ) ≤ errλ(T ).

c. The case where y1 is substituted for ` and ` is inserted against x is symmetric to Case (b).
d. If ` is inserted against both x and y, then T ′ is a summary tree of x and y with smaller

error. We can thus reduce this case to one of the previous cases. J

A.2 Proofs from Section 5
As suggested in Section 5, a reduction from the String Median problem shows that DSSSP is
hard for sufficiently large λ—large enough that the optimal summary tree never branches—
even if all m string sequences have length 1. While the reduction from Median String is
simpler, we also provide an alternative reduction from Shortest Common Supersequence
(SCS) [35], which applies for smaller λ as well. (Note that SCS is hard in general, but for a
small number of strings it is efficiently solvable [14].)

I Theorem 5.1. DSSSP (for an arbitrary number m of string sequences) is NP-hard.

Proof. Given an instance of SCS consisting of a set of strings {x1, . . . , xm}, construct the
following instance of DSSSP. Let λ = 1 and treat each string xi as a sequence of single-
character strings. Additionally, set the ED cost of non-identical substitutions and deletions
to ∞ and the cost of identical substitutions and insertions to 0.

Let s be the length of the SCS of {x1, . . . , xm}. In this DSSSP instance, one possible
summary tree T ∗ consists of a single length-s path labeled by the SCS of {x1, . . . , xm}.

To show that T ∗ is optimal, we show that any finite-error summary tree T ′ can be
converted into a path labeled by a supersequence of {x1, . . . , xm} without increasing its error.
Note that the AED alignments in T ′ must have only insertions and substitutions of identical
symbols if errλ(T ′) is finite. To convert T ′ into a path, pick an arbitrary leaf v of T ′. If T ′
is not a path already, then it has some branch that diverges from the root-to-v path. Take
the branch after this divergence and move its root to be a child of v. T ′ now has one fewer
leaf, but the same number of nodes. Moreover, the AED alignments still have cost zero, as
we can align strings to their modified paths in T ′ by using more zero-cost insertions. By
repeating this process until only one leaf remains, we can convert T ′ into a path with the
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same errλ(T ′), which must then be labeled by a supersequence of {x1, . . . , xm}. Therefore
T ∗ is an optimal DSSSP solution, as it is the cheapest of all such paths.

If we could solve DSSSP in polynomial time, then we could efficiently convert this solution
into a path labeled by a shortest common supersequence of {x1, . . . , xm} using the iterative
method described above. J

In Theorem 5.2, we describe an algorithm for DSSSP. The algorithm’s running time is
O(nm2 · 2m · km · poly(k,m, n)), where m is the number of sequences, n is the length of the
longest sequence, and k is the length of the longest string in any sequence. Figure 6 shows
the pseudocode for the algorithm described in the proof of Theorem 5.2.

For each topology τ , specified by m · (m− 1) numbers `i,j ∈ {0, 1, . . . , n}:
// `i,j specifies the index of the last string in xi before the divergence point of xi and xj
If τ does not define a tree (i.e., the divergence points are inconsistent), skip this τ .
Otherwise, for each nonbranching segment σ of τ :

(1) Identify those sequences in X with subsequences present in σ,
and let Yσ denote the corresponding subsequences of the sequences in X.

(2) Compute the multiple sequence alignment of Yσ via dynamic programming.
The cost of associating strings S = {s1, s2, . . . , st} at the same node in the tree
is λ+

∑
i ED(si,median(S)). Compute median(S) via dynamic programming.

(3) Assemble the alignments for each segment into a tree Tτ .
Return the Tτ of minimum cost, over all values of τ .

Figure 6 The brute-force algorithm for DSSSP. Classical Multiple Sequence Alignment algorithms
are used to align sequences of letters (a.k.a. strings) rather than, as in our case, sequences of strings.
As a result, our cost functions are more complex, and take more time to compute. (See Theorem 5.2.)
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