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Abstract—A continuous-discrete system represents a system
with continuous process and discrete measurement models. Very
recently, two filters namely cubature quadrature Kalman filter
(CQKF) and Gauss-Hermite filter (GHF) are introduced to solve
the filtering problems for discrete-time systems where both the
process and measurement models are discrete in nature. In
this paper we extend the two estimators so that they could
work for continuous process and discrete measurement model.
The proposed filters are applied to solve a continuous-discrete
maneuvering air-traffic-control problem and the results are
compared with continuous-discrete Kalman filter (CD-CKF) in
terms of the root mean square error (RMSE). It has been found
that the proposed methods provide better estimation accuracy
compared to the CD-CKF.

Index Terms—Continuous-discrete system, cubature quadra-
ture Kalman filter, Gauss-Hermite filter

I. INTRODUCTION

Filtering is a recursive process of state estimation of a

dynamic system. It is commonly applicable in many real-life

problems like target tracking [1]–[3], navigation [4], systems

identification [5] etc., to name a few. In nonlinear filtering

literature, the discrete-time filters are popular and a wide

variety of them are available [1], [6]–[11]. In discrete-time

systems, both the process and measurements are in discrete-

time domain while in reality often the process is described

in continuous domain. Such systems where the process is

described in continuous and measurement is in discrete domain

are called continuous-discrete systems.

Generally, for filtering purpose the designer discretizes the

plant at sampling interval and treats a continuous-discrete

system as a discrete-time system. The discretization accounts

for additional approximation that may cause for inaccuracy.

To get rid of this, few notable filters, namely the continuous-

discrete extended Kalman filter (CD-EKF) [12], [13], the

continuous-discrete unscented Kalman filter (CD-UKF) [14],

the continuous-discrete cubature Kalman filter (CD-CKF) [15]

etc. have been introduced. The motivation of this paper is

to further improve the filtering accuracy of the continuous-

discrete systems.

The recently introduced discrete-time filters, with determin-

istic sample points, could be divided into two parts; cubature

based and quadrature based filters. Major cubature based

filters available in literature are cubature Kalman filter (CKF)

[7], cubature quadrature Kalman filter (CQKF) [8], higher-

degree cubature Kalman filter (HDCKF) [9] and higher-degree

cubature quadrature Kalman filter (HDCQKF) [10], while the

major quadrature based filters are Gauss-Hermite filter (GHF)

[16], [17] and sparse-grid Gauss-Hermite filter (SGHF) [18],

[19]. In this paper, we explore the possibility of developing

continuous-discrete version of the above mentioned filters.

To perform the continuous-discrete filtering, the process

model is first discretized over the sampling period. The dis-

cretization is performed in two steps. In the first step, the

ordinary differential equation (ODE) is obtained by imple-

menting the Fokker-Planck equation to the given continuous

model. However, in the second step, the discretized model is

obtained by applying Itô-Taylor expansion of order 1.5 over

the ODE. As soon as the model is discretized, the filtering

problem reduces to the approximation of intractable integrals

of the form nonlinear function×normal distribution, similar to

the ordinary nonlinear filtering problems.

During the implementation of continuous-discrete filter-

ing algorithms, many times complex matrix inversions are

performed which causes numerical instability. To omit this

instability, the square-root extension is used in this paper. But

during the square-root filtering, the square-root of weights

are computed which needs positive weight certainty for all

the sample points. Consequently, the HDCKF, the HDCQKF

and the SGHF are discarded from this extension as many

sample points have negative weight in these filters. Hence the

major contribution of this paper is to enhance the conventional

CQKF and GHF algorithms to deal with the continuous-

discrete systems in order to enhance their filtering accuracy.

Also, a brief explanation is provided at the end of this paper

to estimate the initial covariance of target and measurement

noise covariance. In this paper, we explore the possibility of

developing continuous-discrete version of the above mentioned

filters.

The remaining part of the paper is organized as follow:

The continuous-discrete filtering problem is formulated in

section-II, which is followed by section-III where the filtering

procedure for such problems are described. In section-IV,

the numerical approximation methods used to approximate

the intractable integrals in the proposed filters are discussed.
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The filters are simulated to solve a continuous-discrete ma-

neuvering target tracking problem in section-V and finally,

the discussions and conclusions are drawn in section-VI. In

appendices, the algorithm for implementation is discussed and

also a method is derived to formulate the initial covariance and

noise error covariance.

II. PROBLEM FORMULATION

Let us consider a state space model with continuous process

equation, given as [14], [15]

dx(t) = f(x(t), t)dt+
√

Qdβ(t), (1)

where x(t) is an n-dimensional state of a continuous-discrete

system at any time t, f(·) is called drift function and Q ∈
�n×n is called diffusion matrix. β(t) is an n-dimensional

standard Wiener process with increment dβ(t).
The noisy measurements received at time instants tk = kT

(T is measurement sampling interval) is

yk = γ(xk) + vk, (2)

where yk ∈ �d is the measurement at kth time instant, γ(·) is a

nonlinear function and measurement noise vk ∈ �d is assumed

to be Gaussian with zero mean and known covariance R.
We assume f(·) to be at least twice differentiable with

respect to x and at least once differentiable with respect to

t. γ is assumed to be at least once integrable with respect to

normal density. These assumptions are easily satisfied in many

engineering applications including tracking, which is the main

focus of our paper.
In this paper, the filtering under Bayesian framework is

adopted which is performed in two steps:

1) Prediction step: This step involves the computation of

prior probability density function using the Chapman-

Kolmogorov equation,

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

(3)

2) Update step: In this step, the posterior probability den-

sity function is evaluated using the Baye’s rule,

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (4)

where the normalizing constant

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1)dxk. (5)

The integrals appeared in Eqs. (3)-(5) are intractable for

most of the nonlinear systems. With Gaussian assumption

of the conditional pdfs, the integrals reduce to the form

of nonlinear function×normal distribution which is mostly

intractable. During the filtering, these intractable integrals are

approximated numerically.

III. BAYESIAN FRAMEWORK OF FILTERING FOR

CONTINUOUS-DISCRETE SYSTEMS

Before proceeding forward to the continuous-discrete filter-

ing, the process model is discretized at a smaller scale than

the sampling interval.

A. Discretization of Process Model

The discretization procedure involves two steps. In the first

step, the process model is reduced to a stochastic ODE by

using Fokker-Planck equation while in the second step the

stochastic ODE is reduced to an ordinary discrete equation.

1) Reduction of continuous system to stochastic ODE:
Using the Fokker-Planck equation, at any time t i.e. tk < t <
tk+1, the conditional density of x(t) i.e. p(xt|y1:k) satisfies

the following differential equation [14], [15]

∂p(xt|y1:k)
∂t

=−
n∑

i=1

∂

∂xi
[fi(x(t), t)p(xt|y1:k)]

+

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
[Dijp(xt|y1:k)],

(6)

where xi is the ith element of x and Dij =
1
2

∑n
l=1

√
Qil

√
Qjl

is diffusion tensor.

2) Reduction of stochastic ODE to discrete model: In this

step, the stochastic ODE appeared in Eq. (6) is approximated

and a linear process model is derived. In filtering literature,

this approximation has been performed using two different

approaches, namely the Euler method and the Itô-Taylor

expansion of order 1.5. The Euler method was used in early

approaches, viz. the CD-EKF [12] and the CD-UKF [14].

Later, in CD-CKF this method was replaced by Itô-Taylor

expansion of order 1.5 and claimed that the Euler method is

equivalent to the Itô-Taylor expansion of order 0.5 which is

comparatively less accurate. By using the Itô-Taylor expansion

of order 1.5 over time interval (t, t + δ), the stochastic ODE

Eq. (6) could be reduced to [15]

x(t+ δ) =x(t) + δf(x(t), t) +
1

2
δ2(L0f(x(t), t))

+
√

Qw+ (Lf(x(t), t))q,
(7)

where

L0 =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
+
1

2

n∑
j,p,q=1

√
Qp,j

√
Qq,j

∂2

∂xp∂xq

and L =
n∑

j,i=1

√
Qi,j

∂

∂xi
.

We can consider

fd(x(t), t) = x(t) + δf(x(t), t) +
1

2
δ2(L0f(x(t), t)) (8)

as noise free process function. The process noise is given by

n-dimensional correlated Gaussian random variables, (w, q),
which are independent of state vector x(t) and distributed with

zero mean and covariance matrices

E[wwT ] = δIn, E[wqT ] =
1

2
δ2In, and E[qqT ] =

1

3
δ3In.

After discretizing the process equation, an m-step iterations

of length δ is performed over the time interval T (tk− tk−1 =
T = mδ), for computing the predicted state and its error

covariance (in time update). To this regard, m number of
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intermediate steps are considered between two samples. Then,

the filtering of continuous-discrete systems is performed in

two steps; prediction step and update step.

B. Prediction Step

Let us assume, xj
k−1|k−1 denotes an intermediate state of a

dynamic target at time t = (k − 1)T + jδ; 1 ≤ j ≤ m. Then

the predicted state estimate at time t can be given as

x̂j
k−1|k−1 = E[xj

k−1|y1:k−1] = E[fd(xk−1, (k − 1)T )|y1:k−1]

=

∫
fd(xk−1, (k − 1)T )ℵ(xk−1; x̂k−1|k−1,

Pk−1|k−1)dxk−1.
(9)

Similarly, the predicted state-error covariance matrix can be

given as

P j
k−1|k−1

= E[(xj
k−1 − x̂j

k−1|k−1)(x
j
k−1 − x̂j

k−1|k−1)
T |y1:k−1]

= E[(fd(·) +
√

Qw+ Lf(·)q − x̂j
k−1|k−1)(fd(·) +

√
Qw

+ Lf(·)q − x̂j
k−1|k−1)

T |y1:k−1]

=

∫
fd(·)fd(·)Tℵ(·)dxk−1 +

δ3

3

∫
Lf(·)Lf(·)Tℵ(·)dxk−1

+
δ2

2

[√
Q
(∫

Lf(·)ℵ(·
)T

+
(∫

Lf(·)ℵ(·)dxk−1

)√
Q

T

− (x̂j
k−1|k−1)(x̂

j
k−1|k−1)

T + δQ.

(10)

Here fd(xk−1, (k − 1)T ), f(xk−1, (k − 1)T ) and

ℵ(xk−1; x̂k−1k−1, Pk−1k−1) are represented by fd(·), f(·)
and ℵ(·) respectively. At the end, we make an assumption

that E[Lf(xk−1, (k − 1)T )] ≈ Lf(x̂j−1
k−1|k−1, (k − 1)T ). This

approximation does not affect the accuracy much until the

nonlinearity of Lf(·) is not severe.

To find the predicted state estimate x̂k|k−1 and error co-

variance Pk|k−1, x̂j
k−1|k−1 and P j

k−1|k−1 are approximated

successively until j reaches to m (i.e upto time tk).

Note 1: To capture the continuous property of the process

model more accurately, higher m should be selected.

Note 2: For m = 1, the continuous-discrete filtering algo-

rithm reduces to the ordinary filtering algorithm for discrete-

time systems. Hence, the discrete-time filters become a special

case of continuous-discrete filters.

C. Update Step

The estimate and covariance of the measurement can be

given as

ŷk|k−1 =

∫
γ(xk)ℵ(xk; x̂k|k−1, Pk|k−1)dxk (11)

and Pyy,k|k−1 =

∫
γ(xk)γ

T (xk)ℵ(xk; x̂k|k−1, Pk|k−1)dxk

− ŷk|k−1ŷ
T
k|k−1 +R.

(12)

The cross-covariance between the state and the measurement

can be given as

Pxy,k|k−1 =

∫
xkγ

T (xk)ℵ(xk; x̂k|k−1, Pk|k−1)dxk

− x̂k|k−1ŷ
T
k|k−1.

(13)

On the receipt of a new measurement yk, the posterior estimate

and covariance of the states could be obtained as

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1), (14)

and Pk|k = Pk|k−1 −KkPyy,k|k−1K
T
k , (15)

where K is Kalman gain, given as

Kk = Pxy,k|k−1P
−1
yy,k|k−1. (16)

By recursively performing these two steps, the estimates and

covariances are computed at every time instant and the filtering

of continuous-discrete system is carried out. A complete

algorithm diagram for continuous-discrete filtering is provided

in Fig. 1.

Kalman gain

P
x

�

P
�

�

Postirior estimate

x x
�

�
�

Postirior error covaraince

P P
�

� P
�

Prior estimate and cov.

x
�

,P
�

,
�

,

P
�

,P
x

�

MeasurementInitializations

x ,P

Intermediate updates

x
� �

,P
� � x

Fig. 1: Algorithm diagram: indicating the steps for filtering of

a continuous-discrete system without delay.

The integrals appeared in Eqs. (9)-(13) are intractable for

most of the nonlinear structure of f (corresponding fd) and

γ. During filtering, these integrals are computed numerically

which gives an approximate solution. Subsequently, the non-

linear filters are sub-optimal.

In the Bayesian framework of filtering for continuous-

discrete systems, there are mainly two factors which control

the accuracy. The first one is the discretization method used for

reducing the stochastic ODE to discrete model and another one

is the numerical approximation method used for approximating

the intractable integrals. In early approaches CD-EKF and CD-

UKF, the Euler method is used for discretization. But in CD-

CKF, it is replaced by Itô-Taylor expansion of order 1.5 which

results in improved accuracy. Also in CD-CKF, the intractable

integrals are approximated using the third-degree spherical

cubature rule which is most accurate among the methods

used in conventional continuous-discrete filtering approaches.

Hence, comparing all the available methods, CD-CKF is found

to be most promising in terms of accuracy.
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IV. APPROXIMATION OF MULTIDIMENSIONAL INTEGRAL

The motivation of this work is to develop a more promising

continuous-discrete filter by improving the accuracy. To this

regard, the conventional CQKF and GHF are enhanced, and

the CD-CQKF and the CD-GHF are introduced. In the pro-

posed methods, the Itô-Taylor expansion of order 1.5 is used

for deriving the discrete model, like CD-CKF. But to approx-

imate the intractable integrals, the CD-CQKF uses cubature

quadrature rule while the CD-GHF uses multidimensional

Gauss-Hermite quadrature rule. Both of these rules have better

accuracy than the spherical cubature rule used in CD-CKF.

Hence, CD-CQKF and CD-GHF is believed to perform with

better accuracy compared to the CD-CKF.

A. CD-CQKF

Let us consider f : Rn → Rn be a nonlinear function, then

the integral of interest appears in the form

I(f)=

∫ ∞

−∞
f(x)ℵ(x, μ,Σ)dx

=
1√| Σ | (2π)n

∫
Rn

f(x)e−(1/2)(x−μ)TΣ−1(x−μ)dx,

(17)

where μ is mean and Σ is covariance matrix. In CD-CQKF, the

cubature quadrature rule is used to approximate this integral.

Cubature quadrature rule:

Let us consider that λi′ (i′ = 1, 2, · · · , n′) are the roots

of n′ order Chebyshev-Laguerre polynomial equation Lα
n′(λ)

(α = n/2−1) [8] being constant and [u] is the set of cubature

points lying at the intersection points of unit hyper-sphere

and coordinate axes. Then an n′-order cubature quadrature

rule states that the integrals of the form I(f) can numerically

be approximated with the help of a set of 2nn′ number of

cubature quadrature points ξc and their corresponding weight

Wc, as follows [8]

I(f) ≈
2nn′∑
j=1

Wcjf(μ+ Cξcj) (18)

where

ξcj =
√
2λi′ [u]i (i = 1, 2, · · · 2n),

Wcj =
1

2nΓ(n/2)
× n′!Γ(α+ n′ + 1)

λi′ [L̇α
n′(λi′)]2

.
(19)

Using the cubature quadrature rule, the intractable integrals

appeared in Eqs. (9)-(13) could be approximated and the

filtering is performed. Several remarks on this development

are in order:

• The CD-CQKF is free from the curse of dimensionality
problem as the computational load increases linearly with

dimension.

• The CD-CKF is computationally more efficient than the

CD-CQKF. But due to the enhanced accuracy, the CD-

CQKF can replace CD-CKF.

• The CD-CQKF is a generalized form of CD-CKF. Under

the condition of n′ = 1, it reduces to the CD-CKF.

B. CD-GHF

In CD-GHF, the intractable integrals are approximated

using the multidimensional Gauss-Hermite quadrature rule.

The conventional Gauss-Hermite quadrature rule is defined

for a single dimensional systems while most of the real-life

filtering problems are multidimensional. Hence, it is extended

to multidimensional rule by using the product rule.

1) Single dimensional Gauss-Hermite quadrature rule: The

single dimensional Gauss-Hermite quadrature rule is given by

∫ ∞

−∞
f(x)ℵ(x; 0, 1)dx =

N∑
i=1

f(qi)wi,

where x represents a single dimensional random variable, qi
and wi are the ith univariate quadrature points and weights

associated with it, while N stands for the number of single

dimensional (univariate) quadrature points.

To determine the single dimensional quadrature points and

weights, let us consider a symmetric tridiagonal matrix J with

zero diagonal elements and Ji+1,i = Ji,i+1 =
√
i/2; 1 ≤ i ≤

N − 1. The quadrature points are located at
√
2Ψi, where Ψi

are the eigenvalues of J [16] and the weights wi are square

of the first element of ith normalized vector.

2) Multidimensional Gauss-Hermite quadrature rule: Un-

der the Gaussian assumption of pdfs, the intractable integrals

appeared during the filtering are of the form If as described in

Eq. (17). For a system with zero mean and unity covariance,

the same integral appears in the form

Io(f) =

∫ ∞

−∞
f(x)ℵ(x, 0n×1, In)dx (20)

where 0n×1 represents an n-dimensional vector with all the

elements as 0 and In stands for n-dimensional unity matrix.

The approximation of Io(f) requires a multidimensional

quadrature rule. To this regard, the single dimensional quadra-

ture rule is extended as a multidimensional quadrature rule

by applying the product rule. Using this multipldimensional

quadrature rule, Io(f) could be approximated as [16], [20]

Io(f) ≈
N∑
i1

N∑
i2

· · ·
N∑
in

f([qi1 , qi2 , · · · , qin ]T )wi1wi2 · · ·win .

(21)

Hence, we can write

Io(f) ≈
Nn∑
j=1

Wmjf(ξmj), (22)

where ξmj = [qi1 , qi2 , · · · , qin ]T is jth multidimensional

quadrature point and Wmj = wi1wi2 · · ·win is associated

weights.

The above rule could be generalized for arbitrary mean

μ and covariance Σ by transforming the multidimensional

quadrature points with the same mean and covariance. Hence,

the integral I(f) could be approximated as

I(f) ≈
Nn∑
j=1

Wmjf(μ+ Cξmj). (23)
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Using the multidimensional Gauss-Hermite quadrature rule,

the intractable integrals appeared in Eqs. (9)-(13) could be

approximated and the filtering is performed.

Few remarks on this development are in order:

• The CD-GHF suffers from the curse of dimensionality
problem as the computational load increases exponen-

tially with dimension.

• Although the CD-GHF have high computational burden,

it can be considered to be superior than the CD-CKF due

to improved accuracy.

V. SIMULATION RESULTS

In this section, the proposed continuous-discrete filters are

applied to solve a nonlinear filtering problem of air-traffic-

control [15] where the maneuvering trajectory of an aircraft

is tracked. The state space equation of the aircraft is given

in Eq. (1), where x = [ε ε̇ η η̇ ζ ζ̇ ω]T is a seven-

dimensional state vector with ε, η and ζ representing the

radial positions, ε̇, η̇ and ζ̇ representing the velocities in three

dimensional X, Y and Z Cartesian coordinates respectively,

and ω representing the turn rate. The drift function is given

as f(x) =
[
ε̇ −ωη̇ η̇ ωε̇ ζ̇ 0 0

]T
, which shows that

the motion is horizontal.

To account the modeling errors arising due

to wind forces, turbulence etc., a noise vector

β(t) =
[
β1(t) β2(t) · · · β7(t)

]T
is added. Here,

βi(t) is independent of βj(t) ∀ 1 ≤ j 
= i ≤ 7. The diffusion

matrix Q is diag[(0 σ2
1 0 σ2

1 0 σ2
1 σ2

2)]
T .

The motion is severely nonlinear and the extent of non-

linearity depends on the turn rate parameter ω. After applying

Itô-Taylor expansion of order 1.5 to Eq. (1), we get the

discretized process model as

xj+1
k = fd(x

j
k) +

√
Qw+ Lf(xj

k)q, (24)

where

fd(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε+ δε̇− δ2

2 ωη̇

ε̇− δωη̇ − δ2

2 ω
2ε̇− δ2

2 σ1σ2

η + δη̇ + δ2

2 ωε̇

η̇ + δωε̇− δ2

2 ω
2η̇ + δ2

2 σ1σ2

ζ + δζ̇

ζ̇
ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Lf(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 σ1 0 0 0 0 0
0 0 0 −σ1ω 0 0 −σ2η̇
0 0 0 σ1 0 0 0
0 σ1ω 0 0 0 0 σ2ε̇
0 0 0 0 0 σ1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The measurements obtained at regular interval of time T is

⎡
⎣rkθk
φk

⎤
⎦ =

⎡
⎢⎢⎢⎣

√
ε2k + η2k + ζ2k
tan−1

(
ηk

εk

)

tan−1

(
ζk√
ε2k+η2

k

)

⎤
⎥⎥⎥⎦+ vk.

The radar is located at the origin and it is equipped to

measure the range r, the azimuth θ and the elevation φ.

The measurement noise is given as vk ∼ ℵ(0, R) with

R = diag(
[
σ2
r σ2

θ σ2
φ)
]
, where σr, σθ and σφ are standard

deviations for range, azimuth and elevation respectively.

For simulation purpose, the initial truth value is considered

as [2000m 10m/sec 2650m 10m/sec 200m 0m/sec ω◦/sec].
Varying the standard deviation parameters for the noises and

the number of iteration per second m, we consider two

different scenarios:

scenario 1: m = 6, σ1 =
√
0.2, σ2 =

√
25× 10−4, σr =

70 m, σθ = 0.1o and σφ = 0.1o.

scenario 2: m = 10, σ1 =
√
0.02, σ2 =

√
25× 10−5,

σr =
√
0.1× 70 m, σθ =

√
0.1× 0.1o and σφ =

√
0.1× 0.1o.

As the height (ζ) and turn rate (ω) are constant, they

are initialized in deterministic way. However, the remain-

ing four states are estimated using first two measurements.

Hence, the initial estimate could be considered as x̂0|0 =[
εm2

εm2
−εm1

T ηm2

ηm2
−ηm1

T 150 0 ω
]T
, where εmk

, ηmk
,

and ζmk
are radar measurements in cartesian coordinates at

kth time instant given as

εmk
= rk cosφk cosθk, (25)

ηmk
= rk cosφk sinθk, (26)

and ζmk
= rk sinφk. (27)

To derive the initial estimate of error covariance matrix

P0|0, the methodology discussed in Appendix A and B can

be followed.

During the simulation, the second order Gauss-Laguerre

quadrature rule (n′ = 2) is used for the CD-CQKF while

3-points (N = 3) univariate quadrature rule is extended to

multidimensional rule for implementing the CD-GHF. The

simulation is performed for 100 seconds considering a sam-

pling period of T = 0.5sec. To compare the results, root

mean square error (RMSE) for radial position, velocity and

turn rate are calculate at each time step using 500 Monte-

Carlo simulations and plotted in Fig. (2) - Fig (5). The

plots do not start at the 1st time instant, as this region is

under high convergence. From the RMSE plots, it could be

concluded that the proposed methods i.e. CD-CQKF and CD-

GHF could provide better accuracy than the CD-CKF which

is most accurate filter available in literature to deal with the

continuous-discrete filtering problems. However, relative com-

putational time analysis in Table I indicates comparatively high

computational burden for the proposed methods, especially for

the CD-GHF.

The purpose of performance analysis is to compare the

improvement caused due to enhancing numerical the high
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accuracy discrete-time filters in continuous-discrete domain. In

this regard, the CD-EKF and the CD-UKF have been excluded

from the comparison as they utilize Itô-Taylor expansion of

order 0.5 that may be an extended reason for comparatively

poor estimation accuracy.

TABLE I: Relative computational time for CD filters

CD filter Relative computational time

CD-CKF 1

CD-CQKF 1.6

CD-GHF 255.6

Fig. 2: scenario 1: RMSE plots for ω = 3◦/sec (a) position

in m, (b) velocity in m/sec.

VI. DISCUSSIONS AND CONCLUSIONS

The widely arising continuous-discrete filtering problems

concerning to the fields of tracking and navigation impels

to develop an accurate and computationally efficient solution.

In this paper, the conventional CQKF and GHF are extended

and, the CD-CQKF and the CD-GHF are introduced to deal

with such problems. In the proposed methods, the continuous

process model is first reduced to an ODE from which a

discrete model is obtained using the Itô-Taylor expansion

of order 1.5. The Itô-Taylor expansion of order 1.5 is most

accurate method available in filtering literature and also used

in CD-CKF. In proposed methods, further accuracy could be

enhanced by replacing the third degree spherical cubature rule

used in CD-CKF for approximating the intractable integrals

appeared during the filtering. In CD-CQKF, this approximation

is performed using cubature quadrature rule while CD-GHF

uses multidimensional Gauss-Hermite quadrature rule for the

same.

Fig. 3: scenario 1: RMSE plots for ω = 4.5◦/sec (a) position

in m, (b) velocity in m/sec.

Fig. 4: scenario 2: RMSE plots for ω = 3◦/sec (a) position

in m, (b) velocity in m/sec.

The performance of the proposed CD-CQKF and the CD-

GHF are compared with the CD-CKF and it is found that

the accuracy of the proposed methods are better. Due to

the enhanced accuracy, the proposed filters can replace the

conventional methods available in literature.

APPENDIX

A. Derivation of initial error covariance P0|0
Let us consider

εmk = εk + vεk, ηmk = ηk + vηk, and, ζmk = ζk + vζk
(28)
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Fig. 5: scenario 2: RMSE plots for ω = 4.5◦/sec (a) position

in m, (b) velocity in m/sec.

where εk, ηk and ζk are truth values, εmk, ηmk and ζmk are

measurement values and vεk, vηk and vζk are measurement

noises at kth time instant in Cartesian coordinates.

Similarly,

rk = r′k + vrk, θk = θ′k + vθk, and, φk = φ′k + vφk (29)

where r′k, θ′k and φ′k are truth values, rk, θk and φk are

measured values and vrk, vθk and vφk are measurement noises

at kth time instant associated with radar range, azimuth and

elevation respectively.

The filter is initialized from the first two measurements as

x̂0|0 =
[
εm2

εm2−εm1

T ηm2
ηm2−ηm1

T ζm2
ζm2−ζm1

T
θ2−θ1

T

]T
.

The initial value of truth is given as x0 =[
ε2

ε2−ε1
T ηm2

η2−η1

T ζm2
ζ2−ζ1

T
θ′2−θ′1

T

]T
. The initial

error covariance P0|0 is given as P0|0 = E[ ê0|0 êT0|0] where

the initial error is given as (from Eqs. (28)-(29))

ê0|0 = x̂0|0 − x0

=
[
vε2

vε2−vε1

T vη2
vη2−vη1

T vζ2
vζ2−vζ1

T
vθ2−vθ1

T

]
.

Here, vεk ∼ ℵ(0, σ2
ε ), vηk ∼ ℵ(0, σ2

η) and vζk ∼ ℵ(0, σ2
ζ )

are white Gaussian noises with zero mean. So, to get the

expression for P0|0, let us consider E[vεivεj ] = σ2
ε δij ,

E[vηivηj ] = σ2
ηδij and E[vζivζj ] = σ2

ζδij , and E[vεivηj ] =
σεηδij , E[vεivζj ] = σεζδij and E[vηivζj ] = σηζδij (where δij
is Kronecker delta function). Also, since vθk ∼ ℵ(0, σ2

θ) is

white noise, we put E[vθivθj ] = σ2
θδij . So the expression for

P0|0 can be given as

P0|0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ε

σ2
ε

T σεη
σεη

T σεζ
σεζ

T 0
σ2
ε

T
2σ2

ε

T 2

σεη

T
2σεη

T 2

σεζ

T
2σεζ

T 2 0

σεη
σεη

T σ2
η

σ2
η

T σηζ
σηζ

T 0
σεη

T
2σεη

T 2

σ2
η

T

2σ2
η

T 2

σηζ

T
2σηζ

T 2 0

σεζ
σεζ

T σηζ
σηζ

T σ2
ζ

σ2
ζ

T 0
σεζ

T
2σεζ

T 2

σηζ

T
2σηζ

T 2

σ2
ζ

T

2σ2
ζ

T 2 0

0 0 0 0 0 0
2σ2

θ

T 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

B. Derivation of measurement noise covariance Rk in Carte-
sian coordinate

Substituting Eqs. (25)-(27) in Eq. (28), we get

rk cos φk cos θk = εk + vεk, (30)

rk cos φk sin θk = ηk + vηk, (31)

and, rk sin φk = ζk + vζk. (32)

Similarly, substituting Eq. (29) into Eq. (30) to Eq. (32), we

get

(r′k + vrk) cos (φ
′
k + vφk) cos (θ

′
k + vθk) = εk + vεk, (33)

(r′k + vrk) cos (φ
′
k + vφk) sin (θ

′
k + vθk) = ηk + vηk, (34)

and (r′k + vrk) sin (φ
′
k + vφk) = ζk + vζk. (35)

From Eq. (33)

(r′k + vrk)(cos φ′k cos vφk − sin φ′k sin vφk)(cos θ′k cos vθk

− sin θ′k sin vθk) = εk + vεk.
(36)

Since, vrk ∼ ℵ(0, σ2
r), vθk ∼ ℵ(0, σ2

θ) and vφk ∼ ℵ(0, σ2
φ), so

assuming vφk → 0 ⇒ cos vφk → 1 ⇒ sin vφk → vφk
and, vθk → 0 ⇒ cos vθk → 1 ⇒ sin vθk → vθk Eq.

(36) reduces to

(r′k + vrk)(cos φ′k − vφk sin φ′k)(cos θ′k − vθk sin θ′k)
= εk + vεk

⇒(r′k + vrk)(cos φ′k cos θ′k − vθk sin θ′k cos φ′k
− vφk sin φ′k cos θ′k + vφk vθk sin φ′k sin θ′k) = εk + vεk.

Assuming vθk vφk → 0, vrk vφk → 0 and vrk vθk → 0, we

get

r′kcos φ′k cos θ′k − r′k vθk sin θ′k cos φ′k − r′k vφk sin φ′k cos θ′k
+ vrk cos φ′k cos θ′k = εk + vεk.

Since εk = r′k cos φ′k cos θ′k, hence

vεk =vrk cos φ′k cos θ′k − r′k vθk sin θ′k cos φ′k
− r′k vφk sin φ′k cos θ′k.

(37)

Now, from Eq. (34)

(r′k + vrk)(cos φ′k cos vφk − sin φ′k sin vφk)(sin θ′k cos vθk

+ cos θ′k sin vθk) = ηk + vηk.
(38)
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Since vrk ∼ ℵ(0, σ2
r), vθk ∼ ℵ(0, σ2

θ) and vφk ∼ ℵ(0, σ2
φ),

so assuming vφk → 0 ⇒ cos vφk → 1 ⇒ sin vφk →
vφk and, vθk → 0 ⇒ cos vθk → 1 ⇒ sin vθk → vθk,
Eq. (38) reduces to

(r′k + vrk)(cos φ′k − vφk sin φ′k)(sin θ′k + cos θ′k vθk)

= ηk + vηk

⇒(r′k + vrk)(cos φ′k sin θ′k + vθk cos φ′k cos θ′k
− vφk sin φ′k sin θ′k − vφk vθk sin φ′k cos θ′k) = ηk + vηk.

Assuming vθk vφk → 0, vrk vφk → 0 and vrk vθk → 0, we

get

r′k cos φ′k sin θ′k + r′k vθk cos φ′k cos θ′k − r′k vφk sin φ′k sin θ′k
+ vrk cos φ′k sin θ′k = ηk + vηk.

Since ηk = r′k cos φ′k sin θ′k, hence

vηk =vrk cos φ′k sin θ′k + r′k vθk cos φ′k cos θ′k
− r′k vφk sin φ′k sin θ′k.

(39)

From Eq. (35)

(r′k + vrk) (sin φ′k cos vφk + cos φ′k sin vφk) = ζk + vζk.

Assuming vφk → 0 ⇒ cos vφk → 1 ⇒ sin vφk → vφk,
we get

(r′k + vrk) (sin φ′k + vφk cos φ′k) = ζk + vζk. (40)

Assuming vrk vφk → 0, we get

r′k sin φ′k + r′k vφk cos φ′k + vrk sin φ′k = ζk + vζk. (41)

Since ζk = r′k sin φ′k,we get

vζk = r′k vφk cos φ′k + vrk sin φ′k. (42)

From Eq. (37), Eq. (39) and Eq. (42), the measurement noise

vector in Cartesian coordinate is given as

Vk=
[
vεk vηk vζk

]T

=

⎡
⎣vrkcosφ

′
kcosθ

′
k − r′kvθksinθ

′
kcosφ

′
k − r′kvφk

sinφ′kcosθ
′
k

vrkcosφ
′
ksinθ

′
k + r′kvθkcosφ

′
kcosθ

′
k − r′kvφksinφ

′
ksinθ

′
k

r′kvφkcosφ
′
k + vrksinφ

′
k

⎤
⎦ .

The measurement noise covariance Rk in cartesian coordi-

nate is given by

Rk = E[VkV
T
k ] = E

([
vεk vηk vζk

]T [
vεk vηk vζk

])
.

Since vrk ∼ ℵ(0, σ2
r), vφk ∼ ℵ(0, σ2

φ) and vθk ∼ ℵ(0, σ2
θ) are

white Gaussian noises with zero mean and are independent

from each other, so putting E[vrkvrk] = σ2
r , E[vφkvφk] = σ2

φ,

E[vθkvθk] = σ2
θk and E[vrkvφk] = 0, E[vrkvθk] = 0 and

E[vφkvθk] = 0, we get

Rk =

⎡
⎣R11k R12k R13k

R21k R22k R23k

R31k R32k R33k

⎤
⎦ =

⎡
⎣σ2

ε σεη σεζ

σεη σ2
η σηζ

σεζ σηζ σ2
ζ

⎤
⎦ , (43)

where

σ2
ε =σ

2
r cos2 φ′k cos2 θ′k + r′2k σ2

θ cos2 φ′k sin2 θ′k
+ r′2k σ2

φ sin2 φ′k cos2 θ′k,

σεη =σ
2
r cos2 φ′k cos θ′k sin θ′k − r′2k σ2

θ cos2 φ′k sin θ′k cos θ′k
+ r′2k σ2

φ sin2 φ′k cos θ′k sin θ′k,

σεζ = σ2
r cos φ′k sin φ′k cos θ′k−r′2k σ2

φ cos φ′k sin φ′k cos θ′k,

σ2
η =σ

2
r cos2 φ′k sin2 θ′k + r′2k σ2

θ cos2 φ′k cos2 θ′k
+ r′2k σ2

φ sin2 φ′k sin2 θ′k,

σηζ = σ2
r cos φ′k sin φ′k sin θ′k−r′2k σ2

φ cos φ′k sin φ′k sin θ′k,

and σ2
ζ = σ2

r sin2 φ′k + r′2k σ2
φ cos2 φ′k.
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