

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE DIFFUSION DUALITY, CHAPTER II: Ψ -SAMPLERS AND EFFICIENT CURRICULUM

Anonymous authors

Paper under double-blind review

ABSTRACT

Uniform-state discrete diffusion models excel at few-step generation and guidance due to their inherent ability to self-correct, making them more preferable than autoregressive or masked diffusion models in these settings. However, their sampling efficiency has been limited by the reliance on standard posterior samplers, which plateau in quality as the number of steps increases. In this work, we introduce a novel family of “Predictor-Corrector” (PC) samplers for discrete diffusion models that generalize prior methods and apply to arbitrary noise processes. When paired with uniform-state diffusion, our samplers significantly outperform ancestral sampling on both language and image modeling, achieving lower generative perplexity at matched unigram entropy on OpenWebText and better FID/IS scores on CIFAR10. Crucially, unlike conventional samplers, our PC methods continue to improve generation quality with more sampling steps. Beyond sampling, we develop a fast and memory-efficient curriculum for Duo^{++} ’s (our method) Gaussian relaxation phase, which avoids materializing large Gaussian-diffused one-hot vectors. This reduces training time by 25% compared to Duo while maintaining similar validation perplexity on OpenWebText and LM1B and strong downstream performance.

Figure 1: **Performance on Language Modeling and Image Modeling.** Ψ -samplers consistently improve performance as the number of sampling steps (NFE) grows. Ψ -samplers generalize ReMDM (Wang et al., 2025) to arbitrary noise distribution. **(Left):** Generative perplexity of Ψ -samplers (ours) as a function of the number of sampling steps (NFEs), using nucleus sampling $p = 0.9$ for all samplers. We annotate the curves with the average unigram entropy per sequence as a proxy for diversity. **(Right):** On CIFAR-10, Ψ -samplers achieve a better FID than MDLM (with ReMDM). **[Rebuttal update]:** We remove temperature scaling with Duo^{++} and Ψ -samplers. This improves the FID for both the methods at higher NFEs (unlike previously; see Fig. 7c).

1 INTRODUCTION

Diffusion models are powerful generative algorithms that have achieved remarkable success in modeling continuous data domains, including images (Ho et al., 2020a; Rombach et al., 2022),

054 audio (Kong et al., 2021; Liu et al., 2023b; Huang et al., 2023; Ku et al., 2025), and videos (Ho et al.,
 055 2022; Esser et al., 2023; Blattmann et al., 2023; Polyak et al., 2025). Recent advances have extended
 056 diffusion models to categorical data, demonstrating their potential for language modeling (Austin
 057 et al., 2023; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025; Sahoo et al.,
 058 2025a;b), graphs (Liu et al., 2023a), and molecules (Lee et al., 2025). Unlike autoregressive models
 059 that generate tokens sequentially from left to right, diffusion language models can decode tokens
 060 in parallel and in any order while leveraging bidirectional contextual information. This capability
 061 enables the design of language models that can be significantly faster than their autoregressive
 062 counterparts while maintaining strong downstream performance (Song et al., 2025; Labs et al., 2025).

063 Discrete diffusion models primarily employ one of two noise distributions: a uniform prior or a
 064 masked prior that concentrates all probability mass on a special [MASK] token. *Uniform-State*
 065 *Diffusion Models* (USDMs) offer a major advantage through their ability to self-correct mistakes,
 066 as they allow tokens to be revised multiple times during generation. In contrast, standard *Masked*
 067 *Diffusion Models* (MDMs) update each token exactly once, preventing error correction during
 068 generation. Due to this self-correction capability, USDMs significantly outperform MDMs in
 069 generation in a few steps, particularly after distillation (Sahoo et al., 2025a). Furthermore, in
 070 applications that require guidance to steer generation towards specific targets by optimizing reward
 071 functions, USDMs prove to be much more suitable than autoregressive or MDMs approaches (Schiff
 072 et al., 2025). However, USDMs face notable limitations: Their generation quality has not yet
 073 matched that of MDMs in high-sampling-step regimes, and their modeling capacity, as measured by
 074 likelihood, remains inferior to that of MDMs. Although Sahoo et al. (2025a) proposed a curriculum
 075 learning strategy (Bengio et al., 2009) that narrows the likelihood gap, this curriculum approach is
 076 computationally expensive.

077 To address MDMs’ inability to remask tokens, ReMDM (Wang et al., 2025) introduced “Predictor-
 078 Corrector” (PC) samplers that generalize and outperform earlier PC methods (Campbell et al., 2022;
 079 Gat et al., 2024). These samplers substantially improve the inference time scaling behavior of MDMs.
 080 However, PC methods for uniform-state diffusion remain underexplored. Campbell et al. (2022)
 081 proposed PC methods for samplers that take advantage of the rate change matrices of the continuous-
 082 time Markov chain (CTMC) formulation of discrete diffusion processes, but such samplers are known
 083 to perform worse than ancestral samplers (Lou et al., 2024; Schiff et al., 2025). Furthermore, while
 084 the curriculum learning strategy from Sahoo et al. (2025a) closes the likelihood gap between USDMs
 085 and MDM, each curriculum step is computationally more expensive than standard training, resulting
 086 in a slower overall training.

087 We propose Duo⁺⁺ to address these challenges, which expands the design space of USDMs using
 088 non-Markovian *superposition posteriors* (or as we refer in this paper, Ψ -posteriors). These posteriors
 089 align with the intermediate marginals of discrete diffusion processes and give rise to Ψ -samplers with
 090 predictor-corrector capabilities that are crucial for improving sample quality. In addition, Duo⁺⁺
 091 introduces an efficient curriculum learning strategy that advances the approach of Sahoo et al. (2025a)
 092 by accelerating training and reducing memory usage.

093 In summary, our contributions are threefold: (1) we propose a family of non-Markovian posteriors
 094 (Ψ -posteriors) for discrete diffusion with arbitrary noise priors that share the same marginals as the
 095 Markovian discrete diffusion process (Sec. 3). (2) We demonstrate that the induced Ψ -samplers im-
 096 prove text and image generation quality and scale better than standard ancestral samplers in high NFE
 097 regimes, closing the performance gap with respect to MDMs coupled with remasking samplers in high
 098 NFE regimes for text generation (Sec. 5.1) and surpassing them on image generation tasks (Sec. 4).
 099 (3) We reformulate the curriculum learning strategy proposed in Sahoo et al. (2025a), achieving a 2 \times
 100 speedup while reducing peak memory usage by 33% and end-to-end training time by 25%, while
 101 maintaining similar perplexity (Figure 1, right, Table 5) and downstream task accuracy (Table 1).

102 2 BACKGROUND

103 **Notation** Let $\mathcal{V} := \{\mathbf{v} \in \{0, 1\}^K : \sum_{i=1}^K \mathbf{v}_i = 1\}$ denote the set of one-hot encodings of discrete
 104 random variables over K categories. Let $\mathbf{x} \in \mathcal{V}^L$ denote a sequence of L discrete variables in \mathcal{V}
 105 and \mathbf{x}^ℓ denote the entry ℓ^{th} in \mathbf{x} . We use boldface to denote both individual vectors and sequences;
 106 the context will make clear whether a symbol refers to a vector or a sequence. Let Δ denote the K
 107 simplex. For $\mathbf{v} \in \Delta$, let $\text{Cat}(\cdot; \mathbf{v})$ denote a categorical distribution such that $\mathbb{P}(\mathbf{u}_i = 1) = \mathbf{v}_i$, for
 108 $\mathbf{u} \sim \text{Cat}(\cdot; \mathbf{v})$, $\mathbf{u} \in \mathcal{V}$. Let $\langle \mathbf{a}, \mathbf{b} \rangle$ and $\mathbf{a} \odot \mathbf{b}$ denote the dot and Hadamard products between two

108 vectors respectively. Let $\mathbf{1} = \{1\}^K$ denote the all-ones vector. Let $\pi \in \Delta$ be a designated categorical
109 distribution referred to as the prior.
110

111 2.1 DISCRETE DIFFUSION MODELS 112

113 Consider the clean data sequence \mathbf{x} of length L drawn from the data distribution q_{data} . Discrete
114 diffusion models (Sohl-Dickstein et al., 2015; Austin et al., 2023) define a sequence of increasingly
115 noisy distributions $(q_t)_{t \in [0,1]}$, interpolating from q_{data} to a factorized prior distribution, which is a
116 product of L independent $\text{Cat}(\cdot; \pi)$ distributions, using Markovian transitions defined independently
117 across input dimensions (Campbell et al., 2022; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025;
118 Schiff et al., 2025; Sahoo et al., 2025a). Let $\mathbf{z}_t \sim \prod_{\ell=1}^L q_t(\cdot | \mathbf{x}^\ell)$ denote the intermediate latents
119 (sequence) at time step t . This work focuses on factorized, interpolating noise processes (Sahoo et al.,
120 2024), whose conditional marginal distribution takes the form:
121

$$122 \mathbf{z}_t^\ell \sim q_t(\cdot | \mathbf{x}^\ell; \alpha_t) = \text{Cat}(\cdot; \alpha_t \mathbf{x}^\ell + (1 - \alpha_t) \pi), \quad (1)$$

123 where $\alpha_t \in [0, 1]$ is monotonically decreasing with t , and is known as the *noise schedule*. (1) defines
124 the *forward process*, which progressively corrupts the data. The goal is to learn a *generative process*
125 p_θ , parameterized by a neural network with parameters θ , that reverses this forward process to map
126 from the noise prior back to q_{data} . The model is typically trained by minimizing the “Negative
127 Evidence Lower Bound” (NELBO). The choice of token prior π gives rise to two popular variants:
128 Masked Diffusion Models (MDMs) and Uniform-state Diffusion Models (USDMs), which we discuss
129 in the following.
130

131 2.1.1 MASKED DIFFUSION PROCESSES 132

133 MDMs (Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025) use a masked prior, where $\pi = \mathbf{m} \in \mathcal{V}$
134 is the one-hot representation of a special [MASK] token (Devlin et al., 2019). During the forward
135 process (1), tokens either remain unchanged or transition to the masked state \mathbf{m} , after which they
136 stay masked. This behavior carries over to the reverse process. The posterior of the reverse process
137 $q_{s|t}^{\text{MDM}}$ for $0 \leq s < t < 1$ can be derived using Bayes’ Rule, and would be:
138

$$139 q_{s|t}^{\text{MDM}}(\cdot | \mathbf{z}_t^\ell, \mathbf{x}^\ell) = \begin{cases} \text{Cat}\left(\cdot; \frac{\alpha_s - \alpha_t}{1 - \alpha_t} \mathbf{x}^\ell + \frac{1 - \alpha_s}{1 - \alpha_t} \mathbf{z}_t^\ell\right) & \text{if } \mathbf{z}_t^\ell = \mathbf{m}, \\ \text{Cat}(\cdot; \mathbf{x}^\ell) & \text{otherwise.} \end{cases} \quad (2)$$

141 The approximate reverse posterior is $p_{s|t}^\theta = \prod_\ell q_{s|t}^{\text{MDM}}(\cdot | \mathbf{z}_t^\ell, \mathbf{x}^\ell = \mathbf{x}_\theta(\mathbf{z}_t^{1:L}, t))$ where $\mathbf{x}_\theta : \mathcal{V}^L \times$
142 $[0, 1] \rightarrow \Delta^L$ is the denoising model. A key limitation is that once unmasked, tokens cannot be
143 remasked (2). This can create compounding errors during inference, as the denoising model \mathbf{x}_θ
144 imperfectly models the clean data.
145

146 **Predictor-Corrector Methods** Wang et al. (2025) propose *posterior*, and *associated samplers*
147 (ReMDM) that maintain the same marginals as (2) during the generation process, while allowing
148 remasking and generalizing previous training-free predictor-corrector methods such as Campbell
149 et al. (2022); Gat et al. (2024).
150

151 2.1.2 UNIFORM-STATE DIFFUSION PROCESSES 152

153 Alternatively, discrete diffusion models can use a uniform prior $\pi = \mathbf{1}/K$ (Schiff et al., 2025;
154 Sahoo et al., 2025a). This choice allows tokens to change values multiple times throughout the
155 generative process, in contrast to masked diffusion. This property allows USDMs to excel in few-step
156 generation (Sahoo et al., 2025a) and guidance applications (Schiff et al., 2025).
157

158 USDMs admit the following posterior distribution $q_{s|t}^{\text{USDM}}$ (for brevity, we simply write $q_{s|t}$ for
159 $q_{s|t}^{\text{USDM}}$):
160

$$161 q_{s|t}(\cdot | \mathbf{z}_t^\ell, \mathbf{x}^\ell) = \text{Cat}\left(\cdot; \frac{K \alpha_t \mathbf{z}_t^\ell \odot \mathbf{x}^\ell + (\alpha_{t|s} - \alpha_t) \mathbf{z}_t^\ell + (\alpha_s - \alpha_t) \mathbf{x}^\ell + (1 - \alpha_{t|s})(1 - \alpha_s) \mathbf{1}/K}{K \alpha_t \langle \mathbf{z}_t^\ell, \mathbf{x}^\ell \rangle + 1 - \alpha_t}\right). \quad (3)$$

162 This posterior induces the following NELBO (Sahoo et al., 2025a):
 163

$$164 \text{NELBO}(\mathbf{q}, p_\theta; \mathbf{x}) = -\mathbb{E}_{t \sim \mathcal{U}[0,1], \mathbf{q}_t(\mathbf{z}_t^\ell | \mathbf{x}^\ell; \alpha_t)} \sum_{\ell \in [L]} f(\mathbf{z}_t^\ell, \mathbf{x}_\theta^\ell(\mathbf{z}_t^\ell, t), \alpha_t; \mathbf{x}^\ell), \quad (4)$$

166 where
 167

$$168 f(\mathbf{z}_t^\ell, \mathbf{x}_\theta^\ell(\mathbf{z}_t^\ell, t), \alpha_t; \mathbf{x}^\ell) = \frac{\alpha_t'}{K \alpha_t} \left[\frac{K}{\bar{\mathbf{x}}_i^\ell} - \frac{K}{(\bar{\mathbf{x}}_\theta^\ell)_i} - \left(\zeta_t \mathbb{1}_{\mathbf{z}_t^\ell = \mathbf{x}^\ell} + \mathbb{1}_{\mathbf{z}_t^\ell \neq \mathbf{x}^\ell} \right) \sum_j \log \frac{(\bar{\mathbf{x}}_\theta^\ell)_i}{(\bar{\mathbf{x}}_\theta^\ell)_j} \right. \\ 169 \left. - K \frac{\alpha_t}{1 - \alpha_t} \log \frac{(\bar{\mathbf{x}}_\theta^\ell)_i}{(\bar{\mathbf{x}}_\theta^\ell)_m} \mathbb{1}_{\mathbf{z}_t^\ell \neq \mathbf{x}^\ell} - \left((K-1)\zeta_t \mathbb{1}_{\mathbf{z}_t^\ell = \mathbf{x}^\ell} - \frac{1}{\zeta_t} \mathbb{1}_{\mathbf{z}_t^\ell \neq \mathbf{x}^\ell} \right) \log \zeta_t \right]. \quad (5)$$

170
 171 Here, $\bar{\mathbf{x}}^\ell = K\alpha_t \mathbf{x}^\ell + (1 - \alpha_t)\mathbf{1}$, $\bar{\mathbf{x}}_\theta^\ell = K\alpha_t \mathbf{x}_\theta^\ell(\mathbf{z}_t, t) + (1 - \alpha_t)\mathbf{1}$, α_t' denotes the time derivative of
 172 α_t , $i = \arg \max_{j \in [K]} (\mathbf{z}_t^\ell)_j$ is the nonzero entry of \mathbf{z}_t , $\zeta_t = \frac{1 - \alpha_t}{K\alpha_t + 1 - \alpha_t}$, and m denotes the index in
 173 \mathbf{x} corresponding to 1, that is, $\mathbf{x}_m = 1$.
 174

175 **The Diffusion Duality** Sahoo et al. (2025a) show that USDMs emerge from an underlying Gaussian
 176 diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020b; Song et al., 2021; Kingma et al.,
 177 2023) on the one-hot representation $\mathbf{x}^\ell \in \mathcal{V}$. The Gaussian diffusion begins with \mathbf{x}^ℓ and progressively
 178 adds Gaussian noise leading to a sequence of noisy latents $\mathbf{w}_t^\ell \in \mathbb{R}^K \sim \tilde{q}_t(\cdot | \mathbf{x}^\ell)$ for $t \in [0, 1]$ with
 179 the marginals:
 180

$$181 \tilde{q}_t(\cdot | \mathbf{x}^\ell; \tilde{\alpha}_t) = \mathcal{N}(\cdot; \tilde{\alpha}_t \mathbf{x}^\ell, (1 - \tilde{\alpha}_t^2) \mathbf{I}_K),$$

182 where $(\tilde{\alpha}_t)_{t \in [0,1]}$ is a monotonically decreasing noise schedule. Let $\arg \max : \mathbb{R}^K \rightarrow \mathcal{V}$ map a
 183 continuous vector $\mathbf{v} \in \mathbb{R}^K$ to the one-hot vector corresponding to the index of its largest entry in \mathbf{v} ,
 184 that is, $\arg \max(\mathbf{v}) = \arg \max_{\mathbf{z} \in \mathcal{V}} \mathbf{z}^\top \mathbf{v}$. When applied to a sequence of Gaussian latents \mathbf{w} , $\arg \max$
 185 transforms them to the discrete latents \mathbf{z}_t whose marginals take the form: $\mathbf{z}_t^\ell \sim q_t(\cdot | \mathbf{x}^\ell; \alpha_t := \mathcal{T}(\tilde{\alpha}_t))$,
 186 where the function $\mathcal{T} : [0, 1] \rightarrow [0, 1]$ is the *Diffusion Transformation Operator*:
 187

$$188 \mathcal{T}(\tilde{\alpha}_t) = \frac{K}{K-1} \left[\int_{-\infty}^{\infty} \phi \left(z - \frac{\tilde{\alpha}_t}{\sqrt{1 - \tilde{\alpha}_t^2}} \right) \Phi^{K-1}(z) dz - \frac{1}{K} \right], \quad (6)$$

189 where $\phi(z) = \exp(-z^2)/\sqrt{2\pi}$ and $\Phi(z) = \int_{-\infty}^z \phi(t) dt$ are the standard Normal PDF and CDF,
 190 respectively. More formally, this relationship is expressed as:
 191

$$192 q_t(\mathbf{z}_t^\ell | \mathbf{x}^\ell; \mathcal{T}(\tilde{\alpha}_t)) = [\arg \max]_\star \tilde{q}_t(\mathbf{w}_t^\ell | \mathbf{x}^\ell; \tilde{\alpha}_t) \quad (7)$$

193 where the \star operator denotes the *pushforward* of the K -dimensional Gaussian density under the
 194 $\arg \max$ map, yielding a categorical distribution with K classes. Note that while the marginal
 195 distribution $q_t(\mathbf{z}_t | \mathbf{x}; \mathcal{T}(\tilde{\alpha}_t))$ matches the discrete-space marginal in (1), **this does not imply that**
 196 **the full trajectory** $\{\mathbf{z}_t := \arg \max(\mathbf{w}_t)\}_{t \in [0,1]}$ **follows a (Markovian) discrete diffusion process**
 197 (Sahoo et al., 2025a). An interesting outcome of (7) is that the discrete NELBO (4) can be written
 198 in terms of Gaussian latents in the following manner, where the second $\arg \max$ is applied to each
 199 token independently:
 200

$$201 \text{NELBO}(\mathbf{q}, p_\theta; \mathbf{x}) \\ 202 = \mathbb{E}_{\mathbf{x}, t \sim \mathcal{U}[0,1], \tilde{q}_t} \sum_{\ell \in [L]} f(\mathbf{z}_t^\ell := \arg \max(\mathbf{w}_t^\ell), \mathbf{x}_\theta^\ell(\arg \max(\mathbf{w}_t), t), \alpha_t := \mathcal{T}(\tilde{\alpha}_t); \mathbf{x}^\ell). \quad (8)$$

203
 204 **Curriculum Learning** Curriculum learning (Bengio et al., 2009) progressively exposes models
 205 to more complex tasks. Sahoo et al. (2025a) propose to optimize a biased but low-variance ELBO
 206 estimator early in training, enabling faster convergence. For the first 50% of the steps, the $\arg \max$
 207 operation is relaxed to a low-temperature softmax, replacing discrete token lookups with linear
 208 combinations of embeddings. This yields an easier optimization objective: the resulting embeddings
 209 are superpositions of clean and noisy tokens, which provides a partially clean signal for reconstruction.
 210 Figure 3 (top) illustrates the original curriculum. More formally, Sahoo et al. (2025a) optimize the
 211 following loss during the curriculum phase, where the softmax is applied to each token independently:
 212

$$213 \mathcal{L}^{\text{train}} = \mathbb{E}_{\mathbf{x}, t \sim \mathcal{U}[\beta, \gamma], \tilde{q}_t} \sum_{\ell \in [L]} f(\mathbf{z}_t^\ell := \arg \max(\mathbf{w}_t^\ell), \mathbf{x}_\theta^\ell(\text{softmax}(\mathbf{w}_t / \tau), t), \alpha_t := \mathcal{T}(\tilde{\alpha}_t); \mathbf{x}^\ell). \quad (9)$$

Figure 2: Ψ -samplers combine predictor and corrector steps. The **predictor** transitions from \mathbf{z}_t to \mathbf{z}_s via $q_{s|t}$, but fails to remask tokens in MDMs. The **corrector** steps inject noise via q_s , to revise earlier predictions. For $\kappa_t < 1$, noise injection enables error correction while preserving the forward process marginals. Our framework simplifies prior PC methods (Campbell et al., 2022; Gat et al., 2024; Wang et al., 2025) and extends them to arbitrary priors π .

Notice that $\mathcal{L}^{\text{train}}$ in (9) reduces to the NELBO (8) in the limit $\lim_{\tau \rightarrow 0}$, for $\beta = 0$ and $\gamma = 1$, since $\lim_{\tau \rightarrow 0} \text{softmax}(\mathbf{v}/\tau) = \arg \max(\mathbf{v})$, as shown by Jang et al. (2017); Maddison et al. (2017). Formally, for a sequence of latents $\mathbf{y} \in \Delta^L$ (which can be one-hot), inside the neural network, the input token representation at position ℓ is computed by matrix multiplication: $\mathbf{V}^\top \mathbf{y}^\ell$, where $\mathbf{V} \in \mathbb{R}^{K \times m}$ denotes the vocabulary embedding matrix and m the embedding dimension. This operation reduces to a standard embedding lookups for one-hot inputs obtained with $\arg \max$, and to a linear combinations with the softmax relaxation. However, explicitly materializing the high-dimensional latents \mathbf{w}_t is memory-intensive, an issue we address in Sec. 4.

2.2 DIFFUSION GUIDANCE

For continuous data, diffusion models have achieved state-of-the-art controllable generation through both classifier-based guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021) and Classifier-Free Guidance (CFG; Nichol & Dhariwal (2021); Ho & Salimans (2022)). These approaches have since been extended to discrete data (Gruver et al., 2023). Let $y \in \{1, \dots, C\}$ denote one of C possible classes. For CFG, the sampling posterior $p_\theta^{(\gamma)}$, which modulates the strength of the guidance term via the temperature parameter γ , is defined as (Nisonoff et al., 2024; Schiff et al., 2025):

$$\log p_\theta^{(\gamma)}(\mathbf{z}_s^\ell | y, \mathbf{z}_t) = \gamma \log p_\theta(\mathbf{z}_s^\ell | y, \mathbf{z}_t) + (1 - \gamma) \log p_\theta(\mathbf{z}_s^\ell | \emptyset, \mathbf{z}_t), \quad (10)$$

where \emptyset denotes no class conditioning, and p_θ is the generative posterior (Sec. 2.1).

3 THE Ψ -POSTERIORS

Multiple joint distributions can give rise to the same marginals as the discrete diffusion process defined in (1). In this work, we introduce a family of posteriors, denoted Ψ , and that share the same marginals as in (1); see Suppl. A.2 for details. These alternative generative processes are non-Markovian and apply both to the Masked diffusion processes and to the Uniform-state diffusion processes. Specifically, we define the posteriors for the generative process as:

$$\Psi_{s|t}(\cdot | \mathbf{x}^\ell, \mathbf{z}_t^\ell) = \kappa_t q_{s|t}(\cdot | \mathbf{z}_t^\ell, \mathbf{x}^\ell) + (1 - \kappa_t) q_s(\cdot | \mathbf{x}^\ell); \forall \ell \in [L] \quad (11)$$

where $\kappa_t \in [0, 1]$ and $\Psi_1(\cdot | \mathbf{x}^\ell) = \text{Cat}(\cdot | \pi)$, with $\pi = \mathbf{m}$ for MDMs and $\pi = \mathbf{1}/K$ for USDMs. (11) is thus a linear combination of the forward process (1) and the reverse posteriors (2, 3) of standard discrete diffusion models. We therefore refer to these as *superposition posteriors*, or simply Ψ -posteriors.

Ψ -Forward Processes Consider the interpolating diffusion process in (1) discretized into T steps. Let $\mathbf{z}_{t(i)}$ denote the latent variables at times $t(i) = i/T$ for $0 \leq i \leq T$. The distribution of a trajectory $\mathbf{z}_{0:1}$ factorizes independently over tokens as: $\Psi(\mathbf{z}_{0:1} | \mathbf{x}) = \prod_\ell \Psi(\mathbf{z}_{0:1}^\ell | \mathbf{x}^\ell)$ where $\Psi(\mathbf{z}_{0:1}^\ell | \mathbf{x}^\ell) = \Psi_1(\mathbf{z}_1^\ell | \mathbf{x}^\ell) \prod_{i=1}^T \Psi_{s|t}(\mathbf{z}_{s(i)}^\ell | \mathbf{z}_{t(i)}^\ell, \mathbf{x}^\ell)$. In what follows, we use s, t as shorthand for $s(i), t(i)$, respectively. The forward process can be derived from Bayes' rule: $\Psi(\mathbf{z}_t^\ell | \mathbf{z}_s^\ell, \mathbf{x}^\ell) = \Psi(\mathbf{z}_s^\ell | \mathbf{z}_t^\ell, \mathbf{x}^\ell) \Psi(\mathbf{z}_t^\ell | \mathbf{x}^\ell) / \Psi(\mathbf{z}_s^\ell | \mathbf{x}^\ell)$. Unlike the Markovian interpolating process in (1), this forward process generally not Markovian, since each \mathbf{z}_t^ℓ may depend on both \mathbf{z}_s^ℓ and \mathbf{x}^ℓ .

Figure 3: **Efficient Curriculum for USDMs.** Duo (Sahoo et al., 2025a) replaces discrete lookups with linear combinations of all K embeddings: (1) Gaussian diffusion on one-hot representations, (2) Low-temperature softmax, (3) weighted sum. Duo⁺⁺ exploits the sparsity of the tempered softmax (most weights are effectively zero), and simulate the k largest entries (out of K) using ordered statistics. The approximate normalizer \tilde{Z} admits a closed form expression (13). **Duo⁺⁺ has a 33% lower memory and 25% faster training than Duo.**

Ψ-Reverse Processes In Suppl. A.1, we show that the approximate reverse posterior takes the form:

$$[\Psi_{s|t}^\theta(\cdot|z_t)]^\ell = \kappa_t q_{s|t}(\cdot|z_t, x_\theta(z_t, t)) + (1 - \kappa_t) [\alpha_s q_{0|t}(\cdot|z_t, x_\theta(z_t, t)) + (1 - \alpha_s)\pi]. \quad (12)$$

where x_θ denotes the denoising model. We dub (12) as Ψ -sampler. For $(\kappa_t = 1)_{t \in [0,1]}$, we recover the standard ancestral sampler defined in (2) for MDMs and (3) for USDMs. Notice that for $\kappa_t < 1$, $\Psi_{s|t}$ corresponds to a noisier version of the ancestral sampler marginal $q_{s|t}$. This is analogous to Predictor-Corrector methods in Gaussian diffusion (Song et al., 2021), where the corrector introduces additional Gaussian noise. In our case, q_t plays the role of the corrector, while $q_{s|t}$ acts as the predictor. The Ψ -posteriors also admit a principled NELBO formulation (see Suppl. A.3), though this is not directly relevant for sampling.

Corollary For $p_\theta = \mathbf{m}$, different choices of $\{\kappa_t\}_{t \in [0,1]}$ recover previous Predictor-Corrector formulations in the literature (Campbell et al., 2022; Gat et al., 2024; Wang et al., 2025) (see Suppl. A.4 for the proof). The Ψ framework thus subsumes these samplers as special cases, extending these predictor-corrector methods for discrete diffusion with any prior π .

Intuitive Explanation In practice, the denoiser x_θ imperfectly models the clean data x . The key to the effectiveness of Ψ -sampler is the offset term $(1 - \kappa_t)(1 - \alpha_s)\pi$ in (12), which enables error correction during generation. For MDMs ($\pi = \mathbf{m}$), this offset allows previously denoised tokens to return to the masked state, unlike the ancestral sampler, which prevents remasking (see Sec. 2.1.1). Incorrect tokens can thus be replaced with better ones. For USDMs ($\pi = \mathbf{1}/K$), the offset ensures every token has non-zero sampling probability. Even if the denoiser assigns near-zero probability to the correct token, the Ψ -sampler gives it a chance to appear, whereas ancestral sampling would not. While this offset may occasionally introduce incorrect tokens, the marginals of the Ψ -samplers (11) match those of the Markovian forward process (1), hence we converge to the correct distribution given sufficient samples.

4 SCALABLE CURRICULUM FOR FASTER TRAINING

As discussed in Sec. 2.1.2, the curriculum of Sahoo et al. (2025a) accelerates convergence by replacing discrete token lookups with linear combinations of all K vocabulary embeddings. However, materializing the K -dimensional weight vectors is memory- and compute-intensive, particularly for modern LLM vocabularies containing hundreds of thousands of tokens (Touvron et al., 2023; OpenAI, 2024). We propose an efficient curriculum (Figure 3, bottom) leveraging the key observation that low-temperature softmax concentrates probability mass on a few entries. Thus, we approximate the full linear combination using only $k \ll K$ embeddings. We explain the three main steps of the algorithm below. See Algo. 1 for pseudocode and Suppl. B for proofs.

324 Table 1: **Accuracy on multiple-choice question answering datasets.** Abbreviations: Arc-e (ARC-
325 Easy), Arc-c (ARC-Challenge), HSwag (HellaSwag), WinoG (Winogrande), PIQA (Physical Intelli-
326 gence Question Answering), OQA (OpenBookQA). \dagger Results from Deschenaux et al. (2025). Duo⁺⁺
327 ($k = 2$) achieves slightly higher accuracy than Duo on 4 out of 6 tasks. Overall, Duo⁺⁺ matches
328 Duo’s performance while using 25% fewer flops. The highest accuracy among USDMs is bolded.
329 The absolute best per column is underlined.

	Arc-e	Arc-c	HSwag	WinoG	PIQA	MathQA	OQA
AR Transformer	44.95	23.04	30.55	52.80	63.71	22.24	19.00
MDLM \dagger	34.26	24.66	31.54	51.93	57.89	20.70	28.60
Duo	28.11	25.43	26.46	47.20	51.14	20.00	23.40
Duo ⁺⁺ ($k = 2$)	27.32	26.11	26.26	49.64	52.12	20.40	27.80
Duo ⁺⁺ ($k = 3$)	28.28	25.00	25.89	47.36	50.65	21.01	23.00
Duo ⁺⁺ ($k = 5$)	28.03	25.77	26.90	50.12	51.25	20.20	25.40

339
340 **Step 1: Sampling Top- k Gaussians** Let o denote the integer token value at position ℓ , represented
341 by the one-hot vector \mathbf{x}^ℓ . The original curriculum computes the Gaussian-diffused vector $\mathbf{w}_t^\ell =$
342 $\tilde{\alpha}_t \mathbf{x} + \tilde{\sigma}_t \mathbf{\epsilon}$ where $\tilde{\sigma}_t = \sqrt{1 - \tilde{\alpha}_t^2}$ and $\mathbf{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_K)$. Thus, entry o has mean $\tilde{\alpha}_t$ while all other
343 entries are zero mean. Instead of simulating K random variables to find the $k \ll K$ largest, we
344 generate them directly via inverse-transform sampling, without materializing the full K -dimensional
345 vector (Suppl. B.1 and Figure 3.1). We denote by $\tilde{\mathbf{w}}_t^\ell$ the resulting vector of top- k values. *By*
346 *construction, $\tilde{\mathbf{w}}_t^\ell$ has the same distribution as the k largest entries of the original \mathbf{w}_t^ℓ .*

347 **Step 2: Approximating the Normalization Constant** Computing the softmax normalization
348 $\mathcal{W} = \sum_{i=1}^K \exp((\mathbf{w}_t^\ell)_i / \tau)$ requires all K values (Figure 3.2). Since we only simulate k of them, we
349 approximate the contribution of the remaining $K - k$ variables by their conditional expectation. This
350 expectation admits a closed form (Suppl. B.6):

$$\mathcal{W} \approx \sum_{i=1}^k \exp((\tilde{\mathbf{w}}_t^\ell)_i / \tau) + (K - k) \underbrace{\left[\frac{\sigma}{2} - \log \Phi(c/\sigma) + \log \Phi\left(\frac{c - \sigma^2}{\sigma}\right) \right]}_{= \mathbb{E}[\exp(Z/\tau) | Z < c]} \quad (13)$$

355 where c is the smallest of the top- k values, $Z \sim \mathcal{N}(0, \tilde{\sigma}_t)$, and Φ is the Gaussian CDF. We use
356 the *conditional* expectation $\mathbb{E}[\exp(Z/\tau) | Z < c]$ because the $K - k$ non-simulated variables are
357 all smaller than the top- k . In Suppl. D.2, we verify empirically that the k largest softmax weights
358 computed our approximation closely match those obtained by naive simulation of all K variables.

360 **Step 3: Combining Embeddings** To select which token embeddings to combine (Figure 3.3), we
361 exploit symmetry: all entries in \mathbf{w}_t^ℓ (the Gaussian-diffused vector) except o are identically distributed,
362 so any index in $[K] \setminus \{o\}$ has the same chance of being in the top- k . We check whether the true token
363 o falls within the top- k by comparing its diffused value (with mean $\tilde{\alpha}_t$) to the k -th largest zero-mean
364 Gaussian. If so, we include o and sample $k - 1$ indices randomly without replacement; otherwise,
365 we sample k indices. This is done efficiently without shuffling (Suppl. B.2.3), thanks to Floyd’s
366 algorithm (Bentley, 1999). With the indices, weights, and approximate normalization, we compute
367 the weighted sum over only k embeddings. In practice, $k=2$ suffices (Table 2).

368 5 EXPERIMENTS

369 We evaluate Duo⁺⁺ with Ψ -samplers on language modeling (Sec. 5.1.1) and image generation
370 (Sec. 5.1.2), showing that Ψ -samplers substantially improve text and image quality, making USDMs
371 as performant as MDMs. In Sec. 5.2, we further demonstrate that, thanks to its efficient curriculum
372 strategy (Sec. 4), Duo⁺⁺ achieves performance comparable to Duo (Sahoo et al., 2025a)–the current
373 state-of-the-art USDM–while reducing memory usage by 33% and training 25% faster.

375 5.1 Ψ -SAMPLERS

376 We evaluate the Ψ -samplers on language and image modeling tasks to demonstrate their applicability
377 across modalities.

378 5.1.1 LANGUAGE MODELING
379

380 Our experiments indicate that (1) **Ψ -samplers substantially improve Generative Perplexity (Gen.**
 381 **PPL for USDMs**, with gains becoming especially pronounced once the NFEs exceed the sequence
 382 length, and (2) **unlike ancestral sampling, which quickly plateaus with increasing NFEs, Ψ -**
 383 **samplers continue to yield improvements in sample quality.**

384

385 **Experimental Settings** We compare MDLM (Sahoo et al., 2024) and ReMDM (Wang et al.,
 386 2025) with Duo⁺⁺ and Ψ -samplers. We use the original checkpoints of Sahoo et al. (2024), trained
 387 for 1M steps with a batch size of 512 on OpenWebText (OWT; Gokaslan & Cohen (2019)) and
 388 context length $L = 1024$. Duo⁺⁺ is trained with the same context length, batch size and number
 389 of steps, but with the efficient curriculum. We distill the MDLM and Duo checkpoint using SDTT
 390 (Descheneaux & Gulcehre, 2025) and DCD (Sahoo et al., 2025a) respectively, for 50k steps and default
 391 hyperparameters. Refer to the original works for more details. We measure the sample quality using
 392 the Gen. PPL computed with GPT-2 Large (Radford et al., 2019) and the diversity the using the
 393 unigram entropy (Dieleman et al., 2022; Sahoo et al., 2024; 2025a). We cast logits to 64-bit precision
 394 for sampling (Zheng et al., 2025). See Suppl. C.1 for more details.
 395

396 **Results** Figure 1 (left) shows the Gen. PPL and the entropy as a function of the NFE, for the
 397 ancestral and Ψ -samplers. Duo⁺⁺ with Ψ -samplers outperforms MDLM with ReMDM and ancestral
 398 samplers across the entire range of NFEs. As the number of NFEs increases beyond the sequence
 399 length, ReMDM and Ψ -samplers further improve the sample quality while ancestral sampling
 400 plateaus.

401 **How to choose κ_t ?** We use the ReMDM-equivalent κ_t schedule
 402 (proof in Suppl. A.4), with the log-linear schedule. Following Wang
 403 et al. (2025), we use nucleus sampling ($p = 0.9$) in the main body,
 404 and defer additional settings (such as without nucleus sampling, and
 405 with distilled checkpoints) to Suppl. D.1). We set t and κ_t using
 406 two related heuristics, visualized in Figure 4. With the first heuristic,
 407 t is linearly decreasing. With the second heuristic, t is linearly
 408 decreasing when $t \in [0, t_{\text{off}}] \cup [t_{\text{on}}, 1]$ and constant when $t \in [t_{\text{off}}, t_{\text{on}}]$
 409 (the “loop” strategy from ReMDM). The rescale schedule (without
 410 “loop”) achieves the best Gen. PPL while maintaining high unigram
 411 entropy, as shown in Figure 1. Numerical results for different choices
 412 of κ_t are provided in Suppl. D.1.

413 5.1.2 IMAGE MODELING
414

415 Our experiments indicate that **Duo⁺⁺ with Ψ -samplers produce**
 416 **images of significantly higher quality than MDLM with the**
 417 **ancestral and ReMDM sampler.**

418

419 **Experimental Setup** We train the same 35M parameters U-Net
 420 (Ronneberger et al., 2015) as Austin et al. (2023) on raw pixels on CIFAR-10, for 1.5M steps, with
 421 a global batch size of 128. We use a learning rate of 2×10^{-4} , a dropout rate of 0.1, and random
 422 horizontal flips as the only data augmentation. Following Schiff et al. (2025), the U-Net is made
 423 class conditional, and we train with a class dropout probability of 0.1, and sample with Discrete
 424 Classifier-free Guidance (CFG; Ho & Salimans (2022); Schiff et al. (2025)). See Suppl. C.1 for more
 425 details. We report the *Fréchet Inception Distance* (FID; Heusel et al. (2018)) and *Inception Score* (IS;
 426 Salimans et al. (2016)) between the training set and 50K samples generated with guidance strength
 427 $\gamma = 1$.

428

429 **Results** Figure 1 (right) and Figure 5 shows that Ψ -samplers and ReMDM subsantly improve the
 430 FID and IS, respectively, compared to ancestral sampling. Overall, Duo⁺⁺ with Ψ -samplers reaches
 431 the best FID and IS.

Figure 4: **Illustration of the evolution of t and the associated κ_t under the loop and linear t -decrease scheduling strategies (Wang et al., 2025).**
 In practice, we use κ_t close to 1 during the PC phase.

432 **How to pick κ_t ?** All results are provided in Suppl. C.1.
 433 For both MDLM and Duo, using the cosine noise sched-
 434 uler during sampling is best. For Duo, using $\kappa_t = 0.95$,
 435 $t_{\text{on}} \in \{0.5, 0.6\}$, and $t_{\text{off}} = 0.1$ reaches the best FID. For
 436 ReMDM, using $\kappa_t = 0.99$ with $t_{\text{on}} = 1.0$, and $t_{\text{off}} = 0.1$
 437 is best. These hyper-parameter indicate that a light but con-
 438 sistent noise injection throughout sampling is best, with
 439 Duo⁺⁺ tolerating stronger noise injection than MDLM.
 440 Indeed, recall that $\kappa_t = 1$ represents the standard ances-
 441 tral sampler, and that decreasing values of κ_t represent
 442 increasingly noisy distributions.

443 444 5.2 FAST CURRICULUM

445 Our experiments show that with the efficient curriculum
 446 learning strategy in Sec. 4, **Duo⁺⁺ trains 25% faster and**
 447 **matches Duo and on standard likelihood benchmarks**
 448 **and downstream tasks.**

450 **Experimental settings** We train Duo⁺⁺ with the scalable curriculum (Sec. 4) on OpenWebText
 451 (OWT; Gokaslan & Cohen (2019)) and LM1B (Chelba et al., 2014). We train all models for 1M
 452 steps, using a batch size of 512. For LM1B, we use the bert-base-uncased tokenizer with a
 453 context length of 128, padding shorter sequences. This setup follows previous work (Sahoo et al.,
 454 2024; Lou et al., 2024; He et al., 2022). For OWT, we use the GPT-2 tokenizer (Radford et al., 2019),
 455 and reserve the last 100k documents for validation, following (Sahoo et al., 2025a; 2024). We follow
 456 Lou et al. (2024) and use a modified diffusion transformer (DiT) (Peebles & Xie, 2023) with rotary
 457 positional encoding (Su et al., 2023). We evaluate the impact of $k = \{2, 3, 5\}$ during the efficient
 458 curriculum. All models are trained on 16 H100 GPUs with bfloat16 precision. Training uses the
 459 loss in (9), with $\tau = 0.001$ for the first 500K steps and $(\beta, \gamma) = (0.03, 0.15)$ (Sahoo et al., 2025a).

460 **Likelihood results** Table 2 shows
 461 that on both LM1B and OWT, our effi-
 462 cient curriculum Duo⁺⁺ matches the
 463 performance of Duo with its expen-
 464 sive curriculum. The lowest valida-
 465 tion perplexity is achieved with $k = 2$,
 466 although $k \in \{2, 3, 5\}$ performs sim-
 467 ilarly.

468 We also compare the models trained
 469 on OWT in Zero-Shot perplexity, and
 470 find that Duo⁺⁺ achieves a perfor-
 471 mance comparable to Duo. That is,
 472 we evaluate on the validation splits
 473 of the Penn Treebank (Marcus et al.,
 474 1993), WikiText (Merity et al., 2016),
 475 LM1B (Chelba et al., 2014), LAM-
 476 BADA (Paperno et al., 2016), AG
 477 News (Zhang et al., 2016) and sci-
 478 entific articles from ArXiv and PubMed
 479 (Cohan et al., 2018). Table 5 shows
 480 that Duo⁺⁺ reaches a zero-shot prob-
 481 ability similar to that of Duo *while*
 482 *requiring 25% less training GPU-hours.*

483 **Downstream Tasks** In Table 1, we compare the multiple-choice question (MCQ) accuracy of Duo,
 484 Duo⁺⁺, MDLM (Sahoo et al., 2024), and an autoregressive transformer (1M training steps with
 485 a batch size of 512 on OWT, same hyperparameters as MDLM) using the lm-eval-harness
 486 suite (Gao et al., 2024). Although lm-eval-harness was originally designed for autoregressive

449 Figure 5: Ψ -samplers, which generalize
 450 ReMDM, significantly improve the In-
 451 ception Score on CIFAR-10, compared
 452 to ancestral sampling.

453 Table 2: Test perplexity (PPL) on LM1B and OWT. Lower
 454 is better. [†]Results from Sahoo et al. (2025a). Best Uniform-
 455 state diffusion numbers are **bolded**. Duo and Duo⁺⁺ achieve
 456 comparable performance across both datasets while requiring
 457 25% fewer GPU-hours, demonstrating the effectiveness of
 458 our memory-efficient curriculum.

	LM1B	OWT
<i>Autoregressive</i>		
Transformer [†]	22.3	17.5
<i>Masked Diffusion</i>		
SEDD Absorb [†] (Lou et al., 2024)	32.7	24.1
MDLM [†] (Sahoo et al., 2024)	27.0	23.2
<i>Uniform-state Diffusion</i>		
SEDD Uniform [†] (Lou et al., 2024)	40.3	29.7
UDLM [†] (Schiff et al., 2025)	31.3	27.4
Duo [†] (Sahoo et al., 2025a)	29.9	25.2
Duo ⁺⁺ (Ours), $k = 2$	<u>30.0</u>	25.2
Duo ⁺⁺ (Ours), $k = 3$	30.1	<u>25.3</u>
Duo ⁺⁺ (Ours), $k = 5$	30.2	25.4

486 models, it was adapted for diffusion models by recent work (Deschenaux & Gulcehre (2024); Nie
 487 et al. (2025b;a); Shi et al. (2025) ; details in Suppl. C.3). We find that Duo⁺⁺ achieves an accuracy
 488 similar to that of Duo, despite requiring 25% less training GPU-hours.
 489

490 **Throughput and peak memory usage** Table 4 reports the throughput and peak memory usage for
 491 Duo and Duo⁺⁺. Duo⁺⁺ reduces the peak memory usage by about 33% and doubles the speed of
 492 the Curriculum Learning phase. When applying Curriculum Learning for half of the training steps,
 493 Duo⁺⁺ trains 25% faster than Duo on the 138M-parameter scale. Notably, both peak memory usage
 494 and throughput remain stable over the full training run when $k \in \{2, 3, 5\}$.
 495

496 6 RELATED WORK

497 **Discrete diffusion models** Discrete diffusion (Sohl-Dickstein et al., 2015; Austin et al., 2023;
 498 Campbell et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Schiff et al., 2025; Ou
 500 et al., 2025; Sahoo et al., 2025a) and discrete flow matching (Campbell et al., 2024; Gat et al., 2024)
 501 have recently gained increasing attention due to advances in their foundations and more efficient
 502 implementations. Most discrete diffusion and flow matching methods use a uniform or masked noise
 503 distribution, although Shaul et al. (2024); von Rütte et al. (2025); Holderith et al. (2025) have
 504 explored more general processes. In this work, we present a general predictor-corrector algorithm for
 505 interpolating discrete diffusion with arbitrary noise.
 506

507 **Predictor-Corrector samplers** Previous work showed that remasking can improve performance
 508 by allowing the model to correct sampling errors. ReMDM (Wang et al., 2025) generalizes previous
 509 predictor-corrector methods (Campbell et al., 2022; Gat et al., 2024) in the masked setting. Our
 510 approach further generalizes ReMDM to support arbitrary diffusion processes. Unlike Lezama et al.
 511 (2023); Zhao et al. (2025); Liu et al. (2025), who train an additional corrector module, our method
 512 does not introduce additional learned components.
 513

514 **Other discrete diffusion samplers** Park et al. (2024) adapts the sampling step size to the noise level
 515 to outperform samplers that use a fixed step size. Although we use a uniform step size, our sampler
 516 remains compatible with any step-size schedule. Ren et al. (2025) studies high-order sampling
 517 algorithms, whereas we rely on first-order information only. However, the posterior in (11) could be
 518 estimated using high-order samplers. Thus, Ψ -samplers are complementary to these lines of work.
 519

520 7 CONCLUSION

521 We introduced a unified and practical framework for predictor-corrector sampling in discrete diffusion
 522 language models through Ψ -posteriors. By linearly superposing the forward and reverse diffusion
 523 processes (11), the Ψ -posteriors preserve the marginals of standard diffusion models. Importantly, the
 524 Ψ -posteriors, and associated Ψ -samplers subsumes prior masked-diffusion PC samplers (Campbell
 525 et al., 2022; Gat et al., 2024; Wang et al., 2025) as special cases, and naturally extend to discrete
 526 diffusion models with uniform prior. Empirically, Duo⁺⁺ with Ψ -samplers matches the performance
 527 of MDMs on natural language generation and achieves stronger FID and IS scores on CIFAR-10.
 528 Moreover, they exhibit superior scaling: performance continues to improve with NFEs, unlike
 529 ancestral samplers, which plateau. Finally, we propose a scalable training curriculum (Sahoo et al.,
 530 2025a) that reduces the peak memory usage by 33% and shortens the training time by 25%.
 531

532 REFERENCES

533 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
 534 denoising diffusion models in discrete state-spaces, 2023. URL <https://arxiv.org/abs/2107.03006>.
 535

536 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Inter-537
 538 national Conference on Machine Learning*, 2009. URL <https://api.semanticscholar.org/CorpusID:873046>.
 539

540 Jon Louis Bentley. *Programming Pearls*. Addison-Wesley Professional, Boston, MA, 2nd edition,
 541 1999. ISBN 978-0201657883.

542

543 Roger Berger and George Casella. *Statistical Inference*. Duxbury Press, Florence, AL, 2 edition,
 544 June 2001.

545 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
 546 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
 547 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 548 22563–22575, 2023.

549

550 Kim C. Border. Lecture 15: Order statistics; conditional expectation. <https://healy.econ.ohio-state.edu/kcb/MA103/Notes/Lecture15.pdf>, 2021. Course notes for
 551 MA103.

552

553 Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
 554 Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
 555 <https://arxiv.org/abs/2205.14987>.

556

557 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 558 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
 559 2024. URL <https://arxiv.org/abs/2402.04997>.

560

561 Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Philipp Koehn, and Tony
 562 Robinson. One billion word benchmark for measuring progress in statistical language modeling,
 563 2014. URL <https://arxiv.org/abs/1312.3005>.

564

565 Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
 566 and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
 567 documents. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018
 568 Conference of the North American Chapter of the Association for Computational Linguistics:
 569 Human Language Technologies, Volume 2 (Short Papers)*, pp. 615–621, New Orleans, Louisiana,
 570 June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2097. URL <https://aclanthology.org/N18-2097/>.

571

572 Justin Deschenaux and Caglar Gulcehre. Promises, outlooks and challenges of diffusion language
 573 modeling, 2024. URL <https://arxiv.org/abs/2406.11473>.

574

575 Justin Deschenaux and Caglar Gulcehre. Beyond autoregression: Fast llms via self-distillation
 576 through time, 2025. URL <https://arxiv.org/abs/2410.21035>.

577

578 Justin Deschenaux, Lan Tran, and Caglar Gulcehre. Partition generative modeling: Masked modeling
 579 without masks, 2025. URL <https://arxiv.org/abs/2505.18883>.

580

581 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 582 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

583

584 Luc Devroye. *Non-Uniform Random Variate Generation*. Springer-Verlag, 1986. URL <https://www.springer.com/gp/book/9780387963051>.

585

586 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
 587 in neural information processing systems*, 34:8780–8794, 2021.

588

589 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
 590 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
 591 Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022. URL
 592 <https://arxiv.org/abs/2211.15089>.

593

594 Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germanidis.
 595 Structure and content-guided video synthesis with diffusion models. In *Proceedings of the
 596 IEEE/CVF International Conference on Computer Vision*, pp. 7346–7356, 2023.

594 Gerald B Folland. *Real analysis*. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
 595 graphs and Tracts. John Wiley & Sons, Nashville, TN, 2 edition, March 1999.
 596

597 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 598 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muenennhoff,
 599 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
 600 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
 601 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

602 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
 603 and Yaron Lipman. Discrete flow matching, 2024. URL <https://arxiv.org/abs/2407.15595>.

605 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.
 606

608 Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanassee,
 609 Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
 610 diffusion. *Advances in neural information processing systems*, 36:12489–12517, 2023.

611 Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusionbert:
 612 Improving generative masked language models with diffusion models, 2022. URL <https://arxiv.org/abs/2211.15029>.

614 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 615 Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
 616 <https://arxiv.org/abs/1706.08500>.

618 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

620 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 621 neural information processing systems*, 33:6840–6851, 2020a.

623 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020b. URL
 624 <https://arxiv.org/abs/2006.11239>.

625 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 626 Fleet. Video diffusion models. *arXiv:2204.03458*, 2022.

628 Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
 629 Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
 630 markov processes, 2025. URL <https://arxiv.org/abs/2410.20587>.

631 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 632 degeneration, 2020. URL <https://arxiv.org/abs/1904.09751>.

633 Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong
 634 Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, Jesse Engel, Quoc V. Le, William Chan,
 635 Zhifeng Chen, and Wei Han. Noise2music: Text-conditioned music generation with diffusion
 636 models, 2023. URL <https://arxiv.org/abs/2302.03917>.

637 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.
 638 URL <https://arxiv.org/abs/1611.01144>.

640 Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models, 2023.
 641 URL <https://arxiv.org/abs/2107.00630>.

642 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
 643 diffusion model for audio synthesis. In *International Conference on Learning Representations*,
 644 2021. URL <https://openreview.net/forum?id=a-xFK8Ymz5J>.

646 Pin-Jui Ku, He Huang, Jean-Marie Lemercier, Subham Sekhar Sahoo, Zhehuai Chen, and Ante
 647 Jukić. Discrete diffusion for generative modeling of text-aligned speech tokens. *arXiv preprint
 arXiv:2509.20060*, 2025.

648 Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
 649 Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language models
 650 based on diffusion. *arXiv preprint arXiv:2506.17298*, 2025.

651

652 Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng,
 653 Saeed Paliwal, Weili Nie, and Arash Vahdat. Genmol: A drug discovery generalist with discrete
 654 diffusion. *arXiv preprint arXiv:2501.06158*, 2025.

655

656 Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete
 657 predictor-corrector diffusion models for image synthesis. In *The Eleventh International Conference
 658 on Learning Representations*, 2023. URL <https://openreview.net/forum?id=VM8batVBWvg>.

659

660 Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing Li. Generative
 661 diffusion models on graphs: Methods and applications. *arXiv preprint arXiv:2302.02591*,
 662 2023a.

663

664 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
 665 Plumbley. Audioldm: text-to-audio generation with latent diffusion models. In *Proceedings of the
 666 40th International Conference on Machine Learning*, pp. 21450–21474, 2023b.

667

668 Sulin Liu, Juno Nam, Andrew Campbell, Hannes Stärk, Yilun Xu, Tommi Jaakkola, and Rafael
 669 Gómez-Bombarelli. Think while you generate: Discrete diffusion with planned denoising, 2025.
 670 URL <https://arxiv.org/abs/2410.06264>.

671

672 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

673

674 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 675 of the data distribution, 2024. URL <https://arxiv.org/abs/2310.16834>.

676

677 Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
 678 ation of discrete random variables, 2017. URL <https://arxiv.org/abs/1611.00712>.

679

680 Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
 681 corpus of English: The Penn Treebank. *Computational Linguistics*, 19(2):313–330, 1993. URL
<https://aclanthology.org/J93-2004/>.

682

683 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 684 models, 2016. URL <https://arxiv.org/abs/1609.07843>.

685

686 Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL
<https://arxiv.org/abs/2102.09672>.

687

688 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 689 Li. Scaling up masked diffusion models on text, 2025a. URL <https://arxiv.org/abs/2410.18514>.

690

691 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 692 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025b. URL <https://arxiv.org/abs/2502.09992>.

693

694 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
 695 for discrete state-space diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.

696

697 OpenAI. Gpt-oss: open-weight language models by openai. <https://github.com/openai/gpt-oss>, 2024. GitHub repository.

698

699 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 700 Your absorbing discrete diffusion secretly models the conditional distributions of clean data, 2025.
 701 URL <https://arxiv.org/abs/2406.03736>.

702 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 703 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambda dataset:
 704 Word prediction requiring a broad discourse context, 2016. URL <https://arxiv.org/abs/1606.06031>.

705

706 Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji.
 707 *Jump Your Steps*: Optimizing sampling schedule of discrete diffusion models, 2024. URL
 708 <https://arxiv.org/abs/2410.07761>.

709

710 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

711

712 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
 713 Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang,
 714 Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng
 715 Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh,
 716 Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Ramb-
 717 hatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy,
 718 Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-
 719 Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue
 720 Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu,
 721 Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry
 722 Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John
 723 Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao,
 724 Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve
 725 Fine, Tara Fowler, Vladan Petrovic, and Yuming Du. Movie gen: A cast of media foundation
 726 models, 2025. URL <https://arxiv.org/abs/2410.13720>.

727

728 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 729 models are unsupervised multitask learners, 2019.

730

731 Yinuo Ren, Haoxuan Chen, Yuchen Zhu, Wei Guo, Yongxin Chen, Grant M. Rotskoff, Molei Tao,
 732 and Lexing Ying. Fast solvers for discrete diffusion models: Theory and applications of high-order
 733 algorithms, 2025. URL <https://arxiv.org/abs/2502.00234>.

734

735 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 736 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.

737

738 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 739 image segmentation, 2015. URL <https://arxiv.org/abs/1505.04597>.

740

741 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
 742 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 743 models, 2024. URL <https://arxiv.org/abs/2406.07524>.

744

745 Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
 746 Volodymyr Kuleshov. The diffusion duality, 2025a. URL <https://arxiv.org/abs/2506.10892>.

747

748 Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
 749 Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. *arXiv*
preprint arXiv:2506.01928, 2025b.

750

751 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Im-
 752 proved techniques for training gans, 2016. URL <https://arxiv.org/abs/1606.03498>.

753

754 Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
 755 Bernardo P. de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
 756 guidance mechanisms for discrete diffusion models, 2025. URL <https://arxiv.org/abs/2412.10193>.

756 Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian
 757 Karrer, Yaron Lipman, and Ricky T. Q. Chen. Flow matching with general discrete paths: A
 758 kinetic-optimal perspective, 2024. URL <https://arxiv.org/abs/2412.03487>.

759

760 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
 761 generalized masked diffusion for discrete data, 2025. URL <https://arxiv.org/abs/2406.04329>.

762

763 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 764 learning using nonequilibrium thermodynamics, 2015. URL <https://arxiv.org/abs/1503.03585>.

765

766 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
 767 <https://arxiv.org/abs/2010.02502>.

768

769 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 770 Poole. Score-based generative modeling through stochastic differential equations. In *International
 771 Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

772

773 Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
 774 Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
 775 high-speed inference. *arXiv preprint arXiv:2508.02193*, 2025.

776

777 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
 778 transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

779

780 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 781 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 782 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 783 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 784 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 785 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 786 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 787 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 788 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 789 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 790 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 791 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 792 2023. URL <https://arxiv.org/abs/2307.09288>.

793

794 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 795 Hofmann. Generalized interpolating discrete diffusion, 2025. URL <https://arxiv.org/abs/2503.04482>.

796

797 Guanghai Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
 798 diffusion models with inference-time scaling, 2025. URL <https://arxiv.org/abs/2503.00307>.

799

800 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 801 classification, 2016. URL <https://arxiv.org/abs/1509.01626>.

802

803 Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. In-
 804 formed correctors for discrete diffusion models, 2025. URL <https://arxiv.org/abs/2407.21243>.

805

806 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 807 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 808 sampling, 2025. URL <https://arxiv.org/abs/2409.02908>.

809

810	CONTENTS		
811			
812	1	Introduction	1
813			
814			
815	2	Background	2
816		2.1 Discrete Diffusion Models	3
817			
818		2.2 Diffusion Guidance	5
819			
820	3	The Ψ-Posteriors	5
821			
822	4	Scalable Curriculum for Faster Training	6
823			
824	5	Experiments	7
825		5.1 Ψ -Samplers	7
826			
827		5.2 Fast Curriculum	9
828			
829	6	Related work	10
830			
831	7	Conclusion	10
832			
833			
834	A	Ψ-Posteriors	17
835			
836		A.1 Approximate Reverse Marginals	17
837			
838		A.2 Proof that the Ψ -posteriors have the correct marginals	17
839			
840		A.3 Negative Evidence Lower Bound	18
841			
842		A.4 Recovering Predictor-Corrector Methods for Masked Diffusion	18
843	B	Fast Curriculum	18
844			
845		B.1 Generating the k largest Gaussian random variables out of K	19
846			
847		B.2 How to Implement Our Fast Curriculum	19
848			
849		B.3 Inverse Transform Sampling	21
850			
851		B.4 Distribution of the largest random uniform variables out of K	21
852			
853		B.5 Distribution of the second largest uniform random variable out of K	21
854			
855		B.6 Conditional mean of the exponential of a Gaussian	22
856			
857		B.7 Series Representation of \mathcal{T} and $\partial_t \mathcal{T}$	23
858			
859		B.8 Polynomial Approximation of \mathcal{T}	26
860			
861	C	Experimental Details	27
862			
863		C.1 Ψ -samplers	27
864			
865		C.2 Improved Curriculum	27
866			
867		C.3 Downstream Evaluation Protocol	28
868			
869		C.4 Zero-Shot Likelihood	28
870			
871	D	Additional Experimental results	28
872			

864	D.1 Tuning κ_t for the Ψ -samplers	28
865	D.2 Distribution of the top k entries of the softmax	29
866	D.3 Training Efficiency of Our Fast Curriculum	29
867		
868		
869		
870	A Ψ-POSTERIORS	
871		
872	A.1 APPROXIMATE REVERSE MARGINALS	
873	We parameterize the (generative) Ψ -reverse marginals to have a similar form as the true posterior (11).	
874	Therefore, the generative reverse marginals also factorizes over the sequence length. Because $\mathbf{x}^{1:L}$ is	
875	not available during sampling, there are two terms in (11) that are intractable. First, we choose to	
876	replace the posterior $q_{s t}(\cdot \mathbf{z}_t^\ell, \mathbf{x}^\ell)$ by $q_{s t}(\cdot \mathbf{z}_t^\ell, \mathbf{x}^\ell = \mathbf{x}_\theta^\ell)$. Additionally, as we cannot sample from	
877	$q_s(\cdot \mathbf{x}^\ell)$ without \mathbf{x}^ℓ , we replace \mathbf{x}^ℓ by $q_{0 t}(\cdot \mathbf{z}_t, \mathbf{x}^\ell = \mathbf{x}_\theta^\ell), \forall \ell \in [L]$. Replacing these two intractable	
878	terms yield our generative reverse marginals:	
879		
880	$\Psi_{s t}^\theta(\cdot \mathbf{z}_t) = \kappa_t q_{s t}(\cdot \mathbf{z}_t, \mathbf{x} = \mathbf{x}_\theta(\mathbf{z}_t, t)) + (1 - \kappa_t) [\alpha_s q_{0 t}(\cdot \mathbf{z}_t, \mathbf{x} = \mathbf{x}_\theta(\mathbf{z}_t, t)) + (1 - \alpha_s)\pi]. \quad (14)$	
881		
882	Note that for the masked posterior (2), $q_{0 t}(\cdot \mathbf{z}_t, \mathbf{x} = \mathbf{x}_\theta(\mathbf{z}_t, t)) = \mathbf{x}_\theta(\mathbf{z}_t, t)$.	
883		
884	A.2 PROOF THAT THE Ψ-POSTERIORS HAVE THE CORRECT MARGINALS	
885		
886	Let $\Psi_{s t}(\cdot \mathbf{x}^\ell, \mathbf{z}_t^\ell)$ denote the Ψ -posterior defined in (11). Let s denotes $s(k) = t(k-1)$ and t	
887	denotes $t(k)$. To prove that the Ψ -posterior have the correct marginal, we proceed by (downwards)	
888	induction, similar to Song et al. (2022). First, note that $\Psi_s(\mathbf{z}_s^\ell \mathbf{x}^\ell)$ can be written as a marginalization	
889	over $\tilde{\mathbf{z}}_t^\ell$, for $s < t$:	
890	$\Psi_s(\mathbf{z}_s^\ell \mathbf{x}^\ell) = \sum_{\tilde{\mathbf{z}}_t^\ell} \Psi_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) \Psi_{s t}(\mathbf{z}_s^\ell \tilde{\mathbf{z}}_t^\ell, \mathbf{x}) \quad (15)$	
891		
892		
893	Base Case Let $\Psi_1(\mathbf{z}_1^\ell \mathbf{x}^\ell)$ denote the marginal at time $t = 1$. By definition in (11), $\Psi_1(\mathbf{z}_1^\ell \mathbf{x}^\ell) =$	
894	$\text{Cat}(\cdot \pi)$. Therefore, the Ψ -posterior have the correct marginal for $t = 1$.	
895		
896	Induction hypothesis Suppose that the Ψ -posterior have the correct marginal for a certain $t \leq 1$,	
897	that is, $\Psi_t(\cdot \mathbf{x}^\ell) = q_t(\cdot \mathbf{x}^\ell)$.	
898		
899	Inductive step Based on the induction hypothesis, we now show that $\Psi_s(\cdot \mathbf{x}^\ell) = q_s(\cdot \mathbf{x}^\ell)$, for	
900	$s(k) = t(k-1)$. Indeed	
901		
902	$\begin{aligned} \Psi_s(\cdot \mathbf{x}^\ell) &\stackrel{(1)}{=} \sum_{\tilde{\mathbf{z}}_t^\ell} \Psi_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) \Psi_{s t}(\mathbf{z}_s^\ell \tilde{\mathbf{z}}_t^\ell, \mathbf{x}) \\ &\stackrel{(2)}{=} \sum_{\tilde{\mathbf{z}}_t^\ell} q_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) \Psi_{s t}(\mathbf{z}_s^\ell \tilde{\mathbf{z}}_t^\ell, \mathbf{x}) \\ &\stackrel{(3)}{=} \sum_{\tilde{\mathbf{z}}_t^\ell} q_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) [\kappa_t q_{s t}(\mathbf{z}_s^\ell \mathbf{x}^\ell, \tilde{\mathbf{z}}_t^\ell) + (1 - \kappa_t) q_s(\mathbf{z}_s^\ell \mathbf{x}^\ell)] \\ &\stackrel{(4)}{=} \kappa_t \sum_{\tilde{\mathbf{z}}_t^\ell} q_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) q_{s t}(\mathbf{z}_s^\ell \mathbf{x}^\ell, \tilde{\mathbf{z}}_t^\ell) + (1 - \kappa_t) q_s(\mathbf{z}_s^\ell \mathbf{x}^\ell) \sum_{\tilde{\mathbf{z}}_t^\ell} q_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) \\ &\stackrel{(5)}{=} \kappa_t q_s(\mathbf{z}_s^\ell \mathbf{x}^\ell) + (1 - \kappa_t) q_s(\mathbf{z}_s^\ell \mathbf{x}^\ell) = q_s(\mathbf{z}_s^\ell \mathbf{x}^\ell). \end{aligned}$	
914		
915	Specifically, (1) hold by (15), (2) by the induction hypothesis, (3) by definition of the Ψ -posterior,	
916	(4) by distributing $q_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell)$, (5) by definition of marginal probability (first term), and by observing	
917	that $\sum_{\tilde{\mathbf{z}}_t^\ell} q_t(\tilde{\mathbf{z}}_t^\ell \mathbf{x}^\ell) = 1$ since q_t is normalized. This concludes the inductive step, and shows that the	
918	Ψ -posterior have the correct marginal.	

918 A.3 NEGATIVE EVIDENCE LOWER BOUND
919

920 Let $\mathbf{z}_{0:1}^\ell$ denote a reverse trajectory with time indices $\{0, \frac{1}{T}, \frac{2}{T}, \dots, 1\}$ for token ℓ . The joint distribution
921 of $(\mathbf{x}^\ell, \mathbf{z}_{0:1}^\ell)$ under the generative model factorizes as
922

$$923 \quad p^\theta(\mathbf{x}^\ell, \mathbf{z}_{0:1}^\ell) = p(\mathbf{x}^\ell | \mathbf{z}_0^\ell) \Psi_1(\mathbf{z}_1^\ell) \prod_{i=1}^T \Psi_{s|t}^\theta(\mathbf{z}_{s(i)}^\ell | \mathbf{z}_{t(i)}^\ell), \quad (16)$$

925 where each pair $(s(i), t(i))$ denotes one reverse transition with $s(i) < t(i)$. The marginal likelihood
926 is
927

$$928 \quad p^\theta(\mathbf{x}^\ell) = \sum_{\mathbf{z}_{0:1}^\ell} p^\theta(\mathbf{x}^\ell, \mathbf{z}_{0:1}^\ell). \quad (17)$$

930 Introducing the variational distribution $\Psi(\mathbf{z}_{0:1}^\ell | \mathbf{x}^\ell) = \Psi_1(\mathbf{z}_1^\ell | \mathbf{x}^\ell) \prod_{i=1}^T \Psi_{s|t}(\mathbf{z}_{s(i)}^\ell | \mathbf{z}_{t(i)}^\ell, \mathbf{x}^\ell)$,
931 Jensen's inequality results in:

$$932 \quad -\log p^\theta(\mathbf{x}^\ell) \leq \mathbb{E}_{\Psi(\mathbf{z}_{0:1}^\ell | \mathbf{x}^\ell)} [-\log p(\mathbf{x}^\ell | \mathbf{z}_0^\ell)] + \text{KL}(\Psi_1(\cdot | \mathbf{x}^\ell) \| \Psi_1) \quad (18)$$

$$934 \quad + \sum_{i=1}^T \mathbb{E}_{\Psi(\mathbf{z}_{t(i)}^\ell | \mathbf{x}^\ell)} \left[D_{\text{KL}} \left(\Psi_{s|t}(\cdot | \mathbf{z}_{t(i)}^\ell, \mathbf{x}^\ell) \| \Psi_{s|t}^\theta(\cdot | \mathbf{z}_{t(i)}^\ell) \right) \right]. \quad (19)$$

937 This expression is similar to the standard diffusion NELBO, with a reconstruction term, a prior
938 term at $t=1$, and a sum of KL divergences. As $T \rightarrow \infty$, $p(\mathbf{x}^\ell | \mathbf{z}_0^\ell)$ concentrates around \mathbf{x}^ℓ , hence
939 $-\log p(\mathbf{x}^\ell | \mathbf{z}_0^\ell) \rightarrow 0$. Furthermore, the prior term is zero by definition of the Ψ -posteriors in (11).

940 A.4 RECOVERING PREDICTOR-CORRECTOR METHODS FOR MASKED DIFFUSION
941

942 Suppose that we work with masked diffusion, hence $\pi = \mathbf{m}$. The Ψ -posteriors can be expanded as
943

$$944 \quad \Psi_{s|t}(\cdot | \mathbf{z}_t^\ell) = \kappa_t \mathbf{q}_{s|t}(\cdot | \mathbf{z}_t^\ell, \mathbf{x}^\ell) + (1 - \kappa_t) [\alpha_s \mathbf{q}_{0|t}(\cdot | \mathbf{z}_t^\ell, \mathbf{x}^\ell) + (1 - \alpha_s)\pi] \quad (20)$$

$$945 \quad = \kappa_t \begin{cases} \text{Cat}(\cdot; \mathbf{z}_t^\ell), & \mathbf{z}_t^\ell \neq \mathbf{m}, \\ \text{Cat} \left(\cdot; \frac{(1 - \alpha_s)\mathbf{m} + (\alpha_s - \alpha_t)\mathbf{x}^\ell}{1 - \alpha_t} \right), & \mathbf{z}_t^\ell = \mathbf{m} \end{cases} + (1 - \kappa_t) [\alpha_s \mathbf{x}^\ell + (1 - \alpha_s)\mathbf{m}] \quad (21)$$

$$949 \quad \stackrel{(1)}{=} \kappa_t \begin{cases} \text{Cat}(\cdot; \mathbf{x}^\ell), & \mathbf{z}_t^\ell \neq \mathbf{m}, \\ \text{Cat} \left(\cdot; \frac{(1 - \alpha_s)\mathbf{m} + (\alpha_s - \alpha_t)\mathbf{x}^\ell}{1 - \alpha_t} \right), & \mathbf{z}_t^\ell = \mathbf{m} \end{cases} + (1 - \kappa_t) [\alpha_s \mathbf{x}^\ell + (1 - \alpha_s)\mathbf{m}] \quad (22)$$

$$954 \quad = \begin{cases} \text{Cat}(\cdot; \kappa_t \mathbf{x}^\ell + (1 - \kappa_t)[\alpha_s \mathbf{x}^\ell + (1 - \alpha_s)\mathbf{m}]), & \mathbf{z}_t^\ell \neq \mathbf{m} \\ \text{Cat} \left(\cdot; \kappa_t \frac{(1 - \alpha_s)\mathbf{m} + (\alpha_s - \alpha_t)\mathbf{x}^\ell}{1 - \alpha_t} + (1 - \kappa_t)[\alpha_s \mathbf{x}^\ell + (1 - \alpha_s)\mathbf{m}] \right), & \mathbf{z}_t^\ell = \mathbf{m} \end{cases} \quad (23)$$

$$957 \quad = \begin{cases} \text{Cat}(\cdot; [\kappa_t + (1 - \kappa_t)\alpha_s]\mathbf{x}^\ell + (1 - \kappa_t)(1 - \alpha_s)\mathbf{m}), & \mathbf{z}_t^\ell \neq \mathbf{m} \\ \text{Cat} \left(\cdot; \left[\kappa_t \frac{\alpha_s - \alpha_t}{1 - \alpha_t} + (1 - \kappa_t)\alpha_s \right] \mathbf{x}^\ell + \left[\kappa_t \frac{1 - \alpha_s}{1 - \alpha_t} + (1 - \kappa_t)(1 - \alpha_s) \right] \mathbf{m} \right), & \mathbf{z}_t^\ell = \mathbf{m} \end{cases}, \quad (24)$$

961 where (1) holds $\mathbf{z}_t^\ell \neq \mathbf{m}$ implies that $\mathbf{z}_t^\ell = \mathbf{x}^\ell$, since in masked diffusion, the latents \mathbf{z}_t^ℓ are either a
962 clean token or the masked token.

963 To conclude, if we pick $\kappa_t = 1 - \frac{\sigma_t}{1 - \alpha_s}$, where σ_t is the free parameter in the ReMDM sampler,
964 then the equation reduces to the ReMDM posterior. Therefore, the Ψ -posteriors generalize ReMDM,
965 which itself generalized the FB (Campbell et al., 2022) and DFM (Gat et al., 2024) posteriors.
966 Additionally, the Ψ -posteriors are not limited to masked diffusion, as we showed in this work.
967

968 B FAST CURRICULUM
969

971 In this section, we expand on the implementation of the efficient curriculum. In Sec. B.2, we focus
972 on the overall design and challenges of the curriculum. The soundness of our approach relies on a

972 various mathematical results, which we also elaborate on in this section. Specifically, our efficient
 973 curriculum uses inverse transform sampling (Sec. B.3) and the Cumulative Distribution Function
 974 (CDF) distribution of the largest (Sec. B.3) and second largest (Sec. B.5) uniform random variable.
 975 Furthermore, we derive an analytical expression for the conditional mean of the exponential of a
 976 Gaussian random variable in Sec. B.6.

977 Furthermore, although the efficient curriculum could be implemented using the original definition of
 978 the Diffusion Transformation Operator \mathcal{T} , we show that \mathcal{T} admits a convenient series expansion in
 979 Sec. B.7. This avoids the need to precompute 100k function values, and simplifies the implementation.
 980 Finally, in Sec. B.8, we show that \mathcal{T} can be well approximated by a degree-9 polynomial, which
 981 removes the need to store a large number of coefficients during training

983 B.1 GENERATING THE K LARGEST GAUSSIAN RANDOM VARIABLES OUT OF K

985 We show that it is possible to generate the k largest Gaussian random variables out of K via inverse
 986 transform sampling (Suppl. B.3) as follows.

987 Given a single uniform random variable $U \sim \mathcal{U}[0, 1]$, one can obtain a standard Gaussian random
 988 variable $W = \Phi^{-1}(U)$, where Φ is the Gaussian CDF, via inverse transform sampling. Now
 989 assume we have a sorted list of K uniform random variables $U_1 \geq U_2 \geq \dots \geq U_K$. Since Φ is a
 990 monotonically increasing function, the largest uniform random variable, U_1 , is mapped to the largest
 991 Gaussian random variable, i.e. $\Phi^{-1}(U_1)$ is distributed as the largest Gaussian random variable out of
 992 K .

993 As shown in Prop. B.1 the CDF of the largest uniform random variable out of K has an analytical
 994 solution. For $u \in [0, 1]$, $P(U_1 \leq u) = u^K$, hence it can be generated via inverse transform sampling.

995 Furthermore, the distribution of the second largest, conditioned on $U_1 = u_1$ also admits a closed
 996 form solution (Suppl. B.5): for $u_2 \in [0, u_1]$, it is given by $P(U_2 \leq u_2 | U_1 = u_1) = u_2^{K-1} u_1^{-(K-1)}$,
 997 i.e. it is distributed as the largest uniform variable out of $K - 1$, supported on $[0, u_1]$.

999 Finally, $P(U_3 \leq u_3 | U_2 = u_2, U_1 = u_1) = P(U_3 \leq u_3 | U_2 = u_2)$. Indeed, since $U_2 \leq U_1$, it does
 1000 not matter what value U_1 takes, since $U_3 \leq U_2$. Therefore $P(U_3 \leq u_3 | U_2 = u_2) = u_3^{K-2} u_2^{-(K-2)}$,
 1001 i.e. the largest uniform out of $K - 2$.

1002 More generally, the same argument shows that conditioned on $U_i = u_i$, the random variable U_{i+1} is
 1003 distributed as the largest uniform variable on $[0, u_i]$ out of $K - i + 1$. This shows that we can sample
 1004 U_1, \dots, U_k in decreasing order and without simulating all the K variables. Finally, the k largest U_i
 1005 can be transformed into the k largest standard Gaussians out of K as $\{\Phi^{-1}(U_i)\}_{i=1}^k$.

1007 B.2 HOW TO IMPLEMENT OUR FAST CURRICULUM

1009 **Duo’s curriculum is expensive** While Duo (Sahoo et al., 2025a) converges to lower validation
 1010 perplexities than UDLM (Schiff et al., 2025), the curriculum phase of Duo is expensive. Indeed, it
 1011 materializes a Gaussian-diffused vector of size $B \times L \times K$, where B represents the batch size, L the
 1012 context length, and K the vocabulary size. The Gaussian vector is normalized with a low-temperature
 1013 softmax. Directly sampling a tensor of shape $B \times L \times K$, applying the softmax, and multiplying
 1014 by the embedding table is computationally and memory intensive, especially for large vocabularies,
 1015 as the tensor size scales with K . Since Sahoo et al. (2025a) use a low-temperature softmax, only a
 1016 few entries are nonzero. This observation motivates our solution: approximate sampling of the top- k
 1017 nonzero entries, with $k \ll K$.

1018 **Three Challenges** To approximate Duo’s curriculum, we must address three main challenges:

- 1020 • First, we need to sample the k largest zero-mean Gaussian random variables out of K , to
 1021 emulate the Gaussian Diffusion over the one-hot data samples \mathbf{x} (Sec. B.2.1).
- 1022 • Secondly, we must estimate the normalization constant of the softmax, without actually
 1023 sampling the K random variables (Sec. B.2.2).
- 1024 • Third, we require an efficient method to sample k distinct integers from K without replace-
 1025 ment (Sec. B.2.3).

Algorithm 1 Scalable Top- k Approximation for Curriculum Learning

Input Clean token value x , vocabulary size K , top- k parameter k , inverse temperature τ , Gaussian schedules α_t, σ_t

Output Softmax weights $\lambda \in [0, 1]^k$, top- k indices \tilde{x} , index of the largest variable \mathbf{z}_t .

1026 $\{z_0^{(i)}\}_{i=1}^k \leftarrow \text{sample_top_gaussians}(k, K - 1, 0, \sigma_t)$ ▷ Algo. 2.
 1027 $z_\alpha \sim \mathcal{N}(\alpha_t, \sigma_t)$ ▷ Diffusion at the clean data index.
 1028 $\mathbf{Z}_{\text{top}} \leftarrow \text{top-k}(\{z_\alpha\} \cup \{z_0^{(i)}\})$ ▷ Keep the top k .
 1029 $\mu \leftarrow \mathbb{E}[\exp(z \cdot \tau) \mid z < \min(\mathbf{Z}_{\text{top}})]$ for $z \sim \mathcal{N}(0, \sigma_t)$ ▷ For normalization, Prop. B.5
 1030 $S \leftarrow \sum_{i=1}^k \exp(\mathbf{Z}_{\text{top}}^{(i)} \cdot \tau)$ ▷ S will contain the softmax normalization constant.
 1031 **if** $z_\alpha \in \mathbf{Z}_{\text{top}}$ **then**
 1032 $S \leftarrow S + (K - k)\mu$ ▷ Approximate non-simulated variables with their conditional mean.
 1033 $\tilde{x} \leftarrow [x] \cup \text{sample_neq_x}(k - 1)$ ▷ Indices of the top k , Algo. 2.
 1034 **else**
 1035 $S \leftarrow S + (K - k - 1)\mu + \exp(z_\alpha \cdot \tau)$
 1036 $\tilde{x} \leftarrow \text{sample_neq_x}(k)$
 1037 **end if**
 1038 $\lambda_i \leftarrow \exp(\mathbf{Z}_{\text{top}}^{(i)} \cdot \tau) / S$ for $i = 0, \dots, k - 1$
 1039 $\mathbf{z}_t \leftarrow \arg \max_i \mathbf{Z}_{\text{top}}^{(i)}$ ▷ Index of the top 1.
 1040 **return** $\lambda, \tilde{x}, \mathbf{z}_t$

Recall that Algo. 1 shows the pseudocode of the algorithm.

B.2.1 SAMPLING THE TOP k OUT OF K NORMAL RANDOM VARIABLES

Libraries such as numpy and pytorch provide accurate approximations of the Gaussian CDF Φ and its inverse Φ^{-1} , allowing us to generate Gaussian random variables via inverse transform sampling (Sec. B.3). To sample K Gaussians, we could naively inverse-transform K uniform random variables. Crucially, because Φ^{-1} is monotonic, the k largest uniforms correspond exactly to the k largest Gaussians.

Finally, and importantly, we do not need to simulate all K uniform random variables to obtain the top- k . The largest uniform out of K has a closed-form CDF with an analytical inverse (Sec. B.1). Moreover, the second largest, conditioned on the largest, is itself uniform with a reduced support (Sec. B.5). Thus, the top- k uniforms can be sampled sequentially, by first drawing the maximum, then iteratively sample the remaining values in decreasing order.

In practice, a naive implementation of inverse transform sampling is numerically unstable when K is large. For stability, operations should be implemented in log-space, and Algo. 2 shows the pseudocode for a log-space implementation.

B.2.2 ESTIMATING THE NORMALIZATION CONSTANT OF THE SOFTMAX

Computing the normalization constant of the softmax,

$$\text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^K \exp(x_j)}, \quad (25)$$

requires access to all values $\{x_j\}_{j=1}^K$. However, because K is large, we do *not* wish to simulate all K random variables, and therefore cannot compute the softmax normalization constant exactly. Fortunately, we find that when K is large, the contribution of each non-simulated random variable is well approximated by $\mathbb{E}[\exp(X) | X < c]$, where $X \sim \mathcal{N}(0, \sigma)$ and c is the smallest among the top k random variables that we have simulated. Recall that the analytical expression of $\mathbb{E}[\exp(X) | X < c]$ appears in (13) (proof in Suppl. B.6)

1080 B.2.3 SAMPLING INTEGERS WITHOUT REPETITIONS AND WITHOUT SHUFFLING
1081

1082 Suppose that \mathbf{x} denotes the one-hot vector of category i . By symmetry, after applying Gaussian
1083 diffusion to \mathbf{x} , all entries \mathbf{x}_j such that $j \neq i$ follow the exact same distribution. Therefore, they have
1084 the same probability of being one of the top k largest random variable.

1085 To implement the curriculum, we must not only approximate the weights of the embedding combi-
1086 nation but also select which embeddings to include. Concretely, we sample k random indices *without*
1087 *repetition* excluding i . If the random variable at position i , corresponding to the clean token, belongs
1088 to the top- k , we replace one of the sampled indices with i . Otherwise, we use the k sampled indices
1089 directly.

1090 A simple way to sample k random indices without repetition is to shuffle a list of K integers and take
1091 the first k . However, this defeats the purpose of our efficient curriculum, as it requires materializing
1092 large tensors. Instead, Floyd's algorithm (Bentley, 1999), given in Algo. 3, samples without repetition
1093 while avoiding shuffling. Although sequential with k iterations, it is much faster than shuffling when
1094 $k \ll K$.

1095 B.3 INVERSE TRANSFORM SAMPLING
1096

1098 The Inverse Transform Sampling method (Devroye, 1986) is an algorithm for simulating continuous
1099 random variables with a known Cumulative Distribution Function (CDF) F_X . Implementing Inverse
1100 Transform Sampling requires access to the inverse CDF F_X^{-1} , and a source of *i.i.d* uniform random
1101 variables. If $X = F_X^{-1}(U)$, where $U \sim \mathcal{U}[0, 1]$, then $X \sim F_X$. Indeed,

$$1102 \mathbb{P}(X \leq x) = \mathbb{P}(F_X^{-1}(U) \leq x) = \mathbb{P}(U \leq F_X(x)) = F_X(x), \quad (26)$$

1104 since for $a \in [0, 1]$, $\mathbb{P}(U \leq a) = a$. This shows that X has the correct distribution.

1105 B.4 DISTRIBUTION OF THE LARGEST RANDOM UNIFORM VARIABLES OUT OF K
1106

1107 Additionally, the distribution of the largest uniform random variable out of K admits a simple
1108 closed-form expression:

1109 **Proposition B.1** (Distribution of the largest random uniform variable out of K). $U^{(1)} \geq$
1110 $U^{(2)} \geq \dots \geq U^{(K)}$ denote an order statistic over K *i.i.d* uniform random variables $\mathcal{U}([0, \theta])$ with
1111 Cumulative Density Function (CDF) F_U . Suppose that $u \in [0, 1]$, then $F_U(u) = \frac{u}{\theta}$. Then, the
1112 CDF $F_{U^{(1)}}$ and probability density function (PDF) $f_{U^{(1)}}$ of the largest random variable $U^{(1)}$ are as
1113 follows:

$$1114 F_{U^{(1)}}(u) = F_U^K(u) = u^K \theta^{-K} \\ 1115 f_{U^{(1)}}(u) = K F_U^{K-1}(x) f_U(x) = K F_U^{(K-1)}(x) f(x) = K x^{K-1} \theta^{-K} \quad (27)$$

1118 *Proof.*

$$1119 F_{U^{(1)}}(u) = \mathbb{P}(U^{(1)} \leq u) = \mathbb{P}(U_i \leq u \ \forall i) = P(U \leq u)^K = F_U^K(u). \quad (28)$$

1121 The PDF is obtained by differentiation:

$$1122 f_{U^{(1)}}(x) = \frac{d}{dx} F_{U^{(1)}}(u) = K F_U^{K-1}(u) f_U(u), \quad (29)$$

1125 \square

1126 B.5 DISTRIBUTION OF THE SECOND LARGEST UNIFORM RANDOM VARIABLE OUT OF K
1127

1128 We use Prop. B.2 to find the distribution of the second largest uniform random variable out of K :

1129 **Proposition B.2** (Conditional Density (Berger & Casella, 2001)). Let X, Y be two random variables
1130 with joint density $f_{X,Y}$ and marginals f_X, f_Y . Then, the conditional density of X given $Y = y$ is

$$1133 f_{X|Y=y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}. \quad (30)$$

1134 Furthermore, the proof relies on the distribution of a pair of order statistic $(X^{(k)}, X^{(l)})$:
 1135

1136 **Proposition B.3** (Joint Density of Order Statistics (Berger & Casella, 2001)). *Let $X^{(N)} \geq \dots \geq X^{(1)}$ denote an order statistic over N random variables with CDF F and PDF f . Then, the joint density of the variables $X^{(k)}$ and $X^{(l)}$, where $k < l$ is given by*
 1137

1138

$$1140 \quad f_{X^{(k)}, X^{(l)}}(u, v) = \\ 1141 \quad \frac{N!}{(k-1)!(l-k-1)!(N-l)!} F(u)^{k-1} (F(v) - F(u))^{l-k-1} (1 - F(v))^{N-l} f(u) f(v). \quad (31)$$

1142

1143

1144 See Border (2021) for a proof. Finally, using Prop. B.2 and B.3, we prove the main result:
 1145

1146 **Proposition B.4** (Conditional Distribution of $U^{(K-1)}$ given $U^{(K)}$). *Let $U^{(K)} \geq \dots \geq U^{(1)}$ denote the order statistics of K independent and uniformly distributed random variables on $[0, \theta]$, arranged in descending order. Conditioned on $U^{(K)} = z$, $U^{(K-1)}$ is distributed as the largest of $(K-1)$ i.i.d uniform random variables on $[0, z]$.*
 1147

1148

1149 *Proof.* From Proposition B.3, the joint distribution $f_{X^{(N-1)}, X^{(N)}}(u, v)$ is given by
 1150

$$1153 \quad f_{X^{(N-1)}, X^{(N)}}(u, v) = \frac{N!}{(N-2)!} F_X^{(N-2)}(u) f(u) f(v) = N(N-1)u^{(N-2)}\theta^{-N}. \quad (32)$$

1154

1155 Using Proposition B.2, we can conclude:
 1156

$$1157 \quad f_{X^{(N-1)}|X^{(N)}}(u | v) = \frac{f_{X^{(N-1)}, X^{(N)}}(u, v)}{f_{X^{(N)}}(v)} = \frac{N(N-1)u^{(N-2)}\theta^{-N}}{Nv^{N-1}\theta^{-N}} \\ 1158 \quad = (N-1)u^{(N-2)}v^{(N-1)}, \quad (33)$$

1159

1160 which is precisely the density of the largest out of $N-1$ independent uniform random variables on $[0, v]$. \square
 1161

1162

B.6 CONDITIONAL MEAN OF THE EXPONENTIAL OF A GAUSSIAN

1163 Finding the analytical expression of $\mathbb{E}[\exp(X)|X < c]$ requires the expression for the conditional
 1164 density, given that $X \in A$ for A are Borel set with non-zero probability:
 1165

1166 **Proposition B.5** (Conditional Density). *Let X be a random variable with density f_X , and let A be a
 1167 Borel set such that $\mathbb{P}(X \in A) > 0$. Then the conditional density of X given $X \in A$ is*
 1168

$$1169 \quad f_{X|X \in A}(x) = \frac{f_X(x)\mathbb{1}\{x \in A\}}{\mathbb{P}(X \in A)}. \quad (34)$$

1170

1171

1172 *Proof.* Since X admits the density f_X , for any Borel set $B \subseteq \mathbb{R}$ we have

$$1173 \quad \mathbb{P}(X \in B) = \int_B f_X(x)dx. \quad (35)$$

1174

1175 By definition of conditional probability, whenever $\mathbb{P}(X \in A) > 0$,

$$1176 \quad \mathbb{P}(X \in B | X \in A) = \frac{\mathbb{P}(X \in B \cap A)}{\mathbb{P}(X \in A)}. \quad (36)$$

1177

1178 Using the density representation of the numerator gives
 1179

$$1180 \quad \mathbb{P}(X \in B | X \in A) = \frac{\int_{B \cap A} f_X(x)dx}{\mathbb{P}(X \in A)}. \quad (37)$$

1181

1182 Define
 1183

$$1184 \quad g(x) = \frac{f_X(x)\mathbb{1}\{x \in A\}}{\mathbb{P}(X \in A)} \quad (x \in \mathbb{R}). \quad (38)$$

1185

1188 Then for every Borel set B

$$1190 \int_B g(x)dx = \frac{1}{\mathbb{P}(X \in A)} \int_{B \cap A} f_X(x)dx = \mathbb{P}(X \in B \mid X \in A). \quad (39)$$

1192 In particular, choosing $B = \mathbb{R}$ yields $\int_{\mathbb{R}} g(x)dx = 1$, so g is a valid probability density. Hence g is a
1193 density that realizes the conditional probabilities, i.e. $g = f_{X \mid X \in A}$. \square

1194

1195 After proving Prop. B.5, we can prove that

1196

$$1197 \log \mathbb{E}[\exp(X) \mid X < c] = \frac{\sigma}{2} - \log \Phi(c/\sigma) + \log \Phi\left(\frac{c - \sigma^2}{\sigma}\right). \quad (40)$$

1199

1200 *Proof.*

$$\begin{aligned} & \mathbb{E}[\exp(X) \mid X < c] \\ &= \int_{-\infty}^c \exp(x) \frac{f_X(x)}{\mathbb{P}(X < c)} dx \\ &= \frac{1}{\Phi(c/\sigma)} \int_{-\infty}^c \exp(x) \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx \\ &= \frac{1}{\Phi(c/\sigma)} \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^c \exp\left(-\frac{x^2}{2\sigma^2} + x\right) dx \\ &= \frac{1}{\Phi(c/\sigma)} \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^c \exp\left(-\frac{1}{2\sigma^2}(x^2 - 2\sigma^2x + \sigma^4 - \sigma^4)\right) dx \\ &= \frac{\exp(\sigma^2/2)}{\Phi(c/\sigma)} \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^c \exp\left(-\frac{1}{2\sigma^2}(x - \sigma^2)^2\right) dx \\ &= \frac{\exp(\sigma^2/2)}{\Phi(c/\sigma)} \Phi\left(\frac{c - \sigma^2}{\sigma}\right) \end{aligned}$$

1217 \square

1218

1219 Applying a log on both sides yields

1220

$$1221 \log \mathbb{E}[\exp(X) \mid X < c] = \frac{\sigma}{2} - \log \Phi(c/\sigma) + \log \Phi\left(\frac{c - \sigma^2}{\sigma}\right), \quad (41)$$

1223

1224 which is the expression in (13).

1225

1226 B.7 SERIES REPRESENTATION OF \mathcal{T} AND $\partial_t \mathcal{T}$

1227

1228 We begin by stating the Series expansion for \mathcal{T} (Prop. B.6) and its time-derivative $\partial_t \mathcal{T}$ (Prop. B.7):

1229

1230 **Proposition B.6** (Series Expansion of the Diffusion Transformation Operator). *The diffusion transformation operator \mathcal{T} can be expressed as:*

1231

$$\mathcal{T}(\tilde{\alpha}_t) = \frac{K}{K-1} \left[e^{-\nu_t^2/2} \sum_{n=0}^{\infty} \frac{\nu_t^n}{n!} M_n - \frac{1}{K} \right] \quad (42)$$

1232

$$1233 \nu_t = \frac{\tilde{\alpha}_t}{\sqrt{1 - \tilde{\alpha}_t^2}} \text{ and } M_n = \int_{-\infty}^{\infty} z^n \phi(z) \Phi^{K-1}(z) dz.$$

1234

1235 **Proposition B.7** (Time-Derivative of the Diffusion Transformation Operator). *The time-derivative of the diffusion transformation operator \mathcal{T} can be expressed as:*

1236

1237

1238

1239

1240

1241

$$\frac{d}{dt} \mathcal{T}(\tilde{\alpha}_t) = \frac{K \cdot e^{-\nu_t^2/2}}{K-1} \frac{\tilde{\alpha}'_t}{(1 - \tilde{\alpha}_t)^{3/2}} \sum_{n=0}^{\infty} \frac{\nu_t^n}{n!} [I_n - \nu_t M_n] \quad (43)$$

1242 where ν_t and M_n are defined as in Prop. B.6. Finally, $I_n = \int_{-\infty}^{\infty} z^{n+1} \phi(z) \Phi^{K-1}(z) dz$, and $\tilde{\alpha}'_t$ denotes the time-derivative of the Gaussian noise schedule $\tilde{\alpha}_t$.

At this point, one might ask what is gained by expressing \mathcal{T} as a series expansion. There are two key advantages. First, since \mathcal{T} is intractable, Sahoo et al. (2024) resort to precomputing 100k evaluations, which can take up to two hours with the GPT-2 tokenizer. Second, they approximate the time derivative using finite differences. Crucially, observe that M_n and I_n in Prop. B.6 and B.7 are the only intractable components of the series expansion, and they are independent of the input $\tilde{\alpha}_t$. We find that the terms of the series decay to zero after roughly 150 terms (with slower decay as $t \rightarrow 1$). Thus, instead of pre-computing 100k evaluations of \mathcal{T} , it suffices to cache M_n and I_n for $n < 150$. In practice, this takes only a few seconds and can be performed at the start of training. We now prove Prop. B.6 and B.6.

B.7.1 PROOF OF PROPOSITION B.6

To prove the result, we rely on the following proposition:

Proposition B.8 (First Corollary of the Dominated Convergence Theorem (Folland (1999), Theorem 2.25)). *If the sum $\sum_{n=0}^{\infty} f_n(x)$ exists for all x and there exists an integrable function $g(x)$ such that*

$$\left| \sum_{n=0}^k f_n(x) \right| \leq g(x) \quad (44)$$

for all k , then

$$\int_{-\infty}^{\infty} \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} f_n(x) dx. \quad (45)$$

We now prove Prop. B.6 using Prop. B.8:

Proof. Recall that the standard Gaussian PDF is given by

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \quad (46)$$

For notational convenience, let $\nu_t = \frac{\tilde{\alpha}_t}{\sqrt{1-\tilde{\alpha}_t^2}}$. We can rewrite $\phi(x - \nu_t)$ in terms of $\phi(x)$:

$$\phi(x - \nu_t) = \frac{1}{\sqrt{2\pi}} e^{-(x-\nu_t)^2/2} = \frac{1}{\sqrt{2\pi}} e^{-(x^2 - 2\nu_t x + \nu_t^2)/2} = \phi(x) e^{\nu_t x} e^{-\nu_t^2/2}. \quad (47)$$

Using the definition of the infinite series of e^x , we can expand $e^{\nu_t x}$:

$$\phi(x - \nu_t) = \phi(x) e^{-\nu_t^2/2} \sum_{n=0}^{\infty} \frac{\nu_t^n x^n}{n!}. \quad (48)$$

Substituting this into our original integral:

$$\int_{-\infty}^{\infty} \phi(z - \nu_t) \Phi^{K-1}(z) dz = \int_{-\infty}^{\infty} \phi(z) e^{-\nu_t^2/2} \sum_{n=0}^{\infty} \frac{\nu_t^n z^n}{n!} \Phi^{K-1}(z) dz \quad (49)$$

Since Prop. B.8 is satisfied, as the sum is the Taylor series of the exponential function, we can exchange the order of integration and summation. This leads to our final result:

$$\begin{aligned} \int_{-\infty}^{\infty} \phi(z - \nu_t) \Phi^{K-1}(z) dz &= e^{-\nu_t^2/2} \sum_{n=0}^{\infty} \frac{\nu_t^n}{n!} \int_{-\infty}^{\infty} z^n \phi(z) \Phi^{K-1}(z) dz \\ &= e^{-\nu_t^2/2} \sum_{n=0}^{\infty} \frac{\nu_t^n}{n!} M_n. \end{aligned} \quad (50)$$

□

1296 B.7.2 PROOF OF PROP. B.7
1297

1298 Once again, we need to exchange the order of operations to prove Prop. B.7, which relies on Prop. B.9:

1299 **Proposition B.9** (Second Corollary of the Dominated Convergence Theorem (Folland (1999), The-
1300 theorem 2.27)). *Let $f(x, t)$ be differentiable in t and suppose there exists a function $g(x, t)$ such
1301 that:*1302
1303 1. $\left| \frac{\partial f(x, t)}{\partial t} \right| \leq g(x, t_0)$ for all x and t in some neighborhood $|t - t_0| \leq \delta_0$
1304
1305 2. $\int_{-\infty}^{\infty} g(x, t) dx < \infty$ for all t
1306

1307 Then

1308
$$\frac{d}{dt} \int_{-\infty}^{\infty} f(x, t) dx = \int_{-\infty}^{\infty} \frac{\partial f(x, t)}{\partial t} dx \quad (51)$$

1309
1310

1311 In our case, we have

1312
1313
$$f(x, t) = \phi \left(z - \frac{\tilde{\alpha}_t}{\sqrt{1 - \tilde{\alpha}_t^2}} \right) \Phi^{K-1}(z) = \phi(z - \nu_t) \Phi^{K-1}(z) \quad (52)$$

1314
1315

1316 which has time derivative

1317
$$\frac{(z - \nu_t) \phi(z - \nu_t)}{(1 - \alpha_t^2)^{3/2}} \Phi^{K-1}(z). \quad (53)$$

1318
1319

1320 Therefore, we need to find a suitable function g that satisfies Prop. B.9 to justify swapping the order
1321 of integration and differentiation.1322 *Proof.* Let $1 > \delta_0 > 0$ and choose $t_0 = \frac{1-\delta_0}{2}$. When $|t - t_0| \leq \delta_0$, we have $t \in [t_0 - \delta_0, t_0 + \delta_0]$.
1323 Since $t_0 - \delta_0 < t_0 < 1$ and $t_0 + \delta_0 = \frac{1-\delta_0}{2} + \delta_0 < 1$, we are guaranteed that $t < 1$. This ensures
1324 that ν_t is finite. Because $\alpha_t \in [0, 1)$ when $t < 1$, there exist a constant C , such that

1325
1326
$$C := \max_{|t - t_0| \leq \delta_0} \frac{1}{(1 - \alpha_t^2)^{3/2}} < \infty. \quad (54)$$

1327

1328 For $z \in \mathbb{R}$ and $|t - t_0| \leq \delta_0$, we can bound the absolute value of the time derivative of f as follows:

1329
1330
$$\left| \frac{\partial f(z, t)}{\partial t} \right| = \frac{|z - \nu_t|}{(1 - \alpha_t^2)^{3/2}} \phi(z - \nu_t) \Phi^{K-1}(z)$$

1331
1332
$$\leq C |z - \nu_t| \phi(z - \nu_t) = g(z, t).$$

1333 Finally, for all $t \in [0, 1)$:

1334
1335
$$\begin{aligned} \int_{-\infty}^{\infty} g(z, t) dz &= C \int_{-\infty}^{\infty} |z - \nu_t| \phi(z - \nu_t) dz = C \int_{-\infty}^{\infty} |z| \phi(z) dz \\ 1336 &= C \int_{-\infty}^{\infty} |z| \phi(z) dz = 2C \int_0^{\infty} z \phi(z) dz \\ 1337 &= 2C \int_0^{\infty} z \cdot \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \\ 1338 &= \frac{2C}{\sqrt{2\pi}} \int_0^{\infty} z e^{-z^2/2} dz \\ 1339 &= \frac{2C}{\sqrt{2\pi}} \cdot 1 = C \sqrt{\frac{2}{\pi}} < \infty, \end{aligned} \quad (55)$$

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

where we used the substitution $u = z^2/2$ in the integral $\int_0^{\infty} z e^{-z^2/2} dz$ to obtain $\int_0^{\infty} e^{-u} du = 1$. \square

We can now prove Proposition B.7

Figure 6: Polynomial approximation and approximation error, compared to the series approximation, truncated at 150 terms. The degree-9 polynomial (left) achieves orders of magnitude lower error than the degree-5 polynomial (center) and sigmoid (right) approximations.

Proof. We want to compute

$$\frac{d}{d\nu_t} \mathcal{T}(\alpha_t) = \frac{K}{K-1} \frac{d}{d\nu_t} \int \phi(z - \nu_t) \Phi^{K-1}(z) dz \quad (56)$$

Applying the derivative under the integral sign and using the identity $\phi(z - \nu_t) = \phi(z) e^{\nu_t z} e^{-\nu_t^2/2}$, we have:

$$\begin{aligned} \frac{d}{d\nu_t} \phi(z - \nu_t) &= \phi(z) \frac{d}{d\nu_t} [e^{\nu_t z - \nu_t^2/2}] \\ &= \phi(z) e^{\nu_t z - \nu_t^2/2} (z - \nu_t) \\ &= (z - \nu_t) \phi(z - \nu_t) \end{aligned} \quad (57)$$

Therefore:

$$\frac{d}{d\nu_t} \mathcal{T}(\alpha_t) = \frac{K}{K-1} \int_{-\infty}^{\infty} (z - \nu_t) \phi(z - \nu_t) \Phi^{K-1}(z) dz \quad (58)$$

Now using the Taylor series of $\phi(z - \nu_t)$, found earlier, and inverting the sum and integral as before, we find

$$\begin{aligned} \frac{d}{d\nu_t} \mathcal{T}(\alpha_t) &= \frac{K}{K-1} \int_{-\infty}^{\infty} (z - \nu_t) \phi(z) e^{\nu_t z} e^{-\nu_t^2/2} \Phi^{K-1}(z) dz \\ &= \frac{K \cdot e^{-\nu_t^2/2}}{K-1} \sum_{n=0}^{\infty} \frac{\nu_t^n}{n!} \left[\int_{-\infty}^{\infty} z^{n+1} \phi(z) \Phi^{K-1}(z) dz - \nu_t \int_{-\infty}^{\infty} z^n \phi(z) \Phi^{K-1}(z) dz \right] \\ &= \frac{K \cdot e^{-\nu_t^2/2}}{K-1} \sum_{n=0}^{\infty} \frac{\nu_t^n}{n!} [I_n - \nu_t M_n]. \end{aligned} \quad (59)$$

where $I_n = \int_{-\infty}^{\infty} z^{n+1} \phi(z) \Phi^{K-1}(z) dz$ and $M_n = \int_{-\infty}^{\infty} z^n \phi(z) \Phi^{K-1}(z) dz$.

This expansion allows us to compute the derivative of the diffusion transformation operator with respect to ν_t in terms of moments of the standard normal distribution weighted by powers of the CDF. \square

B.8 POLYNOMIAL APPROXIMATION OF \mathcal{T}

Because the Diffusion Transformation Operator \mathcal{T} has a sigmoid-like shape, we approximating it with S-shaped functions that require only a handful of coefficients. This allows us to store fewer parameters during training, instead of the 100k values required by the original curriculum or the 300 coefficients from the series approximation. Concretely, we test several functional forms with fewer than 10 parameters and fit them using non-linear least squares, via `scipy.optimize.curve_fit`.

As shown in Figure 6, approximations tend to be less accurate at the boundaries, when $t \approx 0$ or $t \approx 1$. We find that the degree-9 polynomial works better than a sigmoid function of the form $a\sigma(bt + c) + d$, especially at the boundaries.

1404
1405 C EXPERIMENTAL DETAILS
1406
14071408 C.1 Ψ -SAMPLERS
14091410 C.1.1 OPENWEBTEXT
14111412 To evaluate the samplers, we use the pre-trained MDLM (Sahoo et al., 2024) and Duo (Sahoo et al.,
1413 2025a) checkpoints, as well as their distilled variants (using SDTT (Deschenaux & Gulcehre, 2025)
1414 and discrete consistency distillation, respectively, after 5 rounds of 10k steps). We re-state the
1415 training hyperparameters of both models in Suppl. C.2.1. For ReMDM, we use both the official
1416 implementation of Wang et al. (2025) and our re-implementation, which matches the original results
1417 while supporting additional sampling schedules beyond the log-linear one. See Suppl. D.1 for details
1418 on selecting κ_t .
14191420 C.1.2 CIFAR10 (D3PM-LIKE ARCHITECTURE)
14211422 We train a U-Net backbone (Ronneberger et al.,
1423 2015) for 1.5M steps with a batch size of 128,
1424 using class conditioning with a class-dropout
1425 rate of 0.1 (as in Schiff et al. (2025)), and the
1426 default hyperparameters of Austin et al. (2023)
1427 (Table 3). For both MDLM and Duo, we ex-
1428 periment with time-conditional and unconditional
1429 variants, and train models using either cosine
1430 or log-linear noise schedules. See Table 6 for
1431 the ancestral-sampling evaluation of all variants
1432 after pre-training. See Suppl. D.1 for details on
1433 selecting κ_t .
14341435 C.2 IMPROVED CURRICULUM
14361437 C.2.1 LANGUAGE MODELING
14381439 We adopt the same setup as prior work on discrete diffusion (Lou et al., 2024; Sahoo et al., 2024;
1440 2025a), and restate it for completeness.
14411442 **LM1B** We detokenize the the One Billion Words (Chelba et al., 2014) as in Lou et al. (2024); Sahoo
1443 et al. (2024)¹, and tokenize it using the bert-base-uncased tokenizer (Devlin et al., 2019), as
1444 He et al. (2022). We use a context length of 128 and pad shorter documents.
14451446 **OpenWebText** We tokenize OpenWebText (Gokaslan & Cohen, 2019) with the GPT-2 tokenizer,
1447 concatenate sequences to a length of 1024, and insert an eos token between documents. Since the
1448 dataset lacks an official validation split, we reserve the last 100k documents for validation.
14491450 **Backbone** We parameterize all models using the modified diffusion transformer architecture of
1451 Peebles & Xie (2023), following Lou et al. (2024); Sahoo et al. (2024). Our models use 12 layers,
1452 a hidden dimension of 768, 12 attention heads, and a timestep embedding of size 128 for the
1453 uniform-state diffusion variants. Word embeddings are not tied between input and output.
14541455 **Curriculum Lookup** For the Duo baseline, we train models using the original code. To implement
1456 the efficient curriculum, we replace the full linear combination of embeddings by a sparse lookup,
1457 implemented using `torch.nn.functional.embedding_bag` to avoid materializing intermediate
1458 tensors. The curriculum phase lasts for the first 500k steps, after which we perform regular
1459 embedding table lookups, just like Sahoo et al. (2025a).
14601461 Table 3: Model architecture on CIFAR10
1462

Component	Value
Vocab size	256
Number of ResNet blocks per scale	2
Base channels	128
Channel multiplier per scale	(1,2,2,2)
Attention resolutions	16
Conditional embedding dimension	128
Number of parameters	35.8M

1¹<https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py>

1458 **Optimization** We train all models with the AdamW optimizer (Loshchilov & Hutter, 2019) using a
 1459 batch size of 512. The learning rate is linearly warmed up from 0 to 3×10^{-4} over 2,500 steps, then
 1460 kept constant for the remainder of training. We apply a dropout rate of 0.1 throughout.
 1461

1462 C.3 DOWNSTREAM EVALUATION PROTOCOL

1464 We evaluate downstream performance using the lm-eval-harness library (Gao et al., 2024),
 1465 following the protocol of Deschenaux et al. (2025). We focus on multiple choice tasks, where
 1466 the log-likelihood of each candidate answer, given a prompt, is computed and the answer with the
 1467 highest score is selected. For diffusion language models, which optimize a variational bound on the
 1468 log-likelihood of the full sequence, we adapt the evaluation by using Bayes' rule:
 1469

$$\log p(\mathbf{y}_i|\mathbf{x}) = \log p(\mathbf{x}, \mathbf{y}_i) - \log p(\mathbf{x}) \propto \log p(\mathbf{x}, \mathbf{y}_i), \quad (60)$$

1470 Since $\log p(\mathbf{x})$ does not depend on the candidate \mathbf{y}_i , we simply select the answer that maximizes
 1471 $\log p(\mathbf{x}, \mathbf{y}_i)$. In practice, we use the log-likelihood ELBO (4), estimated via Monte Carlo with 1024
 1472 samples, and choose the continuation \mathbf{y}_i with the highest estimated likelihood.
 1473

1474 C.4 ZERO-SHOT LIKELIHOOD

1476 Our setting is the same as used by Sahoo et al. (2025a). Specifically, we measure the likelihood
 1477 of the models trained on OpenWebText using the validation splits of seven diverse datasets: Penn
 1478 Tree Bank (PTB; Marcus et al. (1993)), WikiText (Merity et al., 2016), One Billion Words (LM1B;
 1479 Chelba et al. (2014)), Lambada (Paperno et al., 2016), AG News (Zhang et al., 2016), and Scientific
 1480 Papers (Pubmed and Arxiv subsets; Cohan et al. (2018)). The datasets are detokenized following
 1481 the protocol of Lou et al. (2024); Sahoo et al. (2025a). We wrap all sequences to a maximum length
 1482 of 1024 tokens and do not insert `eos` tokens between them. Table 5 shows that we reach similar
 1483 performance as Duo.
 1484

1485 D ADDITIONAL EXPERIMENTAL RESULTS

1487 In Suppl. D.1, we elaborate on the impact of κ_t on the performance of the Ψ -samplers. In Suppl. D.2,
 1488 we show that our efficient curriculum produces weights with the same marginal distributions as Sahoo
 1489 et al. (2025a).

1490 D.1 TUNING κ_t FOR THE Ψ -SAMPLERS

1492 As discussed in Sec. 5.1, the choice of κ_t is critical for strong performance. With a poor choice of
 1493 κ_t , Ψ -samplers can underperform ancestral sampling. Below, we report all of our hyperparameter
 1494 sweeps across datasets.
 1495

- 1496 • We perform image modeling on CIFAR-10 using the U-Net architecture of Austin et al.
 1497 (2023); Schiff et al. (2025), and use horizontal flipping as the sole data augmentation.
- 1498 • We evaluate Ψ -samplers on OpenWebText (Gokaslan & Cohen, 2019) using the original
 1499 checkpoint of MDLM (Sahoo et al., 2024) and Duo (Sahoo et al., 2025a).

1500 D.1.1 CIFAR-10

1502 We report FID (Heusel et al., 2018), computed between 50k generated samples and the training set.
 1503 Before evaluating Ψ -samplers, we ablate on the training hyperparameters. Specifically, we train
 1504 models with cosine and log-linear noise schedule, optionally with time-conditioning. We sample
 1505 with both cosine and log-linear schedules. Finally, we check whether nucleus sampling (Holtzman
 1506 et al., 2020) and greedy decoding on the final step can help, compared to vanilly ancestral sampling.
 1507 Since nucleus sampling helps Duo but not MDLM, we compare the two models without nucleus
 1508 sampling. Table 6 shows the validation perplexity and FID for a few number of sampling steps.
 1509 Table 7 reports FID for ancestral sampling using step counts that are powers of two, from 32 up to
 1510 4096. Table 8 shows the results with ReMDM. Table 9 reports FID scores for Ψ -samplers using a
 1511 stepwise-constant κ schedule. Table 11 shows the performance of Ψ -samplers using the κ schedule
 1512 equivalent to ReMDM. We obtain similar results, which supports our theoretical claims.

- **MDLM (Ancestral).** Training with cosine noise schedule and time conditioning yields the best validation perplexity and FID.
- **MDLM (ReMDM).** We find that ReMDM improves the best FID over ancestral sampling, from 24.73 to 23.71 using 4096 sampling steps. Nucleus sampling can help at very low step counts, but the best performance is obtained with ancestral sampling. As the number of steps increases, nucleus sampling *worsen* the FID.
- **Duo (Ancestral).** Cosine training without time conditioning yields the lowest perplexity, while log-linear training without time conditioning gives the best FID. We use the latter in downstream experiments. Nucleus sampling improves FID, and greedy decoding slightly worsen it.
- **Duo (Ψ -samplers).** Ψ -samplers further improve performance beyond ReMDM. With the log-linear sampling schedule (as used by ReMDM), Ψ -samplers reduce the FID from 23.71 to 20.71. Using a cosine sampling schedule further improves the FID. Overall, Duo improves *from an FID of 25.63 (ancestral) to 15.05* with Ψ -samplers, and MDLM improves from 24.73 (ancestral) to 17.86 with Ψ -samplers.

D.1.2 OPENWEBTEXT

We report the generative perplexity using GPT-2 Large, following standard practice (Sahoo et al., 2024; 2025a). Because language models can artificially lower the generative perplexity by producing repetitive text, we also report unigram entropy (Dieleman et al., 2022), as a proxy.

Some Ψ -samplers schedules reduce the unigram entropy more than others. Therefore, for figures, we select the κ schedule whose unigram entropy matches (or is closest to) the entropy of samples generated with ancestral sampling. If multiple schedules achieve the same entropy, we choose the one with the lowest generative perplexity. We indicate which schedule is used for plots by highlight the corresponding row in blue in the tables. Overall, the Ψ -samplers can reduce the Gen. PPL of *all* models while retaining the unigram entropy. Best results are achieved using the rescale schedule with $\eta \in \{0.01, 0.02\}$, for both MDLM and Duo.

Table 13 shows the generative perplexity of MDLM and Duo after pre-training and after distillation with SDTT (Descheneaux & Gulcehre, 2025) or DCD (Sahoo et al., 2025a) respectively, with and without nucleus sampling, using ancestral sampling. Table 14 shows the results when sampling with Ψ -samplers that are equivalent to ReMDM (Wang et al., 2025), with the *non-distilled* models, while Table 15 shows the result for the distilled models.

D.2 DISTRIBUTION OF THE TOP k ENTRIES OF THE SOFTMAX

To verify that our sparse implementation accurately approximates the curriculum weights of Sahoo et al. (2025a), we compare the empirical distributions of the top- k largest entries between the original and our efficient implementation. While matching marginal distributions does not guarantee matching joint distributions, matching marginals are necessary for matching joints, and are easier to visualize. Recall that experimentally, our efficient implementation is sufficient to achieve strong performance (Sec. 5.2). Specifically, we show histograms using a tokenizer with 100k tokens in Figures 8, 9, 10, 11, and with the GPT-2 tokenizer in Figures 12, 13, 14, 15, with varying temperature and log signal-to-noise ratios. In all cases, the top k variables have matching distributions.

D.3 TRAINING EFFICIENCY OF OUR FAST CURRICULUM

As shown in Table 4, our sparse curriculum achieves a 33% reduction in peak memory usage and reaches an average throughput 25% higher than Duo, at a context length of 1024.

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586

1587
 1588 Table 4: Training efficiency comparison between Duo and Duo⁺⁺ on 138M parameter models. All
 1589 measurements are conducted on a training job on 8 NVIDIA GH200-120GB GPU with batch size
 1590 32. We report the average throughput in sequence per second. The row “Duo (afer CL)” denotes
 1591 the resources consumption of Duo after the Curriculum phase. The impact of k is minimal when
 1592 $k \in \{2, 3, 5\}$, and Duo⁺⁺ uses similar resources.
 1593

1594	Method	Throughput (samples/s) \uparrow	Peak Memory (GiB) \downarrow
1595	Duo	81.8	94.3
1596	Duo (after the CL)	122.4	63.3
1597	Duo ⁺⁺ ($k \in \{2, 3, 5\}$)	121.9	63.4

1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
 1621 Table 5: Zero-shot perplexity (PPL) on seven datasets. Lower is better. [†]Results taken from [Sahoo](#)
 1622 [et al. \(2025a\)](#). Duo⁺⁺ ($k = 2$) achieves a slightly lower zero-shot perplexity than Duo on 6 of 7
 1623 datasets.

	PTB	Wiki	LM1B	LBD	AG News	PubMed	ArXiv
<i>Autoregressive Transformer[†]</i>							
Transformer [†]	82.05	25.75	51.25	51.28	52.09	49.01	41.73
<i>Diffusion (138M)</i>							
SEDD Uniform [†]	105.51	41.10	82.62	57.29	82.64	55.89	50.86
UDLM [†]	112.82	39.42	77.59	53.57	80.96	50.98	44.08
Duo [†]	89.35	33.57	<u>73.86</u>	<u>49.78</u>	67.81	44.48	40.39
Duo ⁺⁺ ($k = 2$)	94.96	34.05	73.80	48.67	<u>67.14</u>	43.98	38.93
Duo ⁺⁺ ($k = 3$)	91.94	34.65	74.16	49.89	66.89	44.87	40.42
Duo ⁺⁺ ($k = 5$)	94.46	34.52	74.91	50.93	68.72	46.79	41.04

Algorithm 2 Reverse Sampling from Order Statistics of Gaussian Random Variables

Input Number of variables N , standard deviation σ , number of top values k
 Sample $U_\ell \sim \mathcal{U}(0, 1)$, for $N \geq \ell \geq N - k + 1$
 Compute the random variables: $R_\ell = \frac{\log U_\ell}{\ell}$
 Compute the cumulative sums: $P_\ell = \sum_{m=\ell}^N R_m$
 Let $V_\ell = \exp(P_\ell)$, the ℓ -th sample from the (uniform) order statistic.
 Apply inverse normal CDF: $X^{(\ell)} = \Phi^{-1}(V_\ell) \cdot \sigma$
return $\{X^{(\ell)}\}_{\ell=N}^{N-k+1}$

Algorithm 3 Floyd's Algorithm for Sampling Without Repetition

Input Number of possible values N , number of samples k .
 Initialize array S of size k to store samples
for $t = 0$ to $k - 1$ **do**
 Sample $j \sim \text{Randint}(0, N - k + t)$
if $t > 0$ and j appears in $S[0 : t]$ **then**
 $S[t] \leftarrow N - k + t$ {Use largest remaining value}
else
 $S[t] \leftarrow j$
end if
end for
return S

(a) Generative perplexity of Duo^{++} (ours) as a function of the number of sampling steps (NFEs). Duo^{++} generalizes ReMDM (Wang et al., 2025) and the performance consistently improve with the number of sampling steps. We annotate each curve with the average unigram entropy per generated sequence as a proxy for diversity. Nucleus sampling ($p = 0.9$) is used for ReMDM but not other samplers

(b) On CIFAR-10, Duo^{++} achieves lower FID than MDLM (with ReMDM). Moreover, Duo^{++} obtains a better FID in just 128 steps than Duo with ancestral sampling in 4096 steps. We use temperature scaling ($T=0.8$) in all experiments.

(c) On CIFAR-10, Duo^{++} achieves lower Inception Score than MDLM (with ReMDM). Moreover, Duo^{++} obtains a better FID in just 128 steps than Duo with ancestral sampling in 4096 steps. We use temperature scaling ($T=0.8$) in all experiments.

Figure 7: Additional comparison of ancestral and Ψ -samplers on CIFAR-10 and OWT.

Figure 8: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse temperature 100, and log signal-to-noise ratio -2 . The histograms of the efficient and naive implementation match closely.

1728

1734
1735
1736
1737
Figure 9: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio -1 . The histograms of the efficient and naive
implementation match closely.

1738

1739

1740
1741
1742
1743
1744
1745
Figure 10: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio -2 . The histograms of the efficient and naive
implementation match closely.

1746

1747

1748

1749

1750

1751
1752
1753
1754
1755
1756
Figure 11: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio -4 . The histograms of the efficient and naive
implementation match closely.

1760

1761

1762

1763

1764

1765

1766

1767

1768
1769
1770
Figure 12: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
100, and log signal-to-noise ratio -2 . The histograms of the efficient and naive implementation
match closely.

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780
1781
Figure 13: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio -1 . The histograms of the efficient and naive implementation
match closely.

Figure 14: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature 1000, and log signal-to-noise ratio -2 . The histograms of the efficient and naive implementation match closely.

Figure 15: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature 1000, and log signal-to-noise ratio -4 . The histograms of the efficient and naive implementation match closely.

Table 6: FID on CIFAR-10 with ancestral sampling. We train and sample with the log-linear and cosine scheduler. MDLM performs best with time-conditioning while Duo does not. We sample with discrete classifier-free guidance (Schiff et al., 2025) with strength 1, and greedy predictions on the last step.

Scheduler	Time	PPL \downarrow	FID \downarrow (Cosine)				FID \downarrow (Log-linear)			
			64	256	1024	2048	64	256	1024	2048
MDLM										
Cosine	\times	8.86	<u>42.60</u>	<u>27.71</u>	<u>24.90</u>	<u>24.56</u>	107.62	<u>40.81</u>	<u>27.65</u>	<u>25.73</u>
Cosine	\checkmark	8.72	41.89	27.03	24.67	24.24	114.56	40.60	27.08	25.50
Log-linear	\times	8.76	43.95	29.01	26.11	25.67	<u>111.77</u>	42.15	28.85	26.89
Log-linear	\checkmark	8.75	49.36	32.10	28.76	28.21	122.70	41.79	27.89	26.02
<i>MDLM (nucleus p=0.9)</i>										
Cosine	\checkmark	8.72	34.81	44.04	47.84	48.37	41.73	33.33	43.12	45.98
<i>MDLM (no greedy)</i>										
Cosine	\checkmark	8.72	42.14	27.19	24.47	24.46	114.55	40.92	27.13	25.60
<i>Duo</i>										
Cosine	\times	10.27	<u>32.37</u>	<u>27.28</u>	<u>26.38</u>	<u>26.02</u>	<u>33.93</u>	<u>27.93</u>	<u>26.51</u>	<u>26.03</u>
Cosine	\checkmark	10.32	33.74	27.98	26.81	26.96	36.23	28.77	27.08	26.79
Log-linear	\times	10.49	31.78	27.03	26.00	25.75	33.44	27.46	26.08	25.87
Log-linear	\checkmark	10.45	34.05	27.74	26.58	26.37	36.46	28.49	26.60	26.22
<i>Duo (nucleus p=0.9)</i>										
Log-linear	\times	10.49	23.13	22.21	22.58	22.49	24.24	22.41	22.35	22.54
<i>Duo (no greedy)</i>										
Log-linear	\times	10.49	33.03	27.43	26.16	25.96	34.81	27.76	26.30	26.06

1836 Table 7: FID on CIFAR-10 with ancestral sampling and a finer grid. We pick the variant with the best
 1837 FID from Table 6.

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889	Algo	Train	Sample	p	FID ↓						
					32	64	128	256	512	1024	4096
Duo	log-lin	log-lin	1.0	42.71	33.44	29.18	27.46	26.62	26.08	25.87	25.79
Duo	log-lin	log-lin	0.9	28.53	24.24	22.89	22.41	22.56	22.35	22.54	22.41
Duo	log-lin	cos	1.0	39.65	31.78	28.55	27.03	26.03	25.89	25.75	25.63
Duo	log-lin	cos	0.9	25.96	23.13	22.68	22.21	22.26	22.58	22.49	22.49
MDLM	cos	log-lin	1.0	212.95	114.56	62.86	40.60	31.05	27.08	25.50	24.73
MDLM	cos	log-lin	0.9	84.85	41.73	31.28	33.33	38.49	43.12	45.98	55.37
MDLM	cos	cos	1.0	73.82	41.89	36.21	27.03	25.63	24.67	24.24	23.93
MDLM	cos	cos	0.9	58.31	34.81	37.91	44.04	45.32	47.84	48.37	49.23

1890 Table 8: FID on CIFAR-10 with ReMDM (best checkpoints, as shown in Table 7). We sample
 1891 with/without nucleus sampling, and with the 3 schedules of Wang et al. (2025) (cap, loop, rescale).
 1892 For the loop schedule, we use $t_{\text{on}} = 0.55$, $t_{\text{off}} = 0.05$, $\alpha_{\text{on}} = 0.9$, following ReMDM. Sampling
 1893 experiments are executed in the original codebase of Wang et al. (2025).

	Number of steps							
	32	64	128	256	512	1024	2048	4096
<i>ReMDM cap (p=1.0)</i>								
$\eta = 0.005$	215.67	116.24	63.37	40.82	31.40	27.28	24.97	24.78
$\eta = 0.010$	218.41	118.25	64.50	41.77	32.40	28.68	27.91	33.68
$\eta = 0.020$	224.20	122.61	66.95	44.54	36.26	35.39	46.01	92.48
$\eta = 0.050$	242.25	143.21	84.41	64.10	73.89	132.13	210.60	203.14
<i>ReMDM loop (p=1.0)</i>								
$\eta = 0.01$	307.56	234.55	138.56	80.50	55.86	47.05	45.44	50.44
$\eta = 0.02$	307.81	237.28	142.21	83.68	59.96	53.88	60.50	87.54
$\eta = 0.04$	308.24	242.70	152.28	94.63	76.93	88.53	135.05	196.58
$\eta = 0.06$	308.88	248.76	165.79	114.92	113.26	157.92	223.70	237.16
<i>ReMDM rescale (p=1.0)</i>								
$\eta = 0.01$	216.92	116.73	63.56	40.65	30.86	26.03	23.77	23.71
$\eta = 0.02$	221.21	119.79	65.08	42.02	32.29	28.11	28.66	39.39
$\eta = 0.04$	229.72	127.94	70.89	46.98	38.74	41.23	67.44	130.05
$\eta = 0.05$	234.35	133.08	75.02	50.92	45.01	57.03	107.13	164.44
<i>ReMDM cap (p=0.9)</i>								
$\eta = 0.005$	88.08	40.02	27.31	29.43	36.50	45.10	57.08	73.40
$\eta = 0.010$	87.68	39.55	27.35	31.24	41.22	54.55	71.65	93.06
$\eta = 0.020$	85.95	38.46	27.80	35.01	50.50	69.60	91.49	118.87
$\eta = 0.050$	81.91	35.56	29.39	46.90	70.24	95.24	125.60	163.32
<i>ReMDM loop (p=0.9)</i>								
$\eta = 0.01$	209.24	100.01	47.27	29.44	27.55	30.50	34.21	37.56
$\eta = 0.02$	208.36	99.29	47.12	29.38	27.74	31.17	35.42	39.52
$\eta = 0.04$	206.51	98.18	46.87	29.28	28.09	32.12	37.19	42.45
$\eta = 0.06$	204.83	97.24	46.72	29.19	28.30	32.77	38.47	44.64
<i>ReMDM rescale (p=0.9)</i>								
$\eta = 0.01$	87.31	39.51	27.25	30.74	40.22	53.30	70.24	91.79
$\eta = 0.02$	85.94	38.45	27.45	34.13	49.00	67.89	90.61	118.10
$\eta = 0.04$	83.47	36.44	28.29	41.76	63.40	87.03	115.60	153.03
$\eta = 0.05$	82.26	35.69	28.99	44.69	68.80	94.07	125.42	165.62
<i>ReMDM</i>								
Best ($p = 1.0$)	215.67	116.24	63.37	40.65	30.86	26.03	23.77	23.71
Best ($p = 0.9$)	81.91	81.91	27.25	29.19	27.55	30.50	34.21	37.56
<i>MDLM</i>								
Ancestral (p=1.0)	212.95	114.56	62.86	40.60	31.05	27.08	25.50	24.73
Ancestral (p=0.9)	84.85	41.73	31.28	33.33	38.49	43.12	45.98	55.37

1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944 Table 9: FID on CIFAR-10 with Ψ -samplers, where Ψ -samplers are activated for steps with $t \in [t_{\text{off}}, t_{\text{on}}]$, when κ_t is kept constant (according to the κ column, 1 otherwise). We use the same
1945 checkpoints as in Table 7. Using a cosine sampling schedule and light noise injection (κ close to 1)
1946 generally perform best. The CIFAR-10 curves in Fig. 1 show the best FID per number of steps.
1947

1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	FID \downarrow								
Duo	0.02	log-lin	cos	0.2	0.15	40.64	33.06	30.36	29.85	31.31	34.36	39.06	38.38	Duo	0.02	log-lin	cos	0.5	0.45	41.81	33.67	29.50	26.55	24.83	25.12	31.63	51.83							
Duo	0.02	log-lin	cos	0.8	0.7	43.99	37.41	35.68	38.88	46.76	59.68	75.46	91.73	Duo	0.5	log-lin	cos	0.2	0.1	39.95	32.14	28.86	27.18	26.57	26.46	27.29	28.35							
Duo	0.5	log-lin	cos	0.6	0.4	39.54	29.40	23.46	20.77	23.72	38.42	72.97	105.75	Duo	0.5	log-lin	cos	0.9	0.65	43.00	34.68	31.85	34.73	45.68	64.97	88.07	107.36							
Duo	0.95	log-lin	cos	0.5	0.1	39.30	30.58	26.15	23.46	20.93	18.48	16.38	15.05	Duo	0.95	log-lin	cos	0.6	0.1	39.19	30.15	25.14	21.54	18.64	16.70	16.30	18.99							
Duo	0.95	log-lin	cos	0.9	0.3	39.04	29.88	24.72	20.90	19.20	21.09	30.00	51.43	Duo	0.95	log-lin	cos	0.9	0.4	39.21	30.29	25.26	21.57	19.92	21.50	30.03	50.88							
Duo	0.98	log-lin	cos	1.0	0.05	39.31	30.97	26.39	23.13	20.56	18.80	19.46	25.83	Duo	0.98	log-lin	cos	1.0	0.1	39.31	30.99	26.40	23.14	20.58	18.83	19.48	25.82							
Duo	0.99	log-lin	cos	1.0	0.05	39.34	31.56	27.46	24.73	22.35	20.07	18.50	19.39	Duo	0.99	log-lin	cos	1.0	0.1	39.35	31.57	27.46	24.73	22.37	20.09	18.51	19.41							
Duo	0.02	log-lin	log-lin	0.2	0.15	42.25	33.71	29.84	27.95	27.64	27.56	29.35	31.02	Duo	0.02	log-lin	log-lin	0.5	0.45	43.86	36.29	33.35	33.24	34.74	36.97	36.77	37.30							
Duo	0.02	log-lin	log-lin	0.8	0.7	43.95	33.75	28.32	27.78	37.12	69.66	113.05	132.86	Duo	0.5	log-lin	log-lin	0.2	0.1	42.10	33.40	29.19	27.14	26.22	25.52	25.10	24.71							
Duo	0.5	log-lin	log-lin	0.6	0.4	42.44	33.68	29.15	25.93	24.16	22.44	21.00	27.97	Duo	0.5	log-lin	log-lin	0.9	0.65	42.87	31.04	26.37	31.86	61.36	121.64	155.77	151.48							
Duo	0.95	log-lin	log-lin	0.5	0.1	41.74	32.97	28.57	26.05	24.62	23.13	21.81	20.16	Duo	0.95	log-lin	log-lin	0.6	0.1	41.46	32.47	27.74	24.97	22.94	20.83	18.87	16.82							
Duo	0.95	log-lin	log-lin	0.9	0.3	41.10	30.55	24.54	20.50	17.97	18.04	22.14	35.43	Duo	0.95	log-lin	log-lin	0.9	0.4	41.18	30.58	24.71	20.59	18.08	18.02	22.07	35.44							
Duo	0.98	log-lin	log-lin	1.0	0.05	41.80	31.96	26.83	23.17	20.10	18.12	18.38	22.89	Duo	0.98	log-lin	log-lin	1.0	0.1	41.81	31.98	26.85	23.17	20.12	18.15	18.40	22.94							
Duo	0.99	log-lin	log-lin	1.0	0.05	41.99	32.63	27.74	24.67	22.13	19.72	17.93	18.25	Duo	0.99	log-lin	log-lin	1.0	0.1	41.99	32.63	27.75	24.67	22.13	19.75	17.95	18.28							
MDLM	0.02	cos	cos	0.2	0.15	75.63	49.18	45.02	54.67	83.47	181.18	280.42	297.52	MDLM	0.02	cos	cos	0.5	0.45	117.57	89.53	111.75	200.49	283.55	310.51	314.98	313.93							
MDLM	0.02	cos	cos	0.8	0.7	172.24	197.61	232.36	262.87	269.22	267.86	264.57	259.88	MDLM	0.5	cos	cos	0.2	0.1	73.13	46.10	38.47	39.71	48.49	75.27	173.09	266.36							
MDLM	0.5	cos	cos	0.6	0.4	134.11	114.88	144.25	217.74	268.03	274.83	270.53	256.03	MDLM	0.5	cos	cos	0.9	0.65	151.90	131.04	147.67	177.75	198.33	201.97	193.77	184.76							
MDLM	0.95	cos	cos	0.5	0.1	73.03	44.15	33.68	30.50	29.93	31.50	35.72	51.53	MDLM	0.95	cos	cos	0.6	0.1	74.57	45.00	34.07	30.32	29.16	31.03	37.46	64.74							
MDLM	0.95	cos	cos	0.9	0.3	79.25	47.02	33.97	27.84	24.24	23.43	26.96	42.58	MDLM	0.95	cos	cos	0.9	0.4	78.18	46.36	33.06	26.69	22.67	20.91	21.90	28.82							
MDLM	0.98	cos	cos	1.0	0.05	74.05	43.85	32.32	26.69	23.22	20.81	19.41	20.20	MDLM	0.98	cos	cos	1.0	0.1	74.05	43.85	32.31	26.65	23.17	20.76	19.26	19.98							
MDLM	0.99	cos	cos	1.0	0.05	72.39	42.87	31.79	26.65	23.72	21.07	19.24	17.94	MDLM	0.99	cos	cos	1.0	0.1	72.38	42.87	31.78	26.64	23.69	21.04	19.19	17.86							
MDLM	0.02	cos	log-lin	0.2	0.15	217.56	118.08	68.02	51.76	55.02	78.21	171.72	275.25	MDLM	0.02	cos	log-lin	0.5	0.45	247.31	157.61	124.97	162.92	256.01	298.74	305.05	310.28							
MDLM	0.02	cos	log-lin	0.8	0.7	298.96	294.71	298.95	312.49	317.03	312.60	308.42	302.37	MDLM	0.5	cos	log-lin	0.2	0.1	216.08	116.99	65.73	45.72	41.32	45.95	68.60	152.77							
MDLM	0.5	cos	log-lin	0.6	0.4	266.16	195.76	171.73	212.68	273.48	281.96	272.45	260.26	MDLM	0.5	cos	log-lin	0.9	0.65	296.08	268.98	265.73	278.38	281.68	275.20	265.49	247.21							
MDLM	0.95	cos	log-lin	0.5	0.1	216.90	117.05	64.76	43.50	36.06	34.84	37.06	44.92	MDLM	0.95	cos	log-lin	0.6	0.1	218.58	118.21	65.33	44.32	37.14	36.09	39.42	55.34							
MDLM	0.95	cos	log-lin	0.9	0.3	225.19	124.03	67.82	44.06	35.20	33.97	42.48	80.34	MDLM	0.95	cos	log-lin	0.9	0.4	223.84	123.04	67.19	43.29	33.85	32.00	37.23	63.89							
MDLM	0.98	cos	log-lin	1.0	0.05	218.15	118.08	63.97	40.97	30.67	25.69	23.64	25.40	MDLM	0.98	cos	log-lin	1.0	0.1	218.14	118.09	63.96	40.96	30.65	25.64	23.57	25.29							
MDLM	0.99	cos	log-lin	1.0	0.05	215.41	116.02	63.30	40.42	30.43	25.37	22.45	20.77	MDLM	0.99	cos	log-lin	1.0	0.1	215.40	116.03	63.27	40.41	30.43	25.35	22.42	20.71							

1998 Table 10: Inception Score on CIFAR-10 with Ψ -samplers, where Ψ -samplers are activated for steps
 1999 with $t \in [t_{\text{off}}, t_{\text{on}}]$, when κ_t is kept constant (according to the κ column, 1 otherwise). We use the
 2000 same checkpoints as in Table 7. The CIFAR-10 curves in Fig. 5 show the best Inception Score per
 2001 number of steps.

2003	Algo	κ	Train	Sample	t_{on}	t_{off}	Inception Score \uparrow							
							32	64	128	256	512	1024	2048	4096
2004	Duo	0.02	log-lin	cos	0.2	0.15	7.02	7.25	7.35	7.48	7.52	7.47	7.38	7.63
2005	Duo	0.02	log-lin	cos	0.5	0.45	7.09	7.44	7.64	8.04	8.32	8.59	8.57	7.94
2006	Duo	0.02	log-lin	cos	0.8	0.7	6.84	6.99	7.00	6.91	6.64	6.16	5.67	5.19
2007	Duo	0.5	log-lin	cos	0.2	0.1	6.96	7.21	7.28	7.39	7.45	7.48	7.56	7.73
2008	Duo	0.5	log-lin	cos	0.6	0.4	7.31	7.73	8.14	8.51	8.46	7.91	6.40	5.39
2009	Duo	0.5	log-lin	cos	0.9	0.65	6.87	7.10	7.22	7.11	6.72	5.97	5.23	4.67
2010	Duo	0.95	log-lin	cos	0.5	0.1	6.98	7.26	7.45	7.53	7.67	7.89	8.06	8.29
2011	Duo	0.95	log-lin	cos	0.6	0.1	7.00	7.31	7.45	7.70	7.91	8.17	8.34	8.46
2012	Duo	0.95	log-lin	cos	0.9	0.3	7.08	7.37	7.54	7.84	8.01	8.07	7.72	6.84
2013	Duo	0.95	log-lin	cos	0.9	0.4	7.04	7.31	7.50	7.78	7.92	8.08	7.78	6.89
2014	Duo	0.98	log-lin	cos	1.0	0.05	7.00	7.25	7.40	7.55	7.73	7.97	8.10	7.91
2015	Duo	0.98	log-lin	cos	1.0	0.1	6.99	7.25	7.40	7.55	7.74	7.97	8.09	7.91
2016	Duo	0.99	log-lin	cos	1.0	0.05	6.98	7.22	7.37	7.45	7.58	7.77	7.96	8.08
2017	Duo	0.99	log-lin	cos	1.0	0.1	6.98	7.22	7.37	7.46	7.58	7.77	7.96	8.10
2018	Duo	0.02	log-lin	log-lin	0.2	0.15	6.82	7.09	7.22	7.30	7.36	7.44	7.46	7.43
2019	Duo	0.02	log-lin	log-lin	0.5	0.45	6.95	7.28	7.45	7.64	7.67	7.70	8.06	8.68
2020	Duo	0.02	log-lin	log-lin	0.8	0.7	7.00	7.54	8.02	8.18	7.89	6.46	5.03	4.55
2021	Duo	0.5	log-lin	log-lin	0.2	0.1	6.81	7.04	7.20	7.26	7.29	7.36	7.47	7.50
2022	Duo	0.5	log-lin	log-lin	0.6	0.4	7.04	7.45	7.73	7.93	8.20	8.51	9.00	9.50
2023	Duo	0.5	log-lin	log-lin	0.9	0.65	7.05	7.61	7.97	7.74	6.45	4.46	3.77	4.07
2024	Duo	0.95	log-lin	log-lin	0.5	0.1	6.80	7.10	7.25	7.31	7.35	7.43	7.55	7.63
2025	Duo	0.95	log-lin	log-lin	0.6	0.1	6.85	7.12	7.28	7.40	7.46	7.66	7.81	7.97
2026	Duo	0.95	log-lin	log-lin	0.9	0.3	6.89	7.27	7.58	7.78	8.10	8.22	8.20	7.67
2027	Duo	0.95	log-lin	log-lin	0.9	0.4	6.89	7.25	7.58	7.80	8.05	8.25	8.26	7.69
2028	MDLM	0.02	cos	cos	0.2	0.15	5.56	6.61	6.90	6.75	5.52	2.68	1.57	1.56
2029	MDLM	0.02	cos	cos	0.5	0.45	4.22	5.11	4.36	2.44	1.61	1.41	1.45	1.56
2030	MDLM	0.02	cos	cos	0.8	0.7	3.12	2.82	2.41	2.03	1.96	1.97	2.02	2.09
2031	MDLM	0.5	cos	cos	0.2	0.1	5.63	6.63	7.00	7.09	6.90	5.68	2.78	1.73
2032	MDLM	0.5	cos	cos	0.6	0.4	3.83	4.32	3.55	2.35	1.85	2.14	2.51	2.99
2033	MDLM	0.5	cos	cos	0.9	0.65	3.62	4.18	3.95	3.47	3.18	3.15	3.37	3.75
2034	MDLM	0.95	cos	cos	0.5	0.1	5.66	6.68	7.13	7.29	7.44	7.41	7.44	6.77
2035	MDLM	0.95	cos	cos	0.6	0.1	5.59	6.70	7.21	7.41	7.52	7.57	7.45	6.33
2036	MDLM	0.95	cos	cos	0.9	0.3	5.43	6.68	7.25	7.63	7.90	8.15	8.18	7.58
2037	MDLM	0.95	cos	cos	0.9	0.4	5.45	6.66	7.25	7.64	7.93	8.14	8.30	8.18
2038	MDLM	0.98	cos	cos	1.0	0.05	5.57	6.71	7.22	7.45	7.71	7.93	8.14	8.30
2039	MDLM	0.98	cos	cos	1.0	0.1	5.57	6.72	7.22	7.46	7.72	7.93	8.15	8.31
2040	MDLM	0.99	cos	cos	1.0	0.05	5.60	6.73	7.18	7.39	7.53	7.81	7.97	8.12
2041	MDLM	0.99	cos	cos	1.0	0.1	5.60	6.73	7.19	7.39	7.53	7.81	7.97	8.14
2042	MDLM	0.02	cos	log-lin	0.2	0.15	2.63	4.59	5.86	6.46	6.45	5.59	2.78	1.67
2043	MDLM	0.02	cos	log-lin	0.5	0.45	2.21	3.56	4.08	3.06	1.78	1.43	1.38	1.36
2044	MDLM	0.02	cos	log-lin	0.8	0.7	1.65	1.63	1.55	1.43	1.42	1.60	1.80	1.96
2045	MDLM	0.5	cos	log-lin	0.2	0.1	2.66	4.60	5.91	6.58	6.81	6.76	5.77	3.15
2046	MDLM	0.5	cos	log-lin	0.6	0.4	1.97	2.78	2.99	2.27	1.62	1.58	1.92	2.33
2047	MDLM	0.5	cos	log-lin	0.9	0.65	1.69	1.91	1.90	1.79	1.91	2.35	2.87	3.29
2048	MDLM	0.95	cos	log-lin	0.5	0.1	2.65	4.60	5.95	6.64	6.93	7.03	7.07	6.78
2049	MDLM	0.95	cos	log-lin	0.6	0.1	2.62	4.55	5.94	6.66	6.98	7.16	7.10	6.47
2050	MDLM	0.95	cos	log-lin	0.9	0.3	2.51	4.45	5.93	6.84	7.35	7.61	7.31	5.83
2051	MDLM	0.95	cos	log-lin	0.9	0.4	2.54	4.46	5.94	6.85	7.40	7.69	7.59	6.60

Table 11: FID on CIFAR-10 using Ψ -samplers whose κ_t schedulers are equivalent to ReMDM. We use no nucleus sampling, no temperature scaling, and $\text{cfg} = 1$. As expected, with the log-linear scheduler, we reach a similar FID as when using the ReMDM codebase (Table 8). However, note that by using a log-linear scheduler, using a constant $\kappa_t = 0.99$, we reach a better FID than with the original ReMDM scheduler.

Algo	Train	Sample	FID ↓							
			32	64	128	256	512	1024	2048	4096
<i>Duo with the ReMDM rescale schedule</i>										
Duo	log-lin	cos	39.64	32.03	28.49	26.95	26.16	25.71	25.25	25.02
Duo	log-lin	log-lin	42.27	33.58	29.49	27.36	26.33	25.86	25.07	25.21
<i>ReMDM Rescale ($\eta = 0.01$)</i>										
MDLM	cos	cos	70.64	41.94	31.60	27.31	25.27	24.61	23.41	23.25
MDLM	cos	log-lin	213.22	114.24	62.51	40.51	30.28	26.21	23.61	23.40
<i>ReMDM Cap ($\eta = 0.005$)</i>										
MDLM	cos	log-lin	215.75	115.77	63.20	41.25	31.60	27.30	25.16	24.79
<i>ReMDM Loop ($t_{on} = 0.55, t_{off} = 0.05, \alpha_{on} = 0.9, \eta = 0.01$)</i>										
MDLM	cos	log-lin	305.30	224.84	120.58	66.39	45.70	39.06	41.44	52.71

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106 Table 12: FID scores across different numbers of sampling steps for various hyperparameter ablations.
 2107 Lower is better. The section “ Ψ -samplers Loop” denote the ReMDM-inspired scheduler, where
 2108 t is linearly decreased to $\alpha_{t_{\text{on}}}$ (from $t = 1$ to $t = t_{\text{on}}$), then kept constant until t_{off} . The section
 2109 “ Ψ -samplers Linear” denote the Linear scheduler, where t linearly decreases, like during ancestral
 2110 sampling. We omit certain settings (denoted by $-$), to spare compute costs, as each cell FID requires
 2111 generating 50k samples.

		Number of steps					
		32	128	256	512	1024	2048
<i>Uniform Diffusion (Ancestral)</i>							
Duo (log-lin.)		85.3	56.7	52.6	50.9	49.7	49.2
Duo (cosine)		77.7	51.9	47.6	45.9	45.0	44.6
+Greedy		64.9	47.5	44.2	42.8	42.2	41.8
+Guid. ($\gamma = 1$)		<u>57.3</u>	<u>41.6</u>	<u>39.4</u>	<u>37.9</u>	<u>37.6</u>	<u>37.2</u>
+temp. $T = 0.8$		39.2	27.6	26.3	25.4	25.4	25.0
<i>Uniform Diffusion (Ψ-samplers Loop)</i>							
$\alpha_{t_{\text{on}}} = 0.85, t_{\text{off}} = t_{\text{on}} + 0.05, \kappa = 0.02$		40.4	27.5	25.9	24.9	<u>24.3</u>	<u>23.8</u>
$\alpha_{t_{\text{on}}} = 0.45, t_{\text{off}} = t_{\text{on}} + 0.05, \kappa = 0.02$		45.0	29.3	27.6	28.2	33.4	—
$\alpha_{t_{\text{on}}} = 0.1, t_{\text{off}} = t_{\text{on}} + 0.05, \kappa = 0.02$		43.0	31.8	41.7	67.2	129.8	—
$\alpha_{t_{\text{on}}} = 0.8, t_{\text{off}} = t_{\text{on}} + 0.1, \kappa = 0.02$		<u>40.9</u>	<u>27.2</u>	<u>25.3</u>	<u>24.0</u>	23.7	28.3
$\alpha_{t_{\text{on}}} = 0.8, t_{\text{off}} = t_{\text{on}} + 0.1, \kappa = 0.5$		41.0	27.3	25.6	24.6	23.7	23.4
$\alpha_{t_{\text{on}}} = 0.7, t_{\text{off}} = t_{\text{on}} + 0.2, \kappa = 0.5$		43.2	26.2	23.6	22.4	25.0	—
<i>Uniform Diffusion (Ψ-samplers Linear)</i>							
$\alpha_{t_{\text{on}}} = 0.85, t_{\text{off}} = t_{\text{on}} + 0.05, \kappa = 0.02$		39.1	27.4	25.7	24.5	23.8	28.2
$\alpha_{t_{\text{on}}} = 0.45, t_{\text{off}} = t_{\text{on}} + 0.05, \kappa = 0.02$		41.9	29.1	27.8	34.6	61.4	—
$\alpha_{t_{\text{on}}} = 0.1, t_{\text{off}} = t_{\text{on}} + 0.05, \kappa = 0.02$		39.4	27.8	26.5	25.7	25.4	—
$\alpha_{t_{\text{on}}} = 0.8, t_{\text{off}} = t_{\text{on}} + 0.1, \kappa = 0.5$		38.9	26.9	25.2	23.9	23.1	23.4
$t_{\text{on}} = 0.3, t_{\text{off}} = 0.1 \kappa = 0.75$		38.7	26.2	24.2	22.5	22.0	25.4
$t_{\text{on}} = 0.4, t_{\text{off}} = 0.1 \kappa = 0.9$		38.7	25.7	23.4	21.5	20.9	23.4
$t_{\text{on}} = 0.5, t_{\text{off}} = 0.1 \kappa = 0.95$		<u>38.6</u>	<u>25.2</u>	<u>22.7</u>	<u>20.7</u>	20.2	<u>22.6</u>
$t_{\text{on}} = 0.6, t_{\text{off}} = 0.1 \kappa = 0.95$		38.5	24.2	21.4	20.0	22.3	32.7
$t_{\text{on}} = 0.6, t_{\text{off}} = 0.1 \kappa = 0.98$		38.8	25.9	23.4	21.3	20.2	21.3
<i>Masked Diffusion (Ancestral)</i>							
MDLM (cosine)		<u>104.2</u>	51.9	46.7	45.1	44.5	45.3
MDLM (log-lin. / cosine)		81.8	<u>48.0</u>	<u>40.0</u>	39.3	37.8	38.0
MDLM (log-lin.)		208.3	74.2	48.4	38.0	34.2	33.3
+Greedy		208.3	74.2	48.4	38.1	34.2	33.3
+Guid. ($\gamma = 1$)		198.6	62.9	41.8	<u>33.2</u>	<u>29.5</u>	<u>28.1</u>
+temp. $T = 0.8$		126.2	33.2	25.1	24.0	24.7	25.7
<i>Masked Diffusion (Ψ-samplers Linear)</i>							
$t_{\text{on}} = 0.3, t_{\text{off}} = 0.1 \kappa = 0.75$		<u>125.5</u>	33.3	25.2	24.1	<u>24.9</u>	<u>26.2</u>
$t_{\text{on}} = 0.5, t_{\text{off}} = 0.1 \kappa = 0.95$		<u>125.5</u>	<u>33.1</u>	25.2	24.2	25.2	—
$t_{\text{on}} = 0.6, t_{\text{off}} = 0.1 \kappa = 0.95$		125.2	32.9	24.8	23.8	25.0	27.3
$t_{\text{on}} = 0.6, t_{\text{off}} = 0.1 \kappa = 0.98$		125.7	<u>33.1</u>	<u>25.0</u>	<u>24.0</u>	25.0	—
$t_{\text{on}} = 0.85, t_{\text{off}} = 0.8 \kappa = 0.02$		183.7	79.2	88.8	113.1	138.0	—
$t_{\text{on}} = 0.45, t_{\text{off}} = 0.4 \kappa = 0.02$		130.9	39.8	37.3	43.1	55.9	—
$t_{\text{on}} = 0.15, t_{\text{off}} = 0.1 \kappa = 0.02$		125.9	33.2	25.1	<u>24.0</u>	24.7	25.6

2153
 2154
 2155
 2156
 2157
 2158
 2159

2160 Table 13: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
 2161 & Cohen, 2019) with ancestral sampling (no nucleus, no temperature scaling). We train using the
 2162 log-linear noise scheduler, and sampling with the cosine scheduler is slightly better. We stick to to
 2163 the log-linear schedule for sampling in further experiments, to follow prior work, and since the cosine
 2164 schedule only marginally reduce the Gen. PPL.

2165

2166 Algo	2167 Dist.	2168 p	2169 Sched.	2170 Gen. PPL							
				2171 32	2172 64	2173 128	2174 256	2175 512	2176 1024	2177 2048	2178 4096
Duo	\times	1.0	cos	87.23 (5.54)	79.94 (5.55)	75.87 (5.53)	73.95 (5.54)	72.13 (5.54)	71.41 (5.53)	72.29 (5.53)	70.77 (5.52)
Duo	\times	1.0	log-lin	96.76 (5.57)	86.01 (5.56)	79.97 (5.55)	78.46 (5.53)	76.93 (5.54)	75.02 (5.53)	75.65 (5.52)	75.39 (5.52)
Duo	\times	0.9	cos	42.42 (5.36)	39.26 (5.37)	37.62 (5.35)	36.52 (5.35)	35.21 (5.34)	35.37 (5.34)	35.39 (5.34)	34.91 (5.33)
Duo	\times	0.9	log-lin	44.24 (5.40)	40.08 (5.40)	37.93 (5.39)	36.66 (5.37)	35.77 (5.37)	34.79 (5.35)	34.93 (5.35)	34.75 (5.35)
Duo	\checkmark	1.0	cos	67.04 (5.47)	61.09 (5.45)	59.65 (5.42)	57.76 (5.42)	57.90 (5.42)	56.81 (5.43)	56.39 (5.41)	57.32 (5.42)
Duo	\checkmark	1.0	log-lin	68.35 (5.54)	62.92 (5.54)	59.82 (5.50)	58.77 (5.46)	58.32 (5.46)	57.82 (5.45)	55.39 (5.43)	55.89 (5.42)
Duo	\checkmark	0.9	cos	34.20 (5.31)	31.79 (5.29)	31.09 (5.25)	30.05 (5.25)	29.82 (5.26)	29.68 (5.27)	29.52 (5.24)	29.73 (5.23)
Duo	\checkmark	0.9	log-lin	35.92 (5.41)	32.98 (5.40)	31.49 (5.36)	30.32 (5.31)	30.06 (5.29)	30.00 (5.28)	28.90 (5.25)	29.19 (5.25)
MDLM	\times	1.0	cos	168.66 (5.68)	131.55 (5.66)	115.74 (5.64)	111.72 (5.63)	106.63 (5.63)	104.56 (5.62)	103.12 (5.62)	104.73 (5.62)
MDLM	\times	1.0	log-lin	194.09 (5.74)	141.67 (5.69)	120.95 (5.67)	111.85 (5.65)	107.89 (5.64)	105.64 (5.64)	105.40 (5.63)	105.03 (5.62)
MDLM	\times	0.9	cos	58.33 (5.39)	46.71 (5.36)	40.66 (5.32)	39.43 (5.33)	37.64 (5.32)	37.39 (5.33)	36.98 (5.31)	36.87 (5.31)
MDLM	\times	0.9	log-lin	70.34 (5.49)	51.14 (5.43)	43.60 (5.39)	40.01 (5.37)	39.02 (5.35)	37.91 (5.34)	37.59 (5.32)	36.76 (5.31)
MDLM	\checkmark	1.0	cos	63.04 (5.45)	52.72 (5.43)	47.83 (5.41)	45.94 (5.42)	44.67 (5.41)	44.60 (5.41)	44.50 (5.41)	44.42 (5.41)
MDLM	\checkmark	1.0	log-lin	68.61 (5.48)	55.26 (5.45)	49.51 (5.44)	46.13 (5.42)	45.61 (5.42)	44.87 (5.42)	44.53 (5.41)	44.38 (5.42)
MDLM	\checkmark	0.9	cos	31.47 (5.21)	26.52 (5.19)	24.14 (5.18)	23.49 (5.17)	22.93 (5.17)	22.64 (5.17)	22.38 (5.16)	22.49 (5.17)
MDLM	\checkmark	0.9	log-lin	34.85 (5.26)	28.21 (5.23)	25.27 (5.21)	24.01 (5.19)	23.25 (5.18)	22.75 (5.17)	22.73 (5.17)	22.46 (5.16)

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214
 2215 Table 14: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
 2216 & Cohen, 2019) with Ψ -samplers using κ_t schedules matching ReMDM (log-linear step size) and
 2217 **non-distilled models** (as in Table 13). We experiment with nucleus sampling, following Wang et al.
 2218 (2025). The rescale schedule is most effective to improve the Gen. PPL while retaining the unigram
 2219 entropy. The lightblue rows are the ones plotted in Fig. 1 (left).

2220	Algo	Eta	Nucleus P	Gen. PPL							
				32	64	128	256	512	1024	2048	4096
<i>Ancestral Sampling</i>											
2222	Duo	N.A	1.0	96.76 (5.57)	86.01 (5.56)	79.97 (5.55)	78.46 (5.53)	76.93 (5.54)	75.02 (5.53)	75.65 (5.52)	75.39 (5.52)
2223	Duo	N.A	0.95	56.65 (5.49)	50.78 (5.48)	48.68 (5.48)	47.26 (5.46)	45.42 (5.45)	45.11 (5.44)	45.12 (5.44)	44.84 (5.44)
2224	Duo	N.A	0.9	44.24 (5.40)	40.08 (5.40)	37.93 (5.39)	36.66 (5.37)	35.77 (5.37)	34.79 (5.35)	34.93 (5.35)	34.75 (5.35)
2225	MDLM	N.A	1.0	194.09 (5.74)	141.67 (5.69)	120.95 (5.67)	111.85 (5.65)	107.89 (5.64)	105.64 (5.64)	105.40 (5.63)	105.03 (5.62)
2226	MDLM	N.A	0.95	106.28 (5.61)	77.06 (5.55)	68.34 (5.53)	63.19 (5.51)	58.80 (5.49)	56.94 (5.48)	57.54 (5.47)	56.44 (5.46)
2227	MDLM	N.A	0.9	70.34 (5.49)	51.14 (5.43)	43.60 (5.39)	40.01 (5.37)	39.02 (5.35)	37.91 (5.34)	37.59 (5.32)	36.76 (5.31)
<i>Cap Schedule</i>											
2228	Duo	0.005	1.0	88.78 (5.58)	77.12 (5.57)	72.05 (5.56)	66.44 (5.54)	61.63 (5.53)	57.14 (5.51)	52.49 (5.51)	45.64 (5.45)
2229	Duo	0.01	1.0	86.89 (5.58)	75.23 (5.56)	68.98 (5.55)	63.66 (5.54)	57.34 (5.52)	52.06 (5.50)	46.04 (5.46)	39.48 (5.39)
2230	Duo	0.005	0.95	55.56 (5.49)	48.74 (5.47)	44.93 (5.46)	40.53 (5.43)	36.26 (5.41)	30.85 (5.37)	25.66 (5.32)	20.22 (5.22)
2231	Duo	0.01	0.95	54.07 (5.48)	46.27 (5.46)	41.93 (5.45)	36.60 (5.41)	30.98 (5.37)	25.53 (5.31)	20.10 (5.23)	15.19 (5.07)
2232	Duo	0.005	0.9	44.06 (5.41)	38.38 (5.39)	34.84 (5.37)	30.95 (5.33)	27.37 (5.30)	22.78 (5.24)	18.66 (5.16)	14.33 (5.03)
2233	Duo	0.01	0.9	43.05 (5.40)	36.75 (5.38)	32.27 (5.35)	27.83 (5.30)	23.38 (5.26)	18.74 (5.17)	14.40 (5.06)	10.88 (4.87)
2234	MDLM	0.005	1.0	195.83 (5.74)	142.25 (5.70)	121.99 (5.68)	113.94 (5.67)	110.75 (5.66)	112.78 (5.67)	119.61 (5.69)	131.85 (5.71)
2235	MDLM	0.01	1.0	198.02 (5.75)	144.89 (5.70)	125.25 (5.68)	117.84 (5.68)	116.62 (5.68)	126.32 (5.71)	143.96 (5.73)	186.72 (5.76)
2236	MDLM	0.005	0.95	106.40 (5.61)	74.97 (5.54)	63.15 (5.52)	55.82 (5.49)	50.31 (5.47)	43.78 (5.44)	37.04 (5.40)	30.46 (5.34)
2237	MDLM	0.01	0.95	105.45 (5.61)	73.92 (5.54)	61.41 (5.51)	52.81 (5.48)	46.03 (5.45)	38.85 (5.42)	31.30 (5.34)	24.31 (5.23)
2238	MDLM	0.005	0.9	69.20 (5.49)	49.59 (5.42)	41.08 (5.38)	35.19 (5.34)	31.49 (5.31)	26.33 (5.26)	21.16 (5.18)	15.87 (5.04)
2239	MDLM	0.01	0.9	68.57 (5.48)	48.30 (5.42)	38.80 (5.37)	32.38 (5.32)	27.66 (5.28)	21.57 (5.18)	16.26 (5.05)	11.67 (4.79)
<i>Rescale Schedule</i>											
2240	Duo	0.01	1.0	89.63 (5.58)	79.80 (5.57)	76.11 (5.56)	73.43 (5.55)	70.66 (5.54)	70.46 (5.53)	69.20 (5.54)	68.25 (5.53)
2241	Duo	0.02	1.0	89.55 (5.58)	79.44 (5.57)	75.98 (5.56)	72.99 (5.54)	69.85 (5.54)	68.39 (5.53)	66.60 (5.53)	63.70 (5.52)
2242	Duo	0.01	0.95	56.68 (5.49)	50.80 (5.48)	48.38 (5.47)	46.91 (5.46)	45.24 (5.45)	44.64 (5.44)	44.11 (5.44)	43.49 (5.43)
2243	Duo	0.02	0.95	56.68 (5.49)	50.66 (5.48)	48.09 (5.47)	46.19 (5.46)	44.17 (5.44)	42.71 (5.43)	41.47 (5.43)	38.06 (5.40)
2244	Duo	0.01	0.9	45.03 (5.41)	40.02 (5.40)	38.17 (5.39)	36.60 (5.36)	35.25 (5.35)	34.35 (5.34)	34.27 (5.35)	33.07 (5.33)
2245	Duo	0.02	0.9	45.04 (5.41)	40.00 (5.40)	38.05 (5.39)	36.15 (5.36)	34.74 (5.35)	33.13 (5.33)	31.79 (5.32)	29.08 (5.30)
2246	Duo	0.03	0.9	44.87 (5.41)	40.05 (5.40)	37.61 (5.39)	35.26 (5.36)	33.35 (5.34)	31.17 (5.32)	28.90 (5.31)	24.93 (5.26)
2247	Duo	0.04	0.9	44.43 (5.41)	39.67 (5.39)	37.21 (5.38)	34.75 (5.35)	32.47 (5.34)	29.30 (5.31)	26.15 (5.28)	22.05 (5.22)
2248	Duo	0.05	0.9	44.52 (5.41)	39.49 (5.40)	36.41 (5.38)	33.68 (5.35)	31.06 (5.34)	26.94 (5.28)	23.61 (5.25)	19.21 (5.17)
<i>MDLM</i>											
2249	MDLM	0.01	1.0	194.29 (5.74)	141.40 (5.69)	121.04 (5.67)	112.95 (5.65)	107.80 (5.64)	105.58 (5.64)	105.69 (5.63)	105.64 (5.63)
2250	MDLM	0.02	1.0	194.54 (5.74)	140.81 (5.69)	120.86 (5.67)	112.64 (5.65)	108.26 (5.64)	105.65 (5.64)	104.47 (5.63)	105.61 (5.64)
2251	MDLM	0.01	0.95	106.43 (5.61)	76.89 (5.55)	65.42 (5.52)	61.07 (5.50)	58.77 (5.49)	56.34 (5.47)	56.29 (5.47)	54.42 (5.45)
2252	MDLM	0.02	0.95	105.92 (5.60)	76.23 (5.55)	65.43 (5.52)	60.80 (5.50)	57.32 (5.49)	54.94 (5.47)	53.92 (5.46)	50.57 (5.45)
2253	MDLM	0.01	0.9	70.45 (5.49)	51.33 (5.43)	43.59 (5.39)	40.14 (5.36)	38.68 (5.35)	37.64 (5.34)	36.48 (5.32)	35.10 (5.31)
2254	MDLM	0.02	0.9	70.31 (5.49)	51.06 (5.43)	43.51 (5.39)	39.61 (5.36)	37.88 (5.35)	36.28 (5.33)	34.53 (5.31)	31.62 (5.29)
2255	MDLM	0.03	0.9	69.89 (5.49)	50.76 (5.42)	43.23 (5.39)	38.86 (5.36)	36.77 (5.34)	34.62 (5.32)	31.44 (5.29)	27.19 (5.25)
2256	MDLM	0.04	0.9	69.54 (5.49)	50.30 (5.42)	42.84 (5.39)	38.02 (5.35)	35.73 (5.33)	32.44 (5.31)	28.55 (5.27)	23.72 (5.21)
2257	MDLM	0.05	0.9	69.44 (5.48)	50.15 (5.42)	42.39 (5.38)	37.27 (5.35)	34.10 (5.33)	30.29 (5.30)	26.03 (5.25)	20.85 (5.16)
<i>Loop Schedule</i>											
2258	Duo	0.01	1.0	108.15 (5.58)	83.10 (5.58)	71.16 (5.56)	66.15 (5.55)	60.49 (5.55)	56.35 (5.53)	53.06 (5.51)	48.93 (5.48)
2259	Duo	0.02	1.0	103.48 (5.58)	79.75 (5.58)	67.99 (5.56)	63.05 (5.55)	56.92 (5.54)	52.69 (5.51)	48.63 (5.47)	43.28 (5.37)
2260	Duo	0.01	0.95	65.29 (5.49)	51.36 (5.48)	43.27 (5.46)	37.64 (5.43)	32.04 (5.40)	26.97 (5.35)	22.94 (5.30)	18.40 (5.20)
2261	Duo	0.02	0.95	61.61 (5.48)	47.46 (5.47)	38.78 (5.44)	32.69 (5.40)	27.26 (5.36)	22.35 (5.29)	18.43 (5.22)	14.31 (5.06)
2262	Duo	0.01	0.9	52.12 (5.40)	40.27 (5.39)	33.71 (5.37)	28.73 (5.33)	24.47 (5.29)	20.32 (5.23)	17.01 (5.16)	13.61 (5.05)
2263	Duo	0.02	0.9	49.08 (5.40)	37.00 (5.38)	30.08 (5.34)	24.88 (5.29)	20.59 (5.24)	16.69 (5.16)	13.61 (5.06)	10.77 (4.92)
2264	MDLM	0.01	1.0	340.32 (5.81)	192.48 (5.74)	140.70 (5.70)	127.32 (5.70)	119.34 (5.69)	127.63 (5.70)	149.13 (5.73)	198.48 (5.77)
2265	MDLM	0.02	1.0	338.82 (5.82)	193.71 (5.75)	144.92 (5.72)	140.73 (5.71)	136.30 (5.71)	162.47 (5.75)	246.89 (5.81)	354.65 (5.78)
2266	MDLM	0.01	0.95	182.65 (5.67)	101.56 (5.61)	71.76 (5.56)	58.43 (5.52)	51.33 (5.50)	45.27 (5.47)	39.08 (5.43)	33.48 (5.38)
2267	MDLM	0.02	0.95	177.31 (5.67)	97.61 (5.61)	68.49 (5.55)	55.21 (5.51)	47.71 (5.49)	41.64 (5.45)	34.91 (5.40)	29.63 (5.33)
2268	MDLM	0.01	0.9	117.28 (5.55)	65.24 (5.48)	46.91 (5.43)	37.62 (5.38)	31.93 (5.34)	27.80 (5.31)	23.38 (5.25)	19.78 (5.20)
2269	MDLM	0.02	0.9	112.21 (5.55)	61.93 (5.48)	43.89 (5.42)	34.69 (5.37)	28.99 (5.33)	24.58 (5.29)	20.09 (5.20)	16.68 (5.13)

2268 Table 15: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
 2269 & Cohen, 2019) with Ψ -samplers using κ_t schedules matching ReMDM (log-linear step size) and
 2270 **distilled models** (as in Table 13). We experiment with nucleus sampling, following Wang et al.
 2271 (2025).

2273 Algo	Eta	Nucleus P	Gen. PPL							
			32	64	128	256	512	1024	2048	4096
<i>Ancestral Sampling</i>										
Duo	N.A	1.0	68.35 (5.54)	62.92 (5.54)	59.82 (5.50)	58.77 (5.46)	58.32 (5.46)	57.82 (5.45)	55.39 (5.43)	55.89 (5.42)
Duo	N.A	0.95	44.94 (5.47)	41.78 (5.46)	40.32 (5.43)	38.93 (5.39)	38.69 (5.37)	38.45 (5.36)	36.92 (5.33)	37.26 (5.33)
Duo	N.A	0.9	35.92 (5.41)	32.98 (5.40)	31.49 (5.36)	30.32 (5.31)	30.06 (5.29)	30.00 (5.28)	28.90 (5.25)	29.19 (5.25)
MDLM	N.A	1.0	68.61 (5.48)	55.26 (5.45)	49.51 (5.44)	46.13 (5.42)	45.61 (5.42)	44.87 (5.42)	44.53 (5.41)	44.38 (5.42)
MDLM	N.A	0.95	46.07 (5.37)	36.55 (5.33)	32.91 (5.31)	30.96 (5.30)	30.26 (5.29)	29.73 (5.29)	29.54 (5.28)	29.53 (5.28)
MDLM	N.A	0.9	34.85 (5.26)	28.21 (5.23)	25.27 (5.21)	24.31 (5.19)	23.25 (5.18)	22.75 (5.17)	22.73 (5.17)	22.46 (5.16)
<i>Cap Schedule</i>										
Duo	0.005	1.0	66.13 (5.54)	58.49 (5.52)	53.61 (5.48)	47.85 (5.42)	41.59 (5.39)	34.05 (5.34)	25.67 (5.22)	19.25 (5.11)
Duo	0.01	1.0	64.22 (5.53)	55.84 (5.51)	49.90 (5.48)	40.95 (5.39)	33.90 (5.34)	26.29 (5.24)	19.34 (5.11)	14.31 (4.96)
Duo	0.005	0.95	43.68 (5.47)	38.77 (5.45)	35.55 (5.40)	31.36 (5.33)	26.74 (5.28)	21.84 (5.22)	16.22 (5.08)	12.00 (4.94)
Duo	0.01	0.95	42.34 (5.46)	37.14 (5.44)	32.39 (5.38)	27.25 (5.30)	21.84 (5.22)	16.74 (5.10)	11.70 (4.92)	8.68 (4.72)
Duo	0.005	0.9	34.80 (5.40)	30.95 (5.38)	28.15 (5.34)	24.47 (5.26)	21.25 (5.18)	17.02 (5.12)	12.86 (4.99)	9.48 (4.81)
Duo	0.01	0.9	33.91 (5.40)	29.27 (5.37)	25.28 (5.31)	21.40 (5.21)	17.36 (5.13)	13.22 (5.00)	9.55 (4.82)	6.92 (4.56)
MDLM	0.005	1.0	67.27 (5.48)	52.34 (5.45)	44.38 (5.42)	38.14 (5.40)	32.35 (5.37)	26.37 (5.34)	20.64 (5.27)	15.80 (5.19)
MDLM	0.01	1.0	65.29 (5.47)	49.78 (5.44)	41.29 (5.40)	33.39 (5.38)	27.16 (5.34)	21.04 (5.28)	16.13 (5.19)	12.16 (5.08)
MDLM	0.005	0.95	44.71 (5.36)	34.56 (5.32)	29.42 (5.30)	25.28 (5.27)	21.55 (5.23)	17.39 (5.18)	13.63 (5.09)	10.47 (4.98)
MDLM	0.01	0.95	43.20 (5.36)	32.84 (5.32)	26.90 (5.29)	22.19 (5.24)	17.80 (5.19)	13.93 (5.11)	10.61 (4.98)	7.68 (4.76)
MDLM	0.005	0.9	33.81 (5.26)	26.71 (5.22)	22.81 (5.19)	19.65 (5.16)	16.67 (5.11)	13.79 (5.06)	10.74 (4.94)	8.10 (4.78)
MDLM	0.01	0.9	32.94 (5.25)	25.51 (5.22)	20.89 (5.18)	17.19 (5.13)	13.91 (5.05)	10.91 (4.95)	8.15 (4.78)	5.93 (4.54)
<i>Rescale Schedule</i>										
Duo	0.01	1.0	68.33 (5.54)	62.77 (5.53)	59.65 (5.50)	57.89 (5.46)	57.43 (5.45)	56.18 (5.44)	53.13 (5.42)	51.93 (5.41)
Duo	0.02	1.0	68.18 (5.54)	62.24 (5.53)	59.07 (5.50)	56.96 (5.46)	55.73 (5.44)	53.31 (5.43)	48.20 (5.40)	44.51 (5.38)
Duo	0.01	0.95	45.04 (5.47)	41.74 (5.46)	39.99 (5.43)	38.80 (5.38)	38.10 (5.37)	37.51 (5.36)	35.43 (5.33)	34.71 (5.32)
Duo	0.02	0.95	44.89 (5.47)	41.33 (5.46)	39.81 (5.43)	38.09 (5.38)	36.79 (5.36)	35.47 (5.35)	31.97 (5.31)	29.25 (5.28)
Duo	0.01	0.9	35.91 (5.41)	33.05 (5.40)	31.55 (5.36)	30.39 (5.31)	29.94 (5.29)	29.02 (5.28)	27.73 (5.25)	27.43 (5.24)
Duo	0.02	0.9	35.81 (5.41)	32.77 (5.40)	31.17 (5.36)	29.70 (5.30)	28.70 (5.28)	27.70 (5.26)	25.31 (5.22)	22.83 (5.19)
MDLM	0.01	1.0	68.66 (5.48)	55.16 (5.45)	49.71 (5.43)	45.88 (5.42)	45.11 (5.42)	43.79 (5.41)	42.55 (5.40)	40.90 (5.40)
MDLM	0.02	1.0	68.73 (5.48)	54.85 (5.45)	48.12 (5.43)	45.35 (5.42)	44.10 (5.42)	41.48 (5.41)	38.76 (5.39)	34.66 (5.38)
MDLM	0.01	0.95	46.01 (5.37)	36.58 (5.33)	32.80 (5.31)	30.65 (5.30)	29.92 (5.29)	29.18 (5.28)	28.34 (5.28)	27.38 (5.27)
MDLM	0.02	0.95	45.92 (5.37)	36.45 (5.33)	32.49 (5.31)	30.25 (5.29)	29.01 (5.28)	27.68 (5.28)	25.75 (5.26)	22.95 (5.24)
MDLM	0.01	0.9	34.83 (5.26)	28.15 (5.23)	25.24 (5.21)	23.73 (5.19)	23.03 (5.18)	22.36 (5.17)	21.75 (5.17)	20.93 (5.15)
MDLM	0.02	0.9	34.83 (5.26)	28.17 (5.23)	24.97 (5.21)	23.34 (5.19)	22.34 (5.17)	21.33 (5.17)	19.88 (5.15)	17.75 (5.12)
<i>Loop Schedule</i>										
Duo	0.01	1.0	80.39 (5.55)	61.64 (5.54)	52.51 (5.52)	47.30 (5.48)	40.27 (5.44)	34.27 (5.40)	27.28 (5.32)	21.97 (5.26)
Duo	0.02	1.0	75.97 (5.55)	57.36 (5.53)	47.47 (5.52)	41.33 (5.47)	34.18 (5.41)	28.72 (5.36)	22.16 (5.26)	17.67 (5.18)
Duo	0.01	0.95	51.76 (5.48)	40.91 (5.47)	34.68 (5.44)	30.83 (5.39)	25.86 (5.34)	21.31 (5.27)	17.15 (5.18)	13.69 (5.10)
Duo	0.02	0.95	48.78 (5.48)	37.61 (5.46)	30.95 (5.43)	26.55 (5.36)	21.60 (5.30)	17.64 (5.22)	13.84 (5.11)	11.15 (5.02)
Duo	0.01	0.9	41.15 (5.42)	32.51 (5.40)	27.96 (5.38)	24.49 (5.32)	20.52 (5.25)	17.17 (5.19)	13.90 (5.10)	11.44 (5.02)
Duo	0.02	0.9	38.73 (5.42)	30.04 (5.40)	24.99 (5.37)	21.24 (5.29)	17.40 (5.21)	14.25 (5.13)	11.51 (5.02)	9.51 (4.94)
MDLM	0.01	1.0	99.76 (5.51)	62.76 (5.48)	47.50 (5.45)	39.07 (5.43)	32.85 (5.41)	28.01 (5.38)	23.18 (5.34)	19.32 (5.29)
MDLM	0.02	1.0	93.99 (5.51)	58.00 (5.48)	43.00 (5.45)	33.84 (5.42)	28.60 (5.39)	24.13 (5.36)	19.81 (5.30)	16.32 (5.24)
MDLM	0.01	0.95	65.09 (5.40)	41.85 (5.37)	31.76 (5.33)	26.11 (5.30)	22.21 (5.28)	19.19 (5.24)	16.12 (5.20)	13.59 (5.15)
MDLM	0.02	0.95	61.24 (5.40)	38.68 (5.36)	28.92 (5.33)	23.21 (5.29)	19.45 (5.26)	16.60 (5.21)	13.84 (5.16)	11.73 (5.09)
MDLM	0.01	0.9	48.86 (5.29)	32.03 (5.26)	24.51 (5.23)	20.56 (5.20)	17.79 (5.18)	15.42 (5.14)	13.19 (5.09)	11.29 (5.04)
MDLM	0.02	0.9	46.12 (5.29)	29.77 (5.27)	22.52 (5.22)	18.46 (5.19)	15.86 (5.16)	13.57 (5.11)	11.54 (5.05)	9.85 (4.98)

2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321