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ABSTRACT

Uniform-state discrete diffusion models excel at few-step generation and guidance
due to their inherent ability to self-correct, making them more preferable than
autoregressive or masked diffusion models in these settings. However, their sam-
pling efficiency has been limited by the reliance on standard posterior samplers,
which plateau in quality as the steps increase. In this work, we introduce a novel
family of “Predictor—Corrector” (PC) samplers for discrete diffusion models that
generalize prior methods and apply to arbitrary noise processes. When paired
with uniform-state diffusion, our samplers significantly outperform ancestral sam-
pling on both language and vision tasks: achieving lower generative perplexity at
matched unigram entropy on OpenWebText and better FID/IS scores on CIFAR10.
Crucially, unlike conventional samplers, our PC methods continue to improve
generation quality with more sampling steps, narrowing the gap with masked dif-
fusion. Beyond sampling, we develop a fast and memory-efficient curriculum for
Duo™*’s (our method) Gaussian relaxation phase, which avoids materializing large
Gaussian-diffused one-hot vectors. This reduces training time by 25% compared to
Duo while maintaining similar validation perplexity on OpenWebText and LM 1B
and strong downstream performance.
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Figure 1: Performance on language modeling and image modeling. (Left): Generative perplexity
of Duo™™ (ours) as a function of the number of sampling steps (NFEs). Duo ™" generalizes ReMDM
(Wang et al., 2025) and the performance consistently improve with the number of sampling steps. We
annotate each curve with the average unigram entropy per generated sequence as a proxy for diversity.
(Right): On CIFAR-10, Duo™ ™ achieves lower FID than MDLM (with ReMDM). Moreover, Duo™ ™
obtains a better FID in just 128 steps than Duo with ancestral sampling in 4096 steps.

1 INTRODUCTION

Diffusion models are powerful generative algorithms that have achieved remarkable success in
modeling continuous data domains, including images (Ho et al., 2020a; Rombach et al., 2022),
audio (Kong et al., 2021; Liu et al., 2023b; Huang et al., 2023), and videos (Ho et al., 2022; Esser
et al., 2023; Blattmann et al., 2023; Polyak et al., 2025). Recent advances have extended diffusion
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models to categorical data, demonstrating their potential for language modeling (Austin et al., 2023;
Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025; Sahoo et al., 2025a;b), graphs (Liu
et al., 2023a), and molecules (Lee et al., 2025). Unlike autoregressive models that generate tokens
sequentially from left to right, diffusion language models can decode tokens in parallel and in any
order while leveraging bidirectional contextual information. This capability enables the design
of language models that can be significantly faster than their autoregressive counterparts while
maintaining strong downstream performance (Song et al., 2025; Labs et al., 2025).

Discrete diffusion models primarily employ one of two noise distributions: a uniform prior or a
masked prior that concentrates all probability mass on a special [MASK] token. Uniform-state diffusion
models (USDMs) offer a major advantage through their ability to self-correct mistakes, as they allow
tokens to be revised multiple times during generation. In contrast, standard masked diffusion models
(MDMs) update each token exactly once, preventing error correction during generation. Due to
this self-correction capability, USDMs significantly outperform MDMs in generation in a few steps,
particularly after distillation (Sahoo et al., 2025a). Furthermore, in applications that require guidance
to steer generation towards specific targets by optimizing reward functions, USDMs prove to be much
more suitable than autoregressive or MDM approaches (Schiff et al., 2025). However, USDMs face
notable limitations: Their generation quality has not yet matched that of MDMs in high-sampling-step
regimes, and their modeling capacity, as measured by likelihood, remains inferior to that of MDMs.
Although Sahoo et al. (2025a) proposed a curriculum learning strategy (Bengio et al., 2009) that
narrows the likelihood gap, this curriculum approach is computationally expensive.

To address MDMs’ inability to remask tokens, Wang et al. (2025) introduced ReMDM-“Predictor-
Corrector” (PC) samplers that generalize and outperform earlier PC methods (Campbell et al., 2022;
Gat et al., 2024). These samplers substantially improve the inference time scaling behavior of MDMs.
However, PC methods for uniform-state diffusion remain underexplored. Campbell et al. (2022)
proposed PC methods for samplers that take advantage of the rate change matrices of the continuous-
time Markov chain (CTMC) formulation of discrete diffusion processes, but such samplers are known
to perform worse than ancestral samplers Lou et al. (2024); Schiff et al. (2025). Furthermore, while
the curriculum learning strategy from Sahoo et al. (2025a) closes the likelihood gap between USDM
and MDM, each curriculum step is computationally more expensive than standard training, resulting
in a slower overall training.

We propose Duo ™ to address these challenges, which expands the design space of USDMs using
non-Markovian superposition posteriors (or as we refer in this paper, U-posteriors). These posteriors
align with the intermediate marginals of discrete diffusion processes and give rise to U-samplers with
predictor—corrector capabilities that are crucial for improving sample quality. In addition, Duo™™
introduces an efficient curriculum learning strategy that advances the approach of Sahoo et al. (2025a)
by accelerating training and reducing memory usage.

In summary, our contributions are threefold: (1) we propose a family of non-Markovian posteriors (/-
posteriors) for discrete diffusion with arbitrary priors that share the same marginals as the Markovian
discrete diffusion process Sec. 3. (2) We demonstrate that the induced W-samplers improve text and
image generation while scaling better than standard ancestral samplers in high NFE regimes, closing
the performance gap with respect to MDMs coupled with remasking samplers in high NFE regimes
for text generation Sec. 5.1 and surpassing them on image generation tasks Sec. 4. (3) We reformulate
the curriculum learning strategy proposed in Sahoo et al. (2025a), achieving a 2x speedup while
reducing peak memory usage by 33% and end-to-end training time by 25%, while maintaining similar
perplexity (Figure 1, right, Table 5) and downstream task accuracy (Table 1).

2 BACKGROUND

Notation LetV := {x € {0,1}X: Zfil x; = 1} denote the set of one-hot encodings of discrete

random variables over K categories. Let x''“ € VI and [x‘]/_, € VI denote a sequence of L
discrete variables in ) and x* denote the entry /" in x'*"". Let A denote the K simplex. For v € A,
let Cat(-; v) denote a categorical distribution such that P(x; = 1) = v,, for x ~ Cat(+; v). Let (a, b)
and a ® b denote the dot and Hadamard products between two respectively. Let 1 = {1}¥ denote
the all-ones vector.
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2.1 DISCRETE DIFFUSION MODELS

Consider the clean data x'** drawn from the data distribution gga. Discrete diffusion models (Sohl-
Dickstein et al., 2015; Austin et al., 2023) define a sequence of increasingly noisy distributions
(@t)te0,1)» interpolating from gga to a prior distribution Cat(.; 7v)" using Markovian transitions
defined independently across input dimensions (Campbell et al., 2022; Sahoo et al., 2024; Shi et al.,
2025; Ou et al., 2025; Schiff et al., 2025; Sahoo et al., 2025a). Let z}'L ~ Hle q:(.|x") denote the
intermediate latents at time step ¢. This work focuses on interpolating noise processes (Sahoo et al.,
2024), whose conditional marginal distribution takes the form:

z, ~ q,(.|x") = Cat(.;ax" + (1 — ay)7), (D

where oy € [0, 1] is monotonically decreasing with ¢, and is known as the noise schedule. (1) defines
the forward process, which progressively corrupts the data. The goal is to learn a generative process
Do, parameterized by a neural network with parameters 6, that reverses this forward process to map
from Cat(.; 7w) """ back to gga. The model is typically trained by minimizing the “Negative Evidence
Lower Bound” (NELBO). The choice of prior 7 gives rise to two popular variants: Masked Diffusion
Models (MDMs) and Uniform-state Diffusion Models (USDMs), which we discuss in the following.

2.1.1 MASKED DIFFUSION PROCESSES

MDMs (Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025) use a masked prior, where 7 = m € V
is the one-hot representation of a special [MASK] token (Devlin et al., 2019). During the forward
process (1), tokens either remain unchanged or transition to the masked state m, after which they
stay masked. This behavior carries over to the reverse process. The posterior of the reverse process

gyf™ for 0 < s <t < 1 can be derived using Bayes’ Rule, and that would be:

, Cat('a“ a’x —|—1 O‘Sz() ifz{ = m,
MDM( |Zi7X[)—{ t t (2)

q
o Cat(.;x") otherwise.

S = TP (lze, x" = x(z;", 1)) where x : VE x

[0,1] — AL is the denoising model. A key limitation is that once unmasked, tokens cannot
be remasked (2). This creates compounding errors during inference, as the denoising model xy
imperfectly models the clean data.

The approximate reverse posterior is p’

Predictor Corrector Methods Wang et al. (2025) propose ReMDM samplers that maintain the
same marginals as (2) during the reverse generation process, while allowing remasking and generaliz-
ing all previous predictor-corrector methods (Campbell et al., 2022; Gat et al., 2024).

2.1.2 UNIFORM-STATE DIFFUSION PROCESSES

Alternatively, discrete diffusion models can use a uniform prior # = 1/K (Schiff et al., 2025;
Sahoo et al., 2025a). This choice allows tokens to change values multiple times throughout the
generative process, in contrast to masked diffusion. This property allows USDM:s to excel in few-step
generation (Sahoo et al., 2025a) and guidance applications (Schiff et al., 2025).

USDMs admit the following posterior distribution qUSDM (for brevity, we simply write ¢, for

USDM
€|t ):

0] Zhx) = Cat( Kouzy ©x" + (0. — o)z + (0 —at)x‘+(1—%s)(1‘“-*)1/K>. 3)

Kai(zy,x') +1 — ay

This posterior induces the following NELBO (Sahoo et al., 2025a):

NELBO (q,pg;xu“) = —Etw“[O,lL(11,(z;|x’;o¢t) Zf(zi,xé(zg,t),at;x[), 4)
Le(L]
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where
L o [k K (%))s
f(zluxg(zé7t)7at;xé) == -7 =0\ (Ct]lz’:x/ + ]lz/ x! log —
ol Foor |5~ T~ (oo R ) o
Qg ()_(g)i 1
—K——1 i, — (K =D o — —1 o0 )1 . 5
1_ o 0g ()_(g)m Z, #X ( )Ct Z; =X Ct Z, #X 0g Ct ( )

Here, X' = Kayx' + (1 — ay)1, X = Kayxp(zs,t) + (1 — o)1, o) denotes the time derivative of
Qy, 1T = arg max;¢(x (zy), is the nonzero entry of z;, (; = ﬁ‘f‘_at, and m denotes the index in
x corresponding to 1, that is,x x,,, = 1.

The Diffusion Duality Sahoo et al. (2025a) show that USDMs emerge from an underlying Gaussian
diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020b; Song et al., 2021; Kingma et al.,
2023) defined on the one-hot representation x° € V. The Gaussian diffusion introduces a sequence
of noisy latents w; € R¥ ~ ¢, (.|x") with marginal ¢, (.|x; ;) = N'(;; 0. x", (1 — 0,2)Ix), where
(¢4 )te[0,1] is a monotonically decreasing noise schedule. Let arg max : RX — V map a continuous
vector w € R¥ to the one-hot vector corresponding to the index of its largest entry in w, this is,
arg max(w) = arg max,cyz ' w. When applied to Gaussian latents w;, arg max transforms them
to the discrete latents z; whose marginals take the form: z, ~ ¢;(.|[x";; := T (1)), where the
function 7 : [0, 1] — [0, 1] is the Diffusion Transformation operator:

_ K [/ _ K-1()dy — L
T =g | oo~ =) 2 ] ©
where ¢(z) = exp(—2?)/v2r and ®(z) = [°_ 4(t)dt are the standard Normal PDF

and CDF, respectively. More formally, this relationship is expressed as q;(z¢|x; 7 (¢)) =
[arg max|4 g, (wy|x; &;) where the x operator denotes the pushforward of the K -dimensional Gaus-
sian density under the arg max map, yielding a categorical distribution with K classes.

Curriculum Learning Sahoo et al. (20252) demonstrate that training USDMs with the following

loss where the denoising transformer x4 : A U VY x [0,1] — A’ is modified to handle both
continuous latents and discrete latents lowers the training variance and speeds up convergence:

NELBO(q, po; x ")

= B tnta[8,4], Z f(zf := arg max(w}), xg([softmax(w; /7)]/_1,t), == T( );X%). 7
te(L)]

Notice that the discrete inputs (arg max(w?)) are approximated with continuous tempered softmax
softmax(w/ /7) where 7 > 0. During the early stages of training, we optimize the objective in (7),
while in the later stages the model is trained directly with the true NELBO (4). It is important to
understand how the denoising model simultaneously handles both continuous- and discrete-valued
latents. For a sequence of latents [y‘|” , € VE U AL, the token embeddings in the first layer
are computed by matrix multiplication: (yf)ze[L]V with V. € REX™ denoting the vocabulary
embedding matrix and m the embedding dimension. For discrete inputs (y*),c (z] € V, this operation
is reduced to standard embedding lookups. In contrast, continuous inputs (y*) ter] € A act as
“soft lookups”, producing convex combinations of the vocabulary embeddings. However, explicitly
materializing one-hot vectors w; ~ during training is memory intensive and significantly slows down
the computation.

2.2 DIFFUSION GUIDANCE

For continuous data, diffusion models have achieved state-of-the-art controllable generation through
both classifier-based (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021) and classifier-free
guidance (Nichol & Dhariwal, 2021; Ho & Salimans, 2022). These approaches have since been
extended to discrete data (Gruver et al., 2023). Lety € {1,..., M} denote one of the M possible
classes. For Classifier-free-guidance, the following reverser posterior is used that modulates the
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strength of the guidance term via the temperature parameter vy (Nisonoff et al., 2024; Schiff et al.,
2025):

logpy”(zy " |y, 2y ") = ylogpe(zy " | y,zy ") + (1 — ) logpe(zy " | 2, "), (8)

where py is the approximate reverse posterior introduced in Sec. 2.1.

3 THE U-POSTERIORS

Multiple joint distributions can give rise to the same marginals for the discrete diffusion process
as defined in (1). In this work, we introduce a family of posteriors, denoted W, and that share the
same marginals as in (1); see Suppl. A.2 for details. These alternative generative processes are
non-Markovian and apply both to the Masked diffusion processes and to the Uniform-state diffusion
processes. Specifically, we define the posteriors for the generative process as:

U (x, 20) = Reqspe(|zg, x") + (1 — k) ([x"); VE € [L] 9)

where r; € [0,1] and ¥;(.|x") = Cat(.|w), with # = m for MDMs and = = 1/K for USDMs.
(9) is thus a linear combination of the forward process (1) and the reverse posteriors (2, 3) of
standard discrete diffusion models. We therefore refer to these as superposition posteriors, or simply
W-posteriors.

WU-Forward Processes Consider the interpolating diffusion process in (1) discretized into T’
steps. Let zt'(l’) denote the latent variables at times ¢(i) = ¢/T for 0 < ¢ < T. The joint dis-

tribution factorizes independently across all the tokens as: W(zy 1 |x" ") = [], U(zf,,|x") where
U(z, [x") = Uy (24 x) [T, Ui(2g ) \zé(i), x"). In what follows, we use s, as shorthand for
s(i), (i), respectively. The forward process can be derived from Bayes’ rule: ¥(z,|z},x") =
U (z, |z, x" )V (z;|x")/¥(z,|x"). Unlike the Markovian interpolating process in (1), this forward
process is no longer Markovian, since each z, may depend on both z’ and x’. These marginals
therefore describe a non-Markovian forward generative process.

W-Reverse Processes In Suppl. A.1, we show that the approximate reverse posterior takes the form:

(001 (12 )] = medeps(Lzg, xp (24, 1)) + (1= w0) [sdops (zg. Xg (2 ", 1)) + (1 — ag)me] . (10)
where x4(z; “,t) denotes the denoising model. We dub (10) as ¥-sampler. For (k¢ = 1);¢(0,1],
we recover the standard ancestral sampler defined in (2) for MDMs and (3) for USDMs. Notice
that for x; < 1, ¥,; corresponds to a noisier version of the ancestral sampler marginal g ;. This
is analogous to Predictor-Corrector methods in Gaussian diffusion (Song et al., 2021), where the
corrector introduces additional Gaussian noise. In our case, g plays the role of the corrector, while g,/
acts as the predictor. The W-posteriors also admit a principled NELBO formulation (see Suppl. A.3),
though this is not directly relevant for our purposes.

Corollary For m = m, different choices of the functional form of «, recover all known predictor-
corrector formulations in the literature (Campbell et al., 2022; Gat et al., 2024; Wang et al., 2025).
Thus, the ¥ framework subsumes these samplers as special cases and provides a unified perspective
on predictor-corrector methods for discrete diffusion. The proof is provided in Suppl. A 4.

4 SCALABLE CURRICULUM FOR FASTER TRAINING

Curriculum learning, as introduced in Sahoo et al. (2025a), improves the likelihood of USDM by
reducing the variance of the gradient and accelerating convergence. A central operation involves
computing a weighted average over all K embedding vectors, where K is the vocabulary size
(Sec. 2.1.2). However, explicitly materializing the weights is both memory- and compute-intensive,
especially since modern vocabularies can reach hundreds of thousands of tokens. This makes naive
implementation a significant bottleneck.

We propose an efficient alternative that avoids constructing the full weight vector. Our key insight is
that only a small number of weights are appreciably different from zero, so the weighted average can
be well approximated using a subset of embedding vectors £ < K. In the following, we describe
how this approximation can be performed efficiently.
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Table 1: Accuracy on multiple-choice question answering datasets. Abbreviations: Arc-e (ARC-
Easy), Arc-c (ARC-Challenge), HSwag (HellaSwag), WinoG (Winogrande), PIQA (Physical Intelli-
gence Question Answering), OQA (OpenBookQA). fResults from Deschenaux et al. (2025). Duo™™
(k = 2) achieves slightly higher accuracy than Duo on 4 out of 6 tasks. Overall, Duo™ " and Duo
perform similarly. The highest accuracy among USDMs is bolded. The absolute best per column is
underlined.

Arc-e Arc-c  HSwag WinoG PIQA MathQA OQA

AR Transformer 44.95 23.04  30.55 52.80 63.71 22.24 19.00
MDLM' 3426 24.66 31.54 5193  57.89 20.70 28.60

Duo 28.11 2543 2646 4720 51.14 2000  23.40
Duo™ (k=2) 2732 2611 2626 49.64 5212 2040 27.80
Duott (k=3) 2828 2500 2589 4736 50.65 21.01  23.00
Duo™™ (k=5) 28.03 2577 2690 5012 51.25 20.20  25.40

Problem Setup Let V; denote the i" row in the vocabulary embedding matrix V. Define

softmax(wy /7); = % with w; = exp((wy);/7) and W = ZZK w;. Recall that w, = ,x + 7€
is a Gaussian latent. Thus, softmax(w;/7) 'V = 3537, wiVi. Let o denote the index s.t.
X, = 1 which we dub the “true token”. The remaining indices form Z(x) := [K] — {o}. Let

Pk) = {(a1,a2,...,a;) : a; € Z(y),a; # a; Vi # j} denote a set of tuples of length k con-
sisting of indices that correspond to 0 in x . We seek to identify a subset Z C [K] : |Z]| = k s.t

1 ~ 1 V.
W Zie[K] wiVi % 35 3 ez wi Vi

The challenge is to select the k largest entries of w; without explicitly constructing all K Gaussian
random variables. Notice that (w}; = 7 /€¢) e z(x) and (W})—o = (11 + 7€, where €1 ~ N(0,1).
Instead of sampling all X' — 1 Gaussian variables for Z(x), we leverage the distribution of order
statistics. Let 11,5, denote the top-% values of (¢;);c z(x), Where W1 = max({¢; : i € Z(x)}) and
W; = max({¢; : i € Z(x)} — {Wh,...,W;_1}) Vi € {2,...,k}. k largest Gaussians can be
drawn efficiently via inverse-transform sampling (see Suppl. B.1) Once we have the top-k Gaussian
latents, two cases arise:

Case 1: If o, + 0.6, < min ({0, W; : i € [k]}), then the true token o is not in the top-k. In this
case, Z C Z(x) and that Z ~ P(k). The calculation of the corresponding weights is also fairly

straightforward, where (wz[;) = exp( XV ))ic(k and Z[i] denote the entry i in Z.

Case 2: If &, + 7€, > min ({7, W, : i € [k]}), then top-k includes the true token: Z = Z U (o)
where Z ~ P(k — 1). The corresponding weights are: (wz;) = exp(=21)) and w, =
exp (L2

i€lk—1]

Finally, we must approximate W = Zfil w;. Direct computation requires all X Gaussian samples,
which is infeasible. Instead, we show in Suppl. B.6 that (with ¢ = min(wy.;)):

K 2 )
W= w~Y w+ (K -k [2+log<1><c >10gfb<c>} (11)
=1

i€l

5 EXPERIMENTS

We evaluate our approach on language modeling (Sec. 5.1.1) and image generation (Sec. 5.1.2),
showing that U-samplers substantially improve text and image quality, making USDMs as performant
as MDMs. In Sec. 5.2, we further demonstrate that Duo™, combined with the efficient curriculum
strategy (Sec. 4), achieves performance comparable to Duo (Sahoo et al., 2025a)—the current
state-of-the-art USDM—while reducing memory usage by 33% and training 25% faster.

5.1 W-SAMPLERS

We evaluate the W-samplers in the context of both language modeling and image modeling to attest
its generality across different modalities.



Under review as a conference paper at ICLR 2026

5.1.1 LANGUAGE MODELING

Our experiments indicate that (1) U-samplers substantially improve generative perplexity for
USDMs, with gains becoming especially pronounced once the NFEs exceed the sequence length,
thereby closing the gap with MDMs; and (2) unlike ancestral sampling, which quickly plateaus
with increasing NFEs, U-samplers continue to yield improvements in sample quality.

Experimental Settings For the masked diffusion baseline, we use pre-trained MDLM checkpoints
(Sahoo et al., 2024) trained for 1M steps with a batch size of 512 on OpenWebText (OWT; Gokaslan
& Cohen (2019) and sequence length L = 1024. We train our Duo™™ using the same recipe for a
comparable number of steps. We distill the MDLM and Duo checkpoint using SDTT (Deschenaux
& Gulcehre, 2025) and DCD (Sahoo et al., 2025a) for 5 rounds of 10k steps using their respective
implementation and default hyperparameters. Our primary baselines include MDLM and Duo™ ™
with ancestral sampling, as well as MDLM with the ReMDM sampler (Wang et al., 2025). For
additional training details, we refer the reader to the original work. We evaluate sample quality using
Generative Perplexity (Gen. PPL, |) measured with GPT-2 Large and sample diversity using unigram
entropy, following standard practice (Sahoo et al., 2024; 2025a). Sampling is performed in 64-bit
precision (Zheng et al., 2025). See Suppl. C.1 for further details.

Results Figure | (left) shows the Gen. PPL and the entropy as a function of the NFE, for the
ancestral and W-samplers. Duo™ " with W-samplers significantly outperforms MDLM with ReMDM
and ancestral samplers across an entire range of NFEs. Especially as the number of NFEs increases
beyond the sequence length, the standard ancestral sampling plateaus while W-samplers continuously
improves the quality of the sampler.

How to choose x; ? Similarly to ReMDM, U-samplers comes 1.00{ ==,  ——————=---
with a hyperparameter (x; (Eq. 9)) that requires tuning for strong
performance. We set ¢ and x4 using two related heuristics, visualized
in Figure 2. With the first heuristic, ¢ is linearly decreasing. With ~ 0.50
the second one, inspired by ReMDM and referred to as “loop”.
When ¢ € [0, toff] U [ton, 1], ¢ is linearly decreasing, while it is kept o
constant when ¢ € [tof, ton]. For ReMDM, wheg t is kept constant, 0.00 55t0 580 750r 500

ay = 09, and ton = 0.55 and toff = 0.05. With both heurlstlcs, Num. sampling steps

we set Ky = ¢ € [0,1) when t € [tofr, ton] C [0, 1], and use k; = 1

otherwise. We achieve the best results when the W-samplers are Figure 2: Evolution of ¢
used at lower noise levels only. As the width of the interval ¢,, — o and the associated x; under
increases, it becomes necessary to increase r; closer to 1 to maintain the loop and linear ¢-decrease
the quality of the sample. For example, with x; = 0.02, strong scheduling strategies.

results are obtained only when ¢,, — ¢ is narrow and at low noise

levels (e.g. ton = 0.15, tof = 0.1). In contrast, using x; = 0.02 at higher noise levels (e.g.,
ton = 0.45, torr = 0.4) leads to noticeable sample degradation. We obtain the best results for Duo™™
with ¢ linearly decreasing, that is, without is the looping strategy. Comprehensive numerical results
for different choices of «, are provided in Suppl. C.1.

— Lineart
Loop t

0.25

5.1.2 IMAGE MODELING

Our experiments indicate that (1) Duo™ " with U-samplers produce a significantly higher quality
image than MDLM with ReMDM sampler, and (2) with a well-tuned x; and using 128 sampling
steps, W-samplers reach a lower FID than the ancestral sampler in 4096, representing a 32 x
acceleration.

Experimental Setup Our experimental setup is similar to Austin et al. (2023). We train a U-
Net backbone with 35M parameters on the CIFAR-10 dataset, on raw pixels for 1.5M steps,
using a batch size of 128, a learning rate of 2 x 1074, a dropout rate of 0.1, and random hor-
izontal flips. The U-net is class conditional and we train with a class dropout probability of
0.1 to allow discrete classifier-free guidance (CFG; Ho & Salimans (2022); Schiff et al. (2025)).
See Suppl. C.1 for additional experimental details. We report Fréchet Inception Distance (FID;
Heusel et al. (2018)) and the Inception Score (IS; Salimans et al. (2016)) between the training
set and 50K generated samples and use a guidance strength v = 1 as used in (Schiff et al.,
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2025) and a temperature of 0.8. Recall that selecting k; = 1 — 24—, where s < t recov-

ers ReMDM, where o, is the reMDM hyperparameter that controls the amount of remasking.

Results Figure | (right) shows that W-samplers substan- 10
tially improves both FID and IS for Duo™™ helping it
surpass MDLM with the ReMDM sampler. Interestingly,
FID and IS do not improve monotonically as the number 8

of sampling steps increases. In fact, the best performance , , D e s |
is achieved in 512 steps. Impressively, ¥-samplers at-

tains a lower FID in just 128 steps than ancestral sampling 6 —

achieves in 4096 steps. This represents a 32x reduction in 5 o Duo** +W-samplers
sampling steps for similar quality. We found that the this [+ Moursrafom
trend also holds for the inception score. Y5 128 256 512 1024 2048 4096

NFE

) . Figure 3: Duo™™ significantly outper-
How to pick x;? The detailed experimental results are ¢\ Duo, MDLM and ReMDM in In-
presented in Suppl. C.1. Consistent with our observations
on OWT, we find that ¥-samplers are most effective when
applied at lower noise levels and with x4 close to 1. The
best FID is achieved with k; = 0.95, t,, = 0.6, and ¢, = 0.1 using NFEs=512 with a linearly
decreasing ¢. For both MDLM+ReMDM and Duo+W-samplers, the best FID is found with lin-
early decreasing ¢, to, = 0.6,to = 0.1 and k; € {0.95,0.98}. See Table 6 and Table 7 for all
hyperparameter ablations.

ception Score.

5.2 FAST CURRICULUM

Our experiments show that with the efficient curriculum learning strategy in Sec. 4, Duo™ ™ trains
25% faster and matches Duo and on standard likelihood benchmarks and downstream tasks.

Experimental settings We train Duo™ ™ with the scalable curriculum (Sec. 4) on OWT and LMIB
(Chelba et al., 2014). We train all models for 1M steps, using a batch size of 512. For LM 1B, we
use the bert-base-uncased tokenizer with a context length of 128, padding shorter sequences.
This setup follows previous work (Sahoo et al., 2024; Lou et al., 2024; He et al., 2022). For OWT, we
use the GPT-2 tokenizer (Radford et al., 2019), and reserve the last 100k documents for validation,
following (Sahoo et al., 2025a; 2024). We follow Lou et al. (2024) and use a modified diffusion
transformer (DiT) (Peebles & Xie, 2023) with rotary positional encoding (Su et al., 2023). We
evaluate the impact of £ = {2, 3,5} in the efficient curriculum. All models are trained on 16 H100
GPUs with bfloat16 precision. Training uses the loss in (7), with 7 = 0.001 for the first S00K steps
and (3,~) = (0.03,0.15) (Sahoo et al., 2025a).

Likelihood results Table 2 shows that on both LM 1B and OWT, our efficient curriculum Duo™+
matches the performance of Duo with its expensive curriculum. The lowest validation perplexity
is achieved with £ = 2, although k = 2,5 performs similarly. We also evaluate the Zero-Shot
perplexity in OWT following Sahoo et al. (20252; 2024) and find that Duo™ ™ achieves a performance
comparable to Duo. That is, we evaluate the validation splits of Penn Treebank (Marcus et al., 1993),
WikiText (Merity et al., 2016), LM1B (Chelba et al., 2014), LAMBADA (Paperno et al., 2016),
AG News (Zhang et al., 2016) and scientific articles from ArXiv and PubMed (Cohan et al., 2018).
Table 5 shows that Duo™ " reaches a zero-shot probability similar to that of Duo while requiring 25%
less GPU-hours.

Downstream Tasks In Table |, we compare the multiple-choice accuracy of Duo, Duott, MDLM
(Sahoo et al., 2024), and an autoregressive transformer using the lm-eval-harness suite (Gao
etal., 2024). Although 1m-eval-harness was originally designed for autoregressive models, it
was adapted for diffusion models by recent work (Deschenaux & Gulcehre, 2024; Nie et al., 2025b;a;
Shi et al., 2025) (details in Suppl. C.3). We find that Duo™ " achieves an accuracy similar to that of
Duo.
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Throughput and peak memory usage Table 4 reports throughput and peak memory usage for
Duo and Duo™*. Compared to Duo, Duo™*™ reduces peak memory usage by about 33% and doubles
the speed of the Curriculum Learning phase. When applying Curriculum Learning for half of the
training steps, Duo™ " trains 25% faster than Duo on the 138M-parameter scale. In particular, peak
memory and throughput remain stable across our sparse curriculum for k € {2, 3, 5}.

6 RELATED WORK Table 2: Test perplexity (PPL) on LM1B and OWT. Lower
is better. TResults from Sahoo et al. (2025a). Best Uniform-
state diffusion numbers are bolded. Duo and Duo™ T achieve

Discrete diffusion models Discrete  comparable performance across both datasets while requiring

diffusion (Sohl-Dickstein et al.,, 2015;  259% fewer GPU-hours, demonstrating the effectiveness of

Austin et al., 2023; Campbcll et al., our memory_efﬁcient curriculum.

2022; Lou et al., 2024; Sahoo et al.,

2024; Shi et al., 2025; Schiff et al.,

2025; Ou et al., 2025; Sahoo et al., LMIB  OWT

2025a) and discrete flow matching  Autoregressive

(Campbell et al., 2024; Gat et al., Transformer! 22.3 17.5

2024) have recently gained increas- . asked Diffusion

ing attention due to advances in their —qpnny Apcorbt (Louetal, 2004) 327 241
foundations and more efficient imple- ’ P

mentations. Most discrete diffusion MDLM' (Sahoo et al., 2024) 27.0 23.2
and flow matching methods use a uni-  Uniform-state Diffusion

form or masked noise distribution, al- SEDD Uniform! (Louetal,2024) 403  29.7
though Shaul et al. (2024); von Riitte UDLMT (Schiff et al., 2025) 313 274
et al. (2025); Holderrieth et al. (2025) Duo! (Sahoo et al., 20252) 29.9 25.2
have explored more general processes. Duo™™ (Ours), k = 2 30.0 25.2
In this work, we present a general Duot™ (Ours), k = 3 301 253
predictor-corrector algorithm for dis- Duot* (Ours), k = 5 302 254

crete diffusion on arbitrary spaces.

Predictor-Corrector samplers Previous work showed that remasking can improve performance
by allowing the model to correct sampling errors. ReMDM (Wang et al., 2025) generalizes previous
predictor-corrector methods (Campbell et al., 2022; Gat et al., 2024) in the masked setting. Our
approach further generalizes ReMDM to support arbitrary diffusion processes. Unlike Lezama et al.
(2023); Zhao et al. (2025); Liu et al. (2025), who train an additional corrector module, our method
does not introduce additional learned components.

Other discrete diffusion samplers Park et al. (2024) adapts the sampling step size to the noise
level to outperform samplers that use a fixed step size. Although we use a uniform step size, our
sampler is compatible with any step-size schedule. Ren et al. (2025) studies high-order sampling
algorithms, whereas we rely on first-order information only. However, the posterior in (9) could be
estimated using high-order samplers. Thus, ¥-samplers are complementary to these lines of work.

7 CONCLUSION

We introduced a unified and practical framework for predictor-corrector sampling in discrete diffusion
language models through W-posteriors. By linearly superposing the forward and reverse diffusion
processes (9), the U-posteriors preserve the marginals of standard diffusion models. Importantly, the
W-posteriors, and associated W-samplers subsumes prior masked-diffusion PC samplers Campbell
et al. (2022); Gat et al. (2024); Wang et al. (2025) as special cases, and naturally extend to discrete
diffusion models with uniform priors.Empirically, Duo™ " with W-samplers matches the performance
of MDMs on natural language generation and achieves stronger FID/IS scores on CIFAR-10. More-
over, they exhibit superior scaling: performance continues to improve with NFEs, unlike ancestral
samplers, which plateau. Finally, we propose a scalable training curriculum, inspired by Sahoo et al.
(2025a), that reduces the peak memory usage by 33% and shortens the training time by 25%.
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A U-POSTERIORS

A.1 APPROXIMATE REVERSE MARGINALS

We parameterize the (generative) W-reverse marginals to have a similar form as the true posterior (9).
Therefore, the generative reverse marginals also factorizes over the sequence length. Because x'*”
is not available during sampling, there are two terms in (9) that are intractable. First, we choose to
replace the posterior qs|t(.|zt, ) by g (- |zy,x" = x),). Additionally, as we cannot sample from
s(.|x") without x*, we replace x* by qoj¢(-|2¢, x' = x|)), V¢ € [L]. Replacing these two intractable
terms yield our generative reverse marginals:

\Ilz‘t(.|zt) = K Qs (|26, X = Xo(2¢,1)) + (1 — K¢) [asqmt(.|zt,x =xp(2z¢, 1)) + (1 — as)ﬂ .
(12)

Note that for the masked posterior (2), qo¢(.|z¢, X = Xo(2¢, 1)) = Xg(2¢, 1).

A.2 PROOF THAT THE W-POSTERIORS HAVE THE CORRECT MARGINALS

Let W, ;(.|x",z/) denote the W-posteriors defined in (9). Let s denotes s(k) = ¢(k — 1) and ¢
denotes t(k). To prove that the U-posteriors have the correct marginals, we proceed by (downwards)
induction, similar to Song et al. (2022). First, note that ¥ (z’ |x") can be written as a marginalization
over z,, for s < t:

) =D Wz X)L (22, %) (13)

Base Case Let Uy (z!|x") denote the marginal at time ¢t = 1. By definition in (9), ¥y (2! |x") =
Cat(.|7). Therefore, the W-posteriors have the correct marginal for ¢ = 1.

Induction hypothesis Suppose that the U-posteriors have the correct marginal for a certain t < 1,
that is, Uy (.[x") = ¢;(.]x").

Inductive step Based on the induction hypothesis, we now show that ¥,(.|x") = ¢.(.|x"), for
s(k) = t(k — 1). Indeed

) 1) ) ~
S & Zwazﬂx‘)wsu(zﬂz;,x‘)
(2
Z%‘ Z/|X s|t(

(€] ~0 )~ )0

= th(z;IX‘) [easie (2l 1x", 27) + (1 — kp)as (20 |x )]

(4) .

= ki (Zt(zﬂxé)qs\t( |X z ) (1 = ke)gs(z |X Z(Jf Z,|X

P2

x')

t

(5) , ,
= reds(2[x) + (1= k) s (2]x") = g4 (20 [x").

Specifically, (1) hold by (l 3), (2) by the induction hypothesis, (3) by definition of the ¥-posteriors,
(4) by d1str1but1ng q:(z; |x ), (5) by definition of marginal probability (first term), and by observing
that 3 ;. g (z!|x") = 1 since ¢; is normalized. This concludes the inductive step, and shows that the
v- posterlors have the correct marginal.
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A.3 NEGATIVE EVIDENCE LOWER BOUND

Let z, denote areverse trajectory with time indices {O7 T T, ..., 1} for token ¢. The joint distribu-

tion of (x ,z}.,) under the generative model factorizes as

T
P'(x',20.0) = p(x" | 7)1 (2 H\I’s\f |z/ ) (14)
=1
where each pair (s(4), ¢(:)) denotes one reverse transition with s(:) < ¢(¢). The marginal likelihood
is
=D r(x'z0). (15)
z,

Introducing the variational distribution W(zf, | x) = W1(z} | x")[[,Z, Yau(2! ) | 2/, %),
Jensen’s inequality results in:

—logp”(x') < By ey [ —logp(x" | 2)] + KL(Wy(- | x)[|¥y) (16)
T

Y Bag ey | Do (Wael 12l x) |90, 12l) | am
1=1

This expression is similar to the standard diffusion NELBO, with a reconstruction term, a prior
term at t=1, and a sum of KL divergences. As T — oo, p(x' | z{,) concentrates around x', hence
—log p(x" | /) — 0. Furthermore, the prior term is zero by definition of the W-posteriors in (9).

A.4 RECOVERING PREDICTOR-CORRECTOR METHODS FOR MASKED DIFFUSION

Suppose that we work with masked diffusion, hence m = m. The W-posteriors can be expanded as

‘I’s|t(~|Z;) = ke (|z, x") + (1 — Ky) [Oés(]()\t(-|zfy><{) + (1 — ay)7] (18)
Cat(.;z)), ‘ z, #m,
. ( (1 agm+ (a, - at)x‘) e 0w e+ am]
1-— Qg
(19)
L[ ) A A m
= K9 cat ('; (1 - as)m + (g — at)xé) gl=m + (1= &) [esx” + (1 — a5)m]
1— oy )
(20)
Cat(.; kex" + (1 — K¢)[asx” + (1 — ag)ml]), z. #m
~ ) Cat (.; (- m)nlﬁg’“_at)x + (1 — ky)[asx” + (1 — as)m]> , 7z =m @h
Cat(.; [r¢ + (1 — ky)as)x" + (1 — nt)(l — ag)m), z. #m
Cat (.; {mt G2 4 (1 - m)as} x' + [/1 1= o+ (L —r)(1 - as)} m) , z=m’
(22)

where (1) holds z| # m implies that z/ = x', since in masked diffusion, the latents z, are either a

clean token or the masked token.

To conclude, if we pick x; =
then the equation reduces to the ReMDM posterlor Therefore, the W-posteriors generalize ReMDM
which itself generalized the FB (Campbell et al., 2022) and DFM (Gat et al., 2024) posteriors.
Additionally, the W-posteriors are not limited to masked diffusion, as we showed in this work.

B FAST CURRICULUM

In this section, we expand on the implementation of the efficient curriculum. In Sec. B.2, we focus
on the overall design and challenges of the curriculum. The soundness of our approach relies on a
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various mathematical results, which we also elaborate on in this section. Specifically, our efficient
curriculum uses inverse transform sampling (Sec. B.3) and the Cumulative Distribution Function
(CDF) distribution of the largest (Sec. B.3) and second largest (Sec. B.5) uniform random variable.
Furthermore, we derive an analytical expression for the conditional mean of the exponential of a
Gaussian random variable in Sec. B.6.

Furthermore, although the efficient curriculum could be implemented using the original definition of
the Diffusion Transformation Operator 7, we show that 7 admits a convenient series expansion in
Sec. B.7. This avoids the need to precompute 100k function values, and simplifies the implementation.
Finally, in Sec. B.8, we show that 7 can be well approximated by a degree-9 polynomial, which
removes the need to store a large number of coefficients during training

B.1 GENERATING THE K LARGEST GAUSSIAN RANDOM VARIABLES OUT OF K

We show that it is possible to generate the k largest Gaussian random variables out of K via inverse
transform sampling (Suppl. B.3) as follows.

Given a single uniform random variable U ~ 1[0, 1], one can obtain a standard Gaussian random
variable W = <I>’1(U ), where @ is the Gaussian CDF, via inverse transform sampling. Now
assume we have a sorted list of K uniform random variables Uy > Uy > ... > Ug. Since ® is a
monotonically increasing functions, the largest uniform random variable, U;, is mapped to the largest
Gaussian random variable, i.e. ®~1(U;) is distributed as the largest Gaussian random variable out of
K.

As shown in Prop. B.1 the CDF of the largest uniform random variable out of K has an analytical
solution. For u € [0, 1], P(U; < u) = uf¢, hence it can be generated via inverse transform sampling.

Furthermore, the distribution of the second largest, conditioned on U; = u; also admits a closed
form solution (Suppl. B.5): for ug € [0, uy], it is given by P(Usz < ug) = ufflul_(K_l)

distributed as the largest uniform variable out of K — 1, supported on [0, u1].

Finally, P(Us < ug|Us = ug,U; = u1) = P(Us < u3|Us = us). Indeed, since Uy < Uy, it does

not matter what value U; takes, since Us < Us. Therefore P(Us < ug|Us = ug) = u3K72u2_(K_2)

i.e. the largest uniform out of K — 2.

,1.e. itis

)

More generally, the same argument shows that conditioned on U; = u;, the random variable U;
is distributed as the largest uniform variable on [0, u;] out of K — ¢ + 1. This shows that we can
sample Uy, ..., Uy in decreasing order and without simulating all the K variables. Finally, the U; can
be transformed into the k largest standard Gaussians out of K as {®~1(U;)}r_;.

B.2 How 1O IMPLEMENT OUR FAST CURRICULUM

Duo’s curriculum is expensive While Duo (Sahoo et al., 2025a) converges to lower validation
perplexities than UDLM (Schiff et al., 2025), the curriculum phase of Duo is expensive. Indeed, it
materializes a Gaussian-diffused vector of size B x L x K, where B represents the batch size, L the
context length, and K the vocabulary size. The Gaussian vector is normalized with a low-temperature
softmax. Directly sampling a tensor of shape B x L x K, applying the softmax, and multiplying
by the embedding table is computationally and memory intensive, especially for large vocabularies,
as the tensor size scales with K. Since Sahoo et al. (2025a) use a low-temperature softmax, only a
few entries are nonzero. This observation motivates our solution: approximate sampling of the top-k
nonzero entries, with k < K.

Three Challenges To approximate Duo’s curriculum, we must address three main challenges:
* First, we need to sample the k largest zero-mean Gaussian random variables out of K, to
emulate the Gaussian Diffusion over the one-hot data samples x (Sec. B.2.1).

» Secondly, we must estimate the normalization constant of the softmax, without actually
sampling the K random variables (Sec. B.2.2).

* Third, we require an efficient method to sample £ distinct integers from K without replace-
ment (Sec. B.2.3).
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Algorithm 1 Scalable Top-k Approximation for Curriculum Learning

Input Clean token value x, vocabulary size K, top-k parameter k, inverse temperature 7, Gaussian
schedules oy, oy
Output Softmax weights X € [0, 1]*, top-k indices %, index of the largest variable z;.

{zéi)}le < sample_top_gaussians(k, K — 1,0,0;) > Algo. 2.
Zo ™ N(ozt, Ut) > Diffusion at the clean data index.
Ztop — top-k ({ZQ} ] {Zol)}) > Keep the top k.
< E[exp(z . T) | z < min(ZtOp)} for z ~ /\/(0, Ut) > For normalization, Prop. B.5
:5' — Z?:l exp(Z[(ozg - T) > S will contain the softmax normalization constant.
if 2, € Zi, then

S+ S+ (K—ku > Approximate non-simulated variables with their conditional mean.

X « [z]Usample_neq x(k —1) > Indices of the top k, Algo. 2.
else

S+ S+ (K—-—k—-1pu+exp(zq-7)
X < sample_neq_x(k)

end if )

A <—exp(ZtEfg -7)/Sfori=0,...,k—1

Zy <— argmax; Z[(Olg > Index of the top 1.
return \, X, z;

Recall that Algo. | shows the pseudocode of the algorithm.

B.2.1 SAMPLING THE TOP £ OUT OF K NORMAL RANDOM VARIABLES

Libraries such as numpy and pytorch provide accurate approximations of the Gaussian CDF
® and its inverse ®~!, allowing us to generate Gaussian random variables via inverse transform
sampling (Sec. B.3). To sample K Gaussians, we could naively inverse-transform K uniform random
variables. Crucially, because ® ! is monotonic, the k largest uniforms correspond exactly to the k
largest Gaussians.

Finally, and importantly, we do not need to simulate all K uniform random variables to obtain the
top-k. The largest uniform out of K has a closed-form CDF with an analytical inverse (Sec. B.1).
Moreover, the second largest, conditioned on the largest, is itself uniform with a reduced support
(Sec. B.5). Thus, the top-k uniforms can be sampled sequentially, by first drawing the maximum,
then iteratively sample the remaining values in decreasing order.

In practice, a naive implementation of inverse transform sampling is numerically unstable when K is
large. For stability, operations should implemented in log-space, and Algo. 2 shows the pseudocode
for a log-space implementation

B.2.2 ESTIMATING THE NORMALIZATION CONSTANT OF THE SOFTMAX

Computing the normalization constant of the softmax,

softmax(z); = M, (23)

S expl(;)

requires access to all values {a:j }5{:1 However, because K is large, we do not wish to simulate
all K random variables, and therefore cannot compute the softmax normalization constant exactly.
Fortunately, we find that when K is large, the contribution of each non-simulated random variable is
well approximated by E[exp(X) | X < ¢], where X ~ N (0, o) and c is the smallest among the top &
random variables that we have simulated. Recall that the analytical expression of E[exp(X) | X < ¢]
appears in (1 1) (proof in Suppl. B.6)
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B.2.3 SAMPLING INTEGERS WITHOUT REPETITIONS AND SHUFFLING

Suppose that x denotes the one-hot vector of category ¢. By symmetry, after after applying Gaussian
diffusion to x, all entries x; such that j # 7 follow the exact same distribution. Therefore, they have
the same probability of being one of the top & largest random variable.

To implement the curriculum, we must not only approximate the weights of the embedding combina-
tion but also select which embeddings to include. Concretely, we sample k random indices without
repetition excluding i. If the random variable at position ¢, corresponding to the clean token, belongs
to the top-k, we replace one of the sampled indices with 7. Otherwise, we use the k& sampled indices
directly.

A simple way to sample k random indices without repetition is to shuffle a list of K integers and take
the first k. However, this defeats the purpose of our efficient curriculum, as it requires materializing
large tensors. Instead, Floyd’s algorithm (Bentley, 1999), given in Algo. 3, samples without repetition
while avoiding shuffling. Although sequential with k iterations, it is still far more memory- and
compute-efficient than shuffling when k& < K.

B.3 INVERSE TRANSFORM SAMPLING

The Inverse Transform Sampling method (Devroye, 1986) is an algorithm for simulating continuous
random variables with a known Cumulative Distribution Function (CDF) F'x. Implementing Inverse
Transform Sampling requires access to the inverse CDF F'y'!, and a source of i.i.d uniform random

variables. If X = F5*(U), where U ~ U0, 1], then X ~ Fx. Indeed,
P(X <) =P(F'(U) <2) = P(U < Fx(v)) = Fx(2), (24)

since for a € [0, 1], P(U < a) = a. This shows that X has the correct distribution.

B.4 DISTRIBUTION OF THE LARGEST RANDOM UNIFORM VARIABLES OUT OF K

Additionally, the distribution of the largest uniform random variable out of K admits a simple
closed-form expression:

Proposition B.1 (Distribution of the largest random uniform random variable out of K). U1 >
U@ > .. > U%) denote an order statistic over K i.i.d uniform random variables U([0, 8]) with

Cumulative Density Function (CDF) Fy. Suppose that u € [0,1], then Fy(u) = 4. Then, the

CDF Fy;1y and probability density function (PDF) fi;a) of the largest random variable U M are as
follows:

Fyoy(u) = FE(u) = uX0~%

(25)
Jow () = KFS T (@) fu(e) = KES ) (@) f(2) = Ka" 107"
Proof.
Fyoy(u) =P(UY <) =PU; <uVi)=PU <u)X = Fff(u). (26)
The PDF is obtained by differentiation:
d
fow (@) = — Fya (u) = KFE (u) fu(u), (27)
O

B.5 DISTRIBUTION OF THE SECOND LARGEST UNIFORM RANDOM VARIABLE OUT OF K

We use Prop. B.2 to find the distribution of the second largest uniform random variable out of K:

Proposition B.2 (Conditional Density (Berger & Casella, 2001)). Let X,Y be two random variables
with joint density fx y and marginals fx, fy. Then, the conditional density of X given'Y =y is

_ fxy(y)
Ixy=y(zly) = TRy (28)
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Furthermore, the proof relies on the distribution of a pair of order statistic (X *), X()):

Proposition B.3 (Joint Density of Order Statistics (Berger & Casella, 2001)). Let X(N) > . > x (1)
denote an order statistic over N random variables with CDF F' and PDF f. Then, the joint density
of the variables X*) and XV, where k < 1 is given by

fxoo xo(u,v) =
N!
(=D — k=D =1)!

F)* (F () — F@) ™ (1~ Fo) ) fw). &

See Border (2021) for a proof. Finally, using Prop. B.2 and B.3, we prove the main result:

Proposition B.4 (Conditional Distribution of U5 1) given US)), Let U¥) > ... > UM denote
the order statistics of K independent and uniformly distributed random variables on [0, 0], arranged
in descending order. Conditioned on U) = z, UK=Y s distributed as the largest of (K—1)iid
uniform random variables on |0, z].

Proof. From Proposition B.3, the joint distribution fy -1 yw)(u,v) is given by

N - n— —-n
v x0 (0) = g PP @) @)f(0) = NV = 1267 G0)
Using Proposition B.2, we can conclude:

f (u | v) fxov-n xo(u,v)  N(N —1)u@®-24-N
- u|v) = _
X1 X () T e .

— (N — 1)uN=2)y(N=1),

which is precisely the density of the largest out of N — 1 independent uniform random variables on
[0, v]. O

B.6 CONDITIONAL MEAN OF THE EXPONENTIAL OF A GAUSSIAN
Finding the analytical expression of E [exp(X)|X < ¢] requires the expression for the conditional
density, given that X € A for A are Borel set with non-zero probability:

Proposition B.5 (Conditional Density). Let X be a random variable with density fx, and let A be a
Borel set such that P(X € A) > 0. Then the conditional density of X given X € A is

B fx(@)l{z € A}'

= 32
Ixixea(z) P(X € A) (32)
Proof. Since X admits the density fx, for any Borel set B C R we have
P(X € B) :/ fx(z)dz. (33)
B
By definition of conditional probability, whenever P(X € A) > 0,
_P(XeBnA)
Using the density representation of the numerator gives
fx(z)dx
P(XeB|XeA)=2804__
(XeB|XeA) P(X < 4) (35)
Define L 4
S
ooy = LT EA (o ) (36)

P(X € A)
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Then for every Borel set B

1
/Bg(:r)da: = PXcA) /BmA fx(x)de =P(X € B| X € A). 37)

In particular, choosing B = R yields fR g(z)dz = 1, so g is a valid probability density. Hence g is a
density that realizes the conditional probabilities, i.e. g = fx|xca- [

After proving Prop. B.5, we can prove that

logElexp(X) | X < ¢] = % —log ®(c/0) + log <I>(C —7 ). (38)
Proof.
Elexp(X) | X < ]
_ [ _Jx(@)
—/_ooexp(x)P(X - C)dx
1 ¢ 1 x?
:7(0/0) [m exp(z) s exp( o 2> dx
1 x? d
( )RY, 271'02 / ( z T :c) !
1 1
(c/o) \/271'0'2 eXp ( 20 5p2 (0~ 200w 4ot 04)> e
_exp(0?/2)
B(c/o) TWQ / ( (x —o? ) dx
exp(02/2 c—o?
(C/U) o
O
Applying a log on both sides yields
_ 2
log Efexp(X) | X < ¢ = 5 —log ®(c/0) + log &(~——), (39)

which is the expression in (1 1).

B.7 SERIES REPRESENTATION OF 7 AND 0,7

We begin by station the Series expansion for 7 (Prop. B.6) and its time-derivative 9;7 (Prop. B.7):

Proposition B.6 (Series Expansion of the Diffusion Transformation Operator). The diffusion trans-
formation operator T can be expressed as:

K 2 0 e U 1
~ _ _Vf,/2 i -
T(ozt)—Kil e Eon!M” e (40)

_ & _ (> K-1
v = \/10‘7’7% and M, = [~ 2"¢(2)®" 7 (2)dz.
Proposition B.7 (Time-Derivative of the Diffusion Transformation Operator). The time-derivative of
the diffusion transformation operator T can be expressed as:

K-evi/2 a; v
—T( D=5 liath : M,] 41)

where vy and M,, are defined as in Prop. B.6. Finally, I, = [~ 2" ¢(2)®"~(2)dz, and &
denotes the time-derivative of the Gaussian noise schedule ¢.
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At this point, one might ask what is gained by expressing 7 as a series expansion. There are two key
advantages. First, since 7 is intractable, Sahoo et al. (2024) resort to precomputing 100k evaluations,
which can take up to two hours with the GPT-2 tokenizer. Second, they approximate the time
derivative using finite differences. Crucially, observe that M,, and I,, in Prop. B.6 and B.7 are the
only intractable components of the series expansion, and they are independent of the input &;. We
find that the terms of the series decay to zero after roughly 150 terms (with slower decay as ¢ — 1).
Thus, instead of pre-computing 100k evaluations of 7T, it suffices to cache M,, and I,, for n < 150.
In practice, this takes only a few seconds and can be performed at the start of training. We now prove
Prop. B.6 and B.6.

B.7.1 PROOF OF PROPOSITION B.6

To prove the result, we rely on the following proposition:

Proposition B.8 (Corollary of the Dominated Convergence Theorem). If the sum .~ o f,(z) exists
Sor all x and there exists an integrable function g(x) such that

k
> ful2)
n=0

< g(x) (42)

for all k, then
/ Z frn(x)de = Z/ fn(x)dz. (43)
X n=0 n=0"Y ~
We now prove Prop. B.6 using Prop. B.8:

Proof. Recall that the standard Gaussian PDF is given by

o(x) = ——e /2. (44)

For notational convenience, let v, = —=—. We can rewrite ¢(z — 1) in terms of ¢(z):

A/ 1—a;

1 —(T—V 2 1 — 1327 v+xT l/2 v+x 71/2
Oo —w) = e (TN = e TR = gyt 2 )

Using the definition of the infinite series of e”, we can expand e"**:

_,/2/2 > thx"
d(x — 1) = Pp(x)e Z o (46)
n=0 '
Substituting this into our original integral:
o0 _ [e'e] . 0 ynan _
/ ¢ (z—1) @K (2)dz = / $(2)e /2Ny tT'@K Y(2)dz (47)
-0 -0 n=0 ’

Since Prop. B.8 is satisfied, as the sum is the Taylor series of the exponential function, we can
exchange the order of integration and summation. This leads to our final result:

/OO b (2 — 1) D5 (2)dz = e i /? i i /°° 2" (2) 0K (2)dz

no T (48)
—v2/2 Vi
¢ Z My
n=0
]
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B.7.2 PROOF OF PrROP. B.7

Once again, we need to exchange the order of operations to prove Prop. B.7, which relies on Prop. B.9:

Proposition B.9 (Second Corollary of the Dominated Convergence Theorem). Let f(x,t) be differ-
entiable in t and suppose there exists a function g(x,t) such that:

e
1|

< g(x,to) for all x and t in some neighborhood |t — to| < g

2. [ glz,t)dx < oo forallt

d [~ [ Of(x,t)
a/_oo f(z,t)de = /_OO 5 dx (49)

Then

In our case, we have

dt

f(%t):(b(Z—m

) E1(2) = ¢ (2 — 1) DE1(2) (50)

which has time derivative
(2 —)9(z —1n)
(1 - a3)3r2
Therefore, we need to find a suitable function g that satisfies Prop. B.9 to justify swapping the order
of integration and differentiation.

E=1(2). (51)

Proof. Let1 > §g > 0 and choose ty = 1_250. When |t — to| < &g, we have t € [tg — do, to + o]

Since tg — dg < tg < l and ty + 69 = 19 4 do < 1, we are guaranteed that ¢ < 1. This ensures
that v, is finite. Because «; € [0,1) when ¢ < 1, there exist a constant C, such that
1

= ——s < 0. 52
s T =g < 62

For z € R and |t — to| < dy, we can bound the absolute value of the time derivative of f as follows:

o —
‘ f(a?t)‘ _ (1|i a;)t?!ﬂ oz — 1) DE1(2)

< Oz = nlé(z = ) = g(z,1).

Finally, for all ¢ € [0,1):

/OO g(z,)dz = c/jO 12— v bz — vy)dz = c/i 12|6(2)dz

— 00 —

= C/_O:O |z|¢(2)dz = 2C /OOO z¢(z)dz

> 1 2
—9C L7224 53
/0 Ve (>3)
20 >

:\/271' 0
20 12
=—-1=0C4/— <,
V2 ™ >

where we used the substitution u = 22/2 in the integral [;° ze~*"/?dz to obtain [} e “du = 1. O

_ .2
ze % /2dz

We can now prove Proposition B.7
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Figure 4: Polynomial approximation and approximation error, compared to the series approximation,
truncated at 150 terms. The degree-9 polynomial (left) achieves orders of magnitude lower error than
the degree-5 polynomial (center) and sigmoid (right) approximations.

Proof. We want to compute

d K d o

Applying the derivative under the integral sign and using the identity ¢(z — 1) = (b(z)e”tze_”tz /2,

we have:
d d

e ) = ¢<z>d—w[e”ﬂ*“f/21
= 3(2)e (e - ) o)
= (2 — )(z — )
Therefore:
Ly = 2 [ otz — ) ®E () (56)
dvy K-1J_4

Now using the Taylor series of ¢(z — 1), found earlier, and inverting the sum and integral as before,
we find

d K e

_— — _ vz, —vZ/25K—1
thT(at) K1 _Oo(z v)p(z)e" e d (2)dz
= K- e Snvp [ [ n+1 K—1 <o K—1
= ﬁgﬁ [/_Ooz d(2)0" " (2)dz — 1 /_Ooz o(2)®" 7 (2)dz

K-67V2/2 e um
n=

(57)
where I,, = [7_ 2" p(2)®K 1 (2)dz and M, = [7_2"¢(2)®K 71 (2)dz.

This expansion allows us to compute the derivative of the diffusion transformation operator with
respect to v4 in terms of moments of the standard normal distribution weighted by powers of the
CDFE. O

B.8 POLYNOMIAL APPROXIMATION OF T~

Because the Diffusion Transformation Operator 7 has a sigmoid-like shape, we approximating it with
S-shaped functions that require only a handful of coefficients. This allows us to store fewer parameters
during training, instead of the 100k values required by the original curriculum or the 300 coefficients
from the series approximation. Concretely, we test several functional forms with fewer than 10
parameters and fit them using non-linear least squares, via scipy.optimize.curve_fit.

As shown in Figure 4, approximations tend to be less accurate at the boundaries, when ¢ ~ Q or t = 1.
We find that the degree-9 polynomial works better than a sigmoid function of the form ac (bt + ¢) + d,
especially at the boundaries.
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C EXPERIMENTAL DETAILS

C.1 SUPERPOSITION SAMPLER

OpenWebText To evaluate the samplers, we use pre-trained checkpoints for MDLM (Sahoo et al.,
2024) and Duo (Sahoo et al., 2025a) (distilled with discrete consistency distillation). We re-state their
experimental settings in Suppl. C.2.1. For ReMDM, we use the official implementation of Wang et al.
(2025), with a few of their best hyperparameter settings and plot the best-performing one. Note that
Wang et al. (2025) use nucleus sampling (Holtzman et al., 2020), whereas we do not need to use it for
W-samplers with Duo. See Suppl. D.1 for details on selecting x.

CIFAR10 We adopt the same U-Net backbone Table 3: Model architecture on CIFAR10
Ronneberger et al. (2015) used by Austin et al.

(2023); Schiff et al. (2025) for both MDLM and ~ Component Value
Duo experiments. The architectures for MDLM Vocab size 256
and Duo are identical, except that Duo incorpo- Number of ResNet blocks per scale 5

rates time-conditioning as in Austin et al. (2023);

Schiff et al. (2025) (Table 3). Furthermore, the ~ Dase channels 128

backbone uses a truncated logistic transforma- iltltann'e ! multli)l?r per scale (1’21’62’2)

tion of the output (Salimans et al., 2017). To en- ention resolutions . .

able classifier-free guidance, we use a label em- Conditional embedding dimension 128
Number of parameters 35.8M

bedding which is added to the time embedding,
as in Nichol & Dhariwal (2021). See Suppl. D.1
for details on selecting .

C.2 IMPROVED CURRICULUM

C.2.1 LANGUAGE MODELING

We adopt the same setup as prior work on discrete diffusion (Lou et al., 2024; Sahoo et al., 2024;
2025a), but restate it for completeness.

LM1B We detokenize the the One Billion Words (Chelba et al., 2014) as in Lou et al. (2024); Sahoo
et al. (2024)', and tokenize it using the bert-base—-uncased tokenizer (Devlin et al., 2019), as
He et al. (2022). We use a context length of 128 and pad shorter documents.

OpenWebText We tokenize OpenWebText (Gokaslan & Cohen, 2019) with the GPT-2 tokenizer,
concatenate sequences to a length of 1024, and insert an eos token between documents. Since the
dataset lacks an official validation split, we reserve the last 100k documents for validation.

Backbone We parameterize all models using the modified diffusion transformer architecture of
Peebles & Xie (2023), following Lou et al. (2024); Sahoo et al. (2024). Our models use 12 layers,
a hidden dimension of 768, 12 attention heads, and a timestep embedding of size 128 for the
uniform-state diffusion variants. Word embeddings are not tied between input and output.

Curriculum Lookup For the Duo baseline, we train models using the original code. To implement
the efficient curriculum, we replace the full linear combination of embeddings by a sparse lookup,
implemented using torch.nn. functional.embedding_bag to avoid materializing interme-
diate tensors. The curriculum phase lasts for the first 500k steps, after which we perform regular
embedding table lookups, just like Sahoo et al. (2025a).

Optimization We train all models with the AdamW optimizer (L.oshchilov & Hutter, 2019) using a
batch size of 512. The learning rate is linearly warmed up from 0 to 3 x 10~% over 2,500 steps, then
kept constant for the remainder of training. We apply a dropout rate of 0.1 throughout.

'https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/
main/data.py
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C.3 DOWNSTREAM EVALUATION PROTOCOL

We evaluate downstream performance using the 1lm-eval-harness library (Gao et al., 2024),
following the protocol of Deschenaux et al. (2025). We focus on multiple choice tasks, where
the log-likelihood of each candidate answer, given a prompt, is computed and the answer with the
highest score is selected. For diffusion language models, which optimize a variational bound on the
log-likelihood of the full sequence, we adapt the evaluation by using Bayes’ rule:

log p(yi[x) = log p(x,y:) — log p(x) o log p(x, y:), (58)
Since log p(x) does not depend on the candidate y;, we simply select the answer that maximizes

log p(x,y;). In practice, we use the log-likelihood ELBO (4), estimated via Monte Carlo with 1024
samples, and choose the continuation y; with the highest estimated likelihood.

C.4 ZERO-SHOT LIKELIHOOD

Our setting is the same as used by Sahoo et al. (2025a). Specifically, we measure the likelihood
of the models trained on OpenWebText using the validation splits of seven diverse datasets: Penn
Tree Bank (PTB; Marcus et al. (1993)), Wikitext (Merity et al., 2016), One Billion Words (LM 1B;
Chelba et al. (2014)), Lambada (Paperno et al., 2016), AG News (Zhang et al., 2016), and Scientific
Papers (Pubmed and Arxiv subsets; Cohan et al. (2018)). The datasets are detokenized following
the protocol of Lou et al. (2024); Sahoo et al. (20252a). We wrap all sequences to a maximum length
of 1024 tokens and do not insert eos tokens between them. Table 5 shows that we reach similar
performance as Duo.

D ADDITIONAL EXPERIMENTAL RESULTS

In Suppl. D.1, we elaborate on the impact of x; on the performance of the W-samplers. In Suppl. D.2,
we show that our efficient curriculum produces weights with the same marginal distributions as Sahoo
et al. (2025a).

D.1 TUNING k; FOR THE W-SAMPLERS

As discussed in Sec. 5.1, the choice of x; is crucial for achieving strong performance with W-samplers.
Notably, poor choice of x; underperform ancestral sampling. Therefore, we report our hyperparameter
sweeps in this section, for varying number of step sizes.

CIFAR10 We report the FID in Table 6, and IS in Table 7. To reduce computational cost, we
excluded certain step size and hyperparameter combinations, especially at larger number of steps,
based on the FID at lower number of steps. In Figure | and 3, we show the best FID/IS achieved at
each number of steps.

OpenWebText We report generation perplexity (Gen. PPL) and entropy for Duo without distillation
(Table 8) and with distillation (Table 9), using checkpoints released by Sahoo et al. (2025a). Results
for MDLM+ReMDM are shown in Table 10, and we sample using the official implementation of
Wang et al. (2025). For plotting, we selected hyperparameters that yield entropy closest to the
posterior samplers. Notably, unlike CIFAR-10, we plot with the same hyperparameters across all
sampling steps, although they need not be identical across Duo, Distilled Duo, and MDLM.

D.2 DISTRIBUTION OF THE TOP k ENTRIES OF THE SOFTMAX

To verify that our sparse implementation accurately approximates the curriculum weights of Sahoo
et al. (2025a), we compare the empirical distributions of the top-k largest entries between the original
and our efficient implementation. While matching marginal distributions does not guarantee matching
joint distributions, matching marginals are necessary for matching joints, and are easier to visualize.
Recall that experimentally, our efficient implementation is sufficient to achieve strong performance
(Sec. 5.2). Specifically, we show histograms using a tokenizer with 100k tokens in Figures 5, 0,
7, 8, and with the GPT-2 tokenizer in Figures 9, 10, 11, 12, with varying temperature and log
signal-to-noise ratios. In all cases, the top k variables have matching distributions.
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Table 4: Training efficiency comparison between Duo and Duo™ " on 138M parameter models. All
measurements are conducted on a training job on 8§ NVIDIA GH200-120GB GPU with batch size
32. We report the average throughput in sequence per second. The row “Duo (afer CL)” denotes
the resources consumption of Duo after the Curriculum phase. The impact of £ is minimal when
k € {2,3,5}, and Duo™ ™ uses similar resources.

Method Throughput Peak Memory
(samples/s) T (GiB) |

Duo 81.8 94.3

Duo (after the CL) 122.4 63.3

Duo™ " (k € {2,3,5}) 121.9 63.38

D.3 TRAINING EFFICIENCY OF OUR FAST CURRICULUM

As shown in Table 4, our sparse curriculum achieves a 33% reduction in peak memory usage and
reaches an average throughput 25% higher than Duo, at a context length of 1024.
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Table 5: Zero-shot perplexity (PPL) on seven datasets. Lower is better. TResults taken from Sahoo
et al. (2025a). Duo™™ (k = 2) achieves a slightly lower zero-shot perplexity than Duo on 6 of 7
datasets.

PTB Wiki LMIB LBD AGNews PubMed ArXiv

Autoregressive
Transformer® 82.05 2575 51.25 51.28 52.09 49.01 41.73
Diffusion (138M)
SEDD Uniform" 10551 41.10 82.62 57.29 82.64 55.89 50.86
UDLMT 112.82 3942 77.59 53.57 80.96 50.98 44.08
Duof 89.35 33.57 73.86 49.78 67.81 44.48 40.39

Duott (k = 2) 9496 34.05 73.80 48.67 67.14 43.98 38.93
Duo™ ™ (k = 3) 91.94 34.65 74.16 49.89 66.89 44.87 40.42
Duott (k = 5) 9446 3452 7491 50.93 68.72 46.79 41.04

Algorithm 2 Reverse Sampling from Order Statistics of Gaussian Random Variables

Input Number of variables IV, standard deviation ¢, number of top values k

Sample Uy ~ U(0,1),for N > ¢ >N —k+1

Compute the random variables: Ry, = %

Compute the cumulative sums: P, = Zﬁi: B

Let V; = exp(F), the ¢-th sample from the (uniform) order statistic.
Apply inverse normal CDF: X(©) = &=%(V;) - &

return { X ()} N -k+1

Algorithm 3 Floyd’s Algorithm for Sampling Without Repetition

Input Number of possible values N, number of samples k.
Initialize array S of size k to store samples
fort =0tok —1do
Sample j ~ Randint(0, N — k + t)
if t > 0 and j appears in S[0 : ¢] then
S[t] <~ N — k +t {Use largest remaining value}
else
Slt] <3
end if
end for
return S
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Table 6: FID scores across different numbers of sampling steps for various hyperparameter ablations.
Lower is better. The section “W-samplers Loop” denote the ReMDM-inspired scheduler, where
t is linearly decreased to o, (from ¢ = 1 to ¢ = %,,), then kept constant until £.¢. The section
“W-samplers Linear” denote the Linear scheduler, where ¢ linearly decreases, like during ancestral
sampling. We omit certain settings (denoted by —), to spare compute costs, as each cell FID requires
generating 50k samples.

\ Number of steps

| 32 128 256 512 1024 2048 4096

Uniform Diffusion (Ancestral)

Duo (log-lin.) 853 5677 526 509 497 492 49.0
Duo (cosine) 7177 519 476 459 450 446 443
+Greedy 649 475 442 428 422 41.8 416
+Guid. (y = 1) 57.3 416 394 379 376 372 369
+temp. 7' = 0.8 392 276 263 254 254 25.0 253

Uniform Diffusion (V-samplers Loop)
oy, = 0.85, tof = ton +0.05, k =0.02 | 404 275 259 249 243 238 251
oy, = 045, toig = ton + 0.05, k =0.02 | 450 293 276 282 334 - -
o, = 0.1, toff = ton +0.05, K = 0.02 43.0 31.8 41.7 672 1298 - .
oy, = 0.8, toff = ton + 0.1, K = 0.02 409 272 253 240 237 283 525
1y, = 0.8, tofr = ton + 0.1, 5 = 0.5 410 273 256 246 237 234 279

o, = 0.7, toff =ton + 0.2, K = 0.5 432 262 23.6 224 250 - -

Uniform Diffusion (V-samplers Linear)
o, = 0.85, tof = ton + 0.05,k =0.02 | 39.1 274 257 245 238 238 28.2
o, = 045, toif = ton + 0.05, k =0.02 | 419 29.1 278 346 614 - -
oy, = 0.1, togr = ton + 0.05, K = 0.02 394 278 265 257 254

on

o, = 0.8, toff = ton +0.1, K = 0.5 389 269 252 239 231 234 316

ton = 0.3, = 0.1 kK =0.75 387 262 242 225 220 254 439
ton = 0.4t = 0.1k =0.9 387 257 234 21,5 209 234 373
ton = 0.5, tor = 0.1 Kk = 0.95 386 252 227 207 202 226 354
ton = 0.6t = 0.1 k =0.95 385 242 214 200 223 327 590
ton = 0.6, %t = 0.1 kK = 0.98 388 259 234 213 202 213 287
Masked Diffusion (Ancestral)
MDLM (cosine) 1042 519 46.7 45.1 445 453 48.0
MDLM (log-lin. / cosine) 81.8 48.0 40.0 393 378 38.0 387
MDLM (log-lin.) 2083 742 484 38.0 342 333 331
+Greedy 208.3 742 484 38.1 342 333 331
+Guid. (y =1) 198.6 629 418 332 295 28.1 27.6
+temp. T'= 0.8 1262 332 251 24.0 247 257 26.6

Masked Diffusion (V-samplers Linear)

ton = 0.3, tor = 0.1 K = 0.75 1255 333 252 241 249 262 285
ton = 0.5, o = 0.1 = 0.95 1255 33.1 252 242 252 - _
ton = 0.6, tofr = 0.1 5 = 0.95 1252 329 248 238 250 273 319
ton = 0.6, tor = 0.1 K = 0.98 1257 33.1 250 240 250 - -
ton = 0.85, tor = 0.8 K = 0.02 183.7 792 888 113.1 1380 - -
ton = 0.45, togr = 0.4 1 = 0.02 1309 398 373 431 559 - -
ton = 0.15, togr = 0.1 5 = 0.02 1259 332 251 240 247 256 269

30



Under review as a conference paper at ICLR 2026

Table 7: Inception Score (IS) across different numbers of sampling steps for various hyperparameter
ablations. Higher is better. The section “W-samplers Loop” denote the ReMDM-inspired scheduler,
where ¢ is linearly decreased to o, (from ¢ = 1 to ¢ = t,,), then kept constant until .. The section
“W-samplers Linear” denote the Linear scheduler, where ¢ linearly decreases, like during ancestral
sampling. We omit certain settings (denoted by —), to spare compute costs, as each cell FID requires
generating 50k samples. The decision to omit entries was based on the FID achieved with fewer
steps.

\ Number of steps
‘32 128 256 512 1024 2048 4096

Uniform Diffusion (Ancestral)

Duo (log-lin.) 48 57 58 58 5.9 5.9 6.0
Duo (cosine) 53 61 65 64 6.4 6.5 6.4
+Greedy 56 63 63 65 6.5 6.6 6.5
+Guid. (y =1) 63 69 70 70 71 71 7.1
+temp. T' = 0.8 70 75 75 75 7.6 7.5 7.6

Uniform Diffusion (V-samplers Loop)
oy, = 0.85, tosf = ton — 0.05,k =0.02 | 69 75 75 7.6 1.6 7.6 7.3
oy, = 045, tof =ton —0.05, s =0.02 | 69 78 80 81 8.2 - -
o, = 0.1, tor =ton —0.05,k =0.02 | 69 7.7 74 62 41 - -
oy, = 0.8, toff = ton — 0.1, K = 0.02 7. 75 76 76 1.6 7.2 6.1

6

g = 0.8, togr = ton — 0.1, K = 0.5 9 75 75 75 15 15 10
= 0.7, tofr = ton — 0.2, K = 0.5 70 76 16 171 14 - -

Uniform Diffusion (V-samplers Linear)
o, = 0.85, toff = ton — 0.05, k = 0.02 | 7. 75 76 17 77 7.6 7.3

oy, = 045, tosg = ton — 0.05,k =002 | 71 80 84 87 79 - -
o, = 0.1, tof = ton —0.05,k=0.02 |70 74 75 76 7.6 - -
o, = 0.8, toff = ton — 0.1, K = 0.5 70 76 76 76 1.7 7.5 7.0
ton = 0.3, tor = 0.1 Kk = 0.75 71 76 76 17 16 7.4 6.4
ton =04t =0.1xk=0.9 71 76 77 77 1.7 7.7 7.0
ton = 0.5t = 0.1 kK =0.95 71 77 77 79 8.0 7.8 7.5
ton = 0.6,top = 0.1 kK = 0.95 71 78 80 82 82 8.0 6.9
ton = 0.6,to = 0.1 Kk = 0.98 71 76 77 79 8.1 8.2 8.1
Masked Diffusion (Ancestral)
MDLM (cosine) 43 59 61 62 63 6.2 6.2
MDLM (log-lin. / cosine) 52 67 70 7.1 7.1 7.0 6.8
MDLM (log-lin.) 27 49 57 63 6.6 6.6 6.7
+Greedy 27 49 57 62 66 6.6 6.7
+Guid. (y=1) 30 58 65 68 1.1 1.2 1.2
+temp. T'= 0.8 44 67 72 173 13 7.3 7.3
Masked Diffusion (V-samplers Linear)
ton = 0.3,t0rr = 0.1 K = 0.75 44 67 7.1 73 712 7.2 6.9
ton = 0.5t = 0.1 kK = 0.95 44 67 71 72 713 - -
ton =0.6,to = 0.1 k =0.95 44 67 172 73 12 1.2 71
ton = 0.6, %0t = 0.1 K = 0.98 44 67 72 73 13 - -
ton = 0.85,tosr = 0.8 Kk = 0.02 32 52 49 44 43 - -
ton = 0.45, togr = 0.4 k = 0.02 43 67 72 72 65 - -
ton = 0.15,trr = 0.1 kK = 0.02 44 67 72 73 13 7.3 7.1
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Table 8: Generative perplexity (Gen. PPL, |) and entropy (1) of Duo (without distillation) for
different numbers of sampling steps: 32, 128, 256, 512, 1024, and 4096. Each column contains two
sub-columns: Gen. PPL and Entropy. The Grayed row reports the configuration that achieves the
best Gen. PPL while keeping entropy closest to the ancestral sampler.

32 128 256 512 1024 4096
PPL H PPL H PPL H PPL H PPL H PPL H

Ancestral sampler 97.0 55 812 55 797 55 71.3 55 758 55 768 55
ton = 0.5, toif = 0.1,

k¢ = 0.95 94.3 55 755 55 706 55 64.6 55 586 55 489 54
ton = 0.4, tor = 0.1,

ke = 0.9 94.1 56 740 55 687 55 63.3 55 568 55 469 53
ton = 0.15, top = 0.1,

re = 0.02 94.3 56 756 55 694 55 62.2 55 552 55 451 53
Qton = 0.8, toff = ton—0.1,

ke = 0.5 95.3 56 746 55 698 55 64.4 55 599 55 485 52
ton = 0.85, tof = 0.8,

ke = 0.02 1085 55 921 55 856 54 77.9 53 702 50 264 35
Qo = 0‘7, toff = ton70.2,

k =0.5 1054 56 755 55 698 55 66.4 54 595 53 151 35
ton = 0.45, tof = 0.4,

k¢ = 0.02 1105 55 993 55 996 54 1064 54 832 50 8.3 2.4

Table 9: Generative perplexity (Gen. PPL, |) and entropy (1) of Duo, distilled with DCD (Sahoo
et al., 2025a) for different numbers of sampling steps: 32, 128, 256, 512, 1024, and 4096. Each
column contains two sub-columns: Gen. PPL and Entropy. The Grayed row reports the configuration
that achieves the best Gen. PPL while keeping entropy closest to the ancestral sampler.

32 128 256 512 1024 4096
PPL H PPL H PPL H PPL H PPL H PPL H

Ancestral sampler 68.2 55 58.9 55 59.5 54 58.1 54 56.9 54 57.0 54
ton = 0.15, tor = 0.1,

ke = 0.02 65.5 5.5 51.5 55 454 5.4 38.3 54 30.9 53 19.2 5.2
ton = 0.4, tof = 0.1,

ke = 0.9 64.6 55 48.5 55 43.8 5.4 36.2 54 28.3 53 16.7 5.1
Aty = 0.8, toff = ton—0.1,

ke = 0.5 64.1 55 47.6 54 422 5.4 35.1 54 28.5 53 17.1 5.1
ton = 0.5, torr = 0.1,

ke = 0.95 65.1 55 50.1 55 45.8 5.4 38.6 5.4 31.2 53 18.3 5.1
ton = 0.85, toff = 0.8,

ke = 0.02 71.5 55 61.3 54 553 53 49.5 5.1 40.1 49 25.6 4.4
oy = 0.7, tofr = ton—0.2,

k=0.5 62.3 55 41.1 5.4 347 53 27.6 52 21.4 5.1 10.3 4.6
ton = 0.45, torr = 0.4,

ke = 0.02 66.4 55 51.9 54 45.3 53 36.8 5.2 284 5.0 10.9 4.3

Table 10: Generative perplexity (Gen. PPL, |) and entropy (1) of MDLM and ReMDM for different
numbers of sampling steps: 32, 128, 256, 512, 1024, and 4096. Each column contains two sub-
columns: Gen. PPL and Entropy. We omit certain settings (denoted by —), to spare compute costs.
The Grayed row reports the configuration that achieves the best Gen. PPL while keeping entropy
closest to the ancestral sampler.

32 128 256 512 1024 4096

PPL H PPL H PPL H PPL H PPL H PPL H

Ancestral sampler 193.2 5.7 122.3 5.6 113.3 5.6 109.2 5.6 102.6 5.6 1039 5.6

ReMDM-cap (n; = 0.04) 19797 5.7 124.10 5.6 11329 57 109.92 5.6 111.26 5.7 - -

ReMDM-cap (n; = 0.04, top-p=0.9) 132.06 5.7 75.51 55 64.69 55 55.38 5.5 46.65 5.4 - -
ReMDM:-loop (1 = 0.02, ton = 0.55,

torr = 0.05, ay = 0.9) 224.6 57 74.8 5.6 56.9 5.5 44.7 5.4 34.4 5.4 20.1 52
ReMDM-loop (n: = 0.02, ton = 0.55,

toff = 0.05, oy = 0.9, top-p=1.0) 338.9 5.8 146.8 5.7 133.4 5.7 138.8 5.7 166.4 57 3575 57
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Figure 5: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 100, and log signal-to-noise ratio —2. The histograms of the efficient and naive imple-
mentation match closely.

- Efficient top-1 top-2 top-3 top-4 top-5

= Naive 107

100
102 108
2
10 100
100
10!
107
102 107
PN 1

0.000 0.025 0.050 0.075 0.00 0.01 0.02

Figure 6: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio —1. The histograms of the efficient and naive
implementation match closely.
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Figure 7: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio —2. The histograms of the efficient and naive
implementation match closely.
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Figure 8: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse

temperature 1000, and log signal-to-noise ratio —4. The histograms of the efficient and naive
implementation match closely.
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Figure 9: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
100, and log signal-to-noise ratio —2. The histograms of the efficient and naive implementation
match closely.

33



Under review as a conference paper at ICLR 2026

Efficient top-1 top-2 top-3 top-4 top-5
Naive 2 10° o
10 102 10
10t 107 10°
10 10 S
10° 10 10
o
10 10"
107! 10° 10°
107" 10°
-2 107
10 107 102 10
-2
1072 o 1072
1073
04 06 08 10 00 02 04 00 01 02 03 0.00 0.05 010 000 002 004 006 008

Figure 10: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio —1. The histograms of the efficient and naive implementation

match closely.
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Figure 11: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio —2. The histograms of the efficient and naive implementation

match closely.
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Figure 12: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio —4. The histograms of the efficient and naive implementation

match closely.
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