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Abstract

Some of the most successful knowledge graph embedding (KGE) models for
link prediction — CP, RESCAL, TUCKER, COMPLEX — can be interpreted as
energy-based models. Under this perspective they are not amenable for exact
maximum-likelihood estimation (MLE), sampling and struggle to integrate logical
constraints. This work re-interprets the score functions of these KGEs as circuits
— constrained computational graphs allowing efficient marginalisation. Then, we
design two recipes to obtain efficient generative circuit models by either restricting
their activations to be non-negative or squaring their outputs. Our interpretation
comes with little or no loss of performance for link prediction, while the circuits
framework unlocks exact learning by MLE, efficient sampling of new triples, and
guarantee that logical constraints are satisfied by design. Furthermore, our models
scale more gracefully than the original KGEs on graphs with millions of entities.

1 Introduction

Knowledge graphs (KGs) are a popular way to represent structured domain information as directed
graphs encoded as collections of triples (subject, predicate, object), where subjects and objects
(entities) are nodes in the graph, and predicates their edge labels. For example, the information
that the drug “loxoprofen” interacts with the protein “COX2” is represented as a triple (loxoprofen,
interacts, COX2) in the biomedical KG ogbl-biokg [32]. As real-world KGs are often incomplete, we
are interested in performing reasoning tasks over them while dealing with missing information. The
simplest reasoning task is link prediction [48], i.e., querying for the entities that are connected in a
KG by an edge labelled with a certain predicate. For instance, we can retrieve all proteins that the
drug “loxoprofen” interacts with by asking the query (loxoprofen, interacts, ?).

Knowledge graph embedding (KGE) models are state-of-the-art (SOTA) models for link prediction
[40, 56, 12] that map entities and predicates to sub-symbolic representations, which are used to assign
a real-valued degree of existence to triples in order to rank them. For example, the SOTA KGE model
COMPLEX [65] assigns (loxoprofen, interacts, phosphoric-acid) and (loxoprofen, interacts, COX2)
scores 2.3 and 1.3, hence ranking the first higher than the second in our link prediction example.

This simple example, however, also highlights some opportunities that are missed by KGE models.
First, triple scores cannot be directly compared across different queries and across different KGE
models, as they can be seen as negative energies and not normalised probabilities over triples [41, 7,

, 277, 43]. To establish a sound probabilistic interpretation and therefore have probabilities instead of
scores that can be easily interpreted and compared [79], we would need to compute the normalisation
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Figure 1: Which KGE models can be used as efficient generative models of triples? The score
functions of popular KGE models such as COMPLEX, CP, RESCAL and TUCKER can be easily
represented as circuits (lilac). However, to retrieve a valid probabilistic circuit (PC, in orange) that
encodes a probability distribution over triples (GeKCs) we need to either restrict its activations to be
non-negative (in blue, see Section 4.1) or square it (in red, see Section 4.2).

constant (or partition function), which is impractical for real-world KGs due to their considerable size
(see Section 2). Therefore, learning KGE models by maximum-likelihood estimation (MLE) would
be computationally infeasible, which is the canonical probabilistic way to learn a generative model
over triples. A generative model would enable us to sample new triples efficiently, e.g., to generate
a surrogate KG whose statistics are consistent with the original one or to do data augmentation [©].
Furthermore, traditional KGE models do not provide a principled way to guarantee the satisfaction
of hard constraints, which are crucial to ensure trustworthy predictions in safety-critical contexts
such as biomedical applications. The result is that predictions of these models can blatantly violate
simple constraints such as KG schema definitions. For instance, the triple that the SOTA COMPLEX
ranks higher in our example above violates the semantics of “interacts”, i.e., such predicate can only
hold between drugs (e.g., loxoprofen) and proteins (e.g., COX2) but phosphoric-acid is not a protein.

Contributions. We show that KGE models that have become a de facto standard, such as COMPLEX
and alternatives based on multilinear score functions [47, 40, 66], can be represented as structured
computational graphs, named circuits [13]. Under this light, i) we propose a different interpretation of
these computational graphs and their parameters, to retrieve efficient and yet expressive probabilistic
models over triples in a KG, which we name generative KGE circuits (GeKCs) (Section 4). We show
that ii) not only GeKCs can be efficiently trained by exact MLE, but learning them with widely-used
discriminative objectives [37, 40, 56, 12] also scales far better over large KGs with millions of entities.
In addition, iii) we are able to sample new triples exactly and efficiently from GeKCs, and propose a
novel metric to measure their quality (Section 7.3). Furthermore, by leveraging recent theoretical
advances in representing circuits [76], iv) we guarantee that predictions at test time will never violate
logical constraints such as domain schema definitions by design (Section 5). Finally, our experimental
results show that these advantages come with no or minimal loss in terms of link prediction accuracy.

2 From KGs and embedding models...

KGs and embedding models. A KG G is a directed multi-graph where nodes are entities and
edges are labelled with predicates, i.e., elements of two sets £ and R, respectively. We define G
as a collection of triples (s,7,0) C £ X R x &, where s, r, o denote the subject, predicate and
object, respectively. A KG embedding (KGE) model maps a triple (s, r, 0) to a real scalar via a score
Sunction ¢: € x R x £ — R. A common recipe to construct differentiable score functions for many
state-of-the-art KGE models [50] is to (i) map entities and predicates to embeddings of rank d, i.e.,
elements of normed vector spaces (e.g., R?), and (ii) combine the embeddings of subject, predicate
and object via multilinear maps. This is the case for KGE models such as CP [40], RESCAL [47],
TUCKER [3], and COMPLEX [65] (see Fig. 2). For instance, the score function of COMPLEX [65] is
defined as ¢compLex (S, 75 0) = Re({es, W,., €,)) where e5, w,., e, € C? are the complex embeddings
of subject, predicate and object, (-, -, -) denotes a trilinear product, = denotes the complex conjugate
operator and Re(+) the real part of complex numbers.

Probabilistic loss-derived interpretation. KGE models have been traditionally interpreted as
energy-based models (EBMs) [41, 7, 6, 27, 43]: their score function is assumed to compute the
negative energy of a triple. This interpretation induces a distribution over possible KGs by associating
a Bernoulli variable, whose parameter is determined by the score function, to every triple [48].
Learning EBMs under this perspective requires using contrastive objectives [7, 48, 56], but several
recent works observed that to achieve SOTA link prediction results one needs only to predict



subjects, objects [37, 40, 56] or more recently also predicates of triples [12], i.e., to treat KGEs as
discriminative classifiers. Specifically, they are learned by minimising a categorical cross-entropy, €.g.,
by maximising log p(o | s,7) = ¢(s,r,0) —log)_ ¢ exp ¢(s,r,0’) for object prediction. From
this perspective, we observe that we can recover an energy-based interpretation if we assume there
exist a joint probability distribution p over three variables S, R, O, denoting respectively subjects,
predicates and objects. Written as a Boltzmann distribution, we have that p(S = s, R =r,0 = 0) =
(exp @(s,7,0))/Z, where Z =3 ,cc > cr D oce €Xp P(s’,7',0") denotes the partition function.
This interpretation is apparently in contrast with the traditional one over possible KGs [48]. We
reconcile it with ours in Appendix E. Under this view, we can reinterpret and generalise the recently
introduced discriminative objectives [12] as a weighted pseudo-log-likelihood (PLL) [70]

Loy =Y owilogp(s | 1,0) +w,logp(o| s.1) +w logp(r | s.0) (D

where ws, w,, wr € Ry can differently weigh each term, which is a conditional log-probability that
can be computed by summing out either s, r or o, e.g., to compute log p(o | s, 7) above. Optimisation
is usually carried out by mini-batch gradient ascent [56] and, given a batch of triples B C G, we have
that exactly computing the PLL objective requires time O(|€| - | B| - cost(¢)) and space O(|€| - | B|)
to exploit GPU parallelism [36]," where cost(¢) denotes the complexity of evaluating the ¢ once.

Note that the PLL objective (Eq. (1)) is a traditional proxy for learning generative models for which
it is infeasible to evaluate the maximum-likelihood estimation (MLE) objective’

£MLE = Z(s,r,o)eg lng(S,T, 0) = _|g‘ IOgZ + Z ¢(S,7‘7 0)' (2)

In theory, evaluating log p(s, r, 0) exactly can be done in polynomial time under our three-variable
interpretation, as computing Z requires O(|€|? - |R| - cost(¢)) time, but in practice this cost is still
prohibitive for real-world KGs. In fact, it would require summing over |€ X R x £| evaluations of the
score function ¢, which for FB15k-237 [62], the small fragment of Freebase [48], translates to ~10**
evaluations of ¢. This practical bottleneck hinders the generative capabilities of these models and
their ability to yield normalised and interpretable probabilities. Next, we show how we can reinterpret
KGE score functions as to retrieve a generative model over triples for which computing Z exactly
can be done in time O((|€] + |R]) - cost(¢)), making renormalisation feasible.

(s,r,0)€G

3 ...to Circuits...

In this section, we show that popular and successful KGE models such as CP, RESCAL, TUCKER
and CoMPLEX (see Fig. 2 and Section 2), can be viewed as structured computational graphs
that can, in principle, enable summing over all possible triples efficiently. Later, to exploit this
efficient summation for marginalisation over triple probabilities, we reinterpret the semantics of these
computational graphs as to yield circuits that output valid probabilities. We start with the needed
background about circuits and show that some score functions can be readily represented as circuits.

Definition 1 (Circuit [ 13, 76]). A circuit ¢ is a parametrized computational graph over variables X
encoding a function ¢(X) and comprising three kinds of computational units: input, product, and sum.
Each product or sum unit n receives as inputs the outputs of other units, denoted with the set in(n).
Each unit n encodes a function ¢,, defined as: (i) I,,(sc(n)) if n is an input unit, where [, is a function
over variables sc(n) C X, called its scope, (ii) [ [;cin(n) ®i(sc(¢:)) if n is a product unit, and (iii)
2 icin(n) Bi®i(sc(¢;)) if n is a sum unit, with §; € R denoting the weighted sum parameters. The
scope of a product or sum unit n is the union of the scopes of its inputs, i.e., sc(n) = U, ¢in(n) SC(?)-

Fig. 2 and Fig. A.1 show examples of circuits. Next, we introduce the two structural properties that
enable efficient summation and Prop. 1 certifies that the aforementioned KGEs have these properties.

Definition 2 (Smoothness and Decomposability). A circuit is smooth if for every sum unit n,
its input units depend all on the same variables, i.e, Vi,j € in(n): sc(i) = sc(j). A circuit
is decomposable if the inputs of every product unit n depend on disjoint sets of variables, i.e,
Vi, j €in(n) i # j: sc(i) Nsc(j) = &.

"For large real-world KGs it is reasonable to assume that || > |R].
*In general, the PLL is recognised as a proxy for MLE because, under certain assumptions, it is possible to
show it can retrieve the MLE solution asymptotically with enough data [35].
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Figure 2: Interpreting the score functions of CP, RESCAL, TUCKER, COMPLEX as circuits
over 2-dimensional embeddings. Input, product and sum units are coloured in purple, orange and
blue, respectively. Output sum units are labelled with the score functions, and their parameters are
assumed to be 1, if not specified. The detailed construction is presented in Appendix A.1. Given
a triple (s, 7, 0), the input units map subject s, predicate r and object o to their embedding entries.
Then, the products are evaluated before the weighted sum, which outputs the score of the input triple.
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Proposition 1 (Score functions of KGE models as circuits). The computational graphs of the score
functions ¢ of CP, RESCAL, TUCKER and COMPLEX are smooth and decomposable circuits over
X = {5, R, O}, whose evaluation cost is cost(¢) € ©(|¢|), where |¢| denotes the number of edges
in the circuit, also called its size. For example, the size of the circuit for CP is |¢cp| € O(d).

Appendix A.1 reports the complete proof by construction for the score functions of these models and
the circuit sizes, while Fig. 2 illustrates them. Intuitively, since the score functions of the cited KGE
models are based on products and sums as operators, they can be represented as circuits where input
units map entities and predicates into the corresponding embedding components (similarly to look-up
tables). As the inputs of each sum unit are product units that share the same scope {S, R, O} and
fully decompose it in their input units, they satisfy smoothness and decomposability (Def. 2).

Smooth and decomposable circuits enable summing over all possible (partial) assignments to X by (i)
performing summations at input units over values in their domains, and (ii) evaluating the circuit once
in a feed-forward way [ 13, 76]. This re-interpretation of score functions allows to “push” summations
to the input units of a circuit, greatly reducing complexity, as detailed in the following proposition.

Proposition 2 (Efficient summations). Let ¢ be a smooth and decomposable circuit over X =
{S, R, O} that encodes the score function of a KGE model. The sum > o > ce ¢(8,7,0) or
any other summation over subjects, predicates or objects can be computed in time O((|E| + |R]|) - |#])-

However, these sums are in logarithm space, as we have that p(s, r, 0) o< exp ¢(s, r, 0) (see Section 2).
As a consequence, summation in this context does not correspond to marginalising variables in
probability space. This drives us to reinterpret the semantics of these circuit structures as to operate
directly in probability space, rather than in logarithm space, i.e., by encoding non-negative functions.

4 ...to Probabilistic Circuits

We now present how to reinterpret the semantics of the computational graphs of KGE score functions
to directly output non-negative values for any input. That is, we cast them as probabilistic circuits
(PCs) [13, 76, 19]. First, we define our subclass of PCs that encodes a possibly unnormalised
probability distribution over triples in a KG, but allows for efficient marginalisation.

Definition 3 (Generative KGE circuit). A generative KGE circuit (GeKC) is a smooth and decom-
posable PC ¢pc over variables X = {5, R, O} that encodes a probability distribution over triples, i.e.,
Gpc(s,1,0) x p(s,r,0) forany (s,r,0) € E x R x E.

Since our GeKCs are smooth and decomposable (Def. 2) they guarantee the efficient computation
of Z in time O((|E] + |R|) - |@pc|) (Prop. 2). This is in contrast with existing KGE models, for
which it would require the evaluation of the whole score function on each possible triple (Section 2).
For example, assume a non-negative CP score function ¢¢p(s,7,0) = (es,w,,e,) € Ry for
some embeddings e,, w,,e, € R? Then, we can compute Z by pushing the outer summations
inside the trilinear product, i.e., Z = (3 s €5, D, cr Wr; 2_oce €0)» Which can be done in time
O((J€] + |R]) - d). In the following sections, we propose two ways to turn the computational graphs
of CP, RESCAL, TucKER and COMPLEX into GeKCs without additional space requirements.
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Figure 3: GeKCs scale better. Time (in seconds) and peak GPU memory (in GiB as bubble sizes)
required for computing the PLL objective and back-propagating through it for a single batch on
ogbl-wikikg2, by increasing the batch size and number of entities. See Appendix C.4.3 for details.

4.1 Non-negative restriction of a score function

The most natural way of casting existing KGE models to GeKCs is by constraining the computational
units of their circuit structures (Section 3) to output non-negative values only. We will refer to
this conversion method as the non-negative restriction of a model. To achieve the non-negative
restriction of CP, RESCAL and TUCKER we can simply restrict the embedding values and additional
parameters in their score functions to be non-negative, as products and sums are operators closed
in R;.. Thus, each input unit n over variables .S or O (resp. R) in a non-negative GeKC encodes a
function [,, (Def. 1) modelling an unnormalised categorical distribution over entities (resp. predicates).
For example, each i-th entry eg; of the embedding e; € Ri associated to an entity s € £ becomes a
parameter of the i-th unnormalised categorical distribution over S. See Fig. C.1 for an example. We
denote the non-negative restriction of these KGEs as CP*, RESCAL* and TUCKER™, respectively.

However, deriving COMPLEX™ [65] by restricting the embedding values of COMPLEX to be non-
negative is not sufficient, because its score function includes a subtraction as it operates on complex
numbers. To overcome this, we re-parameterise the imaginary part of each complex embedding to
be always greater than or equal to its real part. Appendix C.2 details this procedure. Even if this
reparametrisation allows for more flexibility, imposing non-negativity on GeKCs can restrict their
ability to capture intricate interactions over subjects, predicates and objects given a fixed number of
learnable parameters [607]. We empirically confirm this in our experiments in Section 7. Therefore,
we propose an alternative way of representing KGEs as PCs via squaring.

4.2 Squaring the score function

Squaring works by taking the score function of a KGE model ¢, and multiplying it with itself to
obtain ¢? = ¢ - ¢. Note that $? would be guaranteed to be a PC, as it always outputs non-negative
values. The challenge is to represent the product of two circuits as a smooth and decomposable PC as
to guarantee efficient marginalisation (Prop. 2).* In general, this task is known to be #P-hard [76].

However, it can be done efficiently if the two circuits are compatible [76], as we further detail in
Appendix B.1. Intuitively, the circuit representations of the score functions ¢ of CP, RESCAL,
TUCKER and COMPLEX (see Fig. 2) are simple enough that every product unit is defined over
the same scope {5, R, O} and fully decomposes it on its input units. As such, these circuits can
be easily multiplied with any other smooth and decomposable circuit, a property also known as
omni-compatibility [76]. This property enables us to build the squared version of these KGE models,
which we denote as CP2, RESCAL?Z2, TUCKER? and CoMPLEX2, as PCs that are still smooth and
decomposable. Note that these squared GeKCs do allow for negative parameters, and hence can be
more expressive. The next theorem, instead, guarantees that we can normalize them efficiently.

Theorem 1 (Efficient summations on squared GeKCs). Performing summations as stated in Prop. 2
on CP2, RESCAL2, TUCKER? and COMPLEX? can be done in time O((|€] + |R]) - |¢|?).

For instance, the partition function Z of CP? with embedding size d would require O((|€|+|R|) - d?)
operations to be computed, while a simple feed-forward pass for a batch of | B triples is still O(|B|-d).
While in this case marginalisation requires an increase in complexity that is quadratic in d, it is still
faster than the brute force approach to compute Z (see Section 2 and Appendix C.4.1).

3In fact, even though ¢ can be easily built by introducing a product unit over two copies of ¢ as sub-circuits,
the resulting circuit would be not decomposable (Def. 2), as the sub-circuits are defined on the same scope.



Quickly distilling KGEs to squared GeKCs. Consider a squared GeKC obtained by initialising its
parameters with those of its energy-based KGE counterpart. If the score function of the original KGE
model always assigns non-negative scores to triples, then the “distilled” squared GeKC will output
the same exact ranking of the original model for the answers to any link prediction queries. Although
the premise of the non-negativity of the scores might not be guaranteed, we observe that, in practice,
learned KGE models do assign positive scores to all or most of the triples of common KGs (see
Appendix D). Therefore, we can use this observation to either instantly distil a GeKC or provide a
good heuristic to initialise its parameters and fine-tune them (by MLE or PLL maximisation). In both
cases, the result is that we can convert the original KGE model into a GeKC that provides comparable
probabilities, enable efficient marginalisation, sampling, and the integration of logical constraints
with little or no loss of performance for link prediction (Section 7.1).

4.3 On the Training Efficiency of GeKCs

GeKCs also offer an unexpected opportunity to better scale the computation of the PLL objective
(Eq. (1)) on very large knowledge graphs. This is because computing the PLL for a batch of | B|
triples with GeKCs obtained via non-negative restriction and by squaring (Sections 4.1 and 4.2) does
not require storing a matrix of size O(|€| - | B|) to fully exploit GPU parallelism [36]. For instance,
in Appendix C.4.2 we show that computing the PLL for CP [40] with embedding size d requires time
O(|€| - |B| - d) and additional space O(|€| - | B|). On the other hand, for CP? (resp. CP*) it requires
time O((|€] + |B|) - d?) (resp. O((|€| + | B|) - d)) and space O(|B| - d). Table C.1 summarises
similar reduced complexities for other instances of GeKCs, such as COMPLEX* and COMPLEX?.
The reduced time and memory requirements with GeKCs allow us to use larger batch sizes and better
scale to large knowledge graphs. Fig. 3 clearly highlights this when measuring the time and GPU
memory required to train these models on a KG with millions of entities such as ogbl-wikikg2 [32].

4.4 Sampling new triples with GeKCs

GeKCs only allowing non-negative parameters, such as CP*, RESCAL* and TUCKER™, support
ancestral sampling as sum units can be interpreted as marginalised discrete latent variables, similarly
to the latent variable interpretation in mixture models [55, 53] (see Appendix C.3 for details). This
is however not possible in general for COMPLEX™ and GeKCs obtained by squaring, as negative
parameters break this interpretation. Luckily, as these circuits still support efficient marginalisation
(Prop. 2 and Thm. 1) and hence also conditioning, we can perform inverse transform sampling. That
is, to generate a triple (s, r, 0), we can sample in an autoregressive fashion, e.g., first s ~ p(5), then
r~p(R|s)and o ~ p(O | s,r), hence requiring only three marginalization steps.

5 Injection of Logical Constraints

Converting KGE models to PCs provides the opportunity to “embed” logical constraints in the neural
link predictor such that (i) predictions are always guaranteed to satisfy the constraints at test time,
and (ii) training can still be done by efficient MLE (or PLL). This is in stark contrast with previous
approaches for KGEs, which relax the constraints or enforce them only at training time (see Section 6).
Consider, as an example, the problem of integrating the logical constraints induced by a schema of a
KG, i.e., enforcing that triples not satisfying a domain constraint have probability zero.

Definition 4 (Domain constraint). Given a predicate » € R and kg(r), ko(r) C & the sets of
all subjects and objects that are semantically coherent with respect to r, a domain constraint is a
propositional logic formula defined as

K.,=Scrs(r) N\R=7rN0O € ko(r) = (Vuers)S =) AR =7 N (VyeroO =v). (3)

Given R = {r1,...,rn,} a set of predicates, the disjunction K = K,, V...V K, encodes all
the domain constraints that are defined in a KG. An input triple (s, r,0) satisfies K, written as
(s,r,0) = K,if s € kg(r) and o € ko(r). To design GeKCs such as their predictions always satisfy
logical constraints (which might not be necessarily domain constraints), we follow Ahmed et al. [1]
and define a score function to represent a probability distribution px that assigns probability mass
only to triples that satisfy the constraint K, i.e., ¢pc (s, 7,0) - ¢k (S, 7,0) X px (s, 7,0). Here, ¢pc is
a GeKC and ck (s,7,0) = 1{(s,r,0) = K} is an indicator function that ensures that zero mass is
assigned to triples violating K. In words, we are “cutting” the support of ¢, as illustrated in Fig. 4.
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Figure 4: Injection of domain constraints. Given a circuit cx encoding domain constraints and a
GeKC ¢p., the probability assigned by the product circuit ¢, - cx to the inconsistent triple showed
in Section 1 is 0, and a positive probability is assigned to consistent triples only, e.g., for the interacts
predicate those involving drugs (Ds) as subjects and proteins (Ps) as objects. Best viewed in colours.

Computing pg (s, , 0) exactly but naively would require computing a new partition function Zy =
scg Dorer 2oorce(@pc(s, 1, 0") - e (s',77,0")), which is impractical as previously discussed
(Section 2). Instead, we compile cx as a smooth and decomposable circuit, sometimes called a
constraint or logical circuit [ 19, 1], by leveraging compilers from the knowledge compilation literature
[18, 52]. In a nutshell, ck is another circuit over variables S, R, O that outputs 1 if an input triple
satisfies the encoded logical constraint K and 0 otherwise. See Def. A.2 for a formal definition of
such circuits. Then, similarly to what we have showed for computing squared circuits that enable
efficient marginalisation (Section 4.2), the satisfaction of compatibility between a GeKC ¢, and a
constraint circuit cx enable us to compute Z efficiently, as certified by the following theorem.

Theorem 2 (Tractable integration of constraints in GeKCs). Let cx be a constraint circuit encoding
a logical constraint K over variables {.S, R, O}. Then exactly computing the partition function Zx
of the product ¢pc(s,7,0) - cx (s,7,0) X px (s, r,0) for any GeKC ¢, derived from CP, RESCAL,
TUCKER or COMPLEX (Section 4) can be done in time O((|E] + |R]) - |fpc| - [cK])-

In Prop. A.1 we show that the compilation of domain constraints K (Def. 4) is straightforward and
results in a constraint circuit cx having compact size. For example, the size of the constraint circuit
encoding the domain constraints of ogbl-biokg is approximately |cx| = 307 - 10%. To put this number
in perspective, the size of the circuit for COMPLEX with embedding size 1000 is the much larger
375-10°. Since |cx | is much smaller, by the same argument on the efficiency of GeKCs obtained via
squaring (Section 4.3) it results that the integration of logical constraints adds a negligible overhead.

6 Related Work

SOTA KGE:s and current limitations. A plethora of ways to represent and learn KGEs has been
proposed, see [31] for a review. KGEs such as CP and COMPLEX are still the de facto go-to choices
in many applications [5, 56, 12]. Works performing density estimation in embedding space [78, 1]
can sample embeddings, but to sample triples one would need to train a decoder. Several works
try to modify training for KGEs as to introduce a penalty for triples that do not satisfy given
logical constraints [8, 39, 34, 42, 23, 30], or casting it as a min-max game [44]. Unlike our GeKCs
(Section 5), none of these approaches guarantee that test-time predictions satisfy the constraints.
Moreover, several heuristics have been proposed to calibrate the probabilistic predictions of KGE
models ex-post [61, 79]. As showed in [64], the triple distribution can be modelled autoregressively
asp(S, R,0) =p(S) -p(O | S)-p(R | S,O) where each conditional distribution is encoded by a
neural network. However, differently from our GeKCs, integrating constraints exactly or computing
any marginal (thus conditional) probability is inefficient. KGE models based on non-negative tensor
decompositions [63] are equivalent to GeKCs obtained by non-negative restriction (Section 4.1), but
are generally trained by minimizing different non-probabilistic losses.

Circuits. Circuits provide a unifying framework for several tractable probabilistic models such
as sum-product networks (SPNs) and hidden Markov models, which are smooth and decomposable
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Table 1: GeKCs are competitive with Model bl MLE PLL MLE PLL MLE
their energy-based counterparts. Best 10

CP 0.310 — .105 — 0.831 —
average test MRRs of CP, COMPLEX cp* 0237 0230 0027 0026 049 0.501
and GeKCs trained with the PLL and CP2 0315 0282 0.104 0091 0848 0.829
MLE objectives (Eqgs. (1) and (2)). For CoMPLEX 0342 — 0471 — 0829 —
Standard deVlathnS and tralnlng times COoMPLEX* 0214  0.205 0.030 0.029 0.503 0.516
see Table F.2. CoMPLEx? 0334 0300 0420 0.391 0.858 0.840
PCs [13], as well as compact logical representations [19, 1]. See [75, 13, 17] for an overview.

PCs with negative parameters are also called non-monotonic [58], but are surprisingly not as well
investigated as their monotonic counterparts, i.e., PCs with only non-negative parameters, at least
from the learning perspective. Similarly to our construction for COMPLEX* (Appendix C.2), Dennis
[20] constrains the output of the non-monotonic sub-circuits of a larger PC to be less than their
monotonic counterparts. Squaring a circuit has been investigating for tractably computing several
divergences [76] and is related to the Born-rule of quantum mechanics [51].

Circuits for relational data. Logical circuits to compile formulas in first-order logic (FOL) [25]
have been used to reason over relational data, e.g. via exchangeability [68, 49]. Other formalisms such
as tractable Markov Logic [77], probabilistic logic bases [50], relational SPNs [46, 45] and generative
clausal networks [71] use underlying circuit-like structures to represent probabilistic models over a
tractable fragment of FOL formulas. These works assume that every atom in a grounded formula
is associated to a random variable, also called the possible world semantics in probabilistic logic
programs [57] and databases (PDBs) [14]. In this semantics, TractOR [26] casts answering complex
queries over KGEs as to performing inference in PDBs. Differently from these works, our GeKCs
are models defined over only three variables (Section 2). In Appendix E we reconcile these two
semantics by interpreting the probability of a triple to be proportional to that of all KGs containing it.

7 Empirical Evaluation

We aim to answer the following research questions: RQ1) are GeKCs competitive with commonly
used KGEs for link prediction? RQ2) Does integrating domain constraints in GeKCs benefit training
and prediction?; RQ3) how good are the triples sampled from GeKCs?

7.1 Link Prediction (RQ1)

Experimental setting. We evaluate GeKCs on standard KG benchmarks for link prediction®:
FB15k-237 [62], WN18RR [21] and ogbl-biokg [32], whose statistics can be found in Appendix F.1.
As usual [48, 56, 54], we assess the models for predicting objects (queries (s,7,?)) and subjects
(queries (7,1, 0)), and report their mean reciprocal rank (MRR) and fraction of hits at k (Hits@k)
(see Appendix F.2). We remark that our aim in this Section is not to score the new state-of-the-art link
prediction performance on these benchmarks. Instead, we aim to rigorously assess how close GeKCs
can be to commonly used and reasonably tuned KGE models. We focus on CP and COMPLEX as
they currently are the go-to models of choice for link prediction [40, 56, 12]. We compare them
against our GeKCs CP*, COMPLEX™*, CP? and COMPLEX? (Section 4). Appendix F.4 collects all
the details about the model hyperparameters and training for reproducibility.

Link prediction results. Table | reports the MRR and times for all benchmarks and models when
trained by PLL or MLE. First, CP?> and COMPLEX? achieve competitive scores when compared to
CP and COMPLEX. Moreover, CP? (resp. COMPLEX?) always outperforms CP* (resp. COMPLEX™),
thus providing empirical evidence that negative embedding values are crucial for model expressiveness.
Concerning times, Table F.2 shows that squared GeKCs can train much faster on large KGs (see
Section 4.3): CP? and COMPLEX? require less than half the training time of CP and COMPLEX on
ogbl-biokg, while also unexpectedly scoring the current SOTA MRR on it.> We experiment also on
the much larger ogbl-wikikg2 KG [32], comprising millions of entities. Even more remarkably, we are

4Code is available at https://github.com/april-tools/gekcs.
3 Across non-ensemble methods and according to the OGB leaderboard, updated at the time of this writing.
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Figure 5: GeKCs with domain constraints guarantee domain-consistent predictions. Semantic
consistency scores (Sem@¥k) [33] on ogbl-biokg achieved by COMPLEX, COMPLEX? and its inte-
gration with domain constraints (D-COMPLEX?) (left), and MRRs computed on test queries (right).
CoMPLEX infers 200+ triples violating constraints as the highest scoring completions (k = 1).

able to score an MRR of 0.572 after just ~3 hours with COMPLEX? trained by PLL with a batch size
of 10* and embedding size d = 100. To put this in context, we were able to score 0.562 with the best
configuration of COMPLEX but after ~3 days, as we could not fit in memory more than a batch size
500.% The same trends are shown for the Hits@# (Table F.3) and likelihood (Table F.4) metrics.

Distilling GeKCs. Table F.5 reports the results achieved by CP? and COMPLEX? initialised with
the parameters of learned CP and COMPLEX (see Section 4.2) and confirms we can quickly turn an
EBM into GeKC, thus inheriting all the perks of being a tractable generative model.

Calibration study. We also measure how well calibrated the predictions of the models in Table 1
are, which is essential to ensure trustworthiness in critical tasks. For example, given a perfectly
calibrated model, for all the triples predicted with a probability of 80%, exactly 80% of them would
actually exist [79]. On all KGs but WN18RR, GeKCs achieve lower empirical calibration errors [29]
and better calibrated curves than their counterparts, as we report in Appendix F.5.3. The worse
performance of all models on WN18RR can be explained by the distribution shift that exists between
its training and test split, which we better confirm in Section 7.3.

7.2 Integrating Domain Constraints (RQ2)

We focus on ogbl-biokg [32], as it contains the domain metadata for each entity (i.e., disease, drug,
function, protein, or side effect). Given the entity domains allowed for each predicate, we formulate
domain constraints as in Def. 4. First, we want to estimate how likely are the models to predict triples
that do not satisfy the domain constraints. We focus on COMPLEX and COMPLEX?, as they have been
shown to achieve the best results in Section 7.1 and introduce D-COMPLEX? as the constraints-aware
version of COMPLEX? (Section 5). For each test query (s,r,?) (resp. (?,7,0)), we compute the
Sem@F score [33] as the average percentage of triples in the first k positions of the rankings of
potential object (resp. subject) completions that satisfy the domain constraints (see Appendix F.2).

Fig. 5 highlights how both COMPLEX and COMPLEX? systematically predict object (or subject)
completions that violate domain constraints even for large embedding sizes. For instance, a Sem @1
score of 99% (resp. 99.9%) means that ~3200 (resp. ~320) predicted test triples violate domain
constraints. While for COMPLEX and COMPLEX? there is no theoretical guarantee of consistent
predictions with respect to the domain constraints, D-COMPLEX? always guarantee consistent
predictions by design. Furthermore, we observe a significant improvement in terms of MRR when
integrating constraints for smaller embedding sizes, as reported in Fig. 5.

7.3 Quality of sampled triples (RQ3)

Inspired by the literature on evaluating deep generative models for images, we propose a metric akin
to the kernel Inception distance [4] to evaluate the quality of the triples we can sample with GeKCs.

Definition 5 (Kernel triple distance (KTD)). Given P, Q two probability distributions over triples,
and a positive definite kernel k: R” x R" — R, we define the kernel triple distance KTD(P, Q) as

A smaller (d = 50) and highly tuned version of COMPLEX achieves 0.639 MRR but still after days [12].
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Table 2: GeKCs trained by MLE

_ . . Training set 0.055 0.260 0.029
generate new likely triples. Empir- Uniform 0.589 0.766 1.822
ical KTD scores between test triples NNMFAug 0.414 0.607 0.518
and triples generated by baselines PLL MLE PLL MLE PLL MLE
and GeKCs trained with the PLL ob- Cp* 0.404 0.433 0.633 0.578 0.966 0.738
jective or by MLE (Egs. (1) and (2)). cP? 0253  0.070 0768 0.768 0.039 0.017
Loweris better. For standard devia-  “covpipxs 0336 0323 0456 0478 0175 0,097
tions see Table F.6. CoMPLEX2 0326 0.102 0338 0278 0.104 0.034

the squared maximum mean discrepancy [28] between triple latent representations obtained via a map
P €& x R x & — R that projects triples to an h-dimensional embedding, i.e.,

KTD(P, Q) = Eqorp k(v (2), ()] + Eyy o[k (1), (1)) — 2+ Eane yra k(1 (2), ¥ (1))

An empirical estimate of the KTD score close to zero indicates that there is little difference between
the two triple distributions P and Q (see Appendix F.3). For images, v is typically chosen as the last
embedding of a SOTA neural classifier. We choose 1) to be the Lo-normed outputs of the product units
of a circuit [73, 74], specifically the SOTA COMPLEX learned by Chen et al. [12] with h = 4000.
We choose k as the polynomial kernel k(x,y) = (x "y + 1)3, following Binkowski et al. [4].

Table 2 shows the empirical KTD scores computed between the test triples and the generated ones, and
Fig. F.1 visualises triple embeddings. We employ two baselines: a uniform probability distribution
over all possible triples and NNMFAug [9], the only work to address triple sampling to the best of our
knowledge. We also report the KTD scores for training triples as an empirical lower bound. Squared
GeKCs achieve lower KTD scores with respect to the ones obtained by non-negative restriction,
confirming again a better estimation of the joint distribution. In addition, they achieve far lower KTD
scores than all competitors when learning by MLE (Eq. (2)), which justifies its usage as an objective.
Lastly, we confirm the distribution shift on WN18RR: training set KTD scores are far from zero, but
even in this challenging scenario, COMPLEX? scores KTD values that are closer to the training ones.

8 Conclusions and Future Work

We proposed to re-interpret the representation and learning of widely used KGE models such as
CP, RESCAL, TuckER and COMPLEX, as generative models, overcoming some of the classical
limitation of their usual EBM interpretation (see Sections | and 2). GeKC-variants for other KGE
models whose scores are multilinear maps can be readily devised in the same way. Moreover, we
conjecture that other KGE models defining score functions having a distance-based semantics such
as TransE [7] and RotatE [60] can be reinterpreted to be GeKCs as well. Our GeKCs open up a
number of interesting future directions. First, we plan to investigate how the enhanced efficiency and
calibration of GeKCs can help in complex reasoning tasks beyond link prediction [2]. Second, we can

leverage the rich literature on learning the structure of circuits [72, 75] to devise smaller and sparser
KGE circuit architectures that better capture the triple distribution or sporting structural properties
that can make reasoning tasks other than marginalisation efficient [22, 16, 71].
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Figure A.1: Evaluation of circuit representations of score functions as in neural networks.
Feed-forward evaluation of the TUCKER score function as a circuit over 2-dimensional embed-
dings and parameterised by the core tensor 7 (see proof of Prop. 1 below) (a). Given a triple
(loxoprofen, interacts, COX2), the input units (Def. 1) map subject, predicate and object to their
embedding entries (in violet boxes). Then, the circuit is evaluated similarly to neural networks: the
products (in orange) are evaluated before the weighted sum (in blue), which is parameterised by the
core tensor values (in green) (b). The output of the circuit is the score of the input triple.

A  Proofs

A.1 KGE Models as Circuits

Proposition 1 (Score functions of KGE models as circuits). The computational graphs of the score
functions ¢ of CP, RESCAL, TUCKER and COMPLEX are smooth and decomposable circuits over
X = {S, R, O}, whose evaluation cost is cost(¢) € O(|4|), where |¢| denotes the number of edges
in the circuit, also called its size. For example, the size of the circuit for CP is |¢cp| € O(d).

Proof. We present the proof by construction for TUCKER [3], as CP [40], RESCAL [47] and
CoMPLEX [65] define score functions that are a specialisation of it [3] (see below). Given a triple
(s,r,0) € E X R x &, the TUCKER score function computes

de dy de
Prucker(8,7,0) =T X1 €5 X2 Wy X3 €, = Zi_l Zj_l Zk—l Tijk€siWrj€ok 4)

where 7 € R *drxde denotes the core tensor, x,, denotes the tensor product along the n-th mode,
and d., d, denote respectively the embedding sizes of entities and predicates (which might not be
equal). To see how this parametrization generalises that of CP, RESCAL and COMPLEX, consider
for example the score function of CP on d-dimensional embeddings. It can be obtained by (i) setting
the core tensor 7 to be a diagonal tensor having ones on the superdiagonal, and (ii) having two
distinct embedding instances for each entity that are used depending on their role (either subject
or object) in a triple. The embeddings e,,e, € R% (resp. w, € R9") are rows of the matrix
E € RI¢I*de (resp. W € RIRIX4r) which associates an embedding to each entity (resp. predicate).

Constructing the circuit. For the construction of the equivalent circuit it suffices to (i) create an
input unit for each i-th entry of an embedding for subjects, predicates and objects, as to implement
a look-up table that computes the corresponding embedding value for an entity or predicate, and
(i1) transform the tensor musltiplications into corresponding sum and product units. We start by

introducing the input units [, lf‘ and lko forl1 <4,k <d.and1 < j < d, as parametric mappers

over variables S, R and O, respectively. The input units /¥ and lko (resp. lf) are parameterised
by the matrix E (resp. W) such that [¥ (s; E) = e,; and [9(0; E) = e,; for some 5,0 € & (resp.
15(r; W) = wy; for some r € R). To encode the tensor products in Eq. (4) we introduce d? - d,
product units ¢;;, each of them computing the product of a combination of the outputs of input units.

Siju(s,r,0) =17 (s) - 1 (r) - 17 (0)

Rdexdrxd

Finally, a sum unit ¢, parameterised by the core tensor 7 € ~ computes a weighted

summation of the outputs given by the product units, i.e.,

¢0ul(87r7 O) = Z Tijk - (bijk(syry 0)

(i,5,k)€
[de] X [dr] X [de]
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Table A.1: Score functions as compact circuits. Asymptotic size of circuits encoding the score
functions of CP, RESCAL, CoMPLEX and TUCKER, with respect to the embedding size. For
TUCKER, d. and d,. denote the embedding sizes for entities and predicates, respectively.

KGE Model Circuit Size KGE Model Circuit Size
CP o(d) RESCAL o(d?)
COMPLEX O(d) TUCKER O(d? - d,)

where [d] denotes the set {1,...,d} and 7, is the (7, j, k)-th entry of 7. We now observe that
the constructed circuit ¢y, encodes the TUCKER score function (Eq. (4)), as ¢rycker(S,7,0) =
¢out(s, 7, 0) for any input triple (s,7,0) € E X R x &.

Circuit evaluation and properties. Evaluating the score function of TUCKER corresponds to
performing a feed-forward pass of its circuit representation, where each computational unit is
evaluated once, as we illustrate in Fig. A.1. As such, the cost of evaluating the score function is
proportional to the size of its circuit representation, i.e., cost(¢) € O(|¢|) where || € O(d? - d,.) is
the number of edges. In Table A.1 we show how the sizes of the circuit representation of the other
score functions increases with respect to the embedding size. Finally, since each product unit ¢;;
is defined on the same scope (see Def. 1) {S, R, O} and fully decompose it into its inputs (i.e., into
{5},{R},{O}), and the inputs of the sum unit @,y are all defined over the same scope, we have that
the circuit satisfies smoothness and decomposability (Def. 2). O

Furthermore, in Lem. A.l we show that the circuit representations of CP, RESCAL, TUCKER
and COMPLEX and the proposed GeKCs (Section 4) satisfy a structural property known as omni-
compatibility (see Def. B.2). In a nutshell, the score functions of the aforementioned KGE models
and GeKCs are circuits that fully decompose their scope {5, R, O} into ({S}, {R},{O}). The
satisfaction of this property will be useful to prove both Thm. 1 and Thm. 2 later in this appendix.

Lemma A.1 (KGE models and derived GeKCs are omni-compatible). The circuit representation of
the score functions of CP, RESCAL, TUCKER, COMPLEX and their GeKCs counterparts obtained
by non-negative restriction (Section 4.1) or squaring (Section 4.2) are omni-compatible (see Def. B.2).

Proof. To begin, we note that to comply with Def. B.2 every omni-compatible circuit shall contain
product units that fully factorise over their scope. In other words, for every product unit n with scope
sc(n) = X, its scope shall decompose as ({X1}, {X2},...,{X|sc(n)})- To see why, consider a
circuit ¢ with a product unit n whose scope is decomposed as sc(n) = (X,Y). It is easy to construct
another circuit ¢’ that is not compatible with ¢ by having a product unit m with scope sc(m) = sc(n)
decomposed in a way that it cannot be rearranged by introducing additional decomposable product
units (Def. 2), e.g., sc(m) = (Z, W) with ZN X # @ and W N X # &. As such, every omni-

compatible circuit over X must be representable in the form Zfil 0; Hfill ik (X ) without any
increase in its size.

Now, it is easy to verify that the circuit representations of CP, RESCAL, TUCKER and COMPLEX
follow the above form, with a different number IV of product units feeding the single sum unit, but
each one decomposing its scope {S, R, O} into ({S},{R},{O}) (see Fig. 2). From this it follows
that CP*, RESCAL*, TUCKER™" and COMPLEX™* are omni-compatible as well, as they share the
same structure of their energy-based counterpart, while just enforcing non-negative activations via
reparametrisation (see Section 4.1).

Finally, we note that CP?>, RESCAL? TuUckKER? and COMPLEX?> are still omni-
compatible because the square operation yields the following fully-factorised representation:

(N 0TI i (X0))? = o SN 00, TTs Lin () TTich Lk (X)) which can be easily

rewritten as Zthl Wh, Hfgl Ink (X)) where now h ranges over the Cartesian product of ¢ € [IV] and
J € [N], wy, is the product of 0;6; and I, is a new input unit that encodes l;; (X )1 (X}) for a
certain variable index k. O
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A.2 Efficient Summations over Circuits

Proposition 2 (Efficient Summations). Let ¢ be a smooth and decomposable circuit over X =
{S, R, O} that encodes the score function of a KGE model. Thesum > % > c¢ ¢(s,7,0) or
any other summation over subjects, predicates or objects can be computed in time O((|E|+ |R]|) - |¢]).

Proof. A proof for the computation of marginal probabilities in smooth and decomposable probabilis-
tic circuits (PCs) defined over discrete variables in linear time with respect to their size can be found
in [13]. This proof also applies for computing summations in smooth and decomposable circuits that
do not necessarily corresponds to marginal probabilities [76]. The satisfaction of smoothness and
decomposability (Def. 2) in a circuit ¢ permits to push outer summations inside the computational
graph until input units are reached, where summations are actually performed independently and on
smaller sets of variables (i.e., {S}, {R}, {O} in our case), and then to evaluate the circuit only once.

Here we take into account the computational cost of summing over each input unit (see proof of
Prop. 1), which is O(|€]) (resp. O(|R|)) for those defined on variables S, O (resp. R). Since the size
of the circuit |¢| must be at least the number of input units, we retrieve that the overall complexity for
computing summations as stated in the proposition is O((|€| + |R]) - |¢|).

As an example, consider the CP score function computing ¢cp(s,r,0) = (e, w,,e,) for some
triple (s, 7, 0) and embeddings e,, w,, e, € R?. We can compute D oece DoareRr 2aoce Pcp(s,7,0)
by pushing the outer summations inside the trilinear product, i.e., by computing it as
(D sce s Drer Wrs D oce €o)» Which requires time O((|E] + |R]) - d).

A.3 Efficient Summations over Squared Circuits

Theorem 1 (Efficient summations of squared GeKCs). Performing summations as stated in Prop. 2
on CP2, RESCAL2, TUCKER? and COMPLEX? can be done in time O((|€] + |R]) - |¢|?).

Proof. In Lem. A.1 we showed that the circuit representations ¢ of CP, RESCAL, TUCKER and
COMPLEX are omni-compatible (see Def. B.2). As a consequence, ¢ is compatible (see Def. B.1)
with itself. Therefore, Prop. B.1 ensures that we can construct the product circuit ¢ - ¢ (i.e., ¢?) as a
smooth and decomposable circuit having size O(|¢[?) in time O(|¢|?). Since ¢? is still smooth and
decomposable, Prop. 2 guarantees that we can perform summations in time O((|€] +|R]) - |¢|?). O

A.4 Circuits encoding Domain Constraints

In Def. A.1 we introduce the concepts of support and determinism, whose definition is useful to
describe constraint circuits in Def. A.2.

Definition A.1 (Support and Determinism [13, 76]). In a circuit the support of a computational unit
n over variables X computing ¢,,(X) is defined as the set of value assignments to variables in X
such that the output of n is non-zero, i.e., supp(n) = {x € val(X) | ¢,,(X) # 0}. A sum unit n is
deterministic if its inputs have disjoint supports, i.e., Vi, j € in(n),i # j: supp(i) Nsupp(j) = .

Definition A.2 (Constraint Circuit [1]). Given a propositional logic formula K, a constraint circuit
ck 1s a smooth and decomposable PC over variables X with deferministic sum units (Def. A.1) and
indicator functions as input units, such that cx (x) = 1{x = K} for any x € val(X).

In general, we can compile any propositional logic formula into a constraint circuit (Def. A.2) by
leveraging knowledge compilation techniques [19, 18, 52]. For domain constraints (Def. 4) this
compilation process is straightforward, as we detail in the following proposition and proof.

Proposition A.1 (Circuit encoding domain constraints). Let K = K, V...V K, be adisjunction of
domain constraints defined over a set of predicates R = {r1, ..., 7, } and a set of entities £ (Def. 4).
We can compile K into a constraint circuit cx (Def. A.2) defined over variables X = {S, R, O}
having size O(|€] - |R|) in the worst case and O(|€| + |R|) in the best case.

Proof. Let K = K, V...V K

T'm

be a disjunction of domain constraints (Def. 4) where

K., =S€ns(r) N\R=71N0O € ko(1) = Vuers)S =U) AR =7 N (Vyero)O = v).
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Note that the disjunctions in K are deterministic, i.e., only one of their argument can be true
at the same time. This enables us to construct the constraint circuit cx such that cx (s,7,0) =
1{(s,r,0) = K} for any triple by simply replacing conjunctions and disjunctions with product and
sum units, respectively. Note that cx is indeed smooth and decomposable (Def. 2), as the inputs of
the sum units are product units having scope {5, R, O} that are fully factorised into ({S}, {R},{O}).
Moreover, K is a disjunction of |R| conjunctive formulae having O(|€|) terms, and therefore
lex| = O(|€] - |R]) in the worst case. In the best case of every predicate sharing the same subject and
object domains kg, ko C &£, we can simplify K into a conjunction of three disjunctive expressions,
ie.,

K = (VyersS =u) A (VrerR =7) A (Vpere O =)

that can be easily compiled into a constraint circuit cx having size O(|€] 4 |R|), by again noticing
that disjunctions are deterministic. In real-world KGs like ogbl-biokg [32] several predicates share
the same subject and object domains, and this permits to have much smaller constraint circuits. [

A.5 Efficient Integration of Domain Knowledge in GeKCs

Theorem 2 (Tractable integration of constraints in GeKCs). Let cx be a constraint circuit encoding
a logical constraint K over variables {.S, R, O}. Then exactly computing the partition function Zx
of the product ¢pc(s,7,0) - ek (s,7,0) X pk (s, r,0) for any GeKC ¢, derived from CP, RESCAL,
TUCKER or COMPLEX (Section 4) can be done in time O((|E] + |R]) - |¢pc| - [cK])-

Proof. In Lem. A.1 we showed that the GeKCs ¢, derived from CP, RESCAL, TUCKER and
CoMPLEX via non-negative restriction (Section 4.1) or squaring (Section 4.2) are omni-compatible
(see Def. B.2). As a consequence, ¢, is always compatible with cx regardless of the encoded
logical constraint /, since constraint circuits are by definition smooth and decomposable (Def. A.2).
By applying Prop. B.1, we retrieve that we can construct ¢, - cx as a smooth and decomposable
circuit of size O(|@pc| - |ck|) and in time O(|¢pc| - |ck|). As the resulting product circuit is
smooth and decomposable, Prop. 2 guarantees that we can compute its partition function Zx =

Dsee 2orer 2uoce (Ppe(s,7,0) - ek (s, 7, 0)) intime O((|€] 4 [R]) - [dpe| - [cx])- O

B Circuits

B.1 Tractable Product of Circuits

In this section, we provide the formal definition of compatibility (Def. B.1) and omni-compatibility
(Def. B.2), as stated by Vergari et al. [76]. Given two compatible circuits, Prop. B.1 guarantees that
we can represent their product as a smooth and decomposable circuit efficiently.

Definition B.1 (Compatibility). Two circuits ¢, ¢’ over variables X are compatible if (1) they are
smooth and decomposable, and (2) any pair of product units n € ¢, m € ¢’ having the same scope
can be rearranged into binary products that are mutually compatible and decompose their scope in
the same way, i.e., (sc(n) = sc(m)) = (sc(n;) = sc(m;), n; and m,; are compatible) for some
rearrangements of the inputs of n (resp. m) into nq, ny (resp. my, mo).

Definition B.2 (Omni-compatibility). A circuit ¢ over variables X is omni-compatible if it is
compatible with any smooth and decomposable circuit over X.

Proposition B.1 (Tractable product of circuits). Let ¢, ¢’ be two compatible (Def. B.1) circuits. We
can represent the product circuit ¢ - ¢’ computing the product of the outputs of ¢ and ¢’ as a smooth
and decomposable circuit having size O(|¢| - [¢']) in time O(|¢| - |¢'|). Moreover, if both ¢ and ¢’
are omni-compatible (Def. B.2), then also the product circuit ¢ - ¢’ is omni-compatible.

Prop. B.1 allows us to compute the partition function and any other marginal probability in GeKCs
obtained via squaring efficiently (see Section 4.2 and Thm. 1). In addition, Prop. B.1 is a crucial
theoretical result that allows us to inject logical constraints in GeKCs in a way that enable computing
the partition function exactly and efficiently (see Section 5 and Thm. 2).
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C From KGE Models to PCs

C.1 Interpreting Non-negative Embedding Values

In Fig. C.1 we interpret the embedding values of GeKCs obtained via non-negative restriction — CP*,
RESCAL*, TUCKER*, COMPLEX*— (Section 4.1) as the parameters of unnormalised categorical
distributions over entities (elements in £) or predicates (elements in R).

0.6
0.3 24 - . 0.2 0.3
a w = €q €y . —
L. . 2 (P 2/ 2 w2 — |:| Catgy (pr = wr2/ TGER w7-2)
0.9
0.5 Caty (pu =eui/ X eu1> 0.3 0.4 0.4
B - T il W)
rER
QO 2 \b X7 X7 X7
+°¢°KQ' " s £ embeddings o \@”‘% Q@@& 4“&“6 ‘R embeddings
o er &8

Figure C.1: Non-negative embeddings parameterise categorical distributions. 2-dimensional em-
beddings of GeKCs obtained via non-negative restrictions (Section 4.1) can be seen as the parameters
of two categorical distributions over entities (left) or predicates (right) up to renormalisation.

C.2 Realising the Non-negative Restriction of COMPLEX

As anticipated in Section 4.1, for the COMPLEX [65] score function restricting the real and imaginary
parts to be non-negative is not sufficient to obtain a PC due to the presence of a subtraction, as showed
in the following equation.

dcomrLEx (8,7, 0) = (Re(es), Re(w,.), Re(e,)) + (Im(es), Re(w,.), Im(e,))

+ (Re(e,), Im(w,), Im(e,)) — (Tm(e,), Im(w,), Re(e,)) ®)

Here e,, w,, e, € C? are the embeddings associated to the subject, predicate and object, respectively.
Under the restriction of embedding values to be non-negative, we ensure that ¢pcompLgx (S, 7,0) > 0
for any input triple by enforcing the additional constraint

(Re(es), Re(w,.),Re(e,)) > (Im(es), Im(w,.), Re(e,)), 6)
which can be simplified into the two distinct inequalities
Vu €& Relew) > Im(ey;) and vr € R Re(wy;) > Im(w,;).

In other words, we want the real part of each embedding value to be always greater or equal than the
corresponding imaginary part. We implement this constraint in practice by reparametrisation of the
imaginary part in function of the real part, i.e.,

Vu € & Im(ey;) = Re(ey;) - 0(0ui) 7
VreR  Im(wy) = Re(wy) - 0(Yri) ®)

where o(z) = 1/(1+exp(—z)) € [0, 1] denotes the logistic function and 6,,;, v,; € R are additional
parameters associated to entities v € £ and predicates r € R, respectively. The reparametrisation of
the imaginary parts using Eqs. (7) and (8) is a sufficient condition for the satisfaction of the constraint
showed in Eq. (6), and also maintains the same number of learnable parameters of COMPLEX.

C.3 Sampling from GeKCs with Non-negative Parameters

Parameters interpretation. Sum units with non-negative parameters in smooth and decomposable
PCs can be seen as marginalised discrete latent variables, similarly to the latent variable interpretation
in mixture models [55, 53]. That is, the non-negative parameters of a sum unit are the parameters
of a (possibly unnormalised) categorical distribution over assignments to a latent variable. For CP*
and RESCAL™ (Section 4.1), the non-negative parameters of the sum unit encode a uniform and
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unnormalised categorical distribution, as they are all fixed to 1 (see Fig. 2). By contrast, in TUCKER™
these parameters are the vectorisation of the core tensor 7 (see the proof of Prop. 1), and hence they
are learned. The input units of CP*, RESCAL™* and TUCKER™ can be interpreted as unnormalised
categorical distribution over entities or predicates, as detailed in Appendix C.1.

Sampling from CP*, CoMPLEX*, TUCKER™*. Thanks to the latent variable interpretation, ances-
tral sampling in CP*, RESCAL* and TUCKER™" can be performed by (1) sampling an assignment
to the latent variable associated to the single sum unit, i.e., one of its input branches, (2) selecting
the corresponding combination of subject-predicate-object input units, and (3) sampling a subject,
predicate and object respectively from each of the indexed unnormalized categorical distributions.

C4 Learning Complexity of GeKCs

In Table C.1 we summarise the complexities of computing the PLL and MLE objectives (Egs. (1)
and (2)) for KGE models and GeKCs. Asymptotically, GeKCs manifest better time and space
complexities with respect to the number of entities |£|, batch size | B| and embedding size. This
makes GeKCs more efficient than traditional KGE models during training, both in time and memory
(see Section 4.3 and Fig. 3).

Table C.1: Summary of complexities for exactly computing the PLL and MLE objectives. Time
and space complexity of computing log p(o | s, ) and the partition function Z. These complexities
are respectively lower bounds of the complexities of computing the PLL and MLE objectives, as we
have that |£| > |R| for large real-world KGs. For CP, RESCAL and COMPLEX and GeKCs derived
from them, d denotes the size of both entity and predicate embeddings. For TUCKER and GeKCs
derived from it, d. and d,- denote the embedding sizes for entities and predicates, respectively.

Model Complexity of log p(o | s,7) Complexity of Z

Time Space Time Space
CP o(lg] - |B| - d) O(le] - 1B]) O(I€]? - IR] - d) O(d)
RESCAL  O(|&|-|B|-d+ |B|-d?) O(&] - |B)) O(&)% - |R| - d?) O(d?)
TUCKER O(|€] - |B| - de + |B|-d2 -dy) O(I€] - |B|) O(|E]? - IR| - d2 - dr) O(d? - dy)
COMPLEX  O(|&|-|B| - d) O(l€]-|B)) O(|€]2 - IR| - d) O(d)
CP? O((l] + |BJ) - d) O(|B| - d) O((lg] + IR]) - d) O(d)
RESCAL*  O((|€] + |B| - d) - d) oO(|B| - d?) O((IE]+IR| - d) - d) O(d?)
TUcKER*  O((|€] + |B| - de - dr) - de) O(|B|-de-dv) O(E|-de + |R|-dr +d2-dr) O(d?-dy)
CoMpPLEX* O((|€] + |B|) - d) O(|B| - d) O((|E€] +|R)) - d) O(d)
CPp? O((I€] +|B) - d2) O(|B|-d) O((I€] +|R]) - %) O(d?)
RESCAL®  O((|€] + |BJ) - d*) o(|B] - d*) O((|€] + [R] - d) - d?) O(IR| - d)
TUuckER?  O((|€| + |B| - dy) - d2) O(|B|-de-dy) O(|E]-d2+|R|-d2+d2-dy) O(d?-d)
CoMPLEX?  O((|€| + |B]) - d?) O(|B| - d) O((|E] + |R]) - d?) O(d?)

C.4.1 Computing the Partition Function

In this section we derive the computational complexity of computing the partition function for GeKCs
obtained via squaring (Section 4.2). For a summary of these complexities, see Table C.1.

CP? and COMPLEX?. Here we derive the partition function of CP2. For COMPLEX? the derivation
is similar, as the score function of COMPLEX can be written in terms of trilinear products just like
CP (see Eq. (5)). The score function ¢p2 encoded by CP? can be written as

d d
¢CP2 (57 T, O) = <e57 W, eo>2 = Z Z €5i€sjWriWrj€oi€oj

i=1 j=1

where e, e, € R? (resp. w, € R?) are rows of the matrices U, V € RI€IX4 (resp. W € RIRI*d),
which associate to each entity (resp. predicate) a vector. By leveraging the einsum notation for
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brevity, the partition function of ¢p2 can be written as

oY el =33 (z ) (z ww> (z )

seE reR oel i=1 j=1 \se& reR o€l
Y ’ ’
= U,,W,,V/,

where U = UTU, W =W W and V' = V'V are d x d matrices. With the simplest algorithm
for matrix multiplication, we recover that computing Z requires time O(|€| - d? + |R| - d?) and
additional space O(d?).

RESCAL2. The score function ¢gpgcar2 €ncoded by RESCAL? can be written as

2
PrescaL (s, 75 0) = (eIWTeo) = Z €5i€skWrijWrkl€ojCol
(i,d,k,1) €[d]*
where [d] denotes the set {1,...,d}, e,, e, € R are rows of the matrix E € RI®/*4 and W, € R4*4

are slices along the first mode of the tensor W € R'R‘de, which consists of stacked matrix
embeddings associated to predicates. The partition function of ¢ppgcp2 can be written as

Z=3" 3% drescav(sro) = Y (Z k> (Z wmwrkz) (Z em%z)

s€€ reR oc& (i,4,k,1)E[d]* \sEE reR o€
!/ !
= EikwrijwrklEjl (9)

where E' = ETE € R%*?. The complexity of computing Z depends on the order of tensor
contractions in the einsum operation showed in Eq. (9). By optimising the order of tensor contractions
(e.g., by using software libraries like opt_einsum), we retrieve that computing Z requires time
O(|€]-d?+|R|-d?) and additional space O(|R|-d?). Notice that the time complexity here is slightly
lower than the theoretical upper bound given in Thm. 1, which would be O(|€| - d? + |R| - d*).

TUCKER?. Lastly, we present the derivation of the partition function for TUCKER?. The score
function ¢ pr2 €ncoded by TUCKER? can be written as

2
PruckER? (5,7,0) = (T X1 €5 X2 Wy X3 €5)
= E E Tijk Timn€si€slWrj WrmEokCon
(i,5,k)€ (Im,n)e

[de]x [dr]x[de] [de]x[dr] X [d]

where e, e, € R% are rows of the matrix E € RI€/%9¢ w, is a row of the matrix W ¢ RIRIxdr,
and 7~ € Re*d-*de denotes the core tensor. The partition function of @, pr> can be written as

Z = Z Z Z PryckER? (s,m,0)

s€eE reR oe€
= Z Z TijkTimn (Z esiesl> (Z wrjan) <Z eokeon>
(i,5,k)€ (I,m,n)e se& reER o€l
[de]x[dr]x [de] [de] X [dr] X [de]
= Tijh Timn By Wi By (10)

where E' = ETE € R% %4 and W/ = W' W e R%*dr_ Similarly to RESCAL?Z, by optimising
the order of tensor contractions in the einsum operation showed in Eq. (10), we retrieve that computing
Z requires time O(|€|-d2 +|R|-d?+d?-d,) and additional space O(d?-d,.). Similarly to RESCAL?,
the time complexity is lower than the theoretical upper bound given in Thm. 1, which would be
O(€| - dZ +[R| - d7 + d¢ - d7).

C.4.2 Complexity of Computing the PLL Objective

In this section, we show that GeKCs enable to better scale the computation of the PLL objective
(Eq. (1)) with respect to energy-based KGE models (see Section 2). We present this concept for CP
and GeKCs derived from it (Section 4), as for the other score functions it is similar.
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Complexity of the PLL objective on CP. Let ¢cp(s,7,0) = (€5, W,, €,) = Z?:l €45iWr;i€o; DE
the score function of CP [40], where e,, e, € R? (resp. w, € R%) are rows of the matrices U,V €
RIEIXd (resp. W e RIRI*4) which associate to each entity (resp. predicate) a vector. Given a training
triple (s, 7,0), the computation of the term logp(o | s,7) = ¢(s,7,0) —log)_ .o exp P(s,r,0")
requires evaluating ¢cp(s,, 0') for all objects o’ € £. In order to fully exploit GPU parallelism [36],
this is usually done with the matrix-vector multiplication V (e, ® w,.) € RI€l, where ® denotes
the Hadamard product [40, 12]. Therefore, computing log p(o | s,r) for each triple (s,r,0) in a
mini-batch B C £ x R x &€ such that |£] > |B| requires time O(|€]| - |B| - d) and space O(|E| - | B]).
For the other terms of the PLL objective (i.e., logp(s | 7,0) and log p(r | s, 0)) the derivation is
similar. Moreover, for real-world large KGs it is reasonable to assume that |£| > |R| and therefore
the cost of computing log p(r | s, 0) is negligible.

Complexity of the PLL objective on GeKCs. GeKCs obtained from CP either by non-negative
restriction (Section 4.1) or by squaring (Section 4.2) encode ¢pc(s,T,0) x p(s,r,0) for any input
triple. As such, the component log p(o | s, 7) of the PLL objective can be written as

logp(o | s,7) = log ¢pc(s,,0) — log Z bpc(s,1,0"). (11)
o’'cE

The absence of the exponential function in the summed terms in Eq. (11) allows us to push the outer
summation inside the circuit computing ¢, (s, 7, 0), and to sum over the input units relative to objects.
For instance, for CP* we can write

d d
Z ¢CP+ (577"7 0/) — Z Zesiwrieoi = Z CgiWpri (Z €O/¢> = (es ® WT)T(VT]-S)

o'e& o’'e€ i=1 i=1 o€

where e;, w,., e, € RY,V € le‘ %4 denotes the matrix whose rows are object embeddings, and

1¢ = [1...1]I¥is a vector of ones. Note that V' 1z € R? does not depend on the input triple.
Therefore, given a mini-batch of triples B, computing log p(o | s, r) requires time O((|€| + |B|) - d)
and space O(|B| - d), which is much lower than the complexity on CP showed above, and we can
still leverage GPU parallelism. For CP?, the complexity is similar to the derivation of the partition
function complexity showed in Appendix C.4.1. That is, for CP? we can write

d 2 a4 4
/
E ¢CP2 (S, r,o ) = § § €5iWri€oi = § § €5i€sj WriWyj E €0'i€0’j

o'e& o’'efE \i=1 i=1 j=1 o'e&
= (e; ® WT)T(VTV)(es © Wr)

where e,, w,, e, € R, V e RI€I*4 Note that the matrix V'V € R%*¢ does not depend on the
input triple. Therefore, given a mini-batch of triples B, computing log p(o | s,r) requires time
O((|€] + |B]) - d?) and space O(|B| - d). While the time complexity is quadratic in the embedding
size d, it is still much lower than the time complexity on CP. A similar discussion can also be carried
out for the other KGE models and the corresponding GeKCs, which retrieves the complexities showed
in Table C.1.

C.4.3 Training Speed-up Benchmark Details

In this section we report the details about the training benchmark on COMPLEX, COMPLEX* and
CoMPLEX?, whose results are showed in Fig. 3. We measure time and peak GPU memory usage
required for computing the PLL objective (Eq. (1)) and to do an optimisation step for a single batch
on ogbl-wikikg2 [32], a large knowledge graph with millions of entities (see Table F.1). We fix the
embedding size to d = 100 for the three models. For the benchmark with increasing batch size, we
keep all the entities and increase the batch size from 100 to 5000. For the benchmark with increasing
number of entities, we keep the batch size fixed to 500 (the maximum allowed for COMPLEX by our
GPUs) and progressively increase the number of entities, from about 3 - 10° to 2.5 - 105. We report
the average time over 25 independent runs on a single Nvidia RTX A6000 with 48 GiB of memory.
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D Distribution of Scores
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Figure D.1: Scores are mostly non-negative. Histograms of the scores assigned by COMPLEX to
existing validation triples (left) and their perturbation (right) on three data sets. The vast majority of
triple scores are non-negative, suggesting that squaring them has minimal effect on the rankings.

In Fig. D.1 we show the histograms of the scores assigned to the validation triples and their per-
turbations of three data sets (see Appendix F.1). Following Socher et al. [59], we generate triple
perturbations that are challenging for link prediction. That is, for each validation triple (s, r, 0), the
corresponding perturbation (s, r,0) is obtained by replacing the object with a random entity that
has appeared at least once as an object in a training triple with predicate . The bottom line is that
scores are mostly non-negative, and hence can be used as a heuristic to effectively initialise GeKCs
or quickly distil them (e.g., on FB15K-237), as we further discuss in Appendix F.5.1.

E Reconciling Knowledge Graph Embeddings Interpretations

Triples as boolean variables. KGE models such as CP, RESCAL, TUCKER and COMPLEX
have been historically introduced as factorizations of a tensor-representation of a KG, which we
discuss next. In fact, a KG G can be represented as a 3-way binary tensor Y € {0, 1}/€IXIRIxI€] jp
which every entry Y., is 1 if (s,7,0) € G and 0 otherwise [48]. Under this light, a KGE model like

RESCAL factorises every slice Y,. € {0, 1}/€/*I€l corresponding to the predicate r as EW,.E'
where E is an |£] x d matrix comprising the entity embeddings and W ,. is an d x d matrix containing
the embeddings for the predicate . To deal with uncertainty and incomplete KGs, Y., can be
interpreted as a Bernoulli random variable. As such, its distribution becomes p(Ys,o = 1 | s,7,0)
which is usually modelled as o (¢(s, r, 0)), where o denotes the logistic function and ¢ is the score
function of a KGE model. Note that this distribution of triple introduces |€ x R x £| random variables,
one for each possible triple.

KGE models as estimators of a distribution over KGs. At the same time, the interpretation of
triples as boolean variables induces a distribution over possible KGs, q(G), which is the distribution
over all possible binary tensors p(Y). The probability of a KG G can therefore be computed as
the product of the likelihoods of all variables Y., i.e., ¢(G) = H(S,m)eg P(Ysro =11 8,7,0) -

[s,r.0)¢g P(Ysro = 0| 5,7, 0). Note that (re-)normalising this distribution is intractable in general,

as it would require summing over all possible 2/€*R*£| binary tensors. This is why historically KGE
models have been interpreted as energy-based models, by directly optimising for ¢(s, r, 0), interpreted
as the negated energy associated to every triple, and not p(Ys,., = 1 | s,7,0) (see Section 2). This
has been done via negative sampling or other contrastive learning objectives [0, 7]. We point out that
this very same interpretation can be found in the literature of probabilistic logic programming [25],
probabilistic databases (PDBs) [14] and statistical relational learning (see Section 6) where the
distribution over possible “worlds” is over sets of boolean assignments to ground atoms or facts, or
tuples in a PDB, each interpreted as Bernoulli random variables.

Estimating a distribution over triples. In this work, instead, we interpret existing KGE models
and our GeKCs as models that encode a possibly unnormalised probability distribution over three
random variables, S, R, O, which induces a distribution over triples that is tractable to renormalise.’

"The polynomial cost of renormalising an energy-based KGE is unfortunately infeasible for real-world KGs,
see Section 2.
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To reconcile these two perspectives, we interpret the probability of a triple p(s, 7, 0) to be proportional
to the probability of all KGs G where (s, 7, 0) holds, i.e., those G such that (s, 7, 0) € G. Intuitively, a
triple will be more probable to exist if it does exist in highly probable KGs. More formally, given
q a probability distribution over KGs, we define p as an unnormalised probability distribution over
triples, i.e., (s, r, 0) x p(s,r, 0), where

/L(S,?", 0) = Z Q(g) = Z q(g) ’ ]1{(8,7", O) € g} = EQNQ[]I{(‘SvT? O) € g}] (12)

GeH GeH
(s,r,0)€G

and H = 28*R*€ denotes the set of all possible KGs. Computing the expectation in Eq. (12)
exactly is equivalent to solving a weighted model counting (WMC) problem [10], where we sum
the probabilities of all possible KGs containing (s, r, 0). Alternatively, it is equivalent to computing
the probability of the simplest possible query in a PDB (i.e., asking for a single tuple), where each
stored tuple is interpreted as an independent Bernoulli random variable Yj,.,. Therefore, we have
that pu(s, 7, 0) is simply the likelihood that Yy, is true, i.e., p(Ys-o = 1| 8,7, 0). Furthermore, the
normalisation constant of u (Eq. (12)) can be written as

Z = Z /J,(S,’I“, O) = Z q(g) : Z 1{(877’7 0) € g} = Z q(g) : ‘g| = Eg~q[|g|]
(s,r,0)€ geH (s,r,0)€ GeH
EXRXE EXRXE
which is the expected size of a KG according to the probability distribution g. Written in this way,
however, computing Z through ¢(G) is intractable. For this reason, we directly encode p with GeKCs
and compute Z by summing over all triples, and therefore without modelling ¢(G).

Further interpretations in related works. Under the interpretation of a KG as a PDB, Friedman
and Van den Broeck [26] further decompose the likelihood that Yy, is true as

p(}/sro: 1 ‘ 5,7"70) :p(Es =1 | S)p(TT =1 | r)'p(Eo =1 | O)

where E, E,, T, are new Bernoulli variables that are assumed to be conditionally independent
given the parameters of the PDB. That is, instead of introducing one random variable per triple,
they introduce one random variable per entity and predicate. In this framework, they reinterpret
the score function of DISTMULT, a simplified variant of CP, as an implicit circuit that models an
unnormalized distribution over the collection of variables Z = {E, },cs U {T} }rer, trained by
negative sampling. This decomposition permits to compute the probability of any database query
efficiently, which otherwise is known to be either a PTIME or a #P-hard problem, depending on the
query type [15]. If we were to interpret our distribution (S = s, R = r, O = 0) as the unnormalized
marginal distribution p(Es = 1,7, = 1,E, =1) =) p(Es = 1,T, = 1,E, = 1,Z' = 7'),
where Z' = Z \ {E,, T, E,}, we could equivalently compute any probabilistic query efficiently.
Note that under this interpretation, training our GeKCs by MLE over .S, R, O would be equivalent to
maximise a composite marginal log-likelihood [70] over Z.

F Empirical Evaluation

F.1 Datasets Statistics

Table F.1 shows statistics of commonly-used datasets to benchmark KGE models for link prediction.
We employ standard benchmark datasets [62, 21, 32] whose number of entities (resp. predicates)
ranges from ~14k to ~2.5M (resp. from 11 to ~500).

Table F.1: Dataset statistics. Statistics of multi-relational knowledge graphs: number of entities
(|€]), number of predicates (|R|), number of training/validation/test triples.

Dataset €l |IR| # Train # Valid # Test
FB15k-237 [62] 14,541 237 272,115 17,535 20,466
WN18RR [21] 40943 11 86,835 3,034 3,134
ogbl-biokg  [32] 93,773 51  4,763-10> 163-10%  163-103
ogbl-wikikg2 [32]  2.5-10% 535 16,109 -103 429-10% 598 -103
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F.2 Metrics

Mean reciprocal rank and hits at k. Given a test triple (s, r,0), we rank the possible object o
(resp. subject s”) completions to link prediction queries (s, , ?) (resp. (7,7, 0)) based on their scores
in descending order. The position of the test triple (s, r, 0) in the ranking of object (resp. subject)
completed queries (s, ,0") (resp. (s', r,0)) is then used to compute the mean reciprocal rank (MRR)

1 1 1
MRR = ——5—
2|Giest| ( ;eg (rank(o | s,7) + rank(s | r, 0))
where Ges denotes the set of test triples, and rank(o | s,7),rank(s | r, 0) denote respectively the
positions of the true completion (s, 7, 0) in the rankings of object and subject completed queries. The
fraction of hits at k (Hits@k) for k > 0 is computed as

1

HitsQk = —— Z (1{rank(o | s,7) < k} + 1{rank(s | r,0) < k}).
2|gtesl|
(Sar:o)egtest
Consistently with existing works on link prediction [56, 12], the MRRs and Hits@k metrics are

computed under the filtered setting, i.e., we rank true completed triples against potential ones that do
not appear in the union of training, validation and test splits.

Semantic consistency score. Let K be a logical constraint encoding some background knowledge
over variables S, R and O. Given a test triple (s, 7, 0), we first rank the possible completions to link
prediction queries in the same way as for computing the MRR. Then, the semantic consistency score
(Sem@¥k) [33] for some integer k£ > 0 is computed as

Sem@k = — > Yo o) EK Y+ Y 1{(sr0) E K}

2k|G
‘ tesl| (5,7,0)€EGes \0'€AE (s,r,0) s'e Ak (s,r,0)

where Ges denotes the set of test triples, A% (s, 7, 0) (resp. A% (s, 7, 0)) denotes the list of the top-k
candidate object (resp. subject) completions to the link prediction query (s, r,?) (resp. (?,r,0)), and
(s,r,0) E K if and only if (s, r, 0) satisfies K.

F.3 Empirical KTD Score

Let F = {z;}21, G = {y;}}—; two sets of triples that are drawn i.i.d. from two distributions P, Q
over triples. We compute the emplrlcal KTD score with an unbiased estimator [28] KTD,, (F, G) as

" Zk (), Zk W(y;) f—ZZk yi)).
Z#J zsﬁJ i=1j=1

For each data set, we compute the empirical KTD score between n = 25, 000 triples sampled from
GeKCs and m test triples. In case of m > n, we sample n triples randomly, uniformly and without
replacement from the set of test triples. The time complexity of computing the KTD score is O(nmh),
where h denotes the size of triple latent representations (h = 4000 in our case, see Section 7.3). For
efficiency reasons, we therefore follow Binkowski et al. [4] and randomly extract two batches of 1000
triples each from both the generated and the test triples sets and compute the empirical KTD score on
them. We repeat this process 100 times and report the average and standard deviation in Table F.6.

F.4 Experimental Setting

Hyperparameters. All models are trained by gradient descent with either the PLL or the MLE
objective (Egs. (1) and (2)). We set the weights w;, w,,w, of the PLL objective all to one, as to
retrieve a classical pseudo-log-likelihood [70]. Note that Chen et al. [12] set w;, w, to one and treat
w, as an additional hyperparameter instead that is opportunely tuned. The models are trained until
the MRR computed on the validation set does not improve after three consecutive epochs. We fix the
embedding size d = 1000 for both CP and COMPLEX and use Adam [3%] as optimiser with 1073 as
learning rate. An exception is made for GeKCs obtained via non-negative restriction (Section 4.1),
for which a learning rate of 10~2 is needed, as we observed very slow convergence rates. We search
for the batch size in {5-102,10%,2-103,5-10%} based on the validation MRR. Finally, we perform 5
repetitions with different seeds and report the average MRR and two standard deviations in Table F.2.
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Parameters initialisation. Following [40, |2], the parameters of CP and COMPLEX are initialised
by sampling from a normal distribution A/(0, 2) with & = 10~3. Since the embedding values in
CP* and COMPLEX™ can be interpreted as parameters of categorical distributions over entities and
predicates (see Appendix C.1), we initialise them by sampling from a Dirichlet distribution with
concentration factors set to 103. To allow unconstrained optimisation for CP* and COMPLEX*, we
represent the embedding values by their logarithm and perform computations directly in log-space,
i.e., summations and log-sum-exp operations instead of multiplications and summations, respectively.
Moreover, the parameters that ensure the non-negativity of COMPLEX* (see Appendix C.2) are
initialised by sampling from a normal distribution A'(0,0?) with ¢ = 1072, We initialise the
parameters of CP?> and COMPLEX? such that the logarithm of the scores are approximately normally
distributed and centred in zero during the initial optimisation steps, since this applies for the scores
given by CP and COMPLEX. Such initialisation therefore permits a fairer comparison. To do so,
we initialise the embedding values by sampling from a log-normal distribution LA/ (11, 02), where
pu = —log(d)/3 — 0/2 for CP and pr = —log(2d)/3 — % /2 for COMPLEX, both with o = 1073,
The mentioned values for i can be derived via Fenton-Wilkinson approximation [24]. Even though
the parameters of GeKCs obtained via non-monotonic squaring are initialised to be non-negative,
they are free of becoming negative during training (as we also confirm in practice).

Hardware. Experiments on the smaller knowledge graphs FB15K-237 and WN18RR were run on a
single Nvidia GTX 1060 with 6 GiB of memory, while those on the larger ogbl-biokg and ogbl-wikikg2
were run on a single Nvidia RTX A6000 with 48 GiB of memory.

F.5 Additional Experimental Results
F.5.1 Link Prediction Results

In this section, we present the additional results regarding the link prediction experiments showed in
Section 7.1 and analyse different metrics and learning settings.

Statistical tests and hits at k. Table F.2 shows the best test average MRRs (see Appendix F.2) with
two standard deviation and average training time across 5 independent runs with different seeds. We
highlight the best results in bold according to a one-sided Mann—Whitney U test with a confidence
level of 99%. The showed results in terms of MRRs are also confirmed in Table F.3, which shows the
best average Hits@k (see Appendix F.2) with & € {1, 3,10}.

Average log-likelihood. For the best GeKCs for link prediction showed in Table F.2, we report
the average log-likelihood of test triples and two standard deviations (across 5 independent runs) in
Table F.4. We again highlight the best results in bold, according to a one-sided Mann—Whitney U test.

Quickly distilling parameters. As discussed in Section 4.2, since learned KGE models mostly
assign non-negative scores to triples (see Appendix D) we can initialise the parameters of GeKCs
obtained by squaring with the parameters of already-learned KGE models, without losing much in
terms of link prediction performances. Here, we test this hypothesis and fine-tune GeKCs initialised
in this way by using either the PLL or MLE objectives (Egs. (1) and (2)). To do so, we first collect
the parameters of the best CP and COMPLEX found for link prediction (see Section 7.1). Then,
we initialise GeKCs derived by squaring with these parameters and fine-tune them until the MRR
computed on validation triples does not improve after three consecutive epochs. We employ Adam
[38] as optimiser, and we search for the batch size in {5 - 102,10%,2 - 10,5 - 103} and learning
rate in {1073, 107}, as fine-tuning may require a lower learning rate than the one used in previous
experiments (see Appendix F.4). Table F.5 shows the MRRs achieved by CP, COMPLEX and the
corresponding GeKCs obtained via squaring that are initialised by distilling the parameters from the
already-trained CP and COMPLEX. On FB15K-237 and WN18RR, distilling parameters induces a
substantial improvement in terms of MRR with respect to CP? and COMPLEX? whose parameters
have been initialised randomly (see Appendix F.4). Furthermore, for COMPLEX? and on WN18RR
and ogbl-biokg we achieved similar MRRs with respect to COMPLEX without the need of fine-tuning.
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Table F.2: GeKCs are competitive with their energy-based counterparts. Best test MRRs (and
two standard deviations) of CP, COMPLEX and GeKCs trained with the PLL and MLE objectives
(Egs. (1) and (2)). In parentheses we show the average training time (in minutes).

Model FB15k-237 WN18RR ogbl-biokg
PLL MLE PLL MLE PLL MLE
Cp 0.310 £0.001 (8) — 0.105 £0.007 (11) — 0.831 £0.001 (136) —
Cp* 0.237 £0.003 (1) 0.230 £0.003 (1) 0.027 £0.002 (1) 0.026 £0.001 (1) 0.496 +0.013 (172) 0.501 +£0.010 (142)
CP? 0.315 £0.003 (8) 0.282 +0.004 (7) 0.104 +0.001 (23) 0.091 £0.004 (23) 0.848 £0.001 (66) 0.829 £0.001 (61)

COMPLEX 0.342 +0.005 (36) 0.471 £0.002 (16) 0.829 +0.001 (180)
CoMPLEX™* 0.214 £0.003 (10) 0.205 +£0.006 (5) 0.030 £0.001 (6) 0.029 £0.001 (3) 0.503 +0.014 (245) 0.516 +0.009 (212)
COMPLEX? 0.334 £0.001 (10) 0.300 £0.003 (16) 0.420 +0.011 (37) 0.391 £0.004 (19) 0.858 £0.001 (71) 0.840 £0.001 (59)

Table F.3: Hits@Fk results. Average test Hits@Fk for k € {1,3,10} of CP, COMPLEX and CP? and
CoMPLEX? trained with the PLL or MLE objectives.

FB15k-237 WN18RR ogbl-biokg
PLL MLE PLL MLE PLL MLE
Model k = 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10
CP 224341482 — — — 75121168 — — — 7642881950 — — —
Cp* 17.0 25.8 36.7 16.7 249 354 1.7 2.7 45 1.6 25 44 38.0 544 734 384 55.0 744
Cp? 23.1 34.8 482 205 30.8 435 6.7 12.1 17.6 59 10.7 153 78.6 89.5 95.7 76.1 88.1 95.0
ComMPLEX 252 375525 — — — 433486546 — — — 761879950 — — —
CoMpPLEXx* 15.7 23.1 31.7 15.0 22.1 304 1.5 2.7 45 1.6 25 44 388 551 74.1 40.0 56.7 75.9
COMPLEX? 24.5 369 51.1 21.6 33.0 46.7 36.0 45.6 52.4 34.5 423 469 80.0 90.1 958 77.5 88.8 95.4

Table F.4: Better distribution estimation with GeKCs obtained via squaring. Average log-
likelihood of test triples achieved by baselines and GeKCs trained with the PLL or MLE objectives.

Model FB15k-237 WN18RR ogbl-biokg

Uniform -24.638 -23.638 -26.829

NNMFAug -19.270 -22.938 -17.562

PLL MLE PLL MLE PLL MLE

Cp* -16.773 £0.040 -16.592 +0.059 -21.987 £0.006 -22.103 £0.010 -17.900 £0.048 -17.416 +0.049
CP? -17.105 £0.031 -15.982 +0.028 -24.911 +0.241 -26.352 +0.077 -17.231 +0.059 -16.533 +0.013
CoMPLEX* -17.507 £0.035 -17.592 £0.039 -21.233 £0.058 -21.432 +£0.008 -18.716 +0.088 -17.749 £0.019
COMPLEX?  -17.100 £0.026 -15.744 £0.041 -19.522 +0.530 -19.739 £0.214 -17.340£0.022 -16.518 +0.003

Table F.5: Distilling parameters can improve performances. Test MRRs achieved by CP, COM-
PLEX and GeKCs obtained by squaring (Section 4.2). For CP? and COMPLEX? we report the best
MRRs achieved by distilling the parameters from the already-learned CP and COMPLEX (denoted
with %), and with { we denote those results for which further fine-tuning with the PLL or MLE
objectives did not bring better results. We underline results for which distilling parameters increased
the MRR.

Model FB15k-237 WN18RR ogbl-biokg
PLL MLE PLL MLE PLL MLE
CP 0.311 — 0.108 0.831 —
CoMPLEX 0344 — 0.470 0.829 —
Ccp? 0.317 0.285 0.103 0.089 0.849 0.830
CP2 0.327 0.315 0.102 0.115 0.851 0.828
COMPLEX? 0.333 0301 0416 0.390 0.859 0.839
COMPLEX? » 0342 0.340 0462+% 0463 0859 0.828 F
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F.5.2 Quality of Sampled Triples Results

In this section, we provide additional results regarding the evaluation of the quality of triples sampled
by GeKCs (see Section 7.3). For these experiments, we search for the same hyperparameters as for the
experiments on link prediction (see Appendix F.4), and train GeKCs until the average log-likelihood
computed on validation triples does not improve after three consecutive epochs.

Table F.6 shows the mean empirical KTD score and one standard deviation (see Appendix F.3).
In addition, we visualise triple embeddings of sampled and test triples in Fig. F.1 by leveraging
t-SNE [69] as a method for visualising high-dimensional data. In particular, we apply the t-SNE
method implemented in scikit-learn with perplexity 50 and number of iterations 5 - 103, while other
parameters are fixed to their default value. As showed in Fig. F.1c, an empirical KTD score close to
zero translates to an high clusters similarity between embeddings of sampled and test triples.

Table F.6: GeKCs trained by MLE generate new likely triples. Empirical KTD scores between
test triples and triples generated by baselines and GeKCs trained with the PLL objective or by MLE
(Egs. (1) and (2)). Lower is better.

Model FB15k-237 WN18RR ogbl-biokg
Training set 0.055 +0.007 0.260 +£0.013 0.029 +0.010
Uniform 0.589 +0.012 0.766 +0.036 1.822 +0.044
NNMFAug 0.414 +0.014 0.607 +0.028 0.518 £0.035
PLL MLE PLL MLE PLL MLE
CP* 0.404 £0.016  0.433 £0.015  0.633£0.033  0.578 £0.029  0.966 +0.040  0.738 +0.030
Ccp? 0.253 £0.014  0.070 £0.007  0.768 £0.036  0.768 £0.036  0.039 £0.009  0.017 +0.013
CoMPLEX*  0.33620.016 0.323+0.015 0.456+0.018 0.478+0.019 0.175x0.019  0.097 £0.013
COMPLEX? 03260016  0.1020.010  0.3380.020 0.278 20.017  0.104£0.010  0.034 £0.007

(a) FB15k-237

(b) WN18RR

(c) ogbl-biokg

KTD :=0.102 + 0.010 KTD :=0.278 + 0.017 KTD := 0.034 £ 0.007

Figure F.1: Sampled triples are close to test triples. t-SNE [69] visualisations of the embeddings of
test triples (in blue) and triples sampled by COMPLEX? (in orange). The distribution shift between
training and test triples on WN18RR mentioned in Section 7.3 is further confirmed in Fig. F.1b, as it
shows a region of test triples (at the bottom and in blue) that is not covered by many generated triples.

F.5.3 Calibration Diagrams

Existing works on studying the calibration of KGE models are based on interpreting each possible
triple (s, 7, 0) as an independent Bernoulli random variable Y., whose likelihood is determined by
the score function ¢, i.e., Pr(Yso = 1| s,7,0) = o(¢(s,7,0)) [61, 54, 79], where o denotes the
logistic function. While GeKCs encode a probability distribution over all possible triples, this does
not impede us to reinterpret them to model the likelihood of each Y., by still considering scores
in log-space as negated energies (see Section 2). Therefore, to evaluate the calibration of GeKCs
encoding a non-negative score function ¢, (see Section 4) we compute the probability of a triple
(s,7,0) being true as p(Yyro = 1| 5,7, 0) := o(log ¢pc(s, 7, 0)). However, the usage of the logistic
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function might give misleading results in case of scores not being centred around zero on average.
Therefore, we also report calibration diagrams (see paragraph below) where the p(Ys,., = 1| s,7,0)
is obtained via min-max normalisation of the scores given by KGE models (the logarithm of the
scores given for GeKCs), where the minimum and maximum are computed on the training triples.
Note that several ex-post (re-)calibration techniques are available [61, 79], but they should benefit
GeKCs as they do with existing KGE models.

Setting and metrics. To plot calibration diagrams, we follow Socher et al. [59] and sample
challenging negative triples, i.e., for each test triple (s, r,0) we sample an unobserved perturbed
one (s, r,0) by replacing the object with an entity that has appeared at least once with the predicate
r in the training data. We then compute the empirical calibration error (ECE) [79] as ECE :=

i Zi’:l Ip; — f;|, where b is the number of uniformly-chosen bins for the interval [0, 1] of triple
probabilities, and p;, f; are respectively the average probability and relative frequency of actually
existing triples in the j-th bin. The lower the ECE score, the better calibrated are the predictions, as
they are closer to the empirical frequency of triples that do exist in each bin. The calibration curves
are plotted by considering the relative frequency of existing triples in each bin, and curves closer to
the main diagonal indicate better calibrated predictions.

GeKCs are more calibrated out-of-the-box. Fig. F.2 (resp. Fig. F.3) show calibration diagrams
for GeKCs derived from CP and COMPLEX trained with the MLE objective (Eq. (2)) (resp. PLL
objective (Eq. (1))). In 19 cases over 24, GeKCs obtained via squaring (Section 4.2) achieve lower
ECE scores and better calibrated curves than CP and COMPLEX. While GeKCs obtained via
non-negative restriction (Section 4.1) are not well calibrated when using the logistic function, on
ogbl-biokg [32] they are still better calibrated than CP and COMPLEX when probabilities are obtained
via min-max normalisation. Furthermore, on WN18RR GeKCs achieved the highest ECE scores
(corresponding to poorly-calibrated predictions), which could be explained by the distribution shift
between training and test triples that was observed for this KG in Section 7.3 and further confirmed
in Appendix F.5.2.
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Figure F.2: Better calibrated predictions with CP2. Calibration diagrams of CP, CP* and CP?
trained with either the PLL (Fig. F.2a) or MLE (Fig. F.2b) objectives. The probability of triples are
obtained via the application of the logistic function (rows above) and min-max normalisation (rows
below). See Appendix F.5.3 for details. The calibration curves for CP* where triple probabilities are
obtained with the logistic function do not provide any meaningful information, as the logarithm of
their scores are generally distributed over large negative values.
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Figure F.3: Better calibrated predictions with COMPLEX?. Calibration diagrams of COMPLEX,
CoMPLEX* and COMPLEX? trained with either the PLL (Fig. F.3a) or MLE (Fig. F.3b) objectives.
The probability of triples are obtained via the application of the logistic function (rows above) and
min-max normalisation (rows below). See Appendix F.5.3 for details. The calibration curves for
CoMPLEX™ where triple probabilities are obtained with the logistic function do not provide any
meaningful information, as the logarithm of their scores are generally distributed over large negative
values.
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