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Abstract

Taking correct steps through elementary logical operations is the essence of log-1

ical reasoning, culminating in precise planning outcomes. While such step-2

wise inference approaches have demonstrated benefits in Large Language Models3

(LLMs), conducting an accurate quantitative evaluation is challenging, given their4

extensive scale, complexity, and lack of accessibility. We introduce a minimal syn-5

thetic setup, where an autoregressive language model solves a navigation task on6

directed acyclic graphs (DAGs), taking inspiration from computational graphs and7

execution traces. By implementing training with sample paths from start to goal8

node in a ’step-by-step’ manner, we perform systematic experiments and develop9

novel analyses illustrating that stepwise navigation proves advantageous when the10

underlying graph is hierarchical and generalization necessitates the stitching of11

subpaths observed during pretraining. Further, we observe a diversity-accuracy12

tradeoff while varying sampling temperature and a bias towards generating shorter13

paths. We next elucidate how in-context chain-of-thought exemplars can steer the14

model’s navigation. Importantly, these exemplars can guide the model to follow15

a path of reasoning we provide, instead of relying on its potentially biased pri-16

ors. Together, this work showcases the utility and adaptability of this paradigm in17

exploring the complexities of logical reasoning and planning in LLMs.18

1 Introduction19

Here, we strive to formulate a framework that is not only simple, controllable, and interpretable but20

also encapsulates the essential features of an array of stepwise inference tasks such as scratchpad21

and zero/few-shot chain-of-thought in transformers. Our design philosophy adheres to the principle22

of constructing a model task that is “as simple as possible, but not simpler”, ensuring that the23

model embodies the following set of properties:: (i) the task can be better solved by outputting the24

intermediate steps of computation; (ii) there can be several possible paths of computational steps25

to solve the task; and (iii) the context of the task can be controlled by providing exemplars in the26

prompt. Here we argue that the paradigm of graph navigation problems provides such a fundamental27

framework. Inspired by computational graphs and execution traces, we model stepwise inference28

as navigating simple paths in a directed acyclic graph (DAG), representing a chain of logic (Dziri29

et al., 2023). Given a start and goal node, the transformer must autoregressively produce a sequence30

of nodes that concludes at the goal node. This task requires two levels of computation: locally,31

each step taken by the model must be valid, and on a global scale, the sequence of steps must be32

strategically planned in advance to reach the goal node. This setup enables us to modify (1) the33

structure of the underlying graph (2) the content of the training samples during pre-training and (3)34

the information provided to the model in-context before cue the model with the goal and start nodes.35

Consequently, we can systematically examine the impact of these properties on the development36

of reasoning abilities, an investigation that is challenging to conduct on a large scale. While (1)37
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Figure 1: Graph navigation task as a simple, steerable, and interpretable framework for ex-
ploring stepwise inference. (a) Scratchpad (Nye et al., 2021) improves LLMs’ ability to perform
complext multi-step computations, such as arithmetic, when they write intermediate computation
steps to a buffer called a scratchpad. (b) Zero-shot chain-of-thought prompting (Kojima et al., 2022)
improes LLMs’ ability to perform multi-step reasoning, such as Tower of Hanoi by prompting them
to generate detailed reasoning paths. (c) Few-shot chain-of-thought prompting (Wei et al., 2022) im-
proves LLMs’ ability to perform multi-step reasoning, such as solving math word problems (Cobbe
et al., 2021), by first presenting an exemplar in-context in the prompt.

and (2) together allows us to explore scratchpad and zero-shot step-by-step reasoning, which is38

relying on the model’s internalized abilities, (3) also delves into few-shot in-context chain of thought39

prompting (Wei et al., 2022), where predictions are made with guiding examples. Specifically, we40

examine how in-context exemplars affect the path produced by the model and systematically evaluate41

the degree of control we have over that path.42

2 Defining A Synthetic Graph Navigation Task43

A DAG G = (N,E) is made up of set of nodes N = {Xi}|N |
i=1 and set of directed edges across the44

nodes E = {(Xi, Xj)}Xi,Xj∈N . The edges of a DAG captured by the adjacency matrix A where45

Aij = 1 if (Xi, Xj) ∈ E.46

A directed simple path is a sequence of distinct nodes of G which are joined by a sequence of47

distinct edges. The first node of a path is referred to as the start node and the last node is the goal48

node (Fig. 2). A cycle is a sequence of nodes connected by a sequence of edges such that the first49

and last node are identical. The key characteristic defining DAGs is that they contain no cycles.50

The adjacency matrix of a DAG can always be rearranged to be upper triangular. Structure of the51

DAG: We find that the structure of the underlying DAG can have a large effect on the usefulness of52

Step-by-Step Inference. When the DAG is hierarchical, between a start and goal node, nodes in the53

intermediate layers must be visited SI Fig 7 whereas when the DAG is random, there is a uniform54

probability that 2 nodes are connected and there is no explicit notion of hierarchy. In both these sce-55

narios, we can define the notion of path diversity: between any 2 path-connected nodes, there can56

be several possible paths. We quantify the path diversity in random and hierarchical graphs in SI Fig57

7 and describe their construction in the corresponding SI Sec. Data generating process for single58

graph scenarios We focus on two setups in this work, where one allows for context and one does not.59

This is intentional so that we can explicitly analyze benefits of stepwise inference in the presence of60

extraneous context, which may influence a model’s internalized knowledge, and hence its execution.61

Prompt structure and training data generation In the single graph setting with underlying DAG62

G, each prompt is made from a single simple path. Given a start node Xstart and goal node Xgoal,63

the model has to classify whether there exists a path from Xstart to Xgoal. We create a pair of tokens64

path and no-path. We constructed two datasets: one that contains stepwise inference and another65

that does not. Examples of prompts are provided below. For stepwise inference, the path between the66

start node X4 to the goal node X6 is represented as:goal : X4 X6 X5 X7 X6 path end . Without67
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Figure 2: Data Generating Process for a Single Graph: This figure illustrates the step-by-step
process of generating a training dataset using a single graph. 1) A directed acyclic graph (DAG) is
generated, which can be either hierarchically structured or random. 2) A start node and a goal node
are selected. 3) All possible paths connecting the start and goal nodes are sampled, and one path is
randomly selected. 4) The chosen path is then represented in a task-specific format.

(d)

Figure 3: Advantage of Stepwise Inference in Graph Navigation Tasks: (a) In random graphs,
stepwise inference shows an advantage over direct inference in connectivity prediction tasks. (b)
This advantage is further pronounced in hierarchical graphs, where the distances between nodes can
be significantly larger. (c) We show that the stepwise inference gap arises when the training set
contains paths that are shorter than the paths required to connect nodes in the evaluation set. (d)
A diversity vs. accuracy trade-off in finite temperature stepwise inference for transformers:
As sampling temperature is increased, the diversity of paths generated by the model from a single
(nstart, ngoal) pair increases, while the accuracy of the path decreases. This tradeoff is captured by
measuring the number of unique true paths which is non-monotonic (top), showing the existence
of an optimal temperature for sampling. The dashed line denotes the ground truth path diversity of
(nstart, ngoal)

stepwise inference, the example path is represented as:goal : X4 X6 path end .68

Results on single-graph scenarios: Our first result is that a transformer trained on directed edges69

and a small fraction of node pairs from a fixed underlying DAG can generalize to all node pairs,70

including those held out during training, producing valid simple paths from start to goal nodes.71

Thus the model can ‘stitch’ or mix-and-match (sub)paths it has observed over training to produce72

a valid path across a pair of held-out connected nodes. The training dynamics of a typical network73

together with a description of failure modes is shown in SI Fig. 8. A single underlying graph:74

The stepwise inference gap Fig. 3 shows the accuracy of path /no-path classification for (a) a ran-75

dom DAG and (b) a hierarchical DAG. We trained two distinct models using two types of datasets:76

one with stepwise inference paths and one without. We find that the model trained on the dataset77

with stepwise inference (represented by the blue line) achieves higher classification accuracy than78

the model without stepwise inference (the pink line) in both cases. This phenomenon echoes find-79

ings from large-scale experiments where the inclusion of intermediate reasoning steps results in80

increased accuracy (Kojima et al., 2022). We refer to the difference in classification performance81

with and without stepwise inference as the ’stepwise inference gap’. We also observe that the step-82

wise inference gap is larger for hierarchical graph than for random graph.83

Stitching of paths We hypothesize that stepwise inference is useful when the training data has the84

following structure: (1) the underlying DAG is hierarchical, which means that there is an explicit85

feedforward ordering of nodes and to go from nodes in one layer to next one must pass through all86

intermediate layers and (2) the model must ’stitch’ together subsets of paths seen over pretraining in87

flexible ways to generalize. To test this, we trained the model using paths from hierarchical DAGs88

while varying the lengths of paths in the training data. Specifically, we created training data that89

contains start nodes from layer l and goal nodes from layer l′ and restricted l′ − l < ∆, where ∆90

denotes the length of the path. During evaluation, we choose node pairs such that l′ − l ≥ ∆.91

The diversity-accuracy tradeoff with higher sampling temperatures Fig. 3d illustrates the effect92
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Figure 4: Data Generating Process for Connected Sub-Graphs (Motifs): This figure illustrates
the step-by-step process of generating a training dataset by combining multiple subgraphs (motifs).
1) We start by making a set of random directed acyclic graphs (DAGs). 2) Next, we pick a subset of
these DAGs and connect them together using "ghost edges" to create a bigger graph. 3) From this
bigger graph, we randomly sample paths and turn them into a task format.

of sampling temperature on the accuracy and diversity of the generated paths. LLM inference at 093

sampling temperature is equivalent to taking the most likely token at each time step (the maximum94

likelihood estimate). In this setting, the model deterministically generates the same path for every95

provided pair of start and goal nodes: nstart and ngoal. However, in the underlying graph, there exists96

a diversity of paths from each nstart to ngoal.97

To capture this diversity, we fixed the start node nstart and the goal node ngoal, and prompted the98

model 3,000 times, sweeping through different sampling temperatures in Fig. 3d.99

Results on multi-graph scenarios100

The single graph setting let us explore zero-shot planning and stepwise reasoning, where the model101

relied purely on knowledge internalized over pretraining to do stepwise reasoning. To study how102

context can influence the path the model traverses, we introduce the concept of motifs and in-context103

exemplar paths.104

Data generating process for the multi-graph scenario To model few-exemplar based chain-of-105

thought prompting, we modify our single graph setup to include a set of subgraphs that we refer to106

as motifs, denoted by {Gi}ni=1 A motif is a DAG that is fixed across pretraining and inference. (i)107

Ghost edge: For a pair of connected motifs Gi 7→ Gj , an edge between a sink node of Gi and a108

source node of Gj , and (ii) A primitive sequence (Fig. 4) is sequence of nodes across 2 motifs Gi109

and Gj with a start node in Gi and goal node in Gj and this sequence contains exactly 1 ghost edge.110

Fig. 4.111

In chain-of-thought prompting (Wei et al., 2022), one or more examples of reasoning are provided112

before asking the next question, as illustrated in Figure 1(c). The LLM then generate a chain-of-113

thought which matches that of the exemplar. To model this, we chain a subset of k motifs Gc1 →114

Gc2 → ... → Gck together and provide exemplars Each exemplar e is a primitive sequence across115

each pair of consecutive motifs: e ∈ (Gci → Gci+1) which contains exactly 1 ghost edge. The116

construction of a primitive sequence is described in Fig. 4 and examples are shown in Fig. 5(b).117

Given a start node nstart ∈ Gc1 and a goal node ngoal ∈ GcK , the model can be prompted either118

directly (Fig. 5(a)) or provided with exemplars and then queried for a path from nstart to ngoal (Fig.119

5(b)). We find that the model can successfully follow the chain defined by the in-context exemplars.120
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goal:X644 X285X999X140X8X608X441X644 end

goal:X1018 X35X188X28X779X241X585X426X1018 end
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(b) In-context control via exemplar prompts

   Successful tracing of linked sub-graphs
goal:X101 X225X534X1003X76X678X880X234X590X608X441X896X696X74X780X669X980X28X779X241X585X383X815X852X893X101 end

model generated output 

model generated output 
prediction with context:

context:

direct prediction:

Figure 5: Example output sequences from the model highlighting the steerability of stepwise
inference. (a) Direction prediction: Given nstart ∈ G3 and ngoal ∈ G9, the model produces a path
from G3 → G9, placing a single ghost edge (X712, X929). (b) With in-context exemplars: primitive
sequences from G3 → G4, G4 → G2 and G2 → G9 in-context make the model steer its navigation
through the path stringing together these motifs in order: G3 → G4 → G2 → G9, placing a ghost
edge between every consecutive motif, for a total 3 ghost edges.

An example output produced by the model is in SI Fig.5, highlighting the path the model takes121

through the chain of motifs G3 → G4 → G2 → G9. We also find that the model generalizes to122

arbitrary orders of motifs strung out, including those that did not occur consecutively in the train set123

– in other words, in-context control is capable of compositional generalization (Li et al., 2023).124

How do the exemplars affect controllability of graph navigation?125

Next, we study how the structural content of the exemplars affects the navigation path chosen by126

the model. We hope to shed some light on and create hypotheses for the vast and varied findings127

about stepwise reasoning in LLMs at scale.128
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by the model follows the path described by the chain
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In the case of 2 conflicting chains in-context, the model
has a bias to pick the first chain.

Number of intermediate motifs In130

Fig.6(a), we varied the number of exem-131

plars provided to the model. This is equiv-132

alent to stringing together a longer chain of133

motifs to navigate over. We find that the134

model can generalize well to unseen or-135

ders of motif up to the maximum number136

chained together in the training data. This137

creates a hypothesis for chain-of-thought138

and related methods at scale: the model139

will fail to generalize to reasoning chains140

longer than those present in its training141

data.142

Bias towards the first exemplar in the143

case of conflict Multiple examples of a144

context provided in the prompt can in-145

crease the precision of our control over the146

model, but it can also lead to confusion. Here, we systematically and quantitatively study the behav-147

ior of the model when two contexts are provided but are in conflict. In Fig.6(b) we study a scenario148

where two chains of motifs are provided, starting from the same set of primary motifs and ending at149

the terminal motif. We find that the model has a strong bias toward choosing the first chain over the150

second.151
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A Appendix174

A.1 Setup and construction of graph and model175

Here we describe the properties of the DAGs we use, the training setup, model architecture and176

hyperparameters.177

We use 2 DAG structures, hierarchical and random (Fig. 7). Random DAGs are constructed by178

randomly generating an upper-triangular matrix where each entry has probability p of existing. Hi-179

erarchical DAGs are generated by predefining L sets of nodes and drawing an edge between a node180

nl in layer l and nl+1 in layer l + 1 with probability p. Lastly, we ensure that the graph is con-181

nected. These lead to different path diversity and path length distributions, which affect the efficacy182

of stepwise inference, as shown in our results.183

To create a feedforward hierarchical DAG we construct a set of L layers with N nodes each. For184

every node nl in layer l and nl+1 in layer l+1, we draw a directed edge (nl, nl+1) with probability185

p, which we refer to as edge density. Thus on average, between any two layers there are pN2 edges186

and each node in an intermediate layer has an out-degree and in-degree of pN . The number of187

paths from a particular node in layer l to layer l′ > l is exponential and given by (pN)l
′−l - this is188

quantified in the path length distribution shown in SI Fig 7. Lastly, we make sure that the graph is189

connected and there no disjoint disconnected components. The nodes from layer 1 are the source190

nodes: nodes {Xi} of DAG G with parents(Xi) = ∅ and the nodes from layer L are sink nodes:191

nodes {Xi} of DAG G with children(Xi) = ∅.192

To create a random DAG of N nodes and create a random upper triangular adjacency matrix AN×N193
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Figure 8: The evolution of failure mode probabilities over training: It can be seen that the model
first learns to produce correct edges (effectively bigram statistics) and then learns the global objective
of producing a path that ends at the cued goal node. Accuracy curves averaged over 3 trained models
with different random seed.

with bernoulli entries with edge density p, such that p(Aij = 1) = p. We also ensure that the graph194

is connected. This results in a bell-shaped path length distribution, SI Fig.7.195

A.2 Training dynamics in the single graph scenario196

Here we show the training dynamics of a single graph model.197

Failure modes of step-by-step inference Given underlying DAG G, during step-by-step infer-198

ence, the model produces a sequence of nodes from the start node nstart which has to terminate at the199

goal node ngoal, given by the sequence n0 = nstart → n1 → n2 → ... → nk → ... → nT . Here in200

our setup, there are two broad categories of failures possible (Saparov & He, 2023):201

1. Misstep: (nk, nk+1) /∈ G. An edge produced by the model does not exist in the DAG.202

2. Planning failure: nT ̸= ngoal. The model produces a path that does not terminate at the goal.203

We choose to highlight the two types of failures identified above: (1) the probability of taking a204

correct step (i.e. 1 − Pr(misstep)) and (2) the probability of ending at the cued target node (i.e.205

1− Pr(planning failure)). These are shown in Fig. 8206

A.3 Model architecture and loss function207

For training, we tokenize every node and we use next-token prediction with a cross entropy loss:208

L(xn, target n) = − log
( exp(βxn, target n)∑#tokens

t=0 exp(βxn,t)

)
= − log

(
softmax(βxn)target n︸ ︷︷ ︸

prob(target n)

)
(1)

Hyperparameter Value
learning rate 10−4

Batch size 64
Context length 32
Optimizer Adam
Momentum 0.9, 0.99
Activation function GeLU
Number of blocks 2
Embedding dimension 64

Table 1: Hyperparameters of the transformer

For model architecture, we use a GPT based decode-only transformer with a causal self-attention209

mask. Our implementation is based on the popular nanoGPT repository1.210

1available at https://github.com/karpathy/nanoGPT
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Figure 10: Advantage of Stepwise Inference in Graph Navigation Task.

A.4 A bias towards shorter paths211

Figure 9: Model outputs are biased to-
ward shorter paths. We compare the
average lengths of actual and model-
generated paths in a random graph, re-
vealing the trained model’s bias to gen-
erate shorter paths connecting a pair of
start and goal nodes in a random graph.

Fig. 9 examines the average path lengths in a random212

graph, comparing true paths to those generated by our213

trained model. Notably, the model consistently produces214

paths that, on average, are shorter than the actual paths215

in the random graph. This observation suggests that216

the model has a bias towards efficiency, which can lead217

to oversimplification of complex stepwise inference or218

omission of important intermediate steps.219

Fig. 4 For the training data construction in the multigraph220

setting.221

A.5 Additional222

experimental results for the single graph setting223

In Fig. 10, we swept the density of the graph from 0.08224

to 0.12 on a hierarchical graph. We observe a stepwise225

inference gap in all cases. The stepwise inference gap226

becomes smaller for larger densities.227

Fig. 11 presents a density plot comparing the average228

lengths of actual paths with those generated by the model229

in a random graph. This observation verifies the model230

tends to produce shorter paths between a given pair of231

start and goal nodes.232
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Figure 11: Model outputs are biased toward shorter paths.
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