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X-Prompt: Multi-modal Visual Prompt for
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ABSTRACT
Multi-modal Video Object Segmentation (VOS), including RGB-
Thermal, RGB-Depth, and RGB-Event, has garnered attention due
to its capability to address challenging scenarios where traditional
VOS methods struggle, such as extreme illumination, rapid motion,
and background distraction. Existing approaches often involve de-
signing specific additional branches and performing full-parameter
fine-tuning for fusion in each task. However, this paradigm not
only duplicates research efforts and hardware costs but also risks
model collapse with the limited multi-modal annotated data. In
this paper, we propose a universal framework named X-Prompt
for all multi-modal video object segmentation tasks, designated as
RGB+X. The X-Prompt framework first pre-trains a video object
segmentation foundation model using RGB data, and then utilize
the additional modality of the prompt to adapt it to downstream
multi-modal tasks with limited data. Within the X-Prompt frame-
work, we introduce the Multi-modal Visual Prompter (MVP), which
allows prompting foundation model with the various modalities
to segment objects precisely. We further propose the Multi-modal
Adaptation Expert (MAEs) to adapt the foundation model with plug-
gable modality-specific knowledge without compromising the gen-
eralization capacity. To evaluate the effectiveness of the X-Prompt
framework, we conduct extensive experiments on 3 tasks across
4 benchmarks. The proposed universal X-Prompt framework con-
sistently outperforms the full fine-tuning paradigm and achieves
state-of-the-art performance. Codes will be available.

CCS CONCEPTS
• Computing methodologies→ Video segmentation.

KEYWORDS
Multi-modal Video Object Segmentation, X-Prompt, Multi-modal
Visual Prompt, Multi-modal Adaptatin Expert, RGB-X

1 INTRODUCTION
Video Object Segmentation (VOS) [4, 5, 21, 22, 54, 57, 76, 90] is a
pivotal task designed to delineate target objects throughout a video
sequence. This paper primarily delves into semi-supervised VOS, a
foundational endeavor that aims to segment a specified object across
an entire video sequence, leveraging the object mask provided in the
initial frame. This task is instrumental for a myriad of applications,
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(d) Ours X-Prompt Framework for Multi-modal Video Object Segmentation Tasks.
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Figure 1: (a), (b), and (c) current RGB-T, RGB-D, and RGB-E
video object segmentation paradigms. (d) X-Prompt, a unified
framework for RGB+X multi-modal video object segmenta-
tion tasks.

such as video editing [42, 50, 67], surveillance [1, 43, 52, 89], robot-
ics [20], and autonomous driving [33, 83, 86]. Recent studies, particu-
larly those employing matching-based methods [7, 29, 63, 78, 81, 92]
even enhanced by memory mechanisms [16, 23, 25, 51, 58–60],
have made significant progress and achieved advanced results.
These methods assess similarities between previous and current
frames through semantic matching at the pixel level. However,
despite these efforts and advancements, contemporary state-of-
the-art methodologies still struggle in challenging scenarios like
extreme illumination, obscured scenes, rapid motion, occlusions,
and background distraction.

Alternative modalities offer a vital solution to these limitations,
by serving as a crucial complement to RGB data in challenging
scenarios. For example, thermal [35, 62] and depth [46] information
remains unaffected by variations in illumination and visibility con-
ditions. Similarly, event data [18], which records changes in pixel
intensity at high frequencies, does not blur during rapid motion.
Consequently, Multi-modal Video Object Segmentation is garner-
ing increased interest for its capacity to facilitate more resilient
tracking through the exploitation of inter-modal complementarities,
including combinations like RGB-Thermal (RGB-T) [73, 85], RGB-
Depth (RGB-D) [74, 88], and RGB-Event (RGB-E) [36, 66]. Current
multi-modal VOS approaches predominantly augment an existing
VOS model’s RGB branch with an additional modality branch and
a fusion module. These enhancements are then subjected to either
full training or fine-tuning on downstream tasks, as depicted in
Fig. 1 (a), (b), and (c). However, on one hand, while all these modifi-
cations aim to improve VOS task performance in complex scenarios
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by introducing additional modal information, the branches and fu-
sion mechanisms are tailored separately for each task, necessitating
different structures for each downstream modality. This paradigm
not only duplicates research efforts but also escalates the computa-
tional and hardware costs associated with developing specialized
architectures for every task. On the other hand, full-parameters
training or fine-tuning these newly designed architectures with
limited data can easily lead to overfitting, alongside the risk of
catastrophic forgetting, thus lose the generalized capabilities of
the original pretrained model. Moreover, the collection of multi-
modal paired data and pixel-level annotations remains challenging
and costly, resulting in a scarcity of such data, with each modality
having approximately only a hundred or so annotated sequences.
Training with such limited data restricts the scale of the model,
making it difficult to effectively train the new modality branch and
the fusion module without degrading or collapsing the performance
and the generalizability of the pretrained model, thereby failing to
leverage prior knowledge.

To address these challenges, we argue that these multi-modal
tasks of RGB-T, RGB-D, and RGB-E can be unified into a single ef-
fort,RGB-X, where X represents any additional modality. And they
can share the common segmentation capability and benefit from
the robust generalization of a video object segmentation founda-
tion model, which can segment target objects in the current frame
based on reference frames and their segmentation masks in var-
ious videos. Therefore, we propose the X-Prompt framework, a
universal solution for multi-modal video object segmentation. This
framework utilizes numerous RGB video sequences to pre-train a
transformer-based foundation model with general object segmen-
tation capacity. Subsequently, additional modality information is
utilized to prompt and adapt this foundation model to downstream
multi-modal tasks with limited data while retaining the model’s
generalization ability.

Within the X-Prompt framework, we further propose two key
components: the Multi-modal Visual Prompter and the Multi-modal
Adaptation Experts. TheMulti-modal Visual Prompter (MVP)
encodes cross-modality information into visual prompts that used to
prompt the frozen foundation model. The spatial-channel attended
complementary prompt are integrated with the patch embeddings
of the foundation model to guide segmentation of downstream
modality. Additionally, multi-scale multi-modal prompts are ob-
tained to prompt the segmentation mask decoder to incorporate
diverse cross-modality information, enhancing the precision of ob-
ject delineation in this dense prediction tasks. The design described
above enables the foundation model to leverage cross-modality
prompts to achieve RGB-X VOS tasks, but it does not allow the
foundation model to learn new modality-specific knowledge with-
out any tuning. However, full-parameter fine-tuning poses a risk
of degrading or collapsing the foundation model, especially with
limited data. Therefore, we introduce theMulti-modal Adapta-
tion Experts (MAEs) for plugging modality-specific knowledge
without forgetting the generalized prior knowledge embedded in
the frozen foundation model. Within each transformer layer of the
frozen foundation model, we employ low-rank adaptations to serve
as the modality experts. These experts’ outputs are combined via
a router to facilitate multi-modal collaboration. This approach en-
sures that the prior knowledge of the foundation model is retained

while integrating additional expertise required for new tasks, such
as extracting new modality patterns including feature extraction
and matching, as well as facilitating collaborative usage of RGB
with other modalities. The proposed universal X-Prompt Frame-
work achieves state-of-the-art performance on 3 multi-modal video
object segmentation tasks including RGB-T, RGB-D, and RGB-E,
surpassing existing methods significantly. In summary, our contri-
butions are as follows:

• We propose X-Prompt, the first universal framework for
multi-modal video object segmentation, including RGB-
T, RGB-D, and RGB-E tasks. It utilizes the X-modality as
the visual prompt to adapt a foundation model to various
downstream tasks.

• We designed the Multi-modal Visual Prompter, which en-
codes visual prompts into both the foundation model and
the mask decoder, enabling precise objects segmentation
across various modalities.

• We present the Multi-modal Adaptation Expert to adapt the
foundation model with pluggable modality-specific knowl-
edge without forgetting generalized prior knowledge.

• The proposed X-Prompt framework achieves state-of-the-
art performance on 3 multi-modal video object segmenta-
tion tasks, including RGB-T, RGB-D, and RGB-E.

2 RELATEDWORK
2.1 Video Object Segmentation
Semi-supervised Video Object Segmentation (VOS) accurately seg-
ments objects in a video sequence using the provided mask in
initial frame. Model-based methods [2, 3, 48, 69] start with offline
pre-training on static images to capture segmentation features,
then refining them using mask from the first frame of the test video.
However, the time-consuming fine-tuning step limits their suitabil-
ity for real-world applications. Then, Propagation-based methods
[10, 28, 31, 50, 53, 65] iteratively propagate masks with temporal
correlations. However, these methods heavily rely on previous
segmentation masks, making them susceptible to target drift and
error accumulation. To address these drawbacks, Matching-based
methods [7, 29, 63, 78, 81, 92] calculate correspondence pixel maps
between the current and reference frames. Among them, FEELVOS
[63] CFBI [78] and CFBI+ [81] improve it by integrating foreground-
background features and employing local-global matching. More
recently, memory-based methods [16, 23, 25, 51, 58–60] propose
an external memory bank to store history features, thus address-
ing contextual limitations. Techniques such as XMem [8] extend
memory to long-term VOS and AOT [77], DeAOT [82] enhancing
performance through Transformer. Despite advancements in ex-
isting methods, challenges persist particularly in scenarios with
background clutter, illumination variation, and motion blur. This
paper tackles these challenges by emphasizing multi-modal VOS,
utilizing diverse data sources beyond RGB inputs.

2.2 Multi-modal Tracking and Segmentation
In video object tracking, researchers have explored using multiple
modalities to improve accuracy. For instance, [44] and [49] use
depth maps for handling occlusions. DAL [56] introduces embed-
ded depth-aware convolution into RGB tracking frameworks to
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bolster target estimation robustness. Besides, [40] combines RGB
and event flows to predict Regions of Interest (ROIs) in complex
scenarios. To leverage dual modalities, MDNet [66] merge visible
frames and event flows onto RGB tracking frameworks to construct
a series of baseline trackers. Similarly, JMMAC [84] integrates RGB
and thermal infrared modalities to capture reliable appearance and
motion cues, with event flows significantly contributing to robust
tracking. More recently, to tackle severe data deficiencies, some
studies have proposed data-efficient methods. For instance, Pro-
Track [75] transfers multi-modal inputs to a single modality, while
ViPT [91] designs modality-complementary prompts. As a more
challenging task, multi-modal VOS becomes increasingly impor-
tant as it provides precise pixel-level masks, critical for applications
like surveillance in adverse weather and nighttime autonomous
driving. VTiNet [73] tackles Visible-Thermal VOS by integrating
cross-modal and cross-frame features in modality and temporal
domains, alongside a modality-sensitive memory bank. [36] im-
proves low-light VOS with event assistance through the adaptive
cross-modal fusion and event-guided memory matching modules.
Notely, FusedCDNet [74] proposes a weakly-supervised RGB-D
VOS method, utilizing bounding box level supervision in both train-
ing and testing phases, mitigating challenges of expensive data
collection and annotation. To address the issue of model general-
ization degradation due to limited data, as well as the redundant
research effort and computational deployment costs resulting from
designs tailored for each specific modal task, this paper proposes a
universal framework for all multi-modal VOS tasks. It utilizes the
auxiliary modality as the prompt to adapt a foundational model.

2.3 Foundation Model Adaptation
The advancement of foundation models has prompted exploration
into their adaptation for downstream tasks. Recently, freezing the
pre-trained model and only fine-tune a few additional parameters
to attain strong performance has emerged as a notable approach,
which is particularly valuable when data of downstream task is
limited. Among them, prompt tuning-based methods [34] fine-tune
models by introducing learnable prompt tokens. For instance, VPT
[30] enhances transformer encoders with learnable parameters, out-
performing full fine-tuning on 20 downstream recognition tasks.
AdaptFormer [6] investigates efficient fine-tuning in video action
recognition by integrating lightweight modules into a ViT, surpass-
ing the performance of existing fully fine-tuned models. ProTrack
[75] and ViPT [91] utilize prompt tuning in multimodal tracking to
address challenging scenarios. Additionally, adapter-based meth-
ods [26] incorporate trainable adapters into pre-trained models.
For example, LoRA [27] injects trainable low-rank matrices into
transformer layers to approximate the weight updates and (𝐼𝐴)3
[41] scales activations by learned vectors to attain stronger perfor-
mance with a relatively tiny amount of new parameters. This paper
not only uses multi-modal visual prompts to enable the founda-
tion model to handle various multi-modal tasks, but also employs
modality adaptation experts to introduce knowledge about new
modalities to the foundation model.

3 METHOD
In this section, we begin by formulating of multi-modal video ob-
ject segmentation tasks under a unified formulation termed RGB-X

(Sec. 3.1.1). We then introduce the video object segmentation foun-
dational model with generalization capabilities (Sec 3.1.2). Follow-
ing this, we propose the universal X-Prompt framework, which
then leverages the additional modality as the prompt to adapt the
foundation model to various multi-modal tasks (Sec. 3.2). Within
the X-Prompt framework, we further introduce the Multi-modal
Visual Prompter that enables prompting the foundation model to
segment objects precisely with various modalities (Sec. 3.3) and the
Multi-modal Adaptation Experts to adapt the foundational model
with pluggable modality-specific knowledge without forgetting
generalized prior knowledge (Sec. 3.4).

3.1 Preliminary
3.1.1 Problem Formulation.

Multi-modal video object segmentation tasks, such as RGB-Thermal,
RGB-Depth, and RGB-Event, can be abstracted into a unified task,
termed RGB-X, which involves leveraging an auxiliary modality
in addition to RGB to segment target objects in each frame. To for-
mulate, given a video with 𝑇 frames denoted as {𝐼𝑡 , 𝑋𝑡 }𝑇𝑡=1, along
with the object masks in the first frame𝑀1 ∈ O𝐻×𝑊 that identify
𝑂 targets of interest, the goal is to predict the object masks in all
frames, represented as {𝑀𝑡 ∈ O𝐻×𝑊 }𝑇

𝑡=1.

3.1.2 Foundation Model.
The models required for multi-modal video object segmentation

tasks all hinge on a core capability: computing the correlation be-
tween the current frame and the first frame with the known object
mask. Therefore, we argue that RGB-X tasks can share the segmen-
tation capability and the generalization of a foundational model for
RGB video object segmentation. This model should be capable of seg-
menting target objects in the current frames by referencing frames
and their segmentation masks when dealing with diverse videos.

Specifically, we built our foundation model based on the Vision
Transformer [15, 19] within an All-in-One Transformer architecture
following [37]. To begin, we generate the non-overlapping patch
embeddings with Patch Embedding layer for the reference and
current frame P (𝐼𝑟 ) and P (𝐼𝑡 ), and concatenate them along the
spatial dimension as the initial input of transformer:

𝑧0 = Cat[P (𝐼𝑡 ) , P (𝐼𝑟 )] ∈ R(𝑁𝑡+𝑁𝑟 )×𝐷 , (1)

where P is the Patch Embedding layer. Supposing 𝑝 is the stride
of the patch embedding, thus 𝑁 = 𝐻𝑊 /𝑝2. Then, this input along
with the mask of reference frame are fed into Foundation Model:

𝑧𝐿𝑡 = F
(
𝑧0𝑡 , 𝑧

0
𝑟 , 𝑀𝑟

)
(2)

where F is a Visual Transformer with 𝐿 layers And in each layer
F(𝑙 ) , 𝑙 ∈ {1, 2, · · · , 𝐿}, the forward process of each layer 𝑧𝑙 =

F(𝑙 )
(
𝑧𝑙−1,𝑚𝑟

)
can be written as:

𝑧′ 𝑙−1 = LN
(
MSA

(
𝑧𝑙−1,𝑚𝑟

))
+ 𝑧𝑙−1,

𝑧𝑙 = LN
(
FFN

(
𝑧′ 𝑙−1

))
+ 𝑧′ 𝑙−1,

(3)

where LN denotes the Layer Norm and FFN represents the Feed-
Forward Network.MSA can use the naive multi-head self attention

3
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Figure 2: The overall architecture of universal X-Prompt Framework for RGB-X multi-modal video object segmentation tasks.
Following the pre-training of an RGB VOS foundation model (Sec. 3.1) with robust segmentation capabilities and generalization,
X-Prompt (Sec. 3.2) utilizes the X-modality to prompt and adapt the foundation model for various downstream multi-modal
tasks, employing our proposed Multi-modal Visual Prompter (Sec. 3.3) and Multi-modal Adaptation Experts (Sec. 3.4).

or the specifically designed uni-hybrid attention in [37]. For inte-
gration with mask information, the query, key, and value are:

{𝑄𝑙𝑟 , 𝐾𝑙𝑟 , 𝑉 𝑙𝑟 } = {𝑊 𝑙
𝑞𝑧
𝑙
𝑟 , 𝑊

𝑙
𝑘
𝑧𝑙𝑟 , 𝑊

𝑙
𝑣𝑧
𝑙
𝑟 +𝑚𝑟 }, (4)

where𝑊 𝑙
𝑞 ,𝑊 𝑙

𝑘
, and𝑊 𝑙

𝑣 are projection weights for query, key, and
value transformations.𝑚𝑟 ∈ R𝑁𝑟 ×𝐷 is the mask-embedding gen-
erated through a mask embedding layer through a single convo-
lutional layer. Finally, the output 𝑧𝐿 of the foundation model, is
input to the lightweight mask decoder D and decoded into final
multi-object masks𝑀𝑡 = D

(
𝑧𝐿

)
. We have included only one refer-

ence frame here for brevity. Actually, multiple reference frames are
dynamically updated and stored in memory. We refer readers to
[37] for more design details about our video object segmentation
foundation model.

We train the foundation model with both synthetic video se-
quences generated from static RGB image datasets [11, 17, 24, 39, 61]
and various RGBVOS datasets [14, 55, 70]. This pretraining on large-
scale datasets equips our video object segmentation foundation
model with robust temporal matching capabilities and facilitates
effective transferability to downstream multi-modal RGB+X VOS
tasks.

3.2 X-Prompt Framework
Multi-modal video object segmentation tasks involve an additional
auxiliary X-modality flow that is temporally synchronized and
spatially aligned with the RGB flow. We propose the X-Prompt
framework, which first trains a robust RGB video object segmenta-
tion foundation model with strong segmentation capabilities and
generalization. Subsequently, we utilize the auxiliary modality flow
as the prompt to adapt the model to downstream multi-modal tasks
with limited data. As illustrated in Fig. 2, in the X-Prompt frame-
work, the RGB images 𝐼 and the X-modality maps 𝑋 are feed into
their respective patch embedding layers P𝑖 and P𝑥 to obtain patch
tokens:

𝑧16×rgb = P𝑖 (𝐼 ) , 𝑧16×𝑥 = P𝑥 (𝑋 ) , ∈ R(𝑁𝑡+𝑁𝑟 )×𝐷 , (5)

where 𝑁𝑡 and 𝑁𝑟 are the number of patch tokens of the current
frame and the reference frames. Then the X-modality tokens are
utilized to supplement the image tokens, resulting in complemen-
tary combined multi-modal prompts embedding through the Multi-
modal Visual Prompter (detailed in Sec. 3.3):

𝑧0 = Φ
(
𝑧16×rgb , 𝑧

16×
𝑥

)
∈ R(𝑁𝑡+𝑁𝑟 )×𝐷 , (6)

where 𝑧0 is the spatial-channel attended multi-modal prompts and
Φ indicates the proposed Multi-modal Visual Prompter. This visual
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Figure 3: The design of the Multi-modal Visual Prompter (MVP) for encoding the spatial-channel attended complementary
prompt embedding for the foundation model and the multi-scale multi-modal prompt embedding for the mask decoder.

prompt to the foundation model operates with a stride of 16. Ad-
ditionally, for the pixel-level dense prediction task, we also design
the multi-scale multi-modal prompts to mask decoder to accurately
segment object masks. Subsequently, the multi-modal prompt 𝑧0
is fed to the foundation model, enabling multi-modal video ob-
ject segmentation without requiring any modifications to the RGB
foundation model:

𝑧𝐿𝑡 = F
(
𝑧0, 𝑀𝑟

)
∈ R𝑁𝑡×𝐷 , (7)

where 𝑧𝐿𝑡 then can be decoded to the object segmentation mask𝑀𝑡
with the mask decoder D.

Moreover, to adapt the foundation model with modality-specific
knowledge in a pluggable manner without compromising its gener-
alization capacity, we introduce Multi-modal Adaptation Experts
(detailed in Sec. 3.4) to the frozen foundation model:

𝑧𝑙 = Ψ
(
F(𝑙 )

(
𝑧𝑙−1,𝑚𝑟

))
, (8)

where 𝑧𝑙 is the output of the 𝑙-th block adapted with modality ex-
perts and Ψ represents the proposed adaptation experts in Sec. 3.3.
It’s worth noting that within the X-Prompt framework, only the
newly introduced prompter, modality experts, and the patch em-
bedding layer for the X-modality are trainable. All other network
parameters, including the transformer encoder layers in the foun-
dation model, the mask decoder, and the patch embedding layer for
the RGB image, remain frozen from pretraining.

3.3 Multi-modal Visual Prompter
To leverage the powerful segmentation capabilities and generaliza-
tion of foundation models for multi-modal video object tasks, we
propose the Multi-modal Visual Prompter (MVP) to encode RGB-X
information into visual prompts. To accommodate dense prediction
tasks, we employ convolutional patch embedding layers with pro-
gressive downsampling to embed patch tokens. This progress yields
multi-scale RGB image patch tokens 𝑧4×rgb, 𝑧

8×
rgb, and 𝑧

16×
rgb , as well

as X-modality patch tokens 𝑧4×𝑥 , 𝑧8×𝑥 , and 𝑧16×𝑥 ,. We use 𝑧16×16rgb and
𝑧16×𝑥 to encode primary prompts that enable the foundation model
to integrate information from both modalities for object tracking
and segmentation. The other patch tokens are efficiently encoded

into multi-scale multi-modal prompts to guide the mask decoder
for more precise object segmentation masks.

For the visual prompt for the foundation model, given 𝑧16×rgb and
𝑧16×𝑥 , we first concatenate them into a single embedding along
the specified dimension, followed by a Linear layer that reduces
the dimensionality from 2𝐷 to 𝐷 to obtain 𝑧16×fuse. Subsequently,

we obtain spatial attention 𝐴s ∈ R
𝐻
16 ×

𝑊
16 ×1 and channel attention

𝐴c ∈ R1×1×𝐷 separately, then merge them into spatial-channel
attention through broadcast multiplication:

𝐴sc = 𝐴s ×𝐴c ∈ R
𝐻
16 ×

𝑊
16 ×𝐷 , (9)

𝐴s = 𝜎
(
Conv

(
AvgPool

(
𝑧16×fuse

))
+ Conv

(
MaxPool

(
𝑧16×fuse

)))
,

(10)

𝐴c = 𝜎
(
MLP

(
AvgPool

(
𝑧16×fuse

))
+MLP

(
MaxPool

(
𝑧16×fuse

)))
, (11)

where 𝜎 denotes the sigmoid function. Conv andMLP represents
the convolution layer and the multi-layer perceptron, respectively.
Finally, this spatial-channel attention weight is applied to the image
path token embedding to produce a multi-modal prompt that is
spatial-channel attended, enhancing and complementing the origi-
nal tokens: 𝑧0 = 𝐴sc × 𝑧16×fuse.

For the visual prompt for the mask decoder, we employ a simple,
efficient, yet effective Linear Adapter to encode 𝑧4×rgb, 𝑧

4×
x , and 𝑧8×rgb,

𝑧8×x into multi-scale multi-modal prompts {𝑧4×, 𝑧8×} for the mask
decoder through residual connection. To be more efficient, we find
that the linear layer preceding the upsampling operation in each
block of the mask decoder can play the role of the adapter, thus
eliminating the need for additional parameters for this step.

3.4 Multi-modal Adaptation Experts
Although the proposedMVP effectively encodesmulti-modal prompt
embeddings for the frozen foundation model, enabling it to han-
dle various multi-modal tasks without degrading the foundation
model’s performance, the foundationmodel itself does not learn any
new knowledge about X-modality in this process. As a result, the
model’s performance on each downstream task is sub-optimal. To
infuse new knowledge of this modality into the foundation model
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using limited data, while avoiding the risks of degrading or col-
lapsing the foundation model that full-parameter fine-tuning might
entail, we introduce the Multi-modal Adaptation Experts (MAEs).
This approach offers a pluggable knowledge adaptation mechanism
that works with the frozen foundation model.

Specifically, within each transformer layer of the frozen founda-
tion model, we employ 𝐾 low-rank adaptations to act as modality
adaptation experts, assisting linear layers of both MSA and FFN
in parallel. Here we denote the input tokens to the linear layer of
MSA or FFN within the transformer layer, which also are inputs
to the experts, as ℎ ∈ R(𝑁𝑡+𝑁𝑟 )×𝐷 , to describe how these modality
adaptation experts function:

ℎ′ =𝑊0 · ℎ + Route𝐾𝑖=1 (△ℎ𝑖 )

=𝑊0 · ℎ + Route𝐾𝑖=1 (△𝑊𝑖 · ℎ)
(12)

where △ℎ𝑖 ∈ R(𝑁𝑡+𝑁𝑟 )×𝐷 is the adaptation of each expert.𝑊0 ∈
R𝐷×𝐷 denotes the original parameters of the foundation model.
△𝑊𝑖 ∈ R𝐷×𝐷 represents the learnable parameters for modality
adaptation, implemented efficiently by △𝑊𝑖 = 𝐵𝑖𝐴𝑖 according to
the LoRA [27] technique for LLMs. These experts’ outputs are
combined via a router to facilitate multi-modal collaboration:

Route𝐾𝑖=1 (△ℎ𝑖 ) = Softmax
(
𝑤𝑅𝑖 · ℎ

) 𝐾∑︁
𝑖=1

△ℎ𝑖 (13)

where𝑤𝑅
𝑖
∈ R𝐷×𝐾 is the learnable parameter of the Router and is

implemented through a linear layer.
This pluggable knowledge adaptation mechanism ensures that

general capabilities of the foundation model are retained while
integrating additional expertise required for new tasks, such as
extracting new modality patterns including feature extraction and
matching, as well as facilitating collaborative usage of RGB with
X-modality.

4 EXPERIMENT
4.1 Implementation Details
Networks. In our foundationmodel, following theOneVOS [37], we
utilize an All-in-One Transformer architecture. The entire network
operates within a ConvMAE [19] structure, where patch embedding
layers produce patch tokens at 1/4, 1/8, and 1/16 resolutions through
progressively downsampled convolutional layers, effectively pre-
serving multi-scale information. The transformer comprises ten
transformer encoder layers that concurrently perform feature ex-
traction and object matching, with each dimension set to 768. The
mask decoder is structured as an FPN [38], progressively increasing
feature resolution while decreasing the channel dimension. The
prompter’s convolutional layers utilize a 7 × 7 kernel size, and
the MLP layer includes one hidden layer with a dimension that
is one-sixteenth of the input dimension. The modality adaptation
experts are configured with a low-rank of 8, and both the low-rank
adaptation and routing are implemented with linear layers. Accord-
ing to our experiments, we typically employ two experts for each
multi-modal task.
Training.The Foundationmodel is initializedwith ImageNet1k [13]
pretrained weights, and is trained on synthetic video sequences
generated from still image datasets [11, 17, 24, 39, 61] for 200,000

iterations with a batch size of 4 and a learning rate of 2e-4. Sub-
sequently, it undergoes main training on collected standard VOS
datasets including DAVIS [55], YouTube [70], and MOSE [14] for
another 200,000 iterations with a learning rate of 1e-4 on four 3090
GPUs. After pre-training, the Foundation model is adapted to multi-
modal downstream tasks with all pre-trained parameters frozen,
while only the newly introduced prompter, adaptation experts, and
the patch embedding layer for the X-modality are trainable. De-
pending on the number of annotated videos available for each
task, the training durations vary from 20,000 to 60,000 iterations.
Throughout all stages of training, a consistent 0.5:0.5 combination
of bootstrapped cross-entropy loss and soft Jaccard loss is used.

4.2 Main Results
X-Prompt accomplishes the consolidation of multiple downstream
multi-modal video object segmentation tasks. In this study, we
select 4 benchmarks [66, 73, 85, 88] of 3 challenging tasks to assess
the effectiveness and generalization of the proposed framework.
We conduct modality prompt and adaptation on these downstream
tasks without specific modulation. Evaluation metrics include J ,
F , and J&F [55], where J represents the Intersection over Union
score between the prediction and the ground truth mask, F denotes
the boundary similarity measure between the prediction boundary
and the ground truth, and J&F represents the average score of
both J and F .
RGB-Thermal Task. To evaluate the performance of the proposed
framework on the RGB-Thermal task, we selected the VisT300 [73]
and VT-UAV [85] benchmarks. VisT300, a general dataset for RGB-
T VOS, includes a variety of scenes, with 250 training sequences
and 50 testing sequences. The VT-UAV dataset, designed for the
challenging Unmanned Aerial Vehicle (UAV) scenarios, with 50
sequences for training and another 50 for testing. We adapt the
training data from these two datasets for the thermal modality
task. As Tab. 1 indicates, our proposed X-Prompt outperforms all
previous SOTA methods, achieving the highest scores of 84.2%
and 87.3% J and F on these VisT300 and VT-UAV respectively,
especially on the challenging VT-UAV dataset, where it surpasses
others by 10.6%.
RGB-Depth Task. For the RGB-D task, we use the ARKitTrack to
evaluate the performance. ARKitTrack [88] utilizes LiDAR to collect
and annotate 300 RGB-D sequences in both static and dynamic
scenes, comprising 245 training videos and 55 testing videos. As
shown in Tab. 2, after pre-training the foundation model with RGB
data and adapting it for the Depth modality using ARKitTrack, our
X-Prompt achieves an impressive J&F score of 82.1%, surpassing
previous models whether trained exclusively on RGB-D datasets or
pre-trained on RGB data.
RGB-Event Task. For the RGB-E task, we use VisEvent [66] dataset,
the largest visible-event benchmark dataset collected from real-
world scenarios for evaluation. However, the VisEvent dataset only
provides object annotations at the box level. Therefore, we em-
ployed the powerful HQ-SAM [32] method to generate mask anno-
tations based on these box annotations. Through HQ-SAM predic-
tions and our filtering, we obtained a VisEvent-VOS subset suitable
for evaluating RGB-E video object segmentation. Since there were
previously no models capable of RGB-E video object segmentation,
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Table 1: RGB-T performance on VisT300 test set and VT-UAV test set.

VisT300 Benchmark

Method STM STCN STCN-T HMMN TBD CFBI+ AOT XMem XMem-T VTiNet X-Prompt
[51] [9] [73] [60] [12] [80] [79] [8] [73] [73] (Ours)

J&F 60.4 71.4 72.3 68.3 70.5 74.1 76.8 75.7 77.9 81.9 84.2
J 57.9 74.4 - 65.9 68.3 71.8 74.0 73.3 - 79.2 81.7
F 62.8 73.8 - 70.6 72.6 76.4 79.6 78.0 - 84.5 86.7

VT-UAV Benchmark

Method RANet TVOS SiamMask D3S AlphaRefine STCN AOT-B AOT-L-Swin XMem VTiNet X-Prompt
[68] [87] [64] [47] [72] [9] [79] [79] [8] [73] (Ours))

J&F 38.8 44.0 57.0 57.0 65.9 65.5 76.6 82.0 69.1 76.7 87.3
J 32.2 36.9 52.9 53.4 59.9 61.0 72.1 77.5 65.1 72.9 82.8
F 45.4 51.0 61.0 60.7 71.9 69.9 81.1 86.5 73.1 80.8 91.8

Table 2: RGB-D performance on ARKitTrack-VOS test set.

Only Train with RGB-D Data With RGB Data Pre-Train
Method QDMN RPCM AOT STCN STCN-D ARKitVOS STCN XMem AOT-B AOT-L-Swin X-Prompt

[45] [71] [79] [9] [88] [88] [9] [8] [79] [79] (Ours)

J&F 30.6 50.9 58.2 52.2 53.7 66.2 63.6 71.6 72.6 77.8 82.1
J 27.6 49.2 55.5 48.9 49.8 62.5 60.2 68.5 70.0 75.0 79.4
F 33.7 52.7 62.7 56.0 57.5 69.8 66.9 74.6 75.3 80.7 84.9

Foundation Model
with only RGB

X-Prompt
with RGB+X

First Frame

ThermalRGB Object Mask DepthRGB Object Masks EventRGB Object Mask

Figure 4: Qualitative results of RGB-X. X-Prompt effectively utilizes X-modality to address challenging scenarios.

Table 3: RGB-E performance on VisEvent-VOS test set.

J&F J F
STCN [9] 61.9 57.5 66.3
AOT-B [79] 56.3 50.5 62.0
AOT-L-Swin [79] 58.6 52.2 64.9
AOT-L-Swin-E 59.7 54.0 65.4
X-Prompt 67.1 61.7 72.5

we compared our approach with current state-of-the-art VOS mod-
els and a fine-tuned AOT-L-Swin model with concatenated RGB
and event inputs (row-4). Our method significantly outperformed
them, as demonstrated in Table 3.

4.3 Ablation Study
X-Prompt Framework.To verify the effectiveness of the X-Prompt
framework, including foundationmodel, multi-modal visual prompter,
and multi-modal adaptation experts, Tab. 4 presents a series of tests:

the foundation model, using only RGB information, achieves basic
object segmentation (row-1); with the addition of the Multi-modal
Visual Prompter, we effectively encode X-modality into the prompt,
thereby enhancing the intrinsic capabilities of the foundation model
(row-2); the best results are achieved when modality experts are
involved to adapt the foundation model for specific modality down-
stream tasks (row-4). We also independently assessed the contri-
bution of the multi-modal adaptation experts (row-3) by simply
concatenating RGB and X-modality data, instead of using the pro-
posed prompter.
Multi-modal Visual Prompter. We employed different visual
prompts for the foundation model to analyze the roles of various
modalities and demonstrate the effectiveness of the proposed multi-
modal visual prompter. As shown in Tab. 5, RGB contains primary
information, and achieving accurate segmentation solely with aux-
iliary X-modalities is difficult. While thermal modality, in particular,
inherently contains relatively more information for object segmen-
tation. The proposed MVP effectively encodes RGB images and
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Table 4: Ablation study of the X-Prompt framework.

VisT300 VT-UAV ARKitTrack VisEvent
J&F J F J&F J F J&F J F J&F J F

Foundation Model 76.5 73.7 79.2 82.4 77.9 86.9 78.4 75.8 81.1 60.7 55.3 66.0
with MVP 80.9 78.3 83.4 83.7 79.5 87.9 79.5 76.7 82.4 62.5 57.1 67.8
with MAEs 81.6 79.0 84.3 86.8 82.2 91.5 81.3 78.3 84.3 61.2 55.1 67.3

with both (X-Prompt) 84.2 81.4 87.0 87.5 83.0 91.9 82.1 79.4 84.9 67.1 61.7 72.5

Table 5: Ablation study on the multi-modal visual prompter

VisT300 VT-UAV ARKitTrack VisEvent
Prompt J&F J F J&F J F J&F J F J&F J F
only RGB 76.5 73.7 79.2 82.4 77.9 86.9 78.4 75.8 81.1 60.7 55.3 66.0
only X 61.6 60.7 62.4 38.9 33.2 44.6 32.7 31.7 33.8 22.9 19.4 26.3

Cat(RGB, X) 81.6 79.0 84.3 86.8 82.2 91.5 81.3 78.3 84.3 61.2 55.1 67.3
MVP 84.2 81.4 87.0 87.5 83.0 91.9 82.1 79.4 84.9 67.1 61.7 72.5

Table 6: Ablation study on the multi-modal adaptation experts.

Learnable VisT300 VT-UAV ARKitTrack VisEvent
Adaptation Parameters J&F J F J&F J F J&F J F J&F J F
Frozen 0M, 0% 80.9 78.3 83.4 83.7 79.5 87.9 79.5 76.7 82.4 62.5 57.1 67.8
Full FT 106.5M, 100% 76.1 73.6 78.7 72.2 67.4 77.0 62.2 59.3 65.1 40.0 35.9 44.0
Adapter 0.2M, 0.2% 83.5 80.9 86.1 86.2 82.0 90.5 80.1 77.3 83.0 64.3 58.8 69.9
LoRA 0.8M, 0.7% 83.0 80.4 85.6 85.6 81.3 89.9 80.4 77.7 83.2 62.7 57.4 68.0
MAEs 2.3M, 2.1% 84.2 81.4 87.0 87.5 83.0 91.9 82.1 79.4 84.9 67.1 61.7 72.5

Table 7: Ablation study on the number of modality experts.

Experts Learnable VisT300 VT-UAV ARKitTrack VisEvent
Number Parameters J&F J F J&F J F J&F J F J&F J F

0 0M, 0% 80.9 78.3 83.4 83.7 79.5 87.9 79.5 76.7 82.4 62.5 57.1 67.8
1 1.5M, 1.4% 83.7 81.0 86.5 86.8 82.3 91.3 80.7 77.8 83.5 65.4 59.7 71.2
2 2.3M, 2.1% 84.2 81.4 87.0 87.5 83.0 91.9 81.3 78.5 84.1 67.1 61.7 72.5
3 3.2M, 2.9% 81.6 79.0 84.3 86.8 82.2 91.5 82.1 79.4 84.9 65.0 59.7 70.4
4 4.1M, 3.7% 82.6 80.1 85.1 86.3 82.1 90.6 80.1 77.4 82.9 64.6 59.2 70.1
5 4.9M, 4.4% 83.5 80.8 86.1 86.3 82.0 90.6 80.6 77.7 83.5 64.2 58.5 69.8

X-modality complementarily, forming a visual prompt that enables
the foundation model to achieve accurate segmentation.
Multi-modal Adaptation Experts. First, we implemented vari-
ous approaches for adapting the foundation model to downstream
X-modality tasks, as illustrated in Tab. 6. "Frozen" refers to training
only the multi-modal visual prompter (MVP) while keeping the
entire foundation model frozen (row-1). Full parameter fine-tuning
leads to model degradation and catastrophic forgetting issues (row-
2). Adapter and LoRA techniques allow the foundation model to
adapt without degradation (row-3), demonstrating the feasibility
and effectiveness of the foundation model - prompt - adaptation
paradigm (rows 3 and 4). The proposed Multi-modal Adaptation
Experts achieve the best performance by introducing additional in-
dependent experts during training to learn multi-modal knowledge.
Next, as shown in Tab. 7, we experimented with the number of
experts employed and found that introducing two experts achieves

the best modality adaptation for most RGB-X tasks, except for the
RGB-D tasks in the ARKitTrack scenario, where three experts yield
better performance.

5 CONCLUSION
In this work, we introduce X-Prompt, the first universal framework
for multi-modal RGB+X video object segmentation tasks, to ad-
dress the issue of model generalization degradation due to limited
multi-modal data and reduces redundant research effort and com-
putational deployment costs associated with task-specific designs.
Following the pre-training of an RGB VOS foundation model with
robust segmentation capabilities and generalization, X-Prompt uti-
lizes the X-modality to prompt and adapt the foundation model for
various downstream multi-modal tasks, employing our proposed
Multi-modal Visual Prompter and Multi-modal Adaptation Experts.
Extensive experiments on 3 tasks across 4 benchmarks demonstrate
the effectiveness and generalization of X-Prompt.
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