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ABSTRACT

Uniform-state discrete diffusion models excel at few-step generation and guidance
due to their inherent ability to self-correct, making them more preferable than au-
toregressive or masked diffusion models in these settings. However, their sampling
efficiency has been limited by the reliance on standard posterior samplers, which
plateau in quality as the number of steps increases. In this work, we introduce a
novel family of “Predictor-Corrector” (PC) samplers for discrete diffusion mod-
els that generalize prior methods and apply to arbitrary noise processes. When
paired with uniform-state diffusion, our samplers significantly outperform ances-
tral sampling on both language and image modeling, achieving lower generative
perplexity at matched unigram entropy on OpenWebText and better FID/IS scores
on CIFAR10. Crucially, unlike conventional samplers, our PC methods continue
to improve generation quality with more sampling steps. Beyond sampling, we
develop a fast and memory-efficient curriculum for Duo™ s (our method) Gaus-
sian relaxation phase, which avoids materializing large Gaussian-diffused one-hot
vectors. This reduces training time by 25% compared to Duo while maintaining
similar validation perplexity on OpenWebText and LM 1B and strong downstream

performance.
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Figure 1: Performance on Language Modeling and Image Modeling. U-samplers consistently
improve performance as the number of sampling steps (NFE) grows. W-samplers generalize ReMDM
(Wang et al., 2025) to arbitrary noise distribution. (Left): Generative perplexity of U-samplers
(ours) as a function of the number of sampling steps (NFEs), using nucleus sampling p = 0.9 for
all samplers. We annotate the curves with the average unigram entropy per sequence as a proxy for
diversity. (Right): On CIFAR-10, ¥-samplers achieve a better FID than MDLM (with ReMDM).
[Rebuttal update]: We remove temperature scaling with Duo*™ and W-samplers. This improves the
FID for both the methods at higher NFEs (unlike previously; see Fig. 7c).

1 INTRODUCTION

Diffusion models are powerful generative algorithms that have achieved remarkable success in
modeling continuous data domains, including images (Ho et al., 2020a; Rombach et al., 2022),
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audio (Kong et al., 2021; Liu et al., 2023b; Huang et al., 2023; Ku et al., 2025), and videos (Ho et al.,
2022; Esser et al., 2023; Blattmann et al., 2023; Polyak et al., 2025). Recent advances have extended
diffusion models to categorical data, demonstrating their potential for language modeling (Austin
et al., 2023; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025; Sahoo et al.,
2025a;b), graphs (Liu et al., 2023a), and molecules (Lee et al., 2025). Unlike autoregressive models
that generate tokens sequentially from left to right, diffusion language models can decode tokens
in parallel and in any order while leveraging bidirectional contextual information. This capability
enables the design of language models that can be significantly faster than their autoregressive
counterparts while maintaining strong downstream performance (Song et al., 2025; Labs et al., 2025).

Discrete diffusion models primarily employ one of two noise distributions: a uniform prior or a
masked prior that concentrates all probability mass on a special [MASK] token. Uniform-State
Diffusion Models (USDMs) offer a major advantage through their ability to self-correct mistakes,
as they allow tokens to be revised multiple times during generation. In contrast, standard Masked
Diffusion Models (MDMs) update each token exactly once, preventing error correction during
generation. Due to this self-correction capability, USDMs significantly outperform MDMs in
generation in a few steps, particularly after distillation (Sahoo et al., 2025a). Furthermore, in
applications that require guidance to steer generation towards specific targets by optimizing reward
functions, USDMs prove to be much more suitable than autoregressive or MDMs approaches (Schiff
et al., 2025). However, USDMs face notable limitations: Their generation quality has not yet
matched that of MDMs in high-sampling-step regimes, and their modeling capacity, as measured by
likelihood, remains inferior to that of MDMs. Although Sahoo et al. (2025a) proposed a curriculum
learning strategy (Bengio et al., 2009) that narrows the likelihood gap, this curriculum approach is
computationally expensive.

To address MDMs’ inability to remask tokens, ReMDM (Wang et al., 2025) introduced “Predictor-
Corrector” (PC) samplers that generalize and outperform earlier PC methods (Campbell et al., 2022;
Gat et al., 2024). These samplers substantially improve the inference time scaling behavior of MDMs.
However, PC methods for uniform-state diffusion remain underexplored. Campbell et al. (2022
proposed PC methods for samplers that take advantage of the rate change matrices of the continuous-
time Markov chain (CTMC) formulation of discrete diffusion processes, but such samplers are known
to perform worse than ancestral samplers (Lou et al., 2024; Schiff et al., 2025). Furthermore, while
the curriculum learning strategy from Sahoo et al. (2025a) closes the likelihood gap between USDMs
and MDM, each curriculum step is computationally more expensive than standard training, resulting
in a slower overall training.

We propose Duo ™ to address these challenges, which expands the design space of USDMs using
non-Markovian superposition posteriors (or as we refer in this paper, U-posteriors). These posteriors
align with the intermediate marginals of discrete diffusion processes and give rise to W-samplers with
predictor-corrector capabilities that are crucial for improving sample quality. In addition, Duo™™
introduces an efficient curriculum learning strategy that advances the approach of Sahoo et al. (2025a)
by accelerating training and reducing memory usage.

In summary, our contributions are threefold: (1) we propose a family of non-Markovian posteriors
(W-posteriors) for discrete diffusion with arbitrary noise priors that share the same marginals as the
Markovian discrete diffusion process (Sec. 3). (2) We demonstrate that the induced W-samplers im-
prove text and image generation quality and scale better than standard ancestral samplers in high NFE
regimes, closing the performance gap with respect to MDMs coupled with remasking samplers in high
NFE regimes for text generation (Sec. 5.1) and surpassing them on image generation tasks (Sec. 4).
(3) We reformulate the curriculum learning strategy proposed in Sahoo et al. (2025a), achieving a 2x
speedup while reducing peak memory usage by 33% and end-to-end training time by 25%, while
maintaining similar perplexity (Figure 1, right, Table 5) and downstream task accuracy (Table 1).

2 BACKGROUND

Notation LetV := {v € {0,1}%: Zfil v; = 1} denote the set of one-hot encodings of discrete
random variables over K categories. Let x € VI denote a sequence of L discrete variables in V
and x' denote the entry /" in x. We use boldface to denote both individual vectors and sequences;
the context will make clear whether a symbol refers to a vector or a sequence. Let A denote the K
simplex. For v € A, let Cat(-; v) denote a categorical distribution such that P(u; = 1) = v;, for
u ~ Cat(-;v),u € V. Let (a,b) and a © b denote the dot and Hadamard products between two
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vectors respectively. Let 1 = {1} denote the all-ones vector. Let € A be a designated categorical
distribution referred to as the prior.

2.1 DISCRETE DIFFUSION MODELS

Consider the clean data sequence x of length L drawn from the data distribution gqa. Discrete
diffusion models (Sohl-Dickstein et al., 2015; Austin et al., 2023) define a sequence of increasingly
noisy distributions (Qt)te[o,u» interpolating from qqu, to a factorized prior distribution, which is a
product of L independent Cat(.; 7v) distributions, using Markovian transitions defined independently
across input dimensions (Campbell et al., 2022; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025;
Schiff et al., 2025; Sahoo et al., 2025a). Let z; ~ Hngl q:(.|x") denote the intermediate latents
(sequence) at time step t. This work focuses on factorized, interpolating noise processes (Sahoo et al.,
2024), whose conditional marginal distribution takes the form:

zi ~ qt(.|x('; ay) = Cat(.; ax’ + (1 — o)), 1

where o; € [0, 1] is monotonically decreasing with ¢, and is known as the noise schedule. (1) defines
the forward process, which progressively corrupts the data. The goal is to learn a generative process
P, parameterized by a neural network with parameters 6, that reverses this forward process to map
from the noise prior back to ggaa. The model is typically trained by minimizing the “Negative
Evidence Lower Bound” (NELBO). The choice of token prior 7 gives rise to two popular variants:
Masked Diffusion Models (MDMs) and Uniform-state Diffusion Models (USDMs), which we discuss
in the following.

2.1.1 MASKED DIFFUSION PROCESSES

MDMs (Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025) use a masked prior, where # = m € V
is the one-hot representation of a special [MASK] token (Devlin et al., 2019). During the forward
process (1), tokens either remain unchanged or transition to the masked state m, after which they
stay masked. This behavior carries over to the reverse process. The posterior of the reverse process

qlsvll?M for 0 < s < t < 1 can be derived using Bayes’ Rule, and would be:

mom, (¢ oy ) Cat (-; Gm2ex + i:zt Zi) if z; = m,
(2, x') = é | @
Cat(.;x") otherwise.
The approximate reverse posterior is pz‘ =11 qlsvll?M(.|zi,x“ = x,(z; " t)) where xg : VI x

[0,1] — AL is the denoising model. A key limitation is that once unmasked, tokens cannot be
remasked (2). This can create compounding errors during inference, as the denoising model xg
imperfectly models the clean data.

Predictor-Corrector Methods Wang et al. (2025) propose posteriors, and associated samplers
(ReMDM) that maintain the same marginals as (2) during the generation process, while allowing
remasking and generalizing previous training-free predictor-corrector methods such as Campbell
et al. (2022); Gat et al. (2024).

2.1.2 UNIFORM-STATE DIFFUSION PROCESSES

Alternatively, discrete diffusion models can use a uniform prior # = 1/K (Schiff et al., 2025;
Sahoo et al., 20252a). This choice allows tokens to change values multiple times throughout the
generative process, in contrast to masked diffusion. This property allows USDMs to excel in few-step
generation (Sahoo et al., 2025a) and guidance applications (Schiff et al., 2025).

USDMs admit the following posterior distribution qEﬁDM (for brevity, we simply write ¢, for
USDM).
qs|t .

, Kouzy ©x" + (ays — an)zp + (as — ae)x’ + (1 — ayo)(1 — a)1/K

L Vi
st (- R =Cat | .; . (3
Gope(- | 20, %) = Ca ( Ko (zy,x") +1— oy @
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This posterior induces the following NELBO (Sahoo et al., 2025a):

NELBO (g, pp; x) = =By 140,1], . (2! 1% 300) Z Az, xp (2L, t), op; x°), %)
Le[L]
where
o ) Ozt/ K K (i(e)l
fzk,xé zy,1),0;x") = = = (C]lz/':x + 1, x) log -—
(a5 (2 )0 X') = oo | 22 = e = (Gl + Tago Z ),

oy (Xp)i 1
- K——1 T — [ (K= 1),y — =1, 1 . (5
1— o og (ig)m z; #x! ( )Ct 7, =x" Ct z| #x! og Ct )
Here, X' = Kayx' + (1 — ay)1, X = Kayxj(zs,t) + (1 — o)1, o denotes the time derivative of
Qy, 1T = arg max;¢[x (zy), is the nonzero entry of z;, (; = and m denotes the index in
x corresponding to 1, that is,x x,,, = 1.

1—ay
Kai+1—ay’

The Diffusion Duality Sahoo et al. (2025a) show that USDMs emerge from an underlying Gaussian
diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020b; Song et al., 2021; Kingma et al.,
2023) on the one-hot representation x’ € V. The Gaussian diffusion begins with x* and progressively
adds Gaussian noise leading to a sequence of noisy latents w, € R¥ ~ ¢, (.|x") for t € [0, 1] with
the marginals:

(x50 = NG ax', (1= aDIk),
where (¢/)¢c[0,1] is a monotonically decreasing noise schedule. Let arg max : RX — V map a

continuous vector v € R to the one-hot vector corresponding to the index of its largest entry in v,
that is, arg max(v) = arg max,cyz ' v. When applied to a sequence of Gaussian latents w, arg max
transforms them to the discrete latents z; whose marginals take the form: z, ~ ¢, (.|x"; a; := T(2,)),
where the function 7 : [0, 1] — [0, 1] is the Diffusion Transformation Operator:

K > Qv _ 1
Teo=gg [ o (s ) e ] ©

where ¢(z) = exp(—2?)/v2m and ®(z) = [ ¢(t)dt are the standard Normal PDF and CDF,
respectively. More formally, this relationship is expressed as:

qi(zs|x" T (01)) = [arg max]« g, (Wi [x"; ) 7

where the x operator denotes the pushforward of the K-dimensional Gaussian density under the
arg max map, yielding a categorical distribution with K classes. Note that while the marginal
distribution ¢ (z;|x; 7 (c;)) matches the discrete-space marginal in (1), this does not imply that
the full trajectory {z; := arg max(w) }+c[o,1) follows a (Markovian) discrete diffusion process
(Sahoo et al., 2025a). An interesting outcome of (7) is that the discrete NELBO (4) can be written
in terms of Gaussian latents in the following manner, where the second arg max is applied to each
token independently:

NELBO (g, pg; x)

= Ex tu(0,1],0, Zf(zf = arg max(w! ), x, (arg max(wy), ), a; := ’T([\,);x‘). (8)
Le(L]

Curriculum Learning Curriculum learning (Bengio et al., 2009) progressively exposes models
to more complex tasks. Sahoo et al. (2025a) propose to optimize a biased but low-variance ELBO
estimator early in training, enabling faster convergence. For the first 50% of the steps, the arg max
operation is relaxed to a low-temperature softmax, replacing discrete token lookups with linear
combinations of embeddings. This yields an easier optimization objective: the resulting embeddings
are superpositions of clean and noisy tokens, which provides a partially clean signal for reconstruction.
Figure 3 (top) illustrates the original curriculum. More formally, Sahoo et al. (2025a) optimize the
following loss during the curriculum phase, where the softmax is applied to each token independently:

L£in — Ex tnti[8,4],0/ Z f(zi := arg max(wy ), Xg (softmax(w; /7), t), ar := T (01); xﬁ). 9)
te[L]
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P - Samplers simplify and generalize previous Predictor-Corrector methods to arbitrary prior 7

Figure 2: W-samplers combine predictor and corrector steps. The predictor transitions from z; to
Zs via s, but fails to remask tokens in MDMs. The corrector steps inject noise via gs, to revise
earlier predictions. For x; < 1, noise injection enables error correction while preserving the forward
process marginals. Our framework simplifies prior PC methods (Campbell et al., 2022; Gat et al.,
2024; Wang et al., 2025) and extends them to arbitrary priors 7.

Notice that £"" in (9) reduces to the NELBO (8) in the limit lim,_,o, for / = 0 and v = 1
since lim,_,¢ softmax(v/7) = arg max(v), as shown by Jang et al. (2017); Maddison et al. (2017).
Formally, for a sequence of latents y € AL (which can be one-hot), inside the neural network,
the input token representation at position £ is computed by matrix multiplication: V "y, where
V € REX™m denotes the vocabulary embedding matrix and m the embedding dimension. This
operation reduces to a standard embedding lookups for one-hot inputs obtained with argmax,
and to a linear combinations with the softmax relaxation. However, explicitly materializing the
high-dimensional latents w; is memory-intensive, an issue we address in Sec. 4.

2.2 DIFFUSION GUIDANCE

For continuous data, diffusion models have achieved state-of-the-art controllable generation through
both classifier-based guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021) and Classifier-
Free Guidance (CFG; Nichol & Dhariwal (2021); Ho & Salimans (2022)). These approaches have
since been extended to discrete data (Gruver et al., 2023). Let y € {1,...,C} denote one of C
possible classes. For CFG, the sampling posterior pg(?), which modulates the strength of the guidance
term via the temperature parameter -, is defined as (Nisonoff et al., 2024; Schiff et al., 2025):

log po ™ (2} | y,2:) = ylogpo (2, | y,2:) + (1 — ) log pe(z, | 0, 2:), (10)

where () denotes no class conditioning, and py is the generative posterior (Sec. 2.1).

3 THE U-POSTERIORS

Multiple joint distributions can give rise to the same marginals as the discrete diffusion process
defined in (1). In this work, we introduce a family of posteriors, denoted ¥, and that share the
same marginals as in (1); see Suppl. A.2 for details. These alternative generative processes are
non-Markovian and apply both to the Masked diffusion processes and to the Uniform-state diffusion
processes. Specifically, we define the posteriors for the generative process as:

\Ils|t('|xé’zé) = KthIt('|ZﬁaX€) + (1 - Rt)({s‘('|xé‘); NS [L] (11)

where x; € [0,1] and ¥y (.|x") = Cat(.|7), with # = m for MDMs and w = 1/K for USDMs.
(11) is thus a linear combination of the forward process (1) and the reverse posteriors (2, 3) of
standard discrete diffusion models. We therefore refer to these as superposition posteriors, or simply
W-posteriors.

W-Forward Processes Consider the interpolating diffusion process in (1) discretized into T’
steps. Let z,(;) denote the latent variables at times ¢(i) = i/7 for 0 < i < T. The distribu-

tion of a trajectory zo.1 factorizes independently over tokens as: ¥(zo.1|x) = [], ¥(z.,|x") where
U(zh,[x") = Uy(z]x") H?:l \I!s|t(z§(i)|zf(i), x"). In what follows, we use s, as shorthand for
s(i), t(i), respectively. The forward process can be derived from Bayes’ rule: ¥(z}|z},x") =
U(z,|z;,x")W(z|x")/¥(z,|x"). Unlike the Markovian interpolating process in (1), this forward
process generally not Markovian, since each z, may depend on both z/, and x".
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Note: top-k entries of wjand w; have exactly the same distribution Improved memory- and compute-efficiency 0.00

Note: The curriculum is applied at each position independently. 7 denotes the position in the sequence.

Figure 3: Efficient Curriculum for USDMs. Duo (Sahoo et al., 2025a) replaces discrete lookups
with linear combinations of all X embeddings: (1) Gaussian diffusion on one-hot representations,
(2) Low-temperature softmax, (3) weighted sum. Duo™ ™ exploits the sparsity of the tempered
softmax (most weights are effectively zero), and simulate the k largest entries (out of K) using ordered
statistics. The approximate normalizer Z admits a closed form expression (13). Duo'™ has a 33%
lower memory and 25% faster training than Duo.

U-Reverse Processes In Suppl. A.1, we show that the approximate reverse posterior takes the form:

[0S0 (-|20)]" = redojs (12, xp (20, 8)) + (1 = o) [sdops (12, Xg (20, 1)) + (1 — )] . (12)
where xy denotes the denoising model. We dub (12) as ¥-sampler. For (k; = l)te[o,l]’ Wwe recover
the standard ancestral sampler defined in (2) for MDMs and (3) for USDMs. Notice that for x; < 1,
WU,; corresponds to a noisier version of the ancestral sampler marginal g,;. This is analogous to
Predictor-Corrector methods in Gaussian diffusion (Song et al., 2021), where the corrector introduces
additional Gaussian noise. In our case, g; plays the role of the corrector, while gy ¢ acts as the

predictor. The W-posteriors also admit a principled NELBO formulation (see Suppl. A.3), though
this is not directly relevant for sampling.

Corollary For py = m, different choices of {; }+c[o,1) recover previous Predictor-Corrector for-
mulations in the literature (Campbell et al., 2022; Gat et al., 2024; Wang et al., 2025) (see Suppl. A.4
for the proof). The ¥ framework thus subsumes these samplers as special cases, extending these
predictor-corrector methods for discrete diffusion with any prior 7.

Intuitive Explanation In practice, the denoiser x, imperfectly models the clean data x. The key
to the effectiveness of W-sampler is the offset term (1 — x;)(1 — a)7r in (12), which enables error
correction during generation. For MDMs (7 = m), this offset allows previously denoised tokens to
return to the masked state, unlike the ancestral sampler, which prevents remasking (see Sec. 2.1.1).
Incorrect tokens can thus be replaced with better ones. For USDMs (7 = 1/K), the offset ensures
every token has non-zero sampling probability. Even if the denoiser assigns near-zero probability
to the correct token, the W-sampler gives it a chance to appear, whereas ancestral sampling would
not. While this offset may occasionally introduce incorrect tokens, the marginals of the W-samplers
(11) match those of the Markovian forward process (1), hence we converge to the correct distribution
given sufficient samples.

4 SCALABLE CURRICULUM FOR FASTER TRAINING

As discussed in Sec. 2.1.2, the curriculum of Sahoo et al. (2025a) accelerates convergence by
replacing discrete token lookups with linear combinations of all K vocabulary embeddings. However,
materializing the K-dimensional weight vectors is memory- and compute-intensive, particularly
for modern LLM vocabularies containing hundreds of thousands of tokens (Touvron et al., 2023;
OpenAl, 2024). We propose an efficient curriculum (Figure 3, bottom) leveraging the key observation
that low-temperature softmax concentrates probability mass on a few entries. Thus, we approximate
the full linear combination using only £ < K embeddings. We explain the three main steps of the
algorithm below. See Algo. 1 for pseudocode and Suppl. B for proofs.
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Table 1: Accuracy on multiple-choice question answering datasets. Abbreviations: Arc-e (ARC-
Easy), Arc-c (ARC-Challenge), HSwag (HellaSwag), WinoG (Winogrande), PIQA (Physical Intelli-
gence Question Answering), OQA (OpenBookQA). TResults from Deschenaux et al. (2025). Duo™™"
(k = 2) achieves slightly higher accuracy than Duo on 4 out of 6 tasks. Overall, Duo™ " matches
Duo’s performance while using 25% fewer flops. The highest accuracy among USDMs is bolded.
The absolute best per column is underlined.

Arc-e  Arc-c  HSwag WinoG PIQA MathQA OQA

AR Transformer 44.95 23.04  30.55 52.80  63.71 22.24 19.00
MDLM' 3426 24.66 31.54 51.93 57.89 20.70 28.60

Duo 28.11 2543  26.46 4720 51.14 20.00 23.40
Duot™ (k=2) 2732 2611 26.26 49.64  52.12 20.40 27.80
Duo™t (k=3) 2828 2500 25.89 47.36  50.65 21.01 23.00
Duot™ (k=5) 28.03 2577 26.90 50.12  51.25 20.20 25.40

Step 1: Sampling Top-% Gaussians Let o denote the integer token value at position £, represented

by the one-hot vector x*. The original curriculum computes the Gaussian-diffused vector w! =

a;x + o.€ where 6; = /1 — ;2 and € ~ N(0,Ix). Thus, entry o has mean &; while all other
entries are zero mean. Instead of simulating K random variables to find the £ < K largest, we
generate them directly via inverse-transform sampling, without materializing the full K -dimensional
vector (Suppl. B.1 and Figure 3.1). We denote by W/ the resulting vector of top-k values. By
construction, W¢ has the same distribution as the k largest entries of the original w*.

Step 2: Approximating the Normalization Constant Computing the softmax normalization
W= 25;1 exp((w?!);/7) requires all K values (Figure 3.2). Since we only simulate k of them, we
approximate the contribution of the remaining /X —k variables by their conditional expectation. This
expectation admits a closed form (Suppl. B.6):

g C—0'2

k
W~ Zexp((v?/ﬁ)i/T) + (K —k) 5 log ®(¢/0) + log ®(
i=1

) 13)

= Elexp(Z/7)|Z<c]
where c is the smallest of the top-k values, Z ~ N (0, a¢), and ® is the Gaussian CDF. We use
the conditional expectation Elexp(Z/7) | Z < c] because the K —Fk non-simulated variables are
all smaller than the top-k. In Suppl. D.2, we verify empirically that the k largest softmax weights
computed our approximation closely match those obtained by naive simulation of all K variables.

Step 3: Combining Embeddings To select which token embeddings to combine (Figure 3.3), we
exploit symmetry: all entries in w! (the Gaussian-diffused vector) except o are identically distributed,
so any index in [K] \ {o} has the same chance of being in the top-k. We check whether the true token
o falls within the top-k by comparing its diffused value (with mean ;) to the k-th largest zero-mean
Gaussian. If so, we include o and sample k—1 indices randomly without replacement; otherwise,
we sample k indices. This is done efficiently without shuffling (Suppl. B.2.3), thanks to Floyd’s
algorithm (Bentley, 1999). With the indices, weights, and approximate normalization, we compute
the weighted sum over only £ embeddings. In practice, k=2 suffices (Table 2).

5 EXPERIMENTS

We evaluate Duo™ " with W-samplers on language modeling (Sec. 5.1.1) and image generation
(Sec. 5.1.2), showing that ¥-samplers substantially improve text and image quality, making USDMs
as performant as MDMs. In Sec. 5.2, we further demonstrate that, thanks to its efficient curriculum
strategy (Sec. 4), Duo*™ achieves performance comparable to Duo (Sahoo et al., 2025a)the current
state-of-the-art USDM-while reducing memory usage by 33% and training 25% faster.

5.1 W-SAMPLERS

We evaluate the WU-samplers on language and image modeling tasks to demonstrate their applicability
across modalities.
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5.1.1 LANGUAGE MODELING

Our experiments indicate that (1) ¥-samplers substantially improve Generative Perplexity (Gen.
PPL) for USDMs, with gains becoming especially pronounced once the NFEs exceed the sequence
length, and (2) unlike ancestral sampling, which quickly plateaus with increasing NFEs, U-
samplers continue to yield improvements in sample quality.

Experimental Settings We compare MDLM (Sahoo et al., 2024) and ReMDM (Wang et al.,
2025) with Duo™™ and W-samplers. We use the original checkpoints of Sahoo et al. (2024), trained
for 1M steps with a batch size of 512 on OpenWebText (OWT; Gokaslan & Cohen (2019)) and
context length L = 1024. Duo™ ™ is trained with the same context length, batch size and number
of steps, but with the efficient curriculum. We distill the MDLM and Duo checkpoint using SDTT
(Deschenaux & Gulcehre, 2025) and DCD (Sahoo et al., 2025a) respectively, for 50k steps and default
hyperparameters. Refer to the original works for more details. We measure the sample quality using
the Gen. PPL computed with GPT-2 Large (Radford et al., 2019) and the diversity the using the
unigram entropy (Dieleman et al., 2022; Sahoo et al., 2024; 2025a). We cast logits to 64-bit precision
for sampling (Zheng et al., 2025). See Suppl. C.1 for more details.

Results Figure | (left) shows the Gen. PPL and the entropy as a function of the NFE, for the
ancestral and U-samplers. Duot ™ with U-samplers outperforms MDLM with ReMDM and ancestral
samplers across the entire range of NFEs. As the number of NFEs increases beyond the sequence
length, ReMDM and U-samplers further improve the sample quality while ancestral sampling
plateaus.

How to choose x; ? We use the ReMDM-equivalent «; schedule

(proof in Suppl. A.4), with the log-linear schedule. Following Wang  1.00{ == ========-=
et al. (2025), we use nucleus sampling (p = 0.9) in the main body,
and defer additional settings (such as without nucleus sampling, and
with distilled checkpoints) to Suppl. D.1). We set ¢ and ; using  0.50
two related heuristics, visualized in Figure 4. With the first heuristic, ¢ 55
t is linearly decreasing. With the second heuristic, ¢ is linearly —— g
decreasing when ¢ € [0, toff] U[ton, 1] and constant when ¢ € [tofr, ton) 0 280 560 750 1000
(the “loop” strategy from ReMDM). The rescale schedule (without Num. sampling steps
“loop”) achieves the best Gen. PPL while maintaining high unigram

entropy, as shown in Figure 1. Numerical results for different choices Figure 4: Illustration of the
of k are provided in Suppl. D.1. evolution of ¢ and the asso-
ciated x; under the loop and
linear ¢-decrease scheduling
strategies (Wang et al., 2025).
In practice, we use ~; close to
| during the PC phase.

0.75

—— Lineart
Loop t

0.00

5.1.2 IMAGE MODELING

Our experiments indicate that Duo*™ with U-samplers produce
images of significantly higher quality than MDLM with the
ancestral and ReMDM sampler.

Experimental Setup We train the same 35M parameters U-Net

(Ronneberger et al., 2015) as Austin et al. (2023) on raw pixels on CIFAR-10, for 1.5M steps, with
a global batch size of 128. We use a learning rate of 2 x 10~4, a dropout rate of 0.1, and random
horizontal flips as the only data augmentation. Following Schiff et al. (2025), the U-Net is made
class conditional, and we train with a class dropout probability of 0.1, and sample with Discrete
Classifier-free Guidance (CFG; Ho & Salimans (2022); Schiff et al. (2025)). See Suppl. C.1 for more
details. We report the Fréchet Inception Distance (FID; Heusel et al. (2018)) and Inception Score (IS;
Salimans et al. (2016)) between the training set and 50K samples generated with guidance strength

v=1.

Results Figure | (right) and Figure 5 shows that ¥-samplers and ReMDM subsantially improve the
FID and IS, respectively, compared to ancestral sampling. Overall, Duo™ " with W-samplers reaches
the best FID and IS.
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How to pick x;? All results are provided in Suppl. C.1.
For both MDLM and Duo, using the cosine noise sched-
uler during sampling is best. For Duo, using x; = 0.95,
ton € {0.5,0.6}, and tor = 0.1 reaches the best FID. For
ReMDM, using «; = 0.99 with ¢,, = 1.0, and tor = 0.1
is best. These hyper-parameter indicate that a light but con-
sistent noise injection throughout sampling is best, with
Duo™™ tolerating stronger noise injection than MDLM. ¢

Inception Score

Indeed, recall that x; = 1 represents the standard ances- fe o
tral sampler, and that decreasing values of x; represent T e v sampter
increasingly noisy distributions. 732 e 18 256  siz 1024 2088 409

NFE

5.2 FAST CURRICULUM Figure 5: W-samplers, which generalize
ReMDM, significantly improve the In-

Our experiments show that with the efficient curriculum ception Score on CIFAR-10, compared

learning strategy in Sec. 4, Duo*™ trains 25% faster and to ancestral sampling.

matches Duo and on standard likelihood benchmarks

and downstream tasks.

Experimental settings We train Duo™ " with the scalable curriculum (Sec. 4) on OpenWebText
(OWT; Gokaslan & Cohen (2019)) and LM 1B (Chelba et al., 2014). We train all models for 1M
steps, using a batch size of 512. For LM 1B, we use the bert-base-uncased tokenizer with a
context length of 128, padding shorter sequences. This setup follows previous work (Sahoo et al.,
2024; Lou et al., 2024; He et al., 2022). For OWT, we use the GPT-2 tokenizer (Radford et al., 2019),
and reserve the last 100k documents for validation, following (Sahoo et al., 2025a; 2024). We follow
Lou et al. (2024) and use a modified diffusion transformer (DiT) (Peebles & Xie, 2023) with rotary
positional encoding (Su et al., 2023). We evaluate the impact of k = {2,3,5} during the efficient
curriculum. All models are trained on 16 HI00 GPUs with bfloat16 precision. Training uses the
loss in (9), with 7 = 0.001 for the first 500K steps and (3, ) = (0.03,0.15) (Sahoo et al., 2025a).

Likelihood results Table 2 shows Table 2: Test perplexity (PPL) on LM1B and OWT. Lower
that on both LM 1B and OWT, our effi- is better. fResults from Sahoo et al. (2025a). Best Uniform-
cient curriculum Duo™ ™t matches the state diffusion numbers are bolded. Duo and Duo™ " achieve
performance of Duo with its expen- comparable performance across both datasets while requiring
sive curriculum. The lowest valida- 25% fewer GPU-hours, demonstrating the effectiveness of
tion perplexity is achieved with £ = 2, our memory-efficient curriculum.

although k € {2, 3,5} performs sim-

ilarly. LM1B OWT
We also compare the models trained Autoregressive

on OWT in Zero-Shot perplexity, and Transformer! 223 17.5
find that Duo™™ achieves a perfor- Masked Diffusion

mance comparable to Duo. That is, SEDD Absorb’ (Louetal,2024) 327  24.1
we evaluate ont the validation splits MDLM! (Sahoo et al., 2024) 270 232
of the Penn Treebank (Marcus et al.,

1993), WikiText (Merity et al., 2016), Uniform-state Diffusion

LMIB (Chelba et al., 2014), LAM- SEDD Uniform® (Lou et al., 2024) 40.3 29.7
BADA (Paperno et al., 2016), AG UDLMT (Schiff et al., 2025) 313 27.4
News (Zhang et al., 2016) and scien- DuoiJSSahoo et al., 2025a) 29.9 25.2
tific articles from ArXiv and PubMed Duo N (Ours), k = 2 30.0 25.2
(Cohan et al., 2018). Table 5 shows Duo ™" (Ours), k = 3 30.1 25.3

++ _
that Duo™ " reaches a zero-shot prob- Duo™ (Ours), k = 5 302 254

ability similar to that of Duo while
requiring 25% less training GPU-hours.

Downstream Tasks In Table |, we compare the multiple-choice question (MCQ) accuracy of Duo,
Duott, MDLM (Sahoo et al., 2024), and an autoregressive transformer (1M training steps with
a batch size of 512 on OWT, same hyperparameters as MDLM) using the lm-eval-harness
suite (Gao et al., 2024). Although 1lm-eval-harness was originally designed for autoregressive
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models, it was adapted for diffusion models by recent work (Deschenaux & Gulcehre (2024); Nie
et al. (2025b;a); Shi et al. (2025) ; details in Suppl. C.3). We find that Duo™™ achieves an accuracy
similar to that of Duo, despite requiring 25% less training GPU-hours.

Throughput and peak memory usage Table 4 reports the throughput and peak memory usage for
Duo and Duo™ ™. Duo™*™ reduces the peak memory usage by about 33% and doubles the speed of
the Curriculum Learning phase. When applying Curriculum Learning for half of the training steps,
Duo™™ trains 25% faster than Duo on the 138M-parameter scale. Notably, both peak memory usage
and throughput remain stable over the full training run when &k € {2, 3,5}.

6 RELATED WORK

Discrete diffusion models Discrete diffusion (Sohl-Dickstein et al., 2015; Austin et al., 2023;
Campbell et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Schiff et al., 2025; Ou
et al., 2025; Sahoo et al., 2025a) and discrete flow matching (Campbell et al., 2024; Gat et al., 2024)
have recently gained increasing attention due to advances in their foundations and more efficient
implementations. Most discrete diffusion and flow matching methods use a uniform or masked noise
distribution, although Shaul et al. (2024); von Riitte et al. (2025); Holderrieth et al. (2025) have
explored more general processes. In this work, we present a general predictor-corrector algorithm for
interpolating discrete diffusion with arbitrary noise.

Predictor-Corrector samplers Previous work showed that remasking can improve performance
by allowing the model to correct sampling errors. ReMDM (Wang et al., 2025) generalizes previous
predictor-corrector methods (Campbell et al., 2022; Gat et al., 2024) in the masked setting. Our
approach further generalizes ReMDM to support arbitrary diffusion processes. Unlike [.ezama et al.
(2023); Zhao et al. (2025); Liu et al. (2025), who train an additional corrector module, our method
does not introduce additional learned components.

Other discrete diffusion samplers Park et al. (2024) adapts the sampling step size to the noise level
to outperform samplers that use a fixed step size. Although we use a uniform step size, our sampler
remains compatible with any step-size schedule. Ren et al. (2025) studies high-order sampling
algorithms, whereas we rely on first-order information only. However, the posterior in (11) could be
estimated using high-order samplers. Thus, ¥-samplers are complementary to these lines of work.

7 CONCLUSION

We introduced a unified and practical framework for predictor-corrector sampling in discrete diffusion
language models through W-posteriors. By linearly superposing the forward and reverse diffusion
processes (1 1), the W-posteriors preserve the marginals of standard diffusion models. Importantly, the
W-posteriors, and associated W-samplers subsumes prior masked-diffusion PC samplers (Campbell
et al.,, 2022; Gat et al., 2024; Wang et al., 2025) as special cases, and naturally extend to discrete
diffusion models with uniform prior. Empirically, Duo™ " with W-samplers matches the performance
of MDMs on natural language generation and achieves stronger FID and IS scores on CIFAR-10.
Moreover, they exhibit superior scaling: performance continues to improve with NFEs, unlike
ancestral samplers, which plateau. Finally, we propose a scalable training curriculum (Sahoo et al.,
2025a) that reduces the peak memory usage by 33% and shortens the training time by 25%.
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A U-POSTERIORS

A.1 APPROXIMATE REVERSE MARGINALS

We parameterize the (generative) W-reverse marginals to have a similar form as the true posterior (11).
Therefore, the generative reverse marginals also factorizes over the sequence length. Because x' " is
not available during sampling, there are two terms in (11) that are intractable. First, we choose to
replace the posterior qs|t(.|zt, ) by g (- |zy,x" = x},). Additionally, as we cannot sample from
s(.|x") without x*, we replace x* by qoj¢(-|2¢, x' = x|)), V¢ € [L]. Replacing these two intractable

terms yield our generative reverse marginals:

\Ilz‘t(.|zt) = K Qs (|26, X = Xo(2¢,1)) + (1 — K¢) [asqmt(.|zt,x =xp(2z¢, 1)) + (1 — as)ﬂ .
(14)

Note that for the masked posterior (2), qo¢(.|z¢, X = Xo(2¢, 1)) = Xg(2¢, 1).

A.2 PROOF THAT THE W-POSTERIORS HAVE THE CORRECT MARGINALS

Let W,;(.|x",z,) denote the W-posteriors defined in (I1). Let s denotes s(k) = ¢(k — 1) and ¢
denotes t(k). To prove that the U-posteriors have the correct marginals, we proceed by (downwards)
induction, similar to Song et al. (2022). First, note that ¥ (z’ |x") can be written as a marginalization
over z,, for s < t:

) =D Wz X)L (22, %) (15)

Base Case Let U (z!|x") denote the marginal at time ¢ = 1. By definition in (11), ¥y (z}|x") =
Cat(.|7). Therefore, the W-posteriors have the correct marginal for ¢ = 1.

Induction hypothesis Suppose that the U-posteriors have the correct marginal for a certain t < 1,
that is, Uy (.[x") = ¢;(.]x").

Inductive step Based on the induction hypothesis, we now show that ¥,(.|x") = ¢.(.|x"), for
s(k) = t(k — 1). Indeed

) 1) ) ~
S & Zwazﬂx‘)wsu(zﬂz;,x‘)

(2
Z%‘ Z/|X s|t(

(€] ~0 )~ )0

= th(z;IX‘) [easie (2l 1x", 27) + (1 — kp)as (20 |x )]

(4) .

= ki (Zt(zﬂxé)qs\t( |X z ) (1 = ke)gs(z |X Z(Jf Z,|X

P2

x')

t

(5) , ,
= reds(2[x) + (1= k) s (2]x") = g4 (20 [x").

Specifically, (1) hold by (l 5), (2) by the induction hypothesis, (3) by definition of the ¥-posteriors,
(4) by d1str1but1ng q:(z; |x ), (5) by definition of marginal probability (first term), and by observing
that 3 ;. g (z!|x") = 1 since ¢; is normalized. This concludes the inductive step, and shows that the

v- posterlors have the correct marginal.

17
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A.3 NEGATIVE EVIDENCE LOWER BOUND

Let z, denote areverse trajectory with time indices {O7 T T, ..., 1} for token ¢. The joint distribu-

tion of (x ,z}.,) under the generative model factorizes as

T
P'(x',20.0) = p(x" | 7)1 (2 H\I’s\f |z/ ) (16)
=1
where each pair (s(4), ¢(:)) denotes one reverse transition with s(:) < ¢(¢). The marginal likelihood
is
= Zpe(xlazf):'l)- amn
z,

Introducing the variational distribution W(zf, | x) = W1(z} | x")[[,Z, Yau(2! ) | 2/, %),
Jensen’s inequality results in:

—logp”(x') < By ey [ —logp(x" | 2)] + KL(Wy(- | x)[|¥y) (18)
T

Y Bag ey | Do (Wael 12l x) |90, L 2l) | a9)
1=1

This expression is similar to the standard diffusion NELBO, with a reconstruction term, a prior
term at t=1, and a sum of KL divergences. As T — oo, p(x' | z{,) concentrates around x', hence
—log p(x’ | /) — 0. Furthermore, the prior term is zero by definition of the W-posteriors in (11).

A.4 RECOVERING PREDICTOR-CORRECTOR METHODS FOR MASKED DIFFUSION

Suppose that we work with masked diffusion, hence m = m. The W-posteriors can be expanded as

‘I’s|t(~|Z;) = ke (|z, x") + (1 — Ky) [Oés(]()\t(-|zfy><{) + (1 — ay)7] (20)
Cat(.;z)), ‘ z, #m,
=t { o <.; (1 —as)m+ (o — at)x’) a=m + (1 = ) [osx” + (1 — o5)m)]
1-— Qg
2D
[ cat), A A m
= K9 cat ('; (1—as)m + (ag — at)xé) gl=m + (1= &) [esx” + (1 — a5)m]
1— oy )
(22)
Cat(.; kex" + (1 — K¢)[asx” + (1 — ag)ml]), z. #m
~ ) Cat (.; (- m)nlﬁg’“_at)x + (1 — ky)[asx” + (1 — as)m]> , 7z =m 23)
Cat(.; [r¢ + (1 — ky)as)x" + (1 — nt)(l — ag)m), z. #m
Cat (.; {mt G2 4 (1 - m)as} x' + [/1 1= o+ (L —r)(1 - as)} m) , z=m’
(24

where (1) holds z| # m implies that z/ = x', since in masked diffusion, the latents z, are either a

clean token or the masked token.

To conclude, if we pick x; =
then the equation reduces to the ReMDM posterlor Therefore, the W-posteriors generalize ReMDM
which itself generalized the FB (Campbell et al., 2022) and DFM (Gat et al., 2024) posteriors.
Additionally, the W-posteriors are not limited to masked diffusion, as we showed in this work.

B FAST CURRICULUM

In this section, we expand on the implementation of the efficient curriculum. In Sec. B.2, we focus
on the overall design and challenges of the curriculum. The soundness of our approach relies on a

18
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various mathematical results, which we also elaborate on in this section. Specifically, our efficient
curriculum uses inverse transform sampling (Sec. B.3) and the Cumulative Distribution Function
(CDF) distribution of the largest (Sec. B.3) and second largest (Sec. B.5) uniform random variable.
Furthermore, we derive an analytical expression for the conditional mean of the exponential of a
Gaussian random variable in Sec. B.6.

Furthermore, although the efficient curriculum could be implemented using the original definition of
the Diffusion Transformation Operator 7, we show that 7 admits a convenient series expansion in
Sec. B.7. This avoids the need to precompute 100k function values, and simplifies the implementation.
Finally, in Sec. B.8, we show that 7 can be well approximated by a degree-9 polynomial, which
removes the need to store a large number of coefficients during training

B.1 GENERATING THE K LARGEST GAUSSIAN RANDOM VARIABLES OUT OF K

We show that it is possible to generate the k largest Gaussian random variables out of K via inverse
transform sampling (Suppl. B.3) as follows.

Given a single uniform random variable U ~ 1[0, 1], one can obtain a standard Gaussian random
variable W = <I>’1(U ), where @ is the Gaussian CDF, via inverse transform sampling. Now
assume we have a sorted list of K uniform random variables Uy > Uy > ... > Ug. Since ® is a
monotonically increasing functions, the largest uniform random variable, U;, is mapped to the largest
Gaussian random variable, i.e. ®~1(U;) is distributed as the largest Gaussian random variable out of
K.

As shown in Prop. B.1 the CDF of the largest uniform random variable out of K has an analytical
solution. For u € [0, 1], P(U; < u) = uf¢, hence it can be generated via inverse transform sampling.

Furthermore, the distribution of the second largest, conditioned on U; = u; also admits a closed
form solution (Suppl. B.5): for us € [0,uy], itis given by P(Us < us|U; = uy) = ué(*lul_(K_l),

i.e. it is distributed as the largest uniform variable out of K — 1, supported on [0, u1].

Finally, P(Us < ug|Us = ug,U; = u1) = P(Us < u3|Us = us). Indeed, since Uy < Uy, it does

not matter what value U; takes, since Us < Us. Therefore P(Us < ug|Us = ug) = u3K72u2_(K_2)

i.e. the largest uniform out of K — 2.

)

More generally, the same argument shows that conditioned on U; = u;, the random variable U, is
distributed as the largest uniform variable on [0, u;] out of &K — ¢ + 1. This shows that we can sample
Ui, ..., Uk in decreasing order and without simulating all the K variables. Finally, the k largest U;
can be transformed into the k largest standard Gaussians out of K as {&®~1(U;)}r_;.

B.2 How 1O IMPLEMENT OUR FAST CURRICULUM

Duo’s curriculum is expensive While Duo (Sahoo et al., 2025a) converges to lower validation
perplexities than UDLM (Schiff et al., 2025), the curriculum phase of Duo is expensive. Indeed, it
materializes a Gaussian-diffused vector of size B x L x K, where B represents the batch size, L the
context length, and K the vocabulary size. The Gaussian vector is normalized with a low-temperature
softmax. Directly sampling a tensor of shape B x L x K, applying the softmax, and multiplying
by the embedding table is computationally and memory intensive, especially for large vocabularies,
as the tensor size scales with K. Since Sahoo et al. (2025a) use a low-temperature softmax, only a
few entries are nonzero. This observation motivates our solution: approximate sampling of the top-k
nonzero entries, with k < K.

Three Challenges To approximate Duo’s curriculum, we must address three main challenges:
* First, we need to sample the k largest zero-mean Gaussian random variables out of K, to
emulate the Gaussian Diffusion over the one-hot data samples x (Sec. B.2.1).

» Secondly, we must estimate the normalization constant of the softmax, without actually
sampling the K random variables (Sec. B.2.2).

* Third, we require an efficient method to sample £ distinct integers from K without replace-
ment (Sec. B.2.3).
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Algorithm 1 Scalable Top-k Approximation for Curriculum Learning

Input Clean token value x, vocabulary size K, top-k parameter k, inverse temperature 7, Gaussian
schedules oy, oy
Output Softmax weights X € [0, 1]*, top-k indices %, index of the largest variable z;.

{zéi)}le < sample_top_gaussians(k, K — 1,0,0;) > Algo. 2.
Zo ™ N(ozt, Ut) > Diffusion at the clean data index.
Ztop — top-k ({ZQ} ] {Zol)}) > Keep the top k.
< E[exp(z . T) | z < min(ZtOp)} for z ~ /\/(0, Ut) > For normalization, Prop. B.5
:5' — Z?:l exp(Z[(ozg - T) > S will contain the softmax normalization constant.
if 2, € Zi, then

S+ S+ (K—ku > Approximate non-simulated variables with their conditional mean.

X « [z]Usample_neq x(k —1) > Indices of the top k, Algo. 2.
else

S+ S+ (K—-—k—-1pu+exp(zq-7)
X < sample_neq_x(k)

end if )

A <—exp(ZtEfg -7)/Sfori=0,...,k—1

Zy <— argmax; Z[(Olg > Index of the top 1.
return \, X, z;

Recall that Algo. | shows the pseudocode of the algorithm.

B.2.1 SAMPLING THE TOP £ OUT OF K NORMAL RANDOM VARIABLES

Libraries such as numpy and pytorch provide accurate approximations of the Gaussian CDF
® and its inverse ®~!, allowing us to generate Gaussian random variables via inverse transform
sampling (Sec. B.3). To sample K Gaussians, we could naively inverse-transform K uniform random
variables. Crucially, because ® ! is monotonic, the k largest uniforms correspond exactly to the k
largest Gaussians.

Finally, and importantly, we do not need to simulate all K uniform random variables to obtain the
top-k. The largest uniform out of K has a closed-form CDF with an analytical inverse (Sec. B.1).
Moreover, the second largest, conditioned on the largest, is itself uniform with a reduced support
(Sec. B.5). Thus, the top-k uniforms can be sampled sequentially, by first drawing the maximum,
then iteratively sample the remaining values in decreasing order.

In practice, a naive implementation of inverse transform sampling is numerically unstable when K is
large. For stability, operations should implemented in log-space, and Algo. 2 shows the pseudocode
for a log-space implementation

B.2.2 ESTIMATING THE NORMALIZATION CONSTANT OF THE SOFTMAX

Computing the normalization constant of the softmax,

softmax(z); = M, (25)

S expl(;)

requires access to all values {a:j }5{:1 However, because K is large, we do not wish to simulate
all K random variables, and therefore cannot compute the softmax normalization constant exactly.
Fortunately, we find that when K is large, the contribution of each non-simulated random variable is
well approximated by E[exp(X) | X < ¢], where X ~ N (0, o) and c is the smallest among the top &
random variables that we have simulated. Recall that the analytical expression of E[exp(X) | X < ¢]
appears in (13) (proof in Suppl. B.6)
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B.2.3 SAMPLING INTEGERS WITHOUT REPETITIONS AND WITHOUT SHUFFLING

Suppose that x denotes the one-hot vector of category ¢. By symmetry, after after applying Gaussian
diffusion to x, all entries x; such that j # 7 follow the exact same distribution. Therefore, they have
the same probability of being one of the top & largest random variable.

To implement the curriculum, we must not only approximate the weights of the embedding combina-
tion but also select which embeddings to include. Concretely, we sample k random indices without
repetition excluding i. If the random variable at position ¢, corresponding to the clean token, belongs
to the top-k, we replace one of the sampled indices with 7. Otherwise, we use the k& sampled indices
directly.

A simple way to sample k random indices without repetition is to shuffle a list of K integers and take
the first k. However, this defeats the purpose of our efficient curriculum, as it requires materializing
large tensors. Instead, Floyd’s algorithm (Bentley, 1999), given in Algo. 3, samples without repetition
while avoiding shuffling. Although sequential with k iterations, it is much faster than shuffling when
k< K.

B.3 INVERSE TRANSFORM SAMPLING

The Inverse Transform Sampling method (Devroye, 1986) is an algorithm for simulating continuous
random variables with a known Cumulative Distribution Function (CDF) F'x. Implementing Inverse
Transform Sampling requires access to the inverse CDF F'y'!, and a source of i.i.d uniform random

variables. If X = F5*(U), where U ~ U0, 1], then X ~ Fx. Indeed,
P(X <) =P(F'(U) <2) = P(U < Fx(v)) = Fx(2), (26)

since for a € [0, 1], P(U < a) = a. This shows that X has the correct distribution.

B.4 DISTRIBUTION OF THE LARGEST RANDOM UNIFORM VARIABLES OUT OF K

Additionally, the distribution of the largest uniform random variable out of K admits a simple
closed-form expression:

Proposition B.1 (Distribution of the largest random uniform random variable out of K). U1 >
U@ > .. > U%) denote an order statistic over K i.i.d uniform random variables U([0, 8]) with

Cumulative Density Function (CDF) Fy. Suppose that u € [0,1], then Fy(u) = 4. Then, the

CDF Fy;1y and probability density function (PDF) fi;a) of the largest random variable U M are as
follows:

Fyoy(u) = FE(u) = uX0~%

K—1 (K-1) (27)
foo (w) = KFG " a) fu(z) = KFy(2) f(z) = Ka®7107F
Proof.
Fyoy(u) =P(UY <) =PU; <uVi)=PU <u)X = Fff(u). (28)
The PDF is obtained by differentiation:
d
fow (@) = — Fya (u) = KFg ™ (u) fo(u), 29)
O

B.5 DISTRIBUTION OF THE SECOND LARGEST UNIFORM RANDOM VARIABLE OUT OF K

We use Prop. B.2 to find the distribution of the second largest uniform random variable out of K:

Proposition B.2 (Conditional Density (Berger & Casella, 2001)). Let X,Y be two random variables
with joint density fx y and marginals fx, fy. Then, the conditional density of X given'Y =y is

_ fxy(y)
Ixy=y(zly) = TRy (30
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Furthermore, the proof relies on the distribution of a pair of order statistic (X *), X()):

Proposition B.3 (Joint Density of Order Statistics (Berger & Casella, 2001)). Let X(N) > . > x (1)
denote an order statistic over N random variables with CDF F' and PDF f. Then, the joint density
of the variables X*) and XV, where k < 1 is given by

fxoo xo(u,v) =
N!
(=D — k=D =1)!

Fu)' " (F(o) - F) (1= F@)V f)f). O

See Border (2021) for a proof. Finally, using Prop. B.2 and B.3, we prove the main result:

Proposition B.4 (Conditional Distribution of U5 1) given US)), Let U¥) > ... > UM denote
the order statistics of K independent and uniformly distributed random variables on [0, 0], arranged
in descending order. Conditioned on U) = z, UK=Y s distributed as the largest of (K—1)iid
uniform random variables on |0, z].

Proof. From Proposition B.3, the joint distribution fy -1 yw)(u,v) is given by

N - n— —-n
v x0 (0,0) = g PP @) @) () = NV = D267 (2)
Using Proposition B.2, we can conclude:

i (1] o) = TxED X0 0) | NN = DuV 2
- u|v) = —
X(N-1)| x (M) Fxan (v) NoN—-19—N (33)

— (N — 1)uN=2)y(N=1),

which is precisely the density of the largest out of N — 1 independent uniform random variables on
[0, v]. O

B.6 CONDITIONAL MEAN OF THE EXPONENTIAL OF A GAUSSIAN
Finding the analytical expression of E [exp(X)|X < ¢] requires the expression for the conditional
density, given that X € A for A are Borel set with non-zero probability:

Proposition B.5 (Conditional Density). Let X be a random variable with density fx, and let A be a
Borel set such that P(X € A) > 0. Then the conditional density of X given X € A is

B fx(@)l{z € A}'

= 34
Ixixea(z) P(X € A) (34
Proof. Since X admits the density fx, for any Borel set B C R we have
P(X € B) :/ fx(x)dz. (35)
B
By definition of conditional probability, whenever P(X € A) > 0,
_P(XeBnA)
Using the density representation of the numerator gives
fx(z)dx
P(XeB|XeA)=2804__ 7
(X eB|Xed)=Tpd G7)
Define L 4
S
ooy = LT EA (o ) (38)

P(X € A)
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Then for every Borel set B

1
/Bg(:r)da: = PXcA) /BmA fx(x)de =P(X € B| X € A). (39)

In particular, choosing B = R yields fR g(z)dz = 1, so g is a valid probability density. Hence g is a
density that realizes the conditional probabilities, i.e. g = fx|xca- [

After proving Prop. B.5, we can prove that

log Efexp(X) | X < ¢ = % —log ®(c/c) + log D(-—2). (40)
Proof.
Elexp(X) | X < ]
_ [ _Jx(@)
—/_ooexp(x)P(X - C)dx
1 ¢ 1 x?
:7(0/0) [m exp(z) s exp( o 2> dx
1 x? d
( )RY, 271'02 / ( z T :c) !
1 1
(c/o) \/271'0'2 eXp ( 20 5p2 (0~ 200w 4ot 04)> e
_exp(0?/2)
B(c/o) TWQ / ( (x —o? ) dx
exp(02/2 c—o?
(C/U) o
O
Applying a log on both sides yields
_ 2
logElexp(X) | X <] = % —log ®(c/o) + log @(C 7 ), 41)

which is the expression in (13).

B.7 SERIES REPRESENTATION OF 7 AND 0,7

We begin by station the Series expansion for 7 (Prop. B.6) and its time-derivative 9;7 (Prop. B.7):

Proposition B.6 (Series Expansion of the Diffusion Transformation Operator). The diffusion trans-
formation operator T can be expressed as:

K 2 0 e U 1
~ _ _Vf,/2 i -
T(ozt)—Kil e Eon!M” e (42)

_ & _ (> K-1
v = \/10‘7’7% and M, = [~ 2"¢(2)®" 7 (2)dz.
Proposition B.7 (Time-Derivative of the Diffusion Transformation Operator). The time-derivative of
the diffusion transformation operator T can be expressed as:

K-evi/2 a; v
—7’( D=5 liatg/gz : M,] (43)

where vy and M,, are defined as in Prop. B.6. Finally, I, = [~ 2" ¢(2)®"~(2)dz, and &
denotes the time-derivative of the Gaussian noise schedule ¢.
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At this point, one might ask what is gained by expressing 7 as a series expansion. There are two key
advantages. First, since 7 is intractable, Sahoo et al. (2024) resort to precomputing 100k evaluations,
which can take up to two hours with the GPT-2 tokenizer. Second, they approximate the time
derivative using finite differences. Crucially, observe that M,, and I,, in Prop. B.6 and B.7 are the
only intractable components of the series expansion, and they are independent of the input &;. We
find that the terms of the series decay to zero after roughly 150 terms (with slower decay as ¢ — 1).
Thus, instead of pre-computing 100k evaluations of 7T, it suffices to cache M,, and I,, for n < 150.
In practice, this takes only a few seconds and can be performed at the start of training. We now prove
Prop. B.6 and B.6.

B.7.1 PROOF OF PROPOSITION B.6

To prove the result, we rely on the following proposition:

Proposition B.8 (First Corollary of the Dominated Convergence Theorem (Folland (1999), Theorem
2.25)). Ifthe sumy_~_ fn(x) exists for all x and there exists an integrable function g(x) such that

k
n=0

(44)

for all k, then

/ an )dz =Y / folz (45)

We now prove Prop. B.6 using Prop. B.8:

Proof. Recall that the standard Gaussian PDF is given by

o(x) = ——e /2. (46)

1 1
(j)(x — Vt) = e*(wfl/t)2/2 _ 767(w2,2utw+uf)/2 _ ¢(x)euta:€7ut2/2’ (47)

Using the definition of the infinite series of e”, we can expand e”*”:

Olo — 1) = d(a)e™1/2 Y0 Ao, (48)

n=0

Substituting this into our original integral:

/ b (z — 1) DE1(2 dZ*/ B(z *”2/22 @Kl (2)dz (49)

Since Prop. B.8 is satisfied, as the sum is the Taylor series of the exponential function, we can
exchange the order of integration and summation. This leads to our final result:

/ b (2 — 1) PET1(2) z—e’”fmzyt/ 2)®K 1 (2)dz
n=0
o (50)
= e vi/2 iMn
= n!
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B.7.2 PROOF OF PrROP. B.7

Once again, we need to exchange the order of operations to prove Prop. B.7, which relies on Prop. B.9:

Proposition B.9 (Second Corollary of the Dominated Convergence Theorem (Folland (1999), The-
orem 2.27)). Let f(x,t) be differentiable in t and suppose there exists a function g(x,t) such
that:

1. ‘%‘ < g(z, to) for all x and t in some neighborhood |t — to| < dp

2. [% g(x,t)dx < oo forall t

d [ [ Of(x,t)
£/700 f(;t,t)claz—/iOo e dx (5D

Then

In our case, we have

Qy

f(x,t):(b(Z_M

) OF T z) = (2 — 1) @5 1(2) (52)

which has time derivative
(2 =)oz — 1) L1
TETIEE d (2). (53)
Therefore, we need to find a suitable function g that satisfies Prop. B.9 to justify swapping the order
of integration and differentiation.

Proof. Let1 > §y > 0 and choose ty = 1}50. When |t — to| < g, we have ¢ € [tg — g, to + do.

Since tg — dg < tg < 1 and ty + &g = 1_250 + 8o < 1, we are guaranteed that t < 1. This ensures

that 14 is finite. Because i € [0, 1) when ¢ < 1, there exist a constant C, such that

1
‘= max -—————
t—to| <50 (1 — a?)3/2

< 0. (54)

For z € R and |t — to| < 09, we can bound the absolute value of the time derivative of f as follows:

f(z, -1 _
0 = G ot 0w

< Clz —v|o(z — 1) = g(z,t).

Finally, for all ¢ € [0, 1):

/OC g(z,t)dz = C/Oo |z — v|op(z — vy)dz = C/Oo |z|p(2)dz

— 00

_ C/_Z 12|6(2)dz = 20/000 6(2)dz

& 1 2
=20 ——e /2 55
/0 z me ¥4 (55)
2C [~

~ Var Jo
2C 2

:-1:0\/7< ,
Vo ™ >

where we used the substitution u = 22 /2 in the integral fooo ze~%/2d to obtain fooo e tdu=1 [1O

2
2e %24z

We can now prove Proposition B.7
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Figure 6: Polynomial approximation and approximation error, compared to the series approximation,
truncated at 150 terms. The degree-9 polynomial (left) achieves orders of magnitude lower error than
the degree-5 polynomial (center) and sigmoid (right) approximations.

Proof. We want to compute

d K d o

Applying the derivative under the integral sign and using the identity ¢(z — 1) = (b(z)e”tze_”tz /2,

we have:
d d

e ) = ¢<z>d—w[e”ﬂ*“f/21
= 3(2)e (e - ) 7
= (2 — )(z — )
Therefore:
Ly = 2 [ otz — ) ®E () (58)
dvy K-1J_4

Now using the Taylor series of ¢(z — 1), found earlier, and inverting the sum and integral as before,
we find

d K e

_— — _ vz, —vZ/25K—1
thT(at) K1 _Oo(z v)p(z)e" e d (2)dz
= K- e Snvp [ [ n+1 K—1 <o K—1
= ﬁgﬁ [/_Ooz d(2)0" " (2)dz — 1 /_Ooz o(2)®" 7 (2)dz

K-67V2/2 e um
n=

(59)
where I,, = [7_ 2" p(2)®K 1 (2)dz and M, = [7_2"¢(2)®K 71 (2)dz.

This expansion allows us to compute the derivative of the diffusion transformation operator with
respect to v4 in terms of moments of the standard normal distribution weighted by powers of the
CDFE. O

B.8 POLYNOMIAL APPROXIMATION OF T~

Because the Diffusion Transformation Operator 7 has a sigmoid-like shape, we approximating it with
S-shaped functions that require only a handful of coefficients. This allows us to store fewer parameters
during training, instead of the 100k values required by the original curriculum or the 300 coefficients
from the series approximation. Concretely, we test several functional forms with fewer than 10
parameters and fit them using non-linear least squares, via scipy.optimize.curve_fit.

As shown in Figure 6, approximations tend to be less accurate at the boundaries, whent¢ ~ QO or ¢ ~ 1.
We find that the degree-9 polynomial works better than a sigmoid function of the form ac (bt + ¢) + d,
especially at the boundaries.
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C EXPERIMENTAL DETAILS

C.1 W-SAMPLERS

C.1.1 OPENWEBTEXT

To evaluate the samplers, we use the pre-trained MDLM (Sahoo et al., 2024) and Duo (Sahoo et al.,
2025a) checkpoints, as well as their distilled variants (using SDTT (Deschenaux & Gulcehre, 2025)
and discrete consistency distillation, respectively, after 5 rounds of 10k steps). We re-state the
training hyperparameters of both models in Suppl. C.2.1. For ReMDM, we use both the official
implementation of Wang et al. (2025) and our re-implementation, which matches the original results
while supporting additional sampling schedules beyond the log-linear one. See Suppl. D.1 for details
on selecting ;.

C.1.2 CIFAR10 (D3PM-LIKE ARCHITECTURE)

We train a U-Net backbone (Ronneberger et al., Table 3: Model architecture on CIFAR10
2015) for 1.5M steps with a batch size of 128,
using class conditioning with a class-dropout  Component Value

rate of 0.1 (as in Schiff et al. (2025)), and the 3
default hyperparameters of Austin et al. (2023) I\Gocag Slzef ResNet block 1 236
(Table 3). For both MDLM and Duo, we exper- umber of ResINet blocks per scale

iment with time-conditional and unconditional Base channels 128

variants, and train models using either cosine gltilr]lrtlieol n?glgﬂg;f’ser scale (1’21’62’2)
or log-linear noise schedules. See Table 6 for . X . .

the ancestral-sampling evaluation of all variants Conditional embedding dimension 128
after pre-training. See Suppl. D.1 for details on Number of parameters 35.8M

selecting ;.

C.2 IMPROVED CURRICULUM

C.2.1 LANGUAGE MODELING

We adopt the same setup as prior work on discrete diffusion (Lou et al., 2024; Sahoo et al., 2024;
2025a), and restate it for completeness.

LM1B We detokenize the the One Billion Words (Chelba et al., 2014) as in Lou et al. (2024); Sahoo
etal. (2024)', and tokenize it using the bert —-base-uncased tokenizer (Devlin et al., 2019), as
He et al. (2022). We use a context length of 128 and pad shorter documents.

OpenWebText We tokenize OpenWebText (Gokaslan & Cohen, 2019) with the GPT—-2 tokenizer,
concatenate sequences to a length of 1024, and insert an eos token between documents. Since the
dataset lacks an official validation split, we reserve the last 100k documents for validation.

Backbone We parameterize all models using the modified diffusion transformer architecture of
Peebles & Xie (2023), following Lou et al. (2024); Sahoo et al. (2024). Our models use 12 layers,
a hidden dimension of 768, 12 attention heads, and a timestep embedding of size 128 for the
uniform-state diffusion variants. Word embeddings are not tied between input and output.

Curriculum Lookup For the Duo baseline, we train models using the original code. To implement
the efficient curriculum, we replace the full linear combination of embeddings by a sparse lookup,
implemented using torch.nn. functional .embedding_bag to avoid materializing interme-
diate tensors. The curriculum phase lasts for the first 500k steps, after which we perform regular
embedding table lookups, just like Sahoo et al. (20252).

'https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/
main/data.py
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Optimization We train all models with the AdamW optimizer (Loshchilov & Hutter, 2019) using a
batch size of 512. The learning rate is linearly warmed up from 0 to 3 x 10~% over 2,500 steps, then
kept constant for the remainder of training. We apply a dropout rate of 0.1 throughout.

C.3 DOWNSTREAM EVALUATION PROTOCOL

We evaluate downstream performance using the lm-eval-harness library (Gao et al., 2024),
following the protocol of Deschenaux et al. (2025). We focus on multiple choice tasks, where
the log-likelihood of each candidate answer, given a prompt, is computed and the answer with the
highest score is selected. For diffusion language models, which optimize a variational bound on the
log-likelihood of the full sequence, we adapt the evaluation by using Bayes’ rule:

log p(yi|x) = log p(x,y;) — log p(x) o log p(x, y:), (60)
Since log p(x) does not depend on the candidate y;, we simply select the answer that maximizes

log p(x,y;). In practice, we use the log-likelihood ELBO (4), estimated via Monte Carlo with 1024
samples, and choose the continuation y; with the highest estimated likelihood.

C.4 ZERO-SHOT LIKELIHOOD

Our setting is the same as used by Sahoo et al. (2025a). Specifically, we measure the likelihood
of the models trained on OpenWebText using the validation splits of seven diverse datasets: Penn
Tree Bank (PTB; Marcus et al. (1993)), Wikitext (Merity et al., 2016), One Billion Words (LM1B;
Chelba et al. (2014)), Lambada (Paperno et al., 2016), AG News (Zhang et al., 2016), and Scientific
Papers (Pubmed and Arxiv subsets; Cohan et al. (2018)). The datasets are detokenized following
the protocol of Lou et al. (2024); Sahoo et al. (20252). We wrap all sequences to a maximum length
of 1024 tokens and do not insert eos tokens between them. Table 5 shows that we reach similar
performance as Duo.

D ADDITIONAL EXPERIMENTAL RESULTS

In Suppl. D.1, we elaborate on the impact of x; on the performance of the ¥-samplers. In Suppl. D.2,
we show that our efficient curriculum produces weights with the same marginal distributions as Sahoo
et al. (2025a).

D.1 TUNING k; FOR THE W-SAMPLERS

As discussed in Sec. 5.1, the choice of k; is critical for strong performance. With a poor choice of
K¢, W-samplers can underperform ancestral sampling. Below, we report all of our hyperparameter
sweeps across datasets.

* We perform image modeling on CIFAR-10 using the U-Net architecture of Austin et al.
(2023); Schiff et al. (2025), and use horizontal flipping as the sole data augmentation.

* We evaluate W-samplers on OpenWebText (Gokaslan & Cohen, 2019) using the original
checkpoint of MDLM (Sahoo et al., 2024) and Duo (Sahoo et al., 2025a).

D.1.1 CIFAR-10

We report FID (Heusel et al., 2018), computed between 50k generated samples and the training set.
Before evaluating W-samplers, we ablate on the training hyperparameters. Specifically, we train
models with cosine and log-linear noise schedule, optionally with time-conditioning. We sample
with both cosine and log-linear schedules. Finally, we check whether nucleus sampling (Holtzman
et al., 2020) and greedy decoding on the final step can help, compared to vanilly ancestral sampling.
Since nucleus sampling helps Duo but not MDLM, we compare the two models without nucleus
sampling. Table 6 shows the validation perplexity and FID for a few number of sampling steps.
Table 7 reports FID for ancestral sampling using step counts that are powers of two, from 32 up to
4096. Table 8 shows the results with ReMDM. Table 9 reports FID scores for ¥-samplers using a
stepwise-constant x schedule. Table 11 shows the performance of W-samplers using the « schedule
equivalent to ReMDM. We obtain similar results, which supports our theoretical claims.
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MDLM (Ancestral). Training with cosine noise schedule and time conditioning yields the
best validation perplexity and FID.

MDLM (ReMDM). We find that ReMDM improves the best FID over ancestral sampling,
from 24.73 to 23.71 using 4096 sampling steps. Nucleus sampling can help at very low step
counts, but the best performance is obtained with ancestral sampling. As the number of
steps increases, nucleus sampling worsen the FID.

Duo (Ancestral). Cosine training without time conditioning yields the lowest perplexity,
while log-linear training without time conditioning gives the best FID. We use the latter in
downstream experiments. Nucleus sampling improves FID, and greedy decoding slightly
worsen it.

Duo (V-samplers). W-samplers further improve performance beyond ReMDM. With the
log-linear sampling schedule (as used by ReMDM), W-samplers reduce the FID from 23.71
to 20.71. Using a cosine sampling schedule further improves the FID. Overall, Duo improves
Jfrom an FID of 25.63 (ancestral) to 15.05 with ¥-samplers, and MDLM improves from
24.73 (ancestral) to 17.86 with ¥-samplers.

D.1.2 OPENWEBTEXT

We report the generative perplexity using GPT-2 Large, following standard practice (Sahoo et al.,
2024; 2025a). Because language models can artificially lower the generative perplexity by producing
repetitive text, we also report unigram entropy (Dieleman et al., 2022), as a proxy.

Some W-samplers schedules reduce the unigram entropy more than others. Therefore, for figures,
we select the x schedule whose unigram entropy matches (or is closest to) the entropy of samples
generated with ancestral sampling. If multiple schedules achieve the same entropy, we choose the
one with the lowest generative perplexity. We indicate which schedule is used for plots byhighlight
the corresponding row in blue in the tables. Overall, the WU-samplers can reduce the Gen. PPL of all
models while retaining the unigram entropy. Best results are achieved using the rescale schedule with
n € {0.01,0.02}, for both MDLM and Duo.

Table 13 shows the generative perplexity of MDLM and Duo after pre-training and after distillation
with SDTT (Deschenaux & Gulcehre, 2025) or DCD (Sahoo et al., 2025a) respectively, with and
without nucleus sampling, using ancestral sampling. Table 14 shows the results when sampling with
W-samplers that are equivalent to ReMDM (Wang et al., 2025), with the non-distilled models, while
Table 15 shows the result for the distilled models.

D.2 DISTRIBUTION OF THE TOP k& ENTRIES OF THE SOFTMAX

To verify that our sparse implementation accurately approximates the curriculum weights of Sahoo
et al. (2025a), we compare the empirical distributions of the top-k largest entries between the original
and our efficient implementation. While matching marginal distributions does not guarantee matching
joint distributions, matching marginals are necessary for matching joints, and are easier to visualize.
Recall that experimentally, our efficient implementation is sufficient to achieve strong performance
(Sec. 5.2). Specifically, we show histograms using a tokenizer with 100k tokens in Figures 8, 9,
10, 11, and with the GPT-2 tokenizer in Figures 12, 13, 14, 15, with varying temperature and log
signal-to-noise ratios. In all cases, the top & variables have matching distributions.

D.3 TRAINING EFFICIENCY OF OUR FAST CURRICULUM

As shown in Table 4, our sparse curriculum achieves a 33% reduction in peak memory usage and
reaches an average throughput 25% higher than Duo, at a context length of 1024.
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Table 4: Training efficiency comparison between Duo and Duo™ " on 138M parameter models. All
measurements are conducted on a training job on 8 NVIDIA GH200-120GB GPU with batch size
32. We report the average throughput in sequence per second. The row “Duo (afer CL)” denotes
the resources consumption of Duo after the Curriculum phase. The impact of £ is minimal when
k € {2,3,5}, and Duo™ " uses similar resources.

Method Throughput Peak Memory
(samples/s) T (GiB) |

Duo 81.8 94.3

Duo (after the CL) 122.4 63.3

Duo™™ (k € {2,3,5}) 121.9 63.4
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Table 5: Zero-shot perplexity (PPL) on seven datasets. Lower is better. TResults taken from Sahoo
et al. (2025a). Duo™™ (k = 2) achieves a slightly lower zero-shot perplexity than Duo on 6 of 7
datasets.

PTB Wiki LMIB LBD AGNews PubMed ArXiv

Autoregressive
Transformer® 82.05 2575 51.25 51.28 52.09 49.01 41.73
Diffusion (138M)
SEDD Uniform" 10551 41.10 82.62 57.29 82.64 55.89 50.86
UDLMT 112.82 3942 77.59 53.57 80.96 50.98 44.08
Duof 89.35 33.57 73.86 49.78 67.81 44.48 40.39

Duott (k = 2) 9496 34.05 73.80 48.67 67.14 43.98 38.93
Duo™ ™ (k = 3) 91.94 34.65 74.16 49.89 66.89 44.87 40.42
Duott (k = 5) 9446 3452 7491 50.93 68.72 46.79 41.04

Algorithm 2 Reverse Sampling from Order Statistics of Gaussian Random Variables

Input Number of variables IV, standard deviation ¢, number of top values k

Sample Uy ~ U(0,1),for N > ¢ >N —k+1

Compute the random variables: Ry, = %

Compute the cumulative sums: P, = Zﬁi: B

Let V; = exp(F), the ¢-th sample from the (uniform) order statistic.
Apply inverse normal CDF: X(©) = &=%(V;) - &

return { X ()} N -k+1

Algorithm 3 Floyd’s Algorithm for Sampling Without Repetition

Input Number of possible values N, number of samples k.
Initialize array S of size k to store samples
fort =0tok —1do
Sample j ~ Randint(0, N — k + t)
if t > 0 and j appears in S[0 : ¢] then
S[t] <~ N — k +t {Use largest remaining value}
else
Slt] <3
end if
end for
return S
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(a) Generative perplexity of Duo*™ (ours) as a func-
tion of the number of sampling steps (NFEs). Duo™™
generalizes ReMDM (Wang et al., 2025) and the per-
formance consistently improve with the number of
sampling steps. We annotate each curve with the av-
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(b) On CIFAR-10, Duo™ ™ achieves lower FID than
MDLM (with ReMDM). Moreover, Duo™ " obtains a
better FID in just 128 steps than Duo with ancestral
sampling in 4096 steps. We use temperature scaling
(T=0.8) in all experiments.
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Figure 7: Additional comparison of ancestral and ¥-samplers on CIFAR-10 and OWT.

top-1 top-2 top-3 top-4 top-5

Figure 8: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 100, and log signal-to-noise ratio —2. The histograms of the efficient and naive imple-
mentation match closely.
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Figure 9: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio —1. The histograms of the efficient and naive

implementation match closely.
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Figure 10: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio —2. The histograms of the efficient and naive

implementation match closely.
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Figure 11: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio —4. The histograms of the efficient and naive

implementation match closely.
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Figure 12: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
100, and log signal-to-noise ratio —2. The histograms of the efficient and naive implementation

match closely.

- ;mc\ent top-1 top-2 top-3 top-4 top-5
% Naive 2 10° 3
10 102 10
10! 102 10°
100 10
100 100 102
o
8 10 § 10t
101 10 10
107 100
-2 107
10 10 10 101
10-2
107 1072
10 | 1
04 0.6 08 10 0.0 02 04 0.0 01 02 03 0.00 0.05 010 000 002 004 006 008

Figure 13: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio —1. The histograms of the efficient and naive implementation

match closely.
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Figure 14: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio —2. The histograms of the efficient and naive implementation

match closely.
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Figure 15: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio —4. The histograms of the efficient and naive implementation

match closely.

Table 6: FID on CIFAR-10 with ancestral sampling. We train and sample with the log-linear and
cosine scheduler. MDLM performs best with time-conditioning while Duo does not. We sample with
discrete classifier-free guidance (Schiff et al., 2025) with strength 1, and greedy predictions on the

last step.
Scheduler Time PPL | | FID | (Cosine) | FID | (Log-linear)
\ 64 256 1024 2048 | 64 256 1024 2048
MDLM
Cosine X 8.86 | 42.60 27.71 2490 24.56 | 107.62 40.81 27.65 25.73
Cosine v 8.72 | 41.89 27.03 24.67 24.24 | 11456 40.60 27.08 25.50
Log-linear X 876 | 43.95 29.01 26.11 25.67 | 111.77 42.15 28.85 26.89
Log-linear v 8.75 4936 32.10 28.76 28.21 | 122.70 41.79 27.89 26.02
MDLM (nucleus p=0.9)
Cosine 872 | 3481 4404 4784 4837 | 4173 3333 4312 4598
MDLM (no greedy)
Cosine 8.72 \ 42.14  27.19 2447 24.46 \ 11455 4092 27.13 25.60
Duo
Cosine X 10.27 | 32.37 27.28 2638 26.02 33.93 27.93 2651 26.03
Cosine v 1032 | 33.74 2798 26.81 26.96 36.23 2877 27.08 26.79
Log-linear X 10.49 | 31.78 27.03 26.00 25.75 3344 2746 26.08 25.87
Log-linear v 1045 | 34.05 27.74 26.58 26.37 36.46 2849 26.60 26.22
Duo (nucleus p=0.9)
Log-linear X 10.49 | 23.13 2221 2258 2249 | 2424 2241 2235 2254
Duo (no greedy)
Log-linear X 10.49 \ 33.03 2743 26.16 2596 \ 3481 2776 2630 26.06
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Table 7: FID on CIFAR-10 with ancestral sampling and a finer grid. We pick the variant with the best
FID from Table 6.

Algo Train Sample p FID 4
32 64 128 256 512 1024 2048 4096

Duo log-lin  log-lin 1.0 42.71 33.44 29.18 27.46 26.62 26.08 25.87 25.79
Duo log-lin  log-lin 0.9 28.53 24.24 22.89 22.41 22.56 22.35 22.54 22.41
Duo log-lin  cos 1.0 39.65 31.78 28.55 27.03 26.03 25.89 25.75 25.63
Duo log-lin  cos 0.9 25.96 23.13 22.68 22.21 22.26 22.58 22.49 22.49
MDLM  cos log-lin 1.0 212,95 114.56 62.86 40.60 31.05 27.08 25.50 24.73
MDLM  cos log-lin 0.9 84.85 41.73 31.28 33.33 38.49 43.12 45.98 55.37
MDLM  cos cos 1.0 73.82 41.89 36.21 27.03 25.63 24.67 24.24 23.93
MDLM  cos cos 0.9 58.31 34.81 37.91 44.04 45.32 47.84 48.37 49.23
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Table 8: FID on CIFAR-10 with ReMDM (best checkpoints, as shown in Table 7). We sample
with/without nucleus sampling, and with the 3 schedules of Wang et al. (2025) (cap, loop, rescale).
For the loop schedule, we use t,, = 0.55, tof = 0.05, aon = 0.9, following ReMDM. Sampling
experiments are executed in the original codebase of Wang et al. (2025).

| Number of steps

| 32 64 128 256 512 1024 2048 4096

ReMDM cap (p=1.0)

n = 0.005 215.67 116.24 63.37 40.82 31.40 27.28 24.97 24.78

n = 0.010 218.41 118.25 64.50 41.77 32.40 28.68 2791 33.68

n = 0.020 22420 122.61 66.95 44.54 36.26 35.39 46.01 92.48

n = 0.050 24225 14321 84.41 64.10 73.89 132.13 210.60 203.14
ReMDM loop (p=1.0)

n =0.01 307.56 234.55 138.56 80.50 55.86 47.05 45.44 50.44

n = 0.02 307.81 23728 142.21 83.68 59.96 53.88 60.50 87.54

n =0.04 308.24 24270 152.28 94.63 76.93 88.53 135.05 196.58

n = 0.06 308.88 248.76 165.79 11492 11326 157.92 22370 237.16
ReMDM rescale (p=1.0)

n = 0.01 216.92 116.73 63.56 40.65 30.86 26.03 23.77 23.71

n = 0.02 22121 119.79 65.08 42.02 32.29 28.11 28.66 39.39

n = 0.04 229.72  127.94 70.89 46.98 38.74 41.23 67.44  130.05

n =0.05 23435 133.08 75.02 50.92 45.01 57.03 107.13 164.44
ReMDM cap (p=0.9)

n = 0.005 88.08 40.02 27.31 2943 36.50 45.10 57.08 73.40

n = 0.010 87.68 39.55 27.35 31.24 41.22 54.55 71.65 93.06

n = 0.020 85.95 38.46 27.80 35.01 50.50 69.60 9149 118.87

n = 0.050 81.91 35.56 29.39 46.90 70.24 95.24 125.60 163.32
ReMDM loop (p=0.9)

n =0.01 209.24  100.01 47.27 29.44 27.55 30.50 34.21 37.56

n = 0.02 208.36 99.29 47.12 29.38 27.74 31.17 35.42 39.52

n =0.04 206.51 98.18 46.87 29.28 28.09 32.12 37.19 42.45

n = 0.06 204.83 97.24 46.72 29.19 28.30 32.77 38.47 44.64
ReMDM rescale (p=0.9)

n =0.01 87.31 39.51 27.25 30.74 40.22 53.30 70.24 91.79

n = 0.02 85.94 38.45 27.45 34.13 49.00 67.89 90.61 118.10

n =0.04 83.47 36.44 28.29 41.76 63.40 87.03 115,60 153.03

n =0.05 82.26 35.69 28.99 44.69 68.80 94.07 12542 165.62
ReMDM

Best (p = 1.0) 215.67 116.24 63.37 40.65 30.86 26.03 23.77 23.71

Best (p = 0.9) 81.91 81.91 27.25 29.19 27.55 30.50 34.21 37.56
MDLM

Ancestral (p=1.0) 21295 114.56 62.86 40.60 31.05 27.08 25.50 24.73

Ancestral (p=0.9) 84.85 41.73 31.28 33.33 38.49 43.12 45.98 55.37
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Table 9: FID on CIFAR-10 with ¥-samplers, where W-samplers are activated for steps with ¢ €
[tofr, ton], When k; is kept constant (according to the k column, 1 otherwise). We use the same
checkpoints as in Table 7. Using a cosine sampling schedule and light noise injection (x close to 1)
generally perform best. The CIFAR-10 curves in Fig. | show the best FID per number of steps.

Algo K Train Sample ton tott FID ¢
32 64 128 256 512 1024 2048 4096

Duo 0.02  log-lin  cos 02 0.15 40.64 33.06 30.36 29.85 31.31 34.36 39.06 38.38
Duo 0.02  log-lin  cos 05 045 41.81 33.67 29.50 26.55 24.83 25.12 31.63 51.83
Duo 0.02  log-lin  cos 0.8 0.7 43.99 37.41 35.68 38.88 46.76 59.68 75.46 91.73
Duo 0.5 log-lin  cos 0.2 0.1 39.95 32.14 28.86 27.18 26.57 26.46 27.29 28.35
Duo 0.5 log-lin  cos 0.6 0.4 39.54 29.40 23.46 20.77 23.72 38.42 72.97  105.75
Duo 0.5 log-lin  cos 09 0.65 43.00 34.68 31.85 34.73 45.68 64.97 88.07  107.36
Duo 095  log-lin  cos 0.5 0.1 39.30 30.58 26.15 23.46 20.93 18.48 16.38 15.05
Duo 095  log-lin  cos 0.6 0.1 39.19 30.15 25.14 21.54 18.64 16.70 16.30 18.99
Duo 095 log-lin  cos 0.9 0.3 39.04 29.88 24.72 20.90 19.20 21.09 30.00 51.43
Duo 095  log-lin  cos 0.9 0.4 39.21 30.29 25.26 21.57 19.92 21.50 30.03 50.88
Duo 098  log-lin  cos 1.0 0.05 39.31 30.97 26.39 23.13 20.56 18.80 19.46 25.83
Duo 098  log-lin  cos 1.0 0.1 39.31 30.99 26.40 23.14 20.58 18.83 19.48 25.82
Duo 0.99  log-lin  cos 1.0 0.05 39.34 31.56 27.46 24.73 22.35 20.07 18.50 19.39
Duo 0.99  log-lin  cos 1.0 0.1 39.35 31.57 27.46 24.73 22.37 20.09 18.51 19.41
Duo 0.02  log-lin  log-lin 02 0.15 42.25 33.71 29.84 27.95 27.64 27.56 29.35 31.02
Duo 0.02  log-lin  log-lin 0.5 045 43.86 36.29 33.35 33.24 34.74 36.97 36.77 37.30
Duo 0.02  log-lin  log-lin 0.8 0.7 43.95 33.75 28.32 27.78 37.12 69.66 113.05  132.86
Duo 0.5 log-lin  log-lin 0.2 0.1 42.10 33.40 29.19 27.14 26.22 25.52 25.10 24.71
Duo 0.5 log-lin  log-lin 0.6 0.4 42.44 33.68 29.15 25.93 24.16 22.44 21.00 27.97
Duo 0.5 log-lin  log-lin 09 0.65 42.87 31.04 26.37 31.86 61.36  121.64 155.77  151.48
Duo 095 log-lin  log-lin 0.5 0.1 41.74 32.97 28.57 26.05 24.62 23.13 21.81 20.16
Duo 095 log-lin  log-lin 0.6 0.1 41.46 32.47 27.74 24.97 22.94 20.83 18.87 16.82
Duo 0.95  log-lin  log-lin 0.9 0.3 41.10 30.55 24.54 20.50 17.97 18.04 22.14 35.43
Duo 095  log-lin  log-lin 0.9 0.4 41.18 30.58 24.71 20.59 18.08 18.02 22.07 35.44
Duo 098  log-lin  log-lin 1.0 0.05 41.80 31.96 26.83 23.17 20.10 18.12 18.38 22.89
Duo 098  log-lin  log-lin 1.0 0.1 41.81 31.98 26.85 23.17 20.12 18.15 18.40 22.94
Duo 0.99  log-lin  log-lin 1.0 0.05 41.99 32.63 27.74 24.67 22.13 19.72 17.93 18.25
Duo 099  log-lin  log-lin 1.0 0.1 41.99 32.63 27.75 24.67 22.13 19.75 17.95 18.28
MDLM  0.02  cos cos 02 0.5 75.63 49.18 45.02 54.67 83.47  181.18 280.42  297.52
MDLM  0.02  cos cos 05 045 117.57 89.53 111.75 200.49  283.55 310.51 314.98 313.93
MDLM  0.02  cos cos 0.8 0.7 172.24 197.61  232.36  262.87 269.22 267.86 264.57  259.88
MDLM 0.5 cos cos 0.2 0.1 73.13 46.10 38.47 39.71 48.49 75.27 173.09  266.36
MDLM 0.5 cos cos 0.6 04 134.11 114.88  144.25 217.74  268.03 274.83  270.53  256.03
MDLM 0.5 cos cos 09 065 151.90 131.04 147.67 177.75 198.33  201.97 193.77  184.76
MDLM 095  cos cos 0.5 0.1 73.03 44.15 33.68 30.50 29.93 31.50 35.72 51.53
MDLM 095  cos cos 0.6 0.1 74.57 45.00 34.07 30.32 29.16 31.03 37.46 64.74
MDLM 095  cos cos 0.9 0.3 79.25 47.02 33.97 27.84 24.24 23.43 26.96 42.58
MDLM 095  cos cos 0.9 0.4 78.18 46.36 33.06 26.69 22.67 20.91 21.90 28.82
MDLM 098  cos cos 1.0 0.05 74.05 43.85 32.32 26.69 23.22 20.81 19.41 20.20
MDLM 098  cos cos 1.0 0.1 74.05 43.85 32.31 26.65 23.17 20.76 19.26 19.98
MDLM 099  cos cos 1.0 0.05 72.39 42.87 31.79 26.65 23.72 21.07 19.24 17.94
MDLM 099  cos cos 1.0 0.1 72.38 42.87 31.78 26.64 23.69 21.04 19.19 17.86
MDLM  0.02  cos log-lin 02 015 217.56 118.08 68.02 51.76 55.02 78.21 171.72  275.25
MDLM  0.02  cos log-lin 05 045 247.31 157.61 124.97 162.92  256.01 298.74 305.05 310.28
MDLM  0.02  cos log-lin 0.8 0.7 298.96 294.71 298.95 312.49 317.03 312.60 308.42 302.37
MDLM 0.5 cos log-lin 0.2 0.1 216.08  116.99 65.73 45.72 41.32 45.95 68.60  152.77
MDLM 0.5 cos log-lin 0.6 04 266.16 195.76 171.73  212.68 273.48 281.96 272.45 260.26
MDLM 0.5 cos log-lin 09 0.65 296.08 268.98 265.73 278.38 281.68 275.20 265.49  247.21
MDLM 095  cos log-lin 0.5 0.1 216.90 117.05 64.76 43.50 36.06 34.84 37.06 44.92
MDLM 095  cos log-lin 0.6 0.1  218.58 118.21 65.33 44.32 37.14 36.09 39.42 55.34
MDLM 095  cos log-lin 0.9 0.3 225.19 124.03 67.82 44.06 35.20 33.97 42.48 80.34
MDLM 095 cos log-lin 0.9 04  223.84 123.04 67.19 43.29 33.85 32.00 37.23 63.89
MDLM 098  cos log-lin 1.0 005 218.15 118.08 63.97 40.97 30.67 25.69 23.64 25.40
MDLM 098  cos log-lin 1.0 0.1 218.14  118.09 63.96 40.96 30.65 25.64 23.57 25.29
MDLM  0.99  cos log-lin 1.0 005 215.41 116.02 63.30 40.42 30.43 25.37 22.45 20.77
MDLM 099  cos log-lin 1.0 0.1 21540 116.03 63.27 40.41 30.43 25.35 22.42 20.71
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Table 10: Inception Score on CIFAR-10 with ¥-samplers, where W-samplers are activated for steps
with ¢ € [tofr, Lon], When k; is kept constant (according to the x column, 1 otherwise). We use the
same checkpoints as in Table 7. The CIFAR-10 curves in Fig. 5 show the best Inception Score per
number of steps.

Inception Score T

Algo K Train Sample ton toff

32 64 128 256 512 1024 2048 4096
Duo 0.02  log-lin  cos 02 0.15 7.02 7.25 7.35 7.48 7.52 7.47 7.38 7.63
Duo 0.02  log-lin  cos 0.5 045 7.09 7.44 7.64 8.04 8.32 8.59 8.57 7.94
Duo 0.02  log-lin  cos 0.8 0.7 6.84 6.99 7.00 6.91 6.64 6.16 5.67 5.19
Duo 0.5 log-lin  cos 0.2 0.1 6.96 7.21 7.28 7.39 7.45 7.48 7.56 7.73
Duo 0.5 log-lin  cos 0.6 0.4 7.31 7.73 8.14 8.51 8.46 7.91 6.40 5.39
Duo 0.5 log-lin  cos 09 0.65 6.87 7.10 7.22 7.11 6.72 5.97 5.23 4.67
Duo 0.95 log-lin  cos 0.5 0.1 6.98 7.26 7.45 7.53 7.67 7.89 8.06 8.29
Duo 0.95 log-lin  cos 0.6 0.1 7.00 7.31 7.45 7.70 7.91 8.17 8.34 8.46
Duo 095 log-lin  cos 0.9 0.3 7.08 7.37 7.54 7.84 8.01 8.07 7.72 6.84
Duo 095 log-lin  cos 0.9 0.4 7.04 7.31 7.50 7.78 7.92 8.08 7.78 6.89
Duo 098  log-lin  cos 1.0 0.05 7.00 7.25 7.40 7.55 7.73 7.97 8.10 7.91
Duo 098  log-lin  cos 1.0 0.1 6.99 7.25 7.40 7.55 7.74 7.97 8.09 7.91
Duo 099  log-lin  cos 1.0 0.05 6.98 7.22 7.37 7.45 7.58 7.77 7.96 8.08
Duo 0.99  log-lin  cos 1.0 0.1 6.98 7.22 7.37 7.46 7.58 7.77 7.96 8.10
Duo 0.02  log-lin  log-lin 02 0.15 6.82 7.09 7.22 7.30 7.36 7.44 7.46 7.43
Duo 0.02  log-lin  log-lin 0.5 045 6.95 7.28 7.45 7.64 7.67 7.70 8.06 8.68
Duo 0.02  log-lin  log-lin 0.8 0.7 7.00 7.54 8.02 8.18 7.89 6.46 5.03 4.55
Duo 0.5 log-lin  log-lin 0.2 0.1 6.81 7.04 7.20 7.26 7.29 7.36 7.47 7.50
Duo 0.5 log-lin  log-lin 0.6 0.4 7.04 7.45 7.73 7.93 8.20 8.51 9.00 9.50
Duo 0.5 log-lin  log-lin 09  0.65 7.05 7.61 7.97 7.74 6.45 4.46 3.77 4.07
Duo 095  log-lin  log-lin 0.5 0.1 6.80 7.10 7.25 7.31 7.35 7.43 7.55 7.63
Duo 095 log-lin  log-lin 0.6 0.1 6.85 7.12 7.28 7.40 7.46 7.66 7.81 7.97
Duo 095 log-lin  log-lin 0.9 0.3 6.89 7.27 7.58 7.78 8.10 8.22 8.20 7.67
Duo 0.95 log-lin  log-lin 0.9 0.4 6.89 7.25 7.58 7.80 8.05 8.25 8.26 7.69
Duo 098  log-lin  log-lin 1.0 0.05 6.85 7.19 7.36 7.49 7.72 7.96 8.05 8.03
Duo 098 log-lin  log-lin 1.0 0.1 6.85 7.20 7.38 7.49 7.72 7.96 8.04 8.02
Duo 0.99  log-lin  log-lin 1.0 0.05 6.81 7.13 7.32 7.45 7.61 7.71 7.98 8.12
Duo 0.99  log-lin  log-lin 1.0 0.1 6.81 7.14 7.32 7.45 7.62 7.70 7.99 8.13
MDLM  0.02  cos cos 02 0.15 5.56 6.61 6.90 6.75 5.52 2.68 1.57 1.56
MDLM  0.02  cos cos 0.5 045 4.22 5.11 4.36 2.44 1.61 1.41 1.45 1.56
MDLM  0.02  cos cos 0.8 0.7 3.12 2.82 2.41 2.03 1.96 1.97 2.02 2.09
MDLM 0.5 cos cos 0.2 0.1 5.63 6.63 7.00 7.09 6.90 5.68 2.78 1.73
MDLM 0.5 cos cos 0.6 0.4 3.83 4.32 3.55 2.35 1.85 2.14 2.51 2.99
MDLM 0.5 cos cos 09 0.65 3.62 4.18 3.95 3.47 3.18 3.15 3.37 3.75
MDLM 095  cos cos 0.5 0.1 5.66 6.68 7.13 7.29 7.44 7.41 7.44 6.77
MDLM 095 cos cos 0.6 0.1 5.59 6.70 7.21 7.41 7.52 7.57 7.45 6.33
MDLM 095 cos cos 0.9 0.3 5.43 6.68 7.25 7.63 7.90 8.15 8.18 7.58
MDLM 095  cos cos 0.9 0.4 5.45 6.66 7.25 7.64 7.93 8.14 8.30 8.18
MDLM 098  cos cos 1.0 0.05 5.57 6.71 7.22 7.45 7.71 7.93 8.14 8.30
MDLM 098  cos cos 1.0 0.1 5.57 6.72 7.22 7.46 7.72 7.93 8.15 8.31
MDLM 099  cos cos 1.0 0.05 5.60 6.73 7.18 7.39 7.53 7.81 7.97 8.12
MDLM 099  cos cos 1.0 0.1 5.60 6.73 7.19 7.39 7.53 7.81 7.97 8.14
MDLM  0.02  cos log-lin 02 0.15 2.63 4.59 5.86 6.46 6.45 5.59 2.78 1.67
MDLM  0.02 cos log-lin 0.5 045 2.21 3.56 4.08 3.06 1.78 1.43 1.38 1.36
MDLM  0.02  cos log-lin 0.8 0.7 1.65 1.63 1.55 1.43 1.42 1.60 1.80 1.96
MDLM 0.5 cos log-lin 0.2 0.1 2.66 4.60 5.91 6.58 6.81 6.76 5.77 3.15
MDLM 0.5 cos log-lin 0.6 0.4 1.97 2.78 2.99 2.27 1.62 1.58 1.92 2.33
MDLM 0.5 cos log-lin 09 0.65 1.69 1.91 1.90 1.79 1.91 2.35 2.87 3.29
MDLM 095 cos log-lin 0.5 0.1 2.65 4.60 5.95 6.64 6.93 7.03 7.07 6.78
MDLM 095 cos log-lin 0.6 0.1 2.62 4.55 5.94 6.66 6.98 7.16 7.10 6.47
MDLM 095  cos log-lin 0.9 0.3 2.51 4.45 5.93 6.84 7.35 7.61 7.31 5.83
MDLM 095 cos log-lin 0.9 0.4 2.54 4.46 5.94 6.85 7.40 7.69 7.59 6.60
MDLM 098  cos log-lin 1.0 0.05 2.62 4.56 6.04 6.85 7.31 7.66 7.79 8.01
MDLM 098  cos log-lin 1.0 0.1 2.62 4.56 6.03 6.85 7.32 7.67 7.81 8.03
MDLM 099  cos log-lin 1.0 0.05 2.68 4.64 6.02 6.84 7.21 7.47 7.70 7.93
MDLM  0.99  cos log-lin 1.0 0.1 2.68 4.64 6.02 6.84 7.21 7.47 7.70 7.93
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Table 11: FID on CIFAR-10 using ¥-samplers whose x; schedulers are equivalent to ReMDM. We
use no nucleus sampling, no temperature scaling, and cfg = 1. As expected, with the log-linear
scheduler, we reach a similar FID as when using the ReMDM codebase (Table 8). However, note
that by using a log-linear scheduler, using a constant x; = 0.99, we reach a better FID than with the
original ReMDM scheduler.

Algo Train Sample FID |

32 64 128 256 512 1024 2048 4096
Duo with the ReMDM rescale schedule
Duo log-lin cos 39.64 32.03 28.49 26.95 26.16 25.71 25.25 25.02
Duo log-lin log-lin 42.27 33.58 29.49 27.36 26.33 25.86 25.07 25.21
ReMDM Rescale (n = 0.01)
MDLM  cos cos 70.64 41.94 31.60 27.31 25.27 24.61 2341 23.25
MDLM  cos log-lin  213.22 114.24 62.51 40.51 30.28 26.21 23.61 23.40
ReMDM Cap (n = 0.005)
MDLM  cos log-lin 215.75 115.77 63.20 41.25 31.60 27.30 25.16 24.79
ReMDM Loop (to, = 0.55, toy = 0.05, cpy = 0.9, = 0.01)
MDLM  cos log-lin ~ 305.30 224.84 120.58 66.39 45.70 39.06 41.44 52.71
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Table 12: FID scores across different numbers of sampling steps for various hyperparameter ablations.
Lower is better. The section “W-samplers Loop” denote the ReMDM-inspired scheduler, where
t is linearly decreased to o, (from ¢ = 1 to ¢ = %,,), then kept constant until £.¢. The section
“W-samplers Linear” denote the Linear scheduler, where ¢ linearly decreases, like during ancestral
sampling. We omit certain settings (denoted by —), to spare compute costs, as each cell FID requires
generating 50k samples.

\ Number of steps

| 32 128 256 512 1024 2048 4096

Uniform Diffusion (Ancestral)

Duo (log-lin.) 853 5677 526 509 497 492 49.0
Duo (cosine) 7177 519 476 459 450 446 443
+Greedy 649 475 442 428 422 41.8 416
+Guid. (y = 1) 57.3 416 394 379 376 372 369
+temp. 7' = 0.8 392 276 263 254 254 25.0 253

Uniform Diffusion (V-samplers Loop)
oy, = 0.85, tof = ton +0.05, k =0.02 | 404 275 259 249 243 238 251
oy, = 045, toig = ton + 0.05, k =0.02 | 450 293 276 282 334 - -
o, = 0.1, toff = ton +0.05, K = 0.02 43.0 31.8 41.7 672 1298 - .
oy, = 0.8, toff = ton + 0.1, K = 0.02 409 272 253 240 237 283 525
1y, = 0.8, tofr = ton + 0.1, 5 = 0.5 410 273 256 246 237 234 279

o, = 0.7, toff =ton + 0.2, K = 0.5 432 262 23.6 224 250 - -

Uniform Diffusion (V-samplers Linear)
o, = 0.85, tof = ton + 0.05,k =0.02 | 39.1 274 257 245 238 238 28.2
o, = 045, toif = ton + 0.05, k =0.02 | 419 29.1 278 346 614 - -
oy, = 0.1, togr = ton + 0.05, K = 0.02 394 278 265 257 254

on

o, = 0.8, toff = ton +0.1, K = 0.5 389 269 252 239 231 234 316

ton = 0.3, = 0.1 kK =0.75 387 262 242 225 220 254 439
ton = 0.4t = 0.1k =0.9 387 257 234 21,5 209 234 373
ton = 0.5, tor = 0.1 Kk = 0.95 386 252 227 207 202 226 354
ton = 0.6t = 0.1 k =0.95 385 242 214 200 223 327 590
ton = 0.6, %t = 0.1 kK = 0.98 388 259 234 213 202 213 287
Masked Diffusion (Ancestral)
MDLM (cosine) 1042 519 46.7 45.1 445 453 48.0
MDLM (log-lin. / cosine) 81.8 48.0 40.0 393 378 38.0 387
MDLM (log-lin.) 2083 742 484 38.0 342 333 331
+Greedy 208.3 742 484 38.1 342 333 331
+Guid. (y =1) 198.6 629 418 332 295 28.1 27.6
+temp. T'= 0.8 1262 332 251 24.0 247 257 26.6

Masked Diffusion (V-samplers Linear)

ton = 0.3, tor = 0.1 K = 0.75 1255 333 252 241 249 262 285
ton = 0.5, o = 0.1 = 0.95 1255 33.1 252 242 252 - _
ton = 0.6, tofr = 0.1 5 = 0.95 1252 329 248 238 250 273 319
ton = 0.6, tor = 0.1 K = 0.98 1257 33.1 250 240 250 - -
ton = 0.85, tor = 0.8 K = 0.02 183.7 792 888 113.1 1380 - -
ton = 0.45, togr = 0.4 1 = 0.02 1309 398 373 431 559 - -
ton = 0.15, togr = 0.1 5 = 0.02 1259 332 251 240 247 256 269
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Table 13: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
& Cohen, 2019) with ancestral sampling (no nucleus, no temperature scaling). We train using the
log-linear noise scheduler, and sampling with the cosine scheduler is slightly better. We stick to to
the log-linear schedule for sampling in further experiments, to follow prior work, and since the cosine
schedule only marginally reduce the Gen. PPL.

Algo Dist. p Sched. ‘ Gen. PPL

‘ 32 64 128 256 512 1024 2048 4096
Duo X 1.0 cos 87.23 (5.54) 79.94 (5.55) 75.87 (5.53) 73.95 (5.54) 72.13 (5.54) 71.41(5.53) 72.29 (5.53) 70.77 (5.52)
Duo X 1.0 log-lin 96.76 (5.57) 86.01 (5.56) 79.97 (5.55) 78.46 (5.53) 76.93 (5.54) 75.02 (5.53) 75.65 (5.52) 75.39 (5.52)
Duo X 0.9 cos 42.42 (5.36) 39.26 (5.37) 37.62 (5.35) 36.52 (5.35) 35.21 (5.34) 3537 (5.34) 3539 (5.34) 34.91 (5.33)
Duo X 0.9 log-lin 44.24 (5.40) 40.08 (5.40) 37.93 (5.39) 36.66 (5.37) 35.77 (5.37) 34.79 (5.35) 34.93 (5.35) 34.75 (5.35)
Duo v 1.0 cos 67.04 (5.47) 61.09 (5.45) 59.65 (5.42) 57.76 (5.42) 57.90 (5.42) 56.81 (5.43) 56.39 (5.41) 57.32 (5.42)
Duo v 10 log-lin 68.35 (5.54) 62.92 (5.54) 59.82 (5.50) 58.77 (5.46) 58.32 (5.46) 57.82 (5.45) 55.39 (5.43) 55.89 (5.42)
Duo v 0.9 cos 34.20 (5.31) 31.79 (5.29) 31.09 (5.25) 30.05 (5.25) 29.82 (5.26) 29.68 (5.27) 29.52 (5.24) 29.73 (5.23)
Duo v 0.9  log-lin 35.92 (5.41) 32.98 (5.40) 31.49 (5.36) 30.32 (5.31) 30.06 (5.29) 30.00 (5.28) 28.90 (5.25) 29.19 (5.25)
MDLM x 1.0 cos 168.66 (5.68)  131.55(5.66) 11574 (5.64)  111.72(5.63)  106.63 (5.63)  104.56(5.62)  103.12(5.62)  104.73 (5.62)
MDLM x 1.0 loglin | 194.09(5.74)  141.67(5.69)  12095(5.67)  111.85(5.65)  107.89(5.64)  105.64 (5.64)  105.40(5.63)  105.03 (5.62)
MDLM X 0.9 cos 58.33 (5.39) 46.71 (5.36) 40.66 (5.32) 39.43 (5.33) 37.64 (5.32) 37.39(5.33) 36.98 (5.31) 36.87 (5.31)
MDLM X 0.9 log-lin 70.34 (5.49) 51.14 (5.43) 43.60 (5.39) 40.01 (5.37) 39.02 (5.35) 37.91(5.34) 37.59(5.32) 36.76 (5.31)
MDLM v 1.0 cos 63.04 (5.45) 52.72 (5.43) 47.83 (5.41) 45.94 (5.42) 44.67 (5.41) 44.60 (5.41) 44.50 (5.41) 44.42 (5.41)
MDLM v 1.0 log-lin 68.61 (5.48) 55.26 (5.45) 49.51 (5.44) 46.13 (5.42) 45.61 (5.42) 44.87 (5.42) 44.53 (5.41) 44.38 (5.42)
MDLM v 0.9 cos 3147 (5.21) 26.52 (5.19) 24.14 (5.18) 23.49 (5.17) 22,93 (5.17) 22.64 (5.17) 2238 (5.16) 2249 (5.17)
MDLM v 09  log-lin 34.85 (5.26) 28.21 (5.23) 2527 (5.21) 24.01 (5.19) 23.25 (5.18) 22.75 (5.17) 22.73 (5.17) 22.46 (5.16)
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Table 14: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
& Cohen, 2019) with W-samplers using «; schedules matching ReMDM (log-linear step size) and
non-distilled models (as in Table 13). We experiment with nucleus sampling, following Wang et al.
(2025). The rescale schedule is most effective to improve the Gen. PPL while retaining the unigram
entropy. The lightblue rows are the ones plotted in Fig. | (left).

Algo Eta Nucleus P ‘ Gen. PPL

32 64 128 256 512 1024 2048 4096
Ancestral Sampling
Duo N.A 1.0 96.76 (5.57) 86.01 (5.56) 79.97 (5.55) 78.46 (5.53) 76.93 (5.54) 75.02 (5.53) 75.65 (5.52) 75.39 (5.52)
Duo N.A 0.95 56.65 (5.49) 50.78 (5.48) 48.68 (5.48) 47.26 (5.46) 45.42 (5.45) 45.11 (5.44) 45.12 (5.44) 44.84 (5.44)
Duo N.A 0.9 44.24 (5.40) 40.08 (5.40) 37.93 (5.39) 36.66 (5.37) 35.77 (5.37) 34.79 (5.35) 34.93 (5.35) 34.75 (5.35)
MDLM N.A 1.0 194.09 (5.74) 141.67 (5.69) 120.95 (5.67) 111.85 (5.65) 107.89 (5.64) 105.64 (5.64) 105.40 (5.63) 105.03 (5.62)
MDLM N.A 0.95 106.28 (5.61) 77.06 (5.55) 68.34 (5.53) 63.19 (5.51) 58.80 (5.49) 56.94 (5.48) 57.54 (5.47) 56.44 (5.46)
MDLM N.A 0.9 70.34 (5.49) 51.14 (5.43) 43.60 (5.39) 40.01 (5.37) 39.02 (5.35) 37.91(5.34) 37.59 (5.32) 36.76 (5.31)
Cap Schedule
Duo 0.005 1.0 88.78 (5.58) 77.12 (5.57) 72.05 (5.56) 66.44 (5.54) 61.63 (5.53) 57.14 (5.51) 52.49 (5.51) 45.64 (5.45)
Duo 0.01 1.0 86.89 (5.58) 75.23 (5.56) 68.98 (5.55) 63.66 (5.54) 57.34 (5.52) 52.06 (5.50) 46.04 (5.46) 39.48 (5.39)
Duo 0.005 0.95 55.56 (5.49) 48.74 (5.47) 44.93 (5.46) 40.53 (5.43) 36.26 (5.41) 30.85 (5.37) 25.66 (5.32) 20.22 (5.22)
Duo 0.01 0.95 54.07 (5.48) 46.27 (5.46) 41.93 (5.45) 36.60 (5.41) 30.98 (5.37) 2553 (5.31) 20.10 (5.23) 15.19 (5.07)
Duo 0.005 0.9 44.06 (5.41) 38.38 (5.39) 34.84 (5.37) 30.95 (5.33) 27.37 (5.30) 22.78 (5.24) 18.66 (5.16) 14.33 (5.03)
Duo 0.01 0.9 43.05 (5.40) 36.75 (5.38) 32.27 (5.35) 27.83 (5.30) 23.38 (5.26) 18.74 (5.17) 14.40 (5.06) 10.88 (4.87)
MDLM 0.005 1.0 195.83 (5.74) 142.25 (5.70) 121.99 (5.68) 113.94 (5.67) 110.75 (5.66) 112.78 (5.67) 119.61 (5.69) 131.85 (5.71)
MDLM 0.01 1.0 198.02 (5.75) 144.89 (5.70) 125.25 (5.68) 117.84 (5.68) 116.62 (5.68) 126.32 (5.71) 143.96 (5.73) 186.72 (5.76)
MDLM 0.005 0.95 106.40 (5.61) 74.97 (5.54) 63.15 (5.52) 55.82 (5.49) 50.31 (5.47) 43.78 (5.44) 37.04 (5.40) 30.46 (5.34)
MDLM 0.01 0.95 105.45 (5.61) 73.92 (5.54) 61.41 (5.51) 52.81 (5.48) 46.03 (5.45) 38.85 (5.42) 31.30 (5.34) 24.31(5.23)
MDLM 0.005 0.9 69.20 (5.49) 49.59 (5.42) 41.08 (5.38) 35.19 (5.34) 31.49 (5.31) 26.33 (5.26) 21.16 (5.18) 15.87 (5.04)
MDLM 0.01 0.9 68.57 (5.48) 48.30 (5.42) 38.80 (5.37) 32.38 (5.32) 27.66 (5.28) 21.57 (5.18) 16.26 (5.05) 11.67 (4.79)
Rescale Schedule
Duo 0.01 1.0 89.63 (5.58) 79.80 (5.57) 76.11 (5.56) 73.43 (5.55) 70.66 (5.54) 70.46 (5.53) 69.20 (5.54) 68.25 (5.53)
Duo 0.02 1.0 89.55 (5.58) 79.44 (5.57) 75.98 (5.56) 72.99 (5.54) 69.85 (5.54) 68.39 (5.53) 66.60 (5.53) 63.70 (5.52)
Duo 0.01 0.95 56.68 (5.49) 50.80 (5.48) 48.38 (5.47) 46.91 (5.46) 45.24 (5.45) 44.64 (5.44) 44.11 (5.44) 43.49 (5.43)
Duo 0.02 0.95 56.68 (5.49) 50.66 (5.48) 48.09 (5.47) 46.19 (5.46) 44.17 (5.44) 42.71 (5.43) 41.47 (5.43) 38.06 (5.40)
Duo 0.01 0.9 45.03 (5.41) 40.02 (5.40) 38.17 (5.39) 36.60 (5.36) 35.25(5.35) 34.35(5.34) 34.27 (5.35) 33.07 (5.33)
Duo 0.02 0.9 45.04 (5.41) 40.00 (5.40) 38.05 (5.39) 36.15 (5.36) 34.74 (5.35) 33.13(5.33) 31.79 (5.32) 29.08 (5.30)
Duo 0.03 0.9 44.87 (5.41) 40.05 (5.40) 37.61 (5.39) 35.26 (5.36) 33.35(5.34) 31.17 (5.32) 28.90 (5.31) 24.93 (5.26)
Duo 0.04 0.9 44.43 (5.41) 39.67 (5.39) 37.21 (5.38) 34.75 (5.35) 32.47 (5.34) 29.30 (5.31) 26.15 (5.28) 22.05 (5.22)
Duo 0.05 0.9 44.52 (5.41) 39.49 (5.40) 36.41 (5.38) 33.68 (5.35) 31.06 (5.34) 26.94 (5.28) 23.61 (5.25) 19.21 (5.17)
MDLM 0.01 1.0 194.29 (5.74) 141.40 (5.69) 121.04 (5.67) 112.95 (5.65) 107.80 (5.64) 105.58 (5.64) 105.69 (5.63) 105.64 (5.63)
MDLM 0.02 1.0 194.54 (5.74) 140.81 (5.69) 120.86 (5.67) 112.64 (5.65) 108.26 (5.64) 105.65 (5.64) 104.47 (5.63) 105.61 (5.64)
MDLM 0.01 0.95 106.43 (5.61) 76.89 (5.55) 65.42 (5.52) 61.07 (5.50) 58.77 (5.49) 56.34 (5.47) 56.29 (5.47) 54.42 (5.45)
MDLM 0.02 0.95 105.92 (5.60) 76.23 (5.55) 65.43 (5.52) 60.80 (5.50) 57.32(5.49) 54.94 (5.47) 53.92 (5.46) 50.57 (5.45)
MDLM 0.01 0.9 70.45 (5.49) 51.33 (5.43) 43.59 (5.39) 40.14 (5.36) 38.68 (5.35) 37.64 (5.34) 36.48 (5.32) 35.10 (5.31)
MDLM 0.02 0.9 70.31 (5.49) 51.06 (5.43) 43.51 (5.39) 39.61 (5.36) 37.88 (5.35) 36.28 (5.33) 34.53 (5.31) 31.62 (5.29)
MDLM 0.03 0.9 69.89 (5.49) 50.76 (5.42) 43.23 (5.39) 38.86 (5.36) 36.77 (5.34) 34.62 (5.32) 31.44 (5.29) 27.19 (5.25)
MDLM 0.04 0.9 69.54 (5.49) 50.30 (5.42) 42.84 (5.39) 38.02 (5.35) 35.73 (5.33) 32.44 (5.31) 28.55 (5.27) 23.72(5.21)
MDLM 0.05 0.9 69.44 (5.48) 50.15 (5.42) 4239 (5.38) 37.27 (5.35) 34.10 (5.33) 30.29 (5.30) 26.03 (5.25) 20.85 (5.16)
Loop Schedule
Duo 0.01 1.0 108.15 (5.58) 83.10 (5.58) 71.16 (5.56) 66.15 (5.55) 60.49 (5.55) 56.35 (5.53) 53.06 (5.51) 48.93 (5.48)
Duo 0.02 1.0 103.48 (5.58) 79.75 (5.58) 67.99 (5.56) 63.05 (5.55) 56.92 (5.54) 52.69 (5.51) 48.63 (5.47) 43.28 (5.37)
Duo 0.01 0.95 65.29 (5.49) 51.36 (5.48) 43.27 (5.46) 37.64 (5.43) 32.04 (5.40) 26.97 (5.35) 22.94 (5.30) 18.40 (5.20)
Duo 0.02 0.95 61.61 (5.48) 47.46 (5.47) 38.78 (5.44) 32.69 (5.40) 27.26 (5.36) 22.35(5.29) 18.43 (5.22) 14.31 (5.06)
Duo 0.01 0.9 52.12 (5.40) 40.27 (5.39) 33.71 (5.37) 28.73 (5.33) 24.47 (5.29) 20.32 (5.23) 17.01 (5.16) 13.61 (5.05)
Duo 0.02 0.9 49.08 (5.40) 37.00 (5.38) 30.08 (5.34) 24.88 (5.29) 20.59 (5.24) 16.69 (5.16) 13.61 (5.06) 10.77 (4.92)
MDLM 0.01 1.0 340.32 (5.81) 192.48 (5.74) 140.70 (5.70) 127.32 (5.70) 119.34 (5.69) 127.63 (5.70) 149.13 (5.73) 198.48 (5.77)
MDLM 0.02 1.0 338.82 (5.82) 193.71 (5.75) 144.92 (5.72) 140.73 (5.72) 136.30 (5.71) 162.47 (5.75) 246.89 (5.81) 354.65 (5.78)
MDLM 0.01 0.95 182.65 (5.67) 101.56 (5.61) 71.76 (5.56) 58.43 (5.52) 51.33 (5.50) 45.27 (5.47) 39.08 (5.43) 33.48 (5.38)
MDLM 0.02 0.95 177.31 (5.67) 97.61 (5.61) 68.49 (5.55) 55.21(5.51) 47.71 (5.49) 41.64 (5.45) 34.91 (5.40) 29.63 (5.33)
MDLM 0.01 0.9 117.28 (5.55) 65.24 (5.48) 46.91 (5.43) 37.62 (5.38) 31.93 (5.34) 27.80 (5.31) 23.38 (5.25) 19.78 (5.20)
MDLM 0.02 0.9 112.21 (5.55) 61.93 (5.48) 43.89 (5.42) 34.69 (5.37) 28.99 (5.33) 24.58 (5.29) 20.09 (5.20) 16.68 (5.13)
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Table 15: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
& Cohen, 2019) with W-samplers using «; schedules matching ReMDM (log-linear step size) and
distilled models (as in Table 13). We experiment with nucleus sampling, following Wang et al.
(2025).

Algo Eta Nucleus P ‘ Gen. PPL

‘ 32 64 128 256 512 1024 2048 4096
Ancestral Sampling
Duo N.A 1.0 68.35 (5.54) 62.92 (5.54) 59.82 (5.50) 58.77 (5.46) 58.32 (5.46) 57.82 (5.45) 55.39 (5.43) 55.89 (5.42)
Duo N.A 0.95 44.94 (5.47) 41.78 (5.46) 40.32 (5.43) 38.93 (5.39) 38.69 (5.37) 38.45 (5.36) 36.92 (5.33) 37.26 (5.33)
Duo N.A 0.9 35.92 (5.41) 32.98 (5.40) 31.49 (5.36) 30.32 (5.31) 30.06 (5.29) 30.00 (5.28) 28.90 (5.25) 29.19 (5.25)
MDLM N.A 1.0 68.61 (5.48) 55.26 (5.45) 49.51 (5.44) 46.13 (5.42) 45.61 (5.42) 44.87 (5.42) 44.53 (5.41) 44.38 (5.42)
MDLM N.A 0.95 46.07 (5.37) 36.55 (5.33) 32.91(5.31) 30.96 (5.30) 30.26 (5.29) 29.73 (5.29) 29.54 (5.28) 29.53 (5.28)
MDLM N.A 0.9 34.85 (5.26) 28.21 (5.23) 2527 (5.21) 24.31 (5.19) 23.25(5.18) 22.75 (5.17) 2273 (5.17) 22.46 (5.16)
Cap Schedule
Duo 0.005 1.0 66.13 (5.54) 58.49 (5.52) 53.61 (5.48) 47.85 (5.42) 41.59 (5.39) 34.05 (5.34) 25.67 (5.22) 19.25 (5.11)
Duo 0.01 1.0 64.22 (5.53) 55.84 (5.51) 49.90 (5.48) 40.95 (5.39) 33.90 (5.34) 26.29 (5.24) 19.34 (5.11) 14.31 (4.96)
Duo 0.005 0.95 43.68 (5.47) 38.77 (5.45) 35.55 (5.40) 31.36 (5.33) 26.74 (5.28) 21.84 (5.22) 16.22 (5.08) 12.00 (4.94)
Duo 0.01 0.95 42.34 (5.46) 37.14 (5.44) 32.39 (5.38) 27.25 (5.30) 21.84 (5.22) 16.74 (5.10) 11.70 (4.92) 8.68 (4.72)
Duo 0.005 0.9 34.80 (5.40) 30.95 (5.38) 28.15 (5.34) 24.47 (5.26) 21.25(5.18) 17.02 (5.12) 12.86 (4.99) 9.48 (4.81)
Duo 0.01 0.9 33.91 (5.40) 29.27 (5.37) 25.28 (5.31) 21.40 (5.21) 17.36 (5.13) 13.22 (5.00) 9.55 (4.82) 6.92 (4.56)
MDLM 0.005 1.0 67.27 (5.48) 52.34 (5.45) 44.38 (5.42) 38.14 (5.40) 32.35(5.37) 26.37 (5.34) 20.64 (5.27) 15.80 (5.19)
MDLM 0.01 1.0 65.29 (5.47) 49.78 (5.44) 41.29 (5.40) 33.39 (5.38) 27.16 (5.34) 21.04 (5.28) 16.13 (5.19) 12.16 (5.08)
MDLM 0.005 0.95 44.71 (5.36) 34.56 (5.32) 29.42 (5.30) 25.28 (5.27) 21.55(5.23) 17.39 (5.18) 13.63 (5.09) 10.47 (4.98)
MDLM 0.01 0.95 43.20 (5.36) 32.84 (5.32) 26.90 (5.29) 22.19 (5.24) 17.80 (5.19) 13.93 (5.11) 10.61 (4.98) 7.68 (4.76)
MDLM 0.005 0.9 33.81(5.26) 26.71 (5.22) 22.81(5.19) 19.65 (5.16) 16.67 (5.11) 13.79 (5.06) 10.74 (4.94) 8.10 (4.78)
MDLM 0.01 0.9 32.94 (5.25) 25.51(5.22) 20.89 (5.18) 17.19 (5.13) 13.91 (5.05) 10.91 (4.95) 8.15 (4.78) 5.93 (4.54)
Rescale Schedule
Duo 0.01 1.0 68.33 (5.54) 62.77 (5.53) 59.65 (5.50) 57.89 (5.46) 57.43 (5.45) 56.18 (5.44) 53.13(5.42) 51.93 (5.41)
Duo 0.02 1.0 68.18 (5.54) 62.24 (5.53) 59.07 (5.50) 56.96 (5.46) 55.73 (5.44) 53.31(5.43) 48.20 (5.40) 44.51 (5.38)
Duo 0.01 0.95 45.04 (5.47) 41.74 (5.46) 39.99 (5.43) 38.80 (5.38) 38.10 (5.37) 37.51(5.36) 35.43 (5.33) 34.71 (5.32)
Duo 0.02 0.95 44.89 (5.47) 41.33 (5.46) 39.81(5.43) 38.09 (5.38) 36.79 (5.36) 35.47 (5.35) 31.97 (5.31) 29.25 (5.28)
Duo 0.01 0.9 35.91 (5.41) 33.05 (5.40) 31.55 (5.36) 30.39 (5.31) 29.94 (5.29) 29.70 (5.28) 27.73 (5.25) 27.43 (5.24)
Duo 0.02 0.9 35.81(5.41) 32.77 (5.40) 31.17 (5.36) 29.70 (5.30) 28.70 (5.28) 27.70 (5.26) 25.31(5.22) 22.83(5.19)
MDLM 0.01 1.0 68.66 (5.48) 55.16 (5.45) 49.71 (5.43) 45.88 (5.42) 45.11 (5.42) 43.79 (5.41) 42.55 (5.40) 40.90 (5.40)
MDLM 0.02 1.0 68.73 (5.48) 54.85 (5.45) 48.12 (5.43) 45.35(5.42) 44.10 (5.42) 41.48 (5.41) 38.76 (5.39) 34.66 (5.38)
MDLM 0.01 0.95 46.01 (5.37) 36.58 (5.33) 32.80 (5.31) 30.65 (5.30) 29.92 (5.29) 29.18 (5.28) 28.34 (5.28) 27.38 (5.27)
MDLM 0.02 0.95 45.92 (5.37) 36.45 (5.33) 32.49 (5.31) 30.25 (5.29) 29.01 (5.28) 27.68 (5.28) 25.75 (5.26) 22.95(5.24)
MDLM 0.01 0.9 34.83 (5.26) 28.15(5.23) 25.24 (5.21) 23.73 (5.19) 23.03 (5.18) 22.36 (5.17) 21.75 (5.17) 20.93 (5.15)
MDLM 0.02 0.9 34.83 (5.26) 28.17 (5.23) 24.97 (5.21) 23.34(5.19) 22.34 (5.17) 21.33(5.17) 19.88 (5.15) 17.75 (5.12)
Loop Schedule
Duo 0.01 1.0 80.39 (5.55) 61.64 (5.54) 52.51 (5.52) 47.30 (5.48) 40.27 (5.44) 34.27 (5.40) 27.28 (5.32) 21.97 (5.26)
Duo 0.02 1.0 75.97 (5.55) 57.36 (5.53) 47.47 (5.52) 41.33 (5.47) 34.18 (5.41) 28.72 (5.36) 22.16 (5.26) 17.67 (5.18)
Duo 0.01 0.95 51.76 (5.48) 4091 (5.47) 34.68 (5.44) 30.83(5.39) 25.86 (5.34) 21.31(5.27) 17.15 (5.18) 13.69 (5.10)
Duo 0.02 0.95 48.78 (5.48) 37.61 (5.46) 30.95 (5.43) 26.55 (5.36) 21.60 (5.30) 17.64 (5.22) 13.84 (5.11) 11.15 (5.02)
Duo 0.01 0.9 41.15 (5.42) 32.51 (5.40) 27.96 (5.38) 24.49 (5.32) 20.52 (5.25) 17.17 (5.19) 13.90 (5.10) 11.44 (5.02)
Duo 0.02 0.9 38.73 (5.42) 30.04 (5.40) 24.99 (5.37) 21.24 (5.29) 17.40 (5.21) 14.25 (5.13) 11.51 (5.02) 9.51 (4.94)
MDLM 0.01 1.0 99.76 (5.51) 62.76 (5.48) 47.50 (5.45) 39.07 (5.43) 32.85(5.41) 28.01 (5.38) 23.18 (5.34) 19.32 (5.29)
MDLM 0.02 1.0 93.99 (5.51) 58.00 (5.48) 43.00 (5.45) 33.84 (5.42) 28.60 (5.39) 24.13 (5.36) 19.81 (5.30) 16.32 (5.24)
MDLM 0.01 0.95 65.09 (5.40) 41.85 (5.37) 31.76 (5.33) 26.11 (5.30) 22.21(5.28) 19.19 (5.24) 16.12 (5.20) 13.59 (5.15)
MDLM 0.02 0.95 61.24 (5.40) 38.68 (5.36) 28.92 (5.33) 23.21(5.29) 19.45 (5.26) 16.60 (5.21) 13.84 (5.16) 11.73 (5.09)
MDLM 0.01 0.9 48.86 (5.29) 32.03 (5.26) 24.51(5.23) 20.56 (5.20) 17.79 (5.18) 15.42 (5.14) 13.19 (5.09) 11.29 (5.04)
MDLM 0.02 0.9 46.12 (5.29) 29.77 (5.27) 22.52(5.22) 18.46 (5.19) 15.86 (5.16) 13.57 (5.11) 11.54 (5.05) 9.85 (4.98)
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