
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE DIFFUSION DUALITY, CHAPTER II:
Ψ-SAMPLERS AND EFFICIENT CURRICULUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Uniform-state discrete diffusion models excel at few-step generation and guidance
due to their inherent ability to self-correct, making them more preferable than au-
toregressive or masked diffusion models in these settings. However, their sampling
efficiency has been limited by the reliance on standard posterior samplers, which
plateau in quality as the number of steps increases. In this work, we introduce a
novel family of “Predictor-Corrector” (PC) samplers for discrete diffusion mod-
els that generalize prior methods and apply to arbitrary noise processes. When
paired with uniform-state diffusion, our samplers significantly outperform ances-
tral sampling on both language and image modeling, achieving lower generative
perplexity at matched unigram entropy on OpenWebText and better FID/IS scores
on CIFAR10. Crucially, unlike conventional samplers, our PC methods continue
to improve generation quality with more sampling steps. Beyond sampling, we
develop a fast and memory-efficient curriculum for Duo++’s (our method) Gaus-
sian relaxation phase, which avoids materializing large Gaussian-diffused one-hot
vectors. This reduces training time by 25% compared to Duo while maintaining
similar validation perplexity on OpenWebText and LM1B and strong downstream
performance.

32 64 128 256 512 1024 2048 4096
NFE

15

20

28

39

54

75

Ge
n.

 P
PL

(5.5)

(5.4)

(5.4)
(5.4) (5.3) (5.3) (5.3) (5.3)

(5.5)

(5.4)

(5.4)

(5.3)
(5.3)

(5.3)

(5.2)

(5.2)

(5.4)

(5.4)
(5.4) (5.4) (5.4) (5.3) (5.3) (5.3)

(5.4)

(5.4)
(5.4)

(5.3)
(5.3)

(5.3)

(5.2)

(5.2)

MDLM
MDLM+ReMDM
Duo+ +

Duo+ + + -sampler

32 64 128 256 512 1024 2048 4096
NFE

15

21

30

43

62

89

FI
D

MDLM
MDLM+ReMDM
Duo+ +

Duo+ + + -sampler

Figure 1: Performance on Language Modeling and Image Modeling. Ψ-samplers consistently
improve performance as the number of sampling steps (NFE) grows. Ψ-samplers generalize ReMDM
(Wang et al., 2025) to arbitrary noise distribution. (Left): Generative perplexity of Ψ-samplers
(ours) as a function of the number of sampling steps (NFEs), using nucleus sampling p = 0.9 for
all samplers. We annotate the curves with the average unigram entropy per sequence as a proxy for
diversity. (Right): On CIFAR-10, Ψ-samplers achieve a better FID than MDLM (with ReMDM).
[Rebuttal update]: We remove temperature scaling with Duo++ and Ψ-samplers. This improves the
FID for both the methods at higher NFEs (unlike previously; see Fig. 7c).

1 INTRODUCTION

Diffusion models are powerful generative algorithms that have achieved remarkable success in
modeling continuous data domains, including images (Ho et al., 2020a; Rombach et al., 2022),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

audio (Kong et al., 2021; Liu et al., 2023b; Huang et al., 2023; Ku et al., 2025), and videos (Ho et al.,
2022; Esser et al., 2023; Blattmann et al., 2023; Polyak et al., 2025). Recent advances have extended
diffusion models to categorical data, demonstrating their potential for language modeling (Austin
et al., 2023; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025; Sahoo et al.,
2025a;b), graphs (Liu et al., 2023a), and molecules (Lee et al., 2025). Unlike autoregressive models
that generate tokens sequentially from left to right, diffusion language models can decode tokens
in parallel and in any order while leveraging bidirectional contextual information. This capability
enables the design of language models that can be significantly faster than their autoregressive
counterparts while maintaining strong downstream performance (Song et al., 2025; Labs et al., 2025).

Discrete diffusion models primarily employ one of two noise distributions: a uniform prior or a
masked prior that concentrates all probability mass on a special [MASK] token. Uniform-State
Diffusion Models (USDMs) offer a major advantage through their ability to self-correct mistakes,
as they allow tokens to be revised multiple times during generation. In contrast, standard Masked
Diffusion Models (MDMs) update each token exactly once, preventing error correction during
generation. Due to this self-correction capability, USDMs significantly outperform MDMs in
generation in a few steps, particularly after distillation (Sahoo et al., 2025a). Furthermore, in
applications that require guidance to steer generation towards specific targets by optimizing reward
functions, USDMs prove to be much more suitable than autoregressive or MDMs approaches (Schiff
et al., 2025). However, USDMs face notable limitations: Their generation quality has not yet
matched that of MDMs in high-sampling-step regimes, and their modeling capacity, as measured by
likelihood, remains inferior to that of MDMs. Although Sahoo et al. (2025a) proposed a curriculum
learning strategy (Bengio et al., 2009) that narrows the likelihood gap, this curriculum approach is
computationally expensive.

To address MDMs’ inability to remask tokens, ReMDM (Wang et al., 2025) introduced “Predictor-
Corrector” (PC) samplers that generalize and outperform earlier PC methods (Campbell et al., 2022;
Gat et al., 2024). These samplers substantially improve the inference time scaling behavior of MDMs.
However, PC methods for uniform-state diffusion remain underexplored. Campbell et al. (2022)
proposed PC methods for samplers that take advantage of the rate change matrices of the continuous-
time Markov chain (CTMC) formulation of discrete diffusion processes, but such samplers are known
to perform worse than ancestral samplers (Lou et al., 2024; Schiff et al., 2025). Furthermore, while
the curriculum learning strategy from Sahoo et al. (2025a) closes the likelihood gap between USDMs
and MDM, each curriculum step is computationally more expensive than standard training, resulting
in a slower overall training.

We propose Duo++ to address these challenges, which expands the design space of USDMs using
non-Markovian superposition posteriors (or as we refer in this paper, Ψ-posteriors). These posteriors
align with the intermediate marginals of discrete diffusion processes and give rise to Ψ-samplers with
predictor-corrector capabilities that are crucial for improving sample quality. In addition, Duo++

introduces an efficient curriculum learning strategy that advances the approach of Sahoo et al. (2025a)
by accelerating training and reducing memory usage.

In summary, our contributions are threefold: (1) we propose a family of non-Markovian posteriors
(Ψ-posteriors) for discrete diffusion with arbitrary noise priors that share the same marginals as the
Markovian discrete diffusion process (Sec. 3). (2) We demonstrate that the induced Ψ-samplers im-
prove text and image generation quality and scale better than standard ancestral samplers in high NFE
regimes, closing the performance gap with respect to MDMs coupled with remasking samplers in high
NFE regimes for text generation (Sec. 5.1) and surpassing them on image generation tasks (Sec. 4).
(3) We reformulate the curriculum learning strategy proposed in Sahoo et al. (2025a), achieving a 2×
speedup while reducing peak memory usage by 33% and end-to-end training time by 25%, while
maintaining similar perplexity (Figure 1, right, Table 5) and downstream task accuracy (Table 1).

2 BACKGROUND

Notation Let V := {v ∈ {0, 1}K :
∑K

i=1 vi = 1} denote the set of one-hot encodings of discrete
random variables over K categories. Let x ∈ VL denote a sequence of L discrete variables in V
and xℓ denote the entry ℓth in x. We use boldface to denote both individual vectors and sequences;
the context will make clear whether a symbol refers to a vector or a sequence. Let ∆ denote the K
simplex. For v ∈ ∆, let Cat(·;v) denote a categorical distribution such that P(ui = 1) = vi, for
u ∼ Cat(·;v),u ∈ V . Let ⟨a,b⟩ and a ⊙ b denote the dot and Hadamard products between two

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

vectors respectively. Let 1 = {1}K denote the all-ones vector. Let π ∈ ∆ be a designated categorical
distribution referred to as the prior.

2.1 DISCRETE DIFFUSION MODELS

Consider the clean data sequence x of length L drawn from the data distribution qdata. Discrete
diffusion models (Sohl-Dickstein et al., 2015; Austin et al., 2023) define a sequence of increasingly
noisy distributions (qt)t∈[0,1], interpolating from qdata to a factorized prior distribution, which is a
product of L independent Cat(.;π) distributions, using Markovian transitions defined independently
across input dimensions (Campbell et al., 2022; Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025;
Schiff et al., 2025; Sahoo et al., 2025a). Let zt ∼

∏L
ℓ=1 qt(.|xℓ) denote the intermediate latents

(sequence) at time step t. This work focuses on factorized, interpolating noise processes (Sahoo et al.,
2024), whose conditional marginal distribution takes the form:

zℓt ∼ qt(.|xℓ;αt) = Cat(.;αtx
ℓ + (1− αt)π), (1)

where αt ∈ [0, 1] is monotonically decreasing with t, and is known as the noise schedule. (1) defines
the forward process, which progressively corrupts the data. The goal is to learn a generative process
pθ, parameterized by a neural network with parameters θ, that reverses this forward process to map
from the noise prior back to qdata. The model is typically trained by minimizing the “Negative
Evidence Lower Bound” (NELBO). The choice of token prior π gives rise to two popular variants:
Masked Diffusion Models (MDMs) and Uniform-state Diffusion Models (USDMs), which we discuss
in the following.

2.1.1 MASKED DIFFUSION PROCESSES

MDMs (Sahoo et al., 2024; Shi et al., 2025; Ou et al., 2025) use a masked prior, where π = m ∈ V
is the one-hot representation of a special [MASK] token (Devlin et al., 2019). During the forward
process (1), tokens either remain unchanged or transition to the masked state m, after which they
stay masked. This behavior carries over to the reverse process. The posterior of the reverse process
qMDM
s|t for 0 ≤ s < t < 1 can be derived using Bayes’ Rule, and would be:

qMDM
s|t (.|zℓt,xℓ) =

{
Cat
(
.; αs−αt

1−αt
xℓ + 1−αs

1−αt
zℓt

)
if zℓt = m,

Cat(.;xℓ) otherwise.
(2)

The approximate reverse posterior is pθs|t =
∏

ℓ q
MDM
s|t (.|zℓt,xℓ = xℓ

θ(z
1:L
t , t)) where xθ : VL ×

[0, 1] → ∆L is the denoising model. A key limitation is that once unmasked, tokens cannot be
remasked (2). This can create compounding errors during inference, as the denoising model xθ

imperfectly models the clean data.

Predictor-Corrector Methods Wang et al. (2025) propose posteriors, and associated samplers
(ReMDM) that maintain the same marginals as (2) during the generation process, while allowing
remasking and generalizing previous training-free predictor-corrector methods such as Campbell
et al. (2022); Gat et al. (2024).

2.1.2 UNIFORM-STATE DIFFUSION PROCESSES

Alternatively, discrete diffusion models can use a uniform prior π = 1/K (Schiff et al., 2025;
Sahoo et al., 2025a). This choice allows tokens to change values multiple times throughout the
generative process, in contrast to masked diffusion. This property allows USDMs to excel in few-step
generation (Sahoo et al., 2025a) and guidance applications (Schiff et al., 2025).

USDMs admit the following posterior distribution qUSDM
s|t (for brevity, we simply write qs|t for

qUSDM
s|t):

qs|t(. | zℓt,xℓ) = Cat

(
.;
Kαtz

ℓ
t ⊙ xℓ + (αt|s − αt)z

ℓ
t + (αs − αt)x

ℓ + (1− αt|s)(1− αs)1/K

Kαt⟨zℓt,xℓ⟩+ 1− αt

)
. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This posterior induces the following NELBO (Sahoo et al., 2025a):

NELBO (q, pθ;x) = −Et∼U [0,1], qt(zℓ
t|xℓ;αt)

∑
ℓ∈[L]

f(zℓt,x
ℓ
θ(z

ℓ
t, t), αt;x

ℓ), (4)

where

f(zℓt,x
ℓ
θ(z

ℓ
t, t),αt;x

ℓ) =
αt

′

Kαt

[
K

x̄ℓ
i

− K

(x̄ℓ
θ)i
−
(
ζt1zℓ

t=xℓ + 1zℓ
t ̸=xℓ

)∑
j

log
(x̄ℓ

θ)i
(x̄ℓ

θ)j

−K
αt

1− αt
log

(x̄ℓ
θ)i

(x̄ℓ
θ)m

1zℓ
t ̸=xℓ −

(
(K − 1)ζt1zℓ

t=xℓ −
1

ζt
1zℓ

t ̸=xℓ

)
log ζt

]
. (5)

Here, x̄ℓ = Kαtx
ℓ + (1− αt)1, x̄ℓ

θ = Kαtx
ℓ
θ(zt, t) + (1− αt)1, α′

t denotes the time derivative of
αt, i = argmaxj∈[K](z

ℓ
t)j is the nonzero entry of zt, ζt = 1−αt

Kαt+1−αt
, and m denotes the index in

x corresponding to 1, that is,x xm = 1.

The Diffusion Duality Sahoo et al. (2025a) show that USDMs emerge from an underlying Gaussian
diffusion process (Sohl-Dickstein et al., 2015; Ho et al., 2020b; Song et al., 2021; Kingma et al.,
2023) on the one-hot representation xℓ ∈ V . The Gaussian diffusion begins with xℓ and progressively
adds Gaussian noise leading to a sequence of noisy latents wℓ

t ∈ RK ∼ q̃t(.|xℓ) for t ∈ [0, 1] with
the marginals:

q̃t(.|xℓ; α̃t) = N (.; α̃tx
ℓ, (1− α̃t

2)IK),

where (α̃t)t∈[0,1] is a monotonically decreasing noise schedule. Let argmax : RK → V map a
continuous vector v ∈ RK to the one-hot vector corresponding to the index of its largest entry in v,
that is, argmax(v) = argmaxz∈Vz

⊤v. When applied to a sequence of Gaussian latents w, argmax
transforms them to the discrete latents zt whose marginals take the form: zℓt ∼ qt(.|xℓ;αt := T (α̃t)),
where the function T : [0, 1]→ [0, 1] is the Diffusion Transformation Operator:

T (α̃t) =
K

K − 1

[∫ ∞

−∞
ϕ

(
z − α̃t√

1− α̃t
2

)
ΦK−1(z)dz − 1

K

]
, (6)

where ϕ(z) = exp(−z2)/
√
2π and Φ(z) =

∫ z

−∞ ϕ(t)dt are the standard Normal PDF and CDF,
respectively. More formally, this relationship is expressed as:

qt(z
ℓ
t|xℓ; T (α̃t)) = [argmax]★q̃t(w

ℓ
t |xℓ; α̃t) (7)

where the ★ operator denotes the pushforward of the K-dimensional Gaussian density under the
argmax map, yielding a categorical distribution with K classes. Note that while the marginal
distribution qt(zt|x; T (α̃t)) matches the discrete-space marginal in (1), this does not imply that
the full trajectory {zt := argmax(wt)}t∈[0,1] follows a (Markovian) discrete diffusion process
(Sahoo et al., 2025a). An interesting outcome of (7) is that the discrete NELBO (4) can be written
in terms of Gaussian latents in the following manner, where the second argmax is applied to each
token independently:

NELBO (q, pθ;x)

= Ex,t∼U [0,1],q̃t

∑
ℓ∈[L]

f
(
zℓt := argmax(wℓ

t),x
ℓ
θ(argmax(wt), t), αt := T (α̃t);x

ℓ
)
. (8)

Curriculum Learning Curriculum learning (Bengio et al., 2009) progressively exposes models
to more complex tasks. Sahoo et al. (2025a) propose to optimize a biased but low-variance ELBO
estimator early in training, enabling faster convergence. For the first 50% of the steps, the argmax
operation is relaxed to a low-temperature softmax, replacing discrete token lookups with linear
combinations of embeddings. This yields an easier optimization objective: the resulting embeddings
are superpositions of clean and noisy tokens, which provides a partially clean signal for reconstruction.
Figure 3 (top) illustrates the original curriculum. More formally, Sahoo et al. (2025a) optimize the
following loss during the curriculum phase, where the softmax is applied to each token independently:

Ltrain = Ex,t∼U[β,γ],q̃t

∑
ℓ∈[L]

f
(
zℓt := argmax(wℓ

t),x
ℓ
θ(softmax(wt/τ), t), αt := T (α̃t);x

ℓ
)
. (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\definecolor{discretecolor}{RGB}{11,83,150}
{\color{discretecolor} q_{s|t}}\left(\mathbf{z}_s^{\supl}
\mid \mathbf{z}_t^{\supl},
\mathbf{x}^{\supl}_\theta(\mathbf{z}_t, t)\right)

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\definecolor{discretecolor}{RGB}{11,83,150}
{\color{discretecolor} q_{0|t}}\left(\mathbf{x}^{\supl} \mid
\mathbf{z}_t^{\supl},
\mathbf{x}^{\supl}_\theta(\mathbf{z}_t, t)\right)

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\definecolor{discretecolor}{RGB}{11,83,150}
\definecolor{darkred}{RGB}{128,0,32}
{\color{darkred} q_{s}}\left(\mathbf{z}_s^{\supl} \mid
\mathbf{x}^\supl\right)

Predictor Corrector

- Samplers

See Eq. 12

+ =

- Samplers simplify and generalize previous Predictor-Corrector methods to arbitrary prior

Figure 2: Ψ-samplers combine predictor and corrector steps. The predictor transitions from zt to
zs via qs|t, but fails to remask tokens in MDMs. The corrector steps inject noise via qs, to revise
earlier predictions. For κt < 1, noise injection enables error correction while preserving the forward
process marginals. Our framework simplifies prior PC methods (Campbell et al., 2022; Gat et al.,
2024; Wang et al., 2025) and extends them to arbitrary priors π.

Notice that Ltrain in (9) reduces to the NELBO (8) in the limit limτ→0, for β = 0 and γ = 1,
since limτ→0 softmax(v/τ) = argmax(v), as shown by Jang et al. (2017); Maddison et al. (2017).
Formally, for a sequence of latents y ∈ ∆L (which can be one-hot), inside the neural network,
the input token representation at position ℓ is computed by matrix multiplication: V⊤yℓ, where
V ∈ RK×m denotes the vocabulary embedding matrix and m the embedding dimension. This
operation reduces to a standard embedding lookups for one-hot inputs obtained with argmax,
and to a linear combinations with the softmax relaxation. However, explicitly materializing the
high-dimensional latents wt is memory-intensive, an issue we address in Sec. 4.

2.2 DIFFUSION GUIDANCE

For continuous data, diffusion models have achieved state-of-the-art controllable generation through
both classifier-based guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021) and Classifier-
Free Guidance (CFG; Nichol & Dhariwal (2021); Ho & Salimans (2022)). These approaches have
since been extended to discrete data (Gruver et al., 2023). Let y ∈ {1, . . . , C} denote one of C
possible classes. For CFG, the sampling posterior pθ(γ), which modulates the strength of the guidance
term via the temperature parameter γ, is defined as (Nisonoff et al., 2024; Schiff et al., 2025):

log pθ
(γ)(zℓs | y, zt) = γ log pθ(z

ℓ
s | y, zt) + (1− γ) log pθ(z

ℓ
s | ∅, zt), (10)

where ∅ denotes no class conditioning, and pθ is the generative posterior (Sec. 2.1).

3 THE Ψ-POSTERIORS

Multiple joint distributions can give rise to the same marginals as the discrete diffusion process
defined in (1). In this work, we introduce a family of posteriors, denoted Ψ, and that share the
same marginals as in (1); see Suppl. A.2 for details. These alternative generative processes are
non-Markovian and apply both to the Masked diffusion processes and to the Uniform-state diffusion
processes. Specifically, we define the posteriors for the generative process as:

Ψs|t(.|xℓ, zℓt) = κtqs|t(.|zℓt,xℓ) + (1− κt)qs(.|xℓ); ∀ℓ ∈ [L] (11)

where κt ∈ [0, 1] and Ψ1(.|xℓ) = Cat(.|π), with π = m for MDMs and π = 1/K for USDMs.
(11) is thus a linear combination of the forward process (1) and the reverse posteriors (2, 3) of
standard discrete diffusion models. We therefore refer to these as superposition posteriors, or simply
Ψ-posteriors.

Ψ-Forward Processes Consider the interpolating diffusion process in (1) discretized into T
steps. Let zt(i) denote the latent variables at times t(i) = i/T for 0 ≤ i ≤ T . The distribu-
tion of a trajectory z0:1 factorizes independently over tokens as: Ψ(z0:1|x) =

∏
ℓ Ψ(zℓ0:1|xℓ) where

Ψ(zℓ0:1|xℓ) = Ψ1(z
ℓ
1|xℓ)

∏T
i=1 Ψs|t(z

ℓ
s(i)|z

ℓ
t(i),x

ℓ). In what follows, we use s, t as shorthand for
s(i), t(i), respectively. The forward process can be derived from Bayes’ rule: Ψ(zℓt|zℓs,xℓ) =
Ψ(zℓs|zℓt,xℓ)Ψ(zℓt|xℓ)/Ψ(zℓs|xℓ). Unlike the Markovian interpolating process in (1), this forward
process generally not Markovian, since each zℓt may depend on both zℓs and xℓ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

\definecolor{grayseq}{RGB}{120,120,120}
\mathbf{w}_t^{{\color{grayseq} \ell}} \sim \mathcal{N}\!\left(
\tilde{\alpha}_t \mathbf{x}^{{\color{grayseq} \ell}},\, (1 -
\tilde{\alpha}_t^{2})\, \mathbf{I}_K \right)

\begin{bmatrix}
\vert & \vert & & \vert \\
e_1 & e_2 & \cdots & e_K \\
\vert & \vert & & \vert
\end{bmatrix} \cdot

\definecolor{grayseq}{RGB}{120,120,120}
\mathbf x^{{\color{grayseq} \ell}}

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\definecolor{argmaxcolor}{RGB}{154,0,0}
\newcommand{\softmax}{{\color{argmaxcolor}\mathrm{softmax}}}
\mathbf{y} = \softmax(\mathbf{w}_t^{{\color{grayseq} \ell}} / \tau)

\definecolor{grayseq}{RGB}{120,120,120}
q_t(.|\mathbf x^{{\color{grayseq} \ell}})

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\mathbf{w}_t^{\supl} \sim \N (.; \atg\xl, (1 - \atg^2)\bfI_K)

Transform
er

cat

\definecolor{grayseq}{RGB}{120,120,120}
\mathbf x^{{\color{grayseq} \ell}}_{i=12} = 1

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\newcommand{\softmax}{{\color{argmaxcolor}\mathrm{softmax}}}
\tilde{\mathbf{w}}_t^{\supl}, \mathrm{idxs} \sim \qg^\textrm{top-k}(.| \xl; \atg)

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\definecolor{argmaxcolor}{RGB}{154,0,0}
\newcommand{\softmax}{{\color{argmaxcolor}\mathrm{softmax}}}
\tilde{\mathbf{y}}^\supl = \frac{\textrm{{\color{argmaxcolor}
exp}}(\tilde{\mathbf{w}}_t^{{\color{grayseq} \ell}} / \tau)}{{\color{argmaxcolor}
\tilde{Z}}} \approx \softmax(\tilde{\mathbf{w}}_t^{{\color{grayseq} \ell}} / \tau)

\begin{bmatrix}
\vert & \vert & \vert \\
e_{15} & e_{12} & e_9 \\
\vert & \vert & \vert
\end{bmatrix} \cdot

\definecolor{grayseq}{RGB}{120,120,120}
\definecolor{gaussiancolor}{RGB}{230,145,56}
\def\qg{{\color{gaussiancolor} \tilde{q}_t}}
\def\atg{{\color{gaussiancolor} \tilde{\alpha}_{t}}}
\def\x{{\mathbf x}}
\def\N{{\mathcal{N}}}
\def\supl{{\color{grayseq}\ell}}
\def\xl{\x^{\supl}}
\newcommand{\bfI}{\mathbf{I}}
\definecolor{argmaxcolor}{RGB}{154,0,0}
\newcommand{\softmax}{{\color{argmaxcolor}\mathrm{softmax}}}
{\color{argmaxcolor} \tilde{Z}} = \sum_{j=1}^k {{\color{argmaxcolor} \exp}}
(\tilde{\mathbf{w}}_t^{{\color{grayseq} \ell}} / \tau)_j + (K - k) \mathbb E\left[
\exp(w^-) \mid w^- < \tilde{\mathbf{w}}_{t, j} \right]

12

9

15

\qg(.| \xl; \atg)

12

9

15

Transform
er

cat

High-dim. Gaussians 󰷺 Combine all vectors 🐌

Duo

Duo ++

Simulate top k only 🚀 Combine only k⚡Approximate
normalizer

Simulated
variables

Expected contribution of
non-simulated variables

12

…

K

1

…

12

…

K

1

…

+

12

…

K

1

…

One-hot

12

K

1

Most entries ≈ 0

Duo

Duo (ours)++

1

-33%
D

uo (ours)
++

D
uo

D
uo

D
uo (ours)

++

1 2 3

1 2 12 K13. + . … + .+ … +++ . .

1
.

12+ . K+ .

Combine k << K most
significant embeddings

Combine ALL K
embeddings

-33% -25%

D
uo (ours)

++

D
uo

D
uo

D
uo (ours)

++

3

12

…

K

1

…

12

K

1

Non-simulated
variables

Low temperature:
most entries ≈ 0

2

: see Eq. 13

12

…

K

1

…

12

…

K

1

…

12

K

1

+

One-hot

Top-k only Gaussians
drawn via order statistics

Duo

Duo (ours)++
Large tensor:
dim=K>>k

1

K

12

K

1

k

K >> k

Sample top-k entries (out of K)
using order statistics (Sec. B.1)

12

…

K

1

…

12

K

1

Transform
er

Transform
er

-25%

D
uo (ours)

++
D

uo (ours)
++

Note: top-k entries of and have exactly the same distribution Improved memory- and compute-efficiency

Note: The curriculum is applied at each position independently. denotes the position in the sequence.

Figure 3: Efficient Curriculum for USDMs. Duo (Sahoo et al., 2025a) replaces discrete lookups
with linear combinations of all K embeddings: (1) Gaussian diffusion on one-hot representations,
(2) Low-temperature softmax, (3) weighted sum. Duo++ exploits the sparsity of the tempered
softmax (most weights are effectively zero), and simulate the k largest entries (out of K) using ordered
statistics. The approximate normalizer Z̃ admits a closed form expression (13). Duo++ has a 33%
lower memory and 25% faster training than Duo.

Ψ-Reverse Processes In Suppl. A.1, we show that the approximate reverse posterior takes the form:

[Ψθ
s|t(.|zt)]

ℓ = κtqs|t(.|zℓt,xℓ
θ(zt, t)) + (1− κt)

[
αsq0|t(.|zℓt,xℓ

θ(zt, t)) + (1− αs)π
]
. (12)

where xθ denotes the denoising model. We dub (12) as Ψ-sampler. For (κt = 1)t∈[0,1], we recover
the standard ancestral sampler defined in (2) for MDMs and (3) for USDMs. Notice that for κt < 1,
Ψs|t corresponds to a noisier version of the ancestral sampler marginal qs|t. This is analogous to
Predictor-Corrector methods in Gaussian diffusion (Song et al., 2021), where the corrector introduces
additional Gaussian noise. In our case, qt plays the role of the corrector, while qs|t acts as the
predictor. The Ψ-posteriors also admit a principled NELBO formulation (see Suppl. A.3), though
this is not directly relevant for sampling.

Corollary For pθ = m, different choices of {κt}t∈[0,1] recover previous Predictor-Corrector for-
mulations in the literature (Campbell et al., 2022; Gat et al., 2024; Wang et al., 2025) (see Suppl. A.4
for the proof). The Ψ framework thus subsumes these samplers as special cases, extending these
predictor-corrector methods for discrete diffusion with any prior π.

Intuitive Explanation In practice, the denoiser xθ imperfectly models the clean data x. The key
to the effectiveness of Ψ-sampler is the offset term (1− κt)(1− αs)π in (12), which enables error
correction during generation. For MDMs (π = m), this offset allows previously denoised tokens to
return to the masked state, unlike the ancestral sampler, which prevents remasking (see Sec. 2.1.1).
Incorrect tokens can thus be replaced with better ones. For USDMs (π = 1/K), the offset ensures
every token has non-zero sampling probability. Even if the denoiser assigns near-zero probability
to the correct token, the Ψ-sampler gives it a chance to appear, whereas ancestral sampling would
not. While this offset may occasionally introduce incorrect tokens, the marginals of the Ψ-samplers
(11) match those of the Markovian forward process (1), hence we converge to the correct distribution
given sufficient samples.

4 SCALABLE CURRICULUM FOR FASTER TRAINING

As discussed in Sec. 2.1.2, the curriculum of Sahoo et al. (2025a) accelerates convergence by
replacing discrete token lookups with linear combinations of all K vocabulary embeddings. However,
materializing the K-dimensional weight vectors is memory- and compute-intensive, particularly
for modern LLM vocabularies containing hundreds of thousands of tokens (Touvron et al., 2023;
OpenAI, 2024). We propose an efficient curriculum (Figure 3, bottom) leveraging the key observation
that low-temperature softmax concentrates probability mass on a few entries. Thus, we approximate
the full linear combination using only k ≪ K embeddings. We explain the three main steps of the
algorithm below. See Algo. 1 for pseudocode and Suppl. B for proofs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Accuracy on multiple-choice question answering datasets. Abbreviations: Arc-e (ARC-
Easy), Arc-c (ARC-Challenge), HSwag (HellaSwag), WinoG (Winogrande), PIQA (Physical Intelli-
gence Question Answering), OQA (OpenBookQA). †Results from Deschenaux et al. (2025). Duo++

(k = 2) achieves slightly higher accuracy than Duo on 4 out of 6 tasks. Overall, Duo++ matches
Duo’s performance while using 25% fewer flops. The highest accuracy among USDMs is bolded.
The absolute best per column is underlined.

Arc-e Arc-c HSwag WinoG PIQA MathQA OQA

AR Transformer 44.95 23.04 30.55 52.80 63.71 22.24 19.00
MDLM† 34.26 24.66 31.54 51.93 57.89 20.70 28.60

Duo 28.11 25.43 26.46 47.20 51.14 20.00 23.40
Duo++ (k = 2) 27.32 26.11 26.26 49.64 52.12 20.40 27.80
Duo++ (k = 3) 28.28 25.00 25.89 47.36 50.65 21.01 23.00
Duo++ (k = 5) 28.03 25.77 26.90 50.12 51.25 20.20 25.40

Step 1: Sampling Top-k Gaussians Let o denote the integer token value at position ℓ, represented
by the one-hot vector xℓ. The original curriculum computes the Gaussian-diffused vector wℓ

t =
α̃tx + σ̃tϵ where σ̃t =

√
1− α̃t

2 and ϵ ∼ N (0, IK). Thus, entry o has mean α̃t while all other
entries are zero mean. Instead of simulating K random variables to find the k ≪ K largest, we
generate them directly via inverse-transform sampling, without materializing the full K-dimensional
vector (Suppl. B.1 and Figure 3.1). We denote by w̃ℓ

t the resulting vector of top-k values. By
construction, w̃ℓ

t has the same distribution as the k largest entries of the original wℓ
t .

Step 2: Approximating the Normalization Constant Computing the softmax normalization
W =

∑K
i=1 exp((w

ℓ
t)i/τ) requires all K values (Figure 3.2). Since we only simulate k of them, we

approximate the contribution of the remaining K−k variables by their conditional expectation. This
expectation admits a closed form (Suppl. B.6):

W ≈
k∑

i=1

exp((w̃ℓ
t)i/τ) + (K − k)

[
σ

2
− log Φ(c/σ) + log Φ(

c− σ2

σ
)

]
︸ ︷︷ ︸

= E[exp(Z/τ)|Z<c]

(13)

where c is the smallest of the top-k values, Z ∼ N (0, σ̃t), and Φ is the Gaussian CDF. We use
the conditional expectation E[exp(Z/τ) | Z < c] because the K−k non-simulated variables are
all smaller than the top-k. In Suppl. D.2, we verify empirically that the k largest softmax weights
computed our approximation closely match those obtained by naive simulation of all K variables.

Step 3: Combining Embeddings To select which token embeddings to combine (Figure 3.3), we
exploit symmetry: all entries in wℓ

t (the Gaussian-diffused vector) except o are identically distributed,
so any index in [K] \ {o} has the same chance of being in the top-k. We check whether the true token
o falls within the top-k by comparing its diffused value (with mean α̃t) to the k-th largest zero-mean
Gaussian. If so, we include o and sample k−1 indices randomly without replacement; otherwise,
we sample k indices. This is done efficiently without shuffling (Suppl. B.2.3), thanks to Floyd’s
algorithm (Bentley, 1999). With the indices, weights, and approximate normalization, we compute
the weighted sum over only k embeddings. In practice, k=2 suffices (Table 2).

5 EXPERIMENTS

We evaluate Duo++ with Ψ-samplers on language modeling (Sec. 5.1.1) and image generation
(Sec. 5.1.2), showing that Ψ-samplers substantially improve text and image quality, making USDMs
as performant as MDMs. In Sec. 5.2, we further demonstrate that, thanks to its efficient curriculum
strategy (Sec. 4), Duo++ achieves performance comparable to Duo (Sahoo et al., 2025a)–the current
state-of-the-art USDM–while reducing memory usage by 33% and training 25% faster.

5.1 Ψ-SAMPLERS

We evaluate the Ψ-samplers on language and image modeling tasks to demonstrate their applicability
across modalities.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1.1 LANGUAGE MODELING

Our experiments indicate that (1) Ψ-samplers substantially improve Generative Perplexity (Gen.
PPL) for USDMs, with gains becoming especially pronounced once the NFEs exceed the sequence
length, and (2) unlike ancestral sampling, which quickly plateaus with increasing NFEs, Ψ-
samplers continue to yield improvements in sample quality.

Experimental Settings We compare MDLM (Sahoo et al., 2024) and ReMDM (Wang et al.,
2025) with Duo++ and Ψ-samplers. We use the original checkpoints of Sahoo et al. (2024), trained
for 1M steps with a batch size of 512 on OpenWebText (OWT; Gokaslan & Cohen (2019)) and
context length L = 1024. Duo++ is trained with the same context length, batch size and number
of steps, but with the efficient curriculum. We distill the MDLM and Duo checkpoint using SDTT
(Deschenaux & Gulcehre, 2025) and DCD (Sahoo et al., 2025a) respectively, for 50k steps and default
hyperparameters. Refer to the original works for more details. We measure the sample quality using
the Gen. PPL computed with GPT-2 Large (Radford et al., 2019) and the diversity the using the
unigram entropy (Dieleman et al., 2022; Sahoo et al., 2024; 2025a). We cast logits to 64-bit precision
for sampling (Zheng et al., 2025). See Suppl. C.1 for more details.

Results Figure 1 (left) shows the Gen. PPL and the entropy as a function of the NFE, for the
ancestral and Ψ-samplers. Duo++ with Ψ-samplers outperforms MDLM with ReMDM and ancestral
samplers across the entire range of NFEs. As the number of NFEs increases beyond the sequence
length, ReMDM and Ψ-samplers further improve the sample quality while ancestral sampling
plateaus.

0 250 500 750 1000
Num. sampling steps

0.00

0.25

0.50

0.75

1.00

Linear t
Loop t

t

Figure 4: Illustration of the
evolution of t and the asso-
ciated κt under the loop and
linear t-decrease scheduling
strategies (Wang et al., 2025).
In practice, we use κt close to
1 during the PC phase.

How to choose κt ? We use the ReMDM-equivalent κt schedule
(proof in Suppl. A.4), with the log-linear schedule. Following Wang
et al. (2025), we use nucleus sampling (p = 0.9) in the main body,
and defer additional settings (such as without nucleus sampling, and
with distilled checkpoints) to Suppl. D.1). We set t and κt using
two related heuristics, visualized in Figure 4. With the first heuristic,
t is linearly decreasing. With the second heuristic, t is linearly
decreasing when t ∈ [0, toff]∪[ton, 1] and constant when t ∈ [toff, ton]
(the “loop” strategy from ReMDM). The rescale schedule (without
“loop”) achieves the best Gen. PPL while maintaining high unigram
entropy, as shown in Figure 1. Numerical results for different choices
of κt are provided in Suppl. D.1.

5.1.2 IMAGE MODELING

Our experiments indicate that Duo++ with Ψ-samplers produce
images of significantly higher quality than MDLM with the
ancestral and ReMDM sampler.

Experimental Setup We train the same 35M parameters U-Net
(Ronneberger et al., 2015) as Austin et al. (2023) on raw pixels on CIFAR-10, for 1.5M steps, with
a global batch size of 128. We use a learning rate of 2 × 10−4, a dropout rate of 0.1, and random
horizontal flips as the only data augmentation. Following Schiff et al. (2025), the U-Net is made
class conditional, and we train with a class dropout probability of 0.1, and sample with Discrete
Classifier-free Guidance (CFG; Ho & Salimans (2022); Schiff et al. (2025)). See Suppl. C.1 for more
details. We report the Fréchet Inception Distance (FID; Heusel et al. (2018)) and Inception Score (IS;
Salimans et al. (2016)) between the training set and 50K samples generated with guidance strength
γ = 1.

Results Figure 1 (right) and Figure 5 shows that Ψ-samplers and ReMDM subsantially improve the
FID and IS, respectively, compared to ancestral sampling. Overall, Duo++ with Ψ-samplers reaches
the best FID and IS.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

32 64 128 256 512 1024 2048 4096
NFE

5

66

7

8

9

In
ce

pt
io

n
Sc

or
e

MDLM
MDLM+ReMDM
Duo+ +

Duo+ + + -sampler

Figure 5: Ψ-samplers, which generalize
ReMDM, significantly improve the In-
ception Score on CIFAR-10, compared
to ancestral sampling.

How to pick κt? All results are provided in Suppl. C.1.
For both MDLM and Duo, using the cosine noise sched-
uler during sampling is best. For Duo, using κt = 0.95,
ton ∈ {0.5, 0.6}, and toff = 0.1 reaches the best FID. For
ReMDM, using κt = 0.99 with ton = 1.0, and toff = 0.1
is best. These hyper-parameter indicate that a light but con-
sistent noise injection throughout sampling is best, with
Duo++ tolerating stronger noise injection than MDLM.
Indeed, recall that κt = 1 represents the standard ances-
tral sampler, and that decreasing values of κt represent
increasingly noisy distributions.

5.2 FAST CURRICULUM

Our experiments show that with the efficient curriculum
learning strategy in Sec. 4, Duo++ trains 25% faster and
matches Duo and on standard likelihood benchmarks
and downstream tasks.

Experimental settings We train Duo++ with the scalable curriculum (Sec. 4) on OpenWebText
(OWT; Gokaslan & Cohen (2019)) and LM1B (Chelba et al., 2014). We train all models for 1M
steps, using a batch size of 512. For LM1B, we use the bert-base-uncased tokenizer with a
context length of 128, padding shorter sequences. This setup follows previous work (Sahoo et al.,
2024; Lou et al., 2024; He et al., 2022). For OWT, we use the GPT-2 tokenizer (Radford et al., 2019),
and reserve the last 100k documents for validation, following (Sahoo et al., 2025a; 2024). We follow
Lou et al. (2024) and use a modified diffusion transformer (DiT) (Peebles & Xie, 2023) with rotary
positional encoding (Su et al., 2023). We evaluate the impact of k = {2, 3, 5} during the efficient
curriculum. All models are trained on 16 H100 GPUs with bfloat16 precision. Training uses the
loss in (9), with τ = 0.001 for the first 500K steps and (β, γ) = (0.03, 0.15) (Sahoo et al., 2025a).

Table 2: Test perplexity (PPL) on LM1B and OWT. Lower
is better. †Results from Sahoo et al. (2025a). Best Uniform-
state diffusion numbers are bolded. Duo and Duo++ achieve
comparable performance across both datasets while requiring
25% fewer GPU-hours, demonstrating the effectiveness of
our memory-efficient curriculum.

LM1B OWT

Autoregressive
Transformer† 22.3 17.5

Masked Diffusion
SEDD Absorb† (Lou et al., 2024) 32.7 24.1
MDLM† (Sahoo et al., 2024) 27.0 23.2

Uniform-state Diffusion
SEDD Uniform† (Lou et al., 2024) 40.3 29.7
UDLM† (Schiff et al., 2025) 31.3 27.4
Duo† (Sahoo et al., 2025a) 29.9 25.2
Duo++ (Ours), k = 2 30.0 25.2
Duo++ (Ours), k = 3 30.1 25.3
Duo++ (Ours), k = 5 30.2 25.4

Likelihood results Table 2 shows
that on both LM1B and OWT, our effi-
cient curriculum Duo++ matches the
performance of Duo with its expen-
sive curriculum. The lowest valida-
tion perplexity is achieved with k = 2,
although k ∈ {2, 3, 5} performs sim-
ilarly.

We also compare the models trained
on OWT in Zero-Shot perplexity, and
find that Duo++ achieves a perfor-
mance comparable to Duo. That is,
we evaluate ont the validation splits
of the Penn Treebank (Marcus et al.,
1993), WikiText (Merity et al., 2016),
LM1B (Chelba et al., 2014), LAM-
BADA (Paperno et al., 2016), AG
News (Zhang et al., 2016) and scien-
tific articles from ArXiv and PubMed
(Cohan et al., 2018). Table 5 shows
that Duo++ reaches a zero-shot prob-
ability similar to that of Duo while
requiring 25% less training GPU-hours.

Downstream Tasks In Table 1, we compare the multiple-choice question (MCQ) accuracy of Duo,
Duo++, MDLM (Sahoo et al., 2024), and an autoregressive transformer (1M training steps with
a batch size of 512 on OWT, same hyperparameters as MDLM) using the lm-eval-harness
suite (Gao et al., 2024). Although lm-eval-harness was originally designed for autoregressive

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

models, it was adapted for diffusion models by recent work (Deschenaux & Gulcehre (2024); Nie
et al. (2025b;a); Shi et al. (2025) ; details in Suppl. C.3). We find that Duo++ achieves an accuracy
similar to that of Duo, despite requiring 25% less training GPU-hours.

Throughput and peak memory usage Table 4 reports the throughput and peak memory usage for
Duo and Duo++. Duo++ reduces the peak memory usage by about 33% and doubles the speed of
the Curriculum Learning phase. When applying Curriculum Learning for half of the training steps,
Duo++ trains 25% faster than Duo on the 138M-parameter scale. Notably, both peak memory usage
and throughput remain stable over the full training run when k ∈ {2, 3, 5}.

6 RELATED WORK

Discrete diffusion models Discrete diffusion (Sohl-Dickstein et al., 2015; Austin et al., 2023;
Campbell et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2025; Schiff et al., 2025; Ou
et al., 2025; Sahoo et al., 2025a) and discrete flow matching (Campbell et al., 2024; Gat et al., 2024)
have recently gained increasing attention due to advances in their foundations and more efficient
implementations. Most discrete diffusion and flow matching methods use a uniform or masked noise
distribution, although Shaul et al. (2024); von Rütte et al. (2025); Holderrieth et al. (2025) have
explored more general processes. In this work, we present a general predictor-corrector algorithm for
interpolating discrete diffusion with arbitrary noise.

Predictor-Corrector samplers Previous work showed that remasking can improve performance
by allowing the model to correct sampling errors. ReMDM (Wang et al., 2025) generalizes previous
predictor-corrector methods (Campbell et al., 2022; Gat et al., 2024) in the masked setting. Our
approach further generalizes ReMDM to support arbitrary diffusion processes. Unlike Lezama et al.
(2023); Zhao et al. (2025); Liu et al. (2025), who train an additional corrector module, our method
does not introduce additional learned components.

Other discrete diffusion samplers Park et al. (2024) adapts the sampling step size to the noise level
to outperform samplers that use a fixed step size. Although we use a uniform step size, our sampler
remains compatible with any step-size schedule. Ren et al. (2025) studies high-order sampling
algorithms, whereas we rely on first-order information only. However, the posterior in (11) could be
estimated using high-order samplers. Thus, Ψ-samplers are complementary to these lines of work.

7 CONCLUSION

We introduced a unified and practical framework for predictor-corrector sampling in discrete diffusion
language models through Ψ-posteriors. By linearly superposing the forward and reverse diffusion
processes (11), the Ψ-posteriors preserve the marginals of standard diffusion models. Importantly, the
Ψ-posteriors, and associated Ψ-samplers subsumes prior masked-diffusion PC samplers (Campbell
et al., 2022; Gat et al., 2024; Wang et al., 2025) as special cases, and naturally extend to discrete
diffusion models with uniform prior. Empirically, Duo++ with Ψ-samplers matches the performance
of MDMs on natural language generation and achieves stronger FID and IS scores on CIFAR-10.
Moreover, they exhibit superior scaling: performance continues to improve with NFEs, unlike
ancestral samplers, which plateau. Finally, we propose a scalable training curriculum (Sahoo et al.,
2025a) that reduces the peak memory usage by 33% and shortens the training time by 25%.

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2023. URL https://arxiv.org/abs/
2107.03006.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Inter-
national Conference on Machine Learning, 2009. URL https://api.semanticscholar.
org/CorpusID:873046.

10

https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://api.semanticscholar.org/CorpusID:873046
https://api.semanticscholar.org/CorpusID:873046

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jon Louis Bentley. Programming Pearls. Addison-Wesley Professional, Boston, MA, 2nd edition,
1999. ISBN 978-0201657883.

Roger Berger and George Casella. Statistical Inference. Duxbury Press, Florence, AL, 2 edition,
June 2001.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22563–22575, 2023.

Kim C. Border. Lecture 15: Order statistics; conditional expectation. https://healy.
econ.ohio-state.edu/kcb/Ma103/Notes/Lecture15.pdf, 2021. Course notes for
MA103.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
https://arxiv.org/abs/2205.14987.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
2024. URL https://arxiv.org/abs/2402.04997.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling,
2014. URL https://arxiv.org/abs/1312.3005.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 615–621, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2097. URL https:
//aclanthology.org/N18-2097/.

Justin Deschenaux and Caglar Gulcehre. Promises, outlooks and challenges of diffusion language
modeling, 2024. URL https://arxiv.org/abs/2406.11473.

Justin Deschenaux and Caglar Gulcehre. Beyond autoregression: Fast llms via self-distillation
through time, 2025. URL https://arxiv.org/abs/2410.21035.

Justin Deschenaux, Lan Tran, and Caglar Gulcehre. Partition generative modeling: Masked modeling
without masks, 2025. URL https://arxiv.org/abs/2505.18883.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986. URL https:
//www.springer.com/gp/book/9780387963051.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022. URL
https://arxiv.org/abs/2211.15089.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germanidis.
Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7346–7356, 2023.

11

https://healy.econ.ohio-state.edu/kcb/Ma103/Notes/Lecture15.pdf
https://healy.econ.ohio-state.edu/kcb/Ma103/Notes/Lecture15.pdf
https://arxiv.org/abs/2205.14987
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/1312.3005
https://aclanthology.org/N18-2097/
https://aclanthology.org/N18-2097/
https://arxiv.org/abs/2406.11473
https://arxiv.org/abs/2410.21035
https://arxiv.org/abs/2505.18883
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://www.springer.com/gp/book/9780387963051
https://www.springer.com/gp/book/9780387963051
https://arxiv.org/abs/2211.15089

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gerald B Folland. Real analysis. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
graphs and Tracts. John Wiley & Sons, Nashville, TN, 2 edition, March 1999.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching, 2024. URL https://arxiv.org/abs/2407.
15595.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanasse,
Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
diffusion. Advances in neural information processing systems, 36:12489–12517, 2023.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusionbert:
Improving generative masked language models with diffusion models, 2022. URL https:
//arxiv.org/abs/2211.15029.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL
https://arxiv.org/abs/1706.08500.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.
org/abs/2207.12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020b. URL
https://arxiv.org/abs/2006.11239.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.03458, 2022.

Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer,
Ricky T. Q. Chen, and Yaron Lipman. Generator matching: Generative modeling with arbitrary
markov processes, 2025. URL https://arxiv.org/abs/2410.20587.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration, 2020. URL https://arxiv.org/abs/1904.09751.

Qingqing Huang, Daniel S. Park, Tao Wang, Timo I. Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, Jesse Engel, Quoc V. Le, William Chan,
Zhifeng Chen, and Wei Han. Noise2music: Text-conditioned music generation with diffusion
models, 2023. URL https://arxiv.org/abs/2302.03917.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.
URL https://arxiv.org/abs/1611.01144.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models, 2023.
URL https://arxiv.org/abs/2107.00630.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=a-xFK8Ymz5J.

Pin-Jui Ku, He Huang, Jean-Marie Lemercier, Subham Sekhar Sahoo, Zhehuai Chen, and Ante
Jukić. Discrete diffusion for generative modeling of text-aligned speech tokens. arXiv preprint
arXiv:2509.20060, 2025.

12

https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2211.15029
https://arxiv.org/abs/2211.15029
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2410.20587
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2302.03917
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/2107.00630
https://openreview.net/forum?id=a-xFK8Ymz5J

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language models
based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng,
Saee Paliwal, Weili Nie, and Arash Vahdat. Genmol: A drug discovery generalist with discrete
diffusion. arXiv preprint arXiv:2501.06158, 2025.

Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete
predictor-corrector diffusion models for image synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
VM8batVBWvg.

Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing Li. Gen-
erative diffusion models on graphs: Methods and applications. arXiv preprint arXiv:2302.02591,
2023a.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. Audioldm: text-to-audio generation with latent diffusion models. In Proceedings of the
40th International Conference on Machine Learning, pp. 21450–21474, 2023b.

Sulin Liu, Juno Nam, Andrew Campbell, Hannes Stärk, Yilun Xu, Tommi Jaakkola, and Rafael
Gómez-Bombarelli. Think while you generate: Discrete diffusion with planned denoising, 2025.
URL https://arxiv.org/abs/2410.06264.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution, 2024. URL https://arxiv.org/abs/2310.16834.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables, 2017. URL https://arxiv.org/abs/1611.00712.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004/.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL
https://arxiv.org/abs/2102.09672.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text, 2025a. URL https://arxiv.org/abs/
2410.18514.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025b. URL https:
//arxiv.org/abs/2502.09992.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

OpenAI. Gpt-oss: open-weight language models by openai. https://github.com/openai/
gpt-oss, 2024. GitHub repository.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data, 2025.
URL https://arxiv.org/abs/2406.03736.

13

https://openreview.net/forum?id=VM8batVBWvg
https://openreview.net/forum?id=VM8batVBWvg
https://arxiv.org/abs/2410.06264
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/1611.00712
https://aclanthology.org/J93-2004/
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://github.com/openai/gpt-oss
https://github.com/openai/gpt-oss
https://arxiv.org/abs/2406.03736

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context, 2016. URL https://arxiv.org/abs/
1606.06031.

Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji.
Jump Your Steps: Optimizing sampling schedule of discrete diffusion models, 2024. URL
https://arxiv.org/abs/2410.07761.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang,
Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng
Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh,
Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Ramb-
hatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy,
Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-
Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue
Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu,
Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry
Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John
Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao,
Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve
Fine, Tara Fowler, Vladan Petrovic, and Yuming Du. Movie gen: A cast of media foundation
models, 2025. URL https://arxiv.org/abs/2410.13720.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Yinuo Ren, Haoxuan Chen, Yuchen Zhu, Wei Guo, Yongxin Chen, Grant M. Rotskoff, Molei Tao,
and Lexing Ying. Fast solvers for discrete diffusion models: Theory and applications of high-order
algorithms, 2025. URL https://arxiv.org/abs/2502.00234.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models, 2024. URL https://arxiv.org/abs/2406.07524.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin Chiu, and
Volodymyr Kuleshov. The diffusion duality, 2025a. URL https://arxiv.org/abs/2506.
10892.

Subham Sekhar Sahoo, Zhihan Yang, Yash Akhauri, Johnna Liu, Deepansha Singh, Zhoujun Cheng,
Zhengzhong Liu, Eric Xing, John Thickstun, and Arash Vahdat. Esoteric language models. arXiv
preprint arXiv:2506.01928, 2025b.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Im-
proved techniques for training gans, 2016. URL https://arxiv.org/abs/1606.03498.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P. de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models, 2025. URL https://arxiv.org/abs/
2412.10193.

14

https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/2410.07761
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2410.13720
https://arxiv.org/abs/2502.00234
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/2506.10892
https://arxiv.org/abs/2506.10892
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/2412.10193
https://arxiv.org/abs/2412.10193

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian
Karrer, Yaron Lipman, and Ricky T. Q. Chen. Flow matching with general discrete paths: A
kinetic-optimal perspective, 2024. URL https://arxiv.org/abs/2412.03487.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data, 2025. URL https://arxiv.org/abs/
2406.04329.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/
1503.03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.
09864.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
Hofmann. Generalized interpolating discrete diffusion, 2025. URL https://arxiv.org/
abs/2503.04482.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling, 2025. URL https://arxiv.org/abs/2503.
00307.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification, 2016. URL https://arxiv.org/abs/1509.01626.

Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. In-
formed correctors for discrete diffusion models, 2025. URL https://arxiv.org/abs/
2407.21243.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling, 2025. URL https://arxiv.org/abs/2409.02908.

15

https://arxiv.org/abs/2412.03487
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2010.02502
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2503.04482
https://arxiv.org/abs/2503.04482
https://arxiv.org/abs/2503.00307
https://arxiv.org/abs/2503.00307
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/2407.21243
https://arxiv.org/abs/2407.21243
https://arxiv.org/abs/2409.02908

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Background 2

2.1 Discrete Diffusion Models . 3

2.2 Diffusion Guidance . 5

3 The Ψ-Posteriors 5

4 Scalable Curriculum for Faster Training 6

5 Experiments 7

5.1 Ψ-Samplers . 7

5.2 Fast Curriculum . 9

6 Related work 10

7 Conclusion 10

A Ψ-Posteriors 17

A.1 Approximate Reverse Marginals . 17

A.2 Proof that the Ψ-posteriors have the correct marginals 17

A.3 Negative Evidence Lower Bound . 18

A.4 Recovering Predictor-Corrector Methods for Masked Diffusion 18

B Fast Curriculum 18

B.1 Generating the k largest Gaussian random variables out of K 19

B.2 How to Implement Our Fast Curriculum . 19

B.3 Inverse Transform Sampling . 21

B.4 Distribution of the largest random uniform variables out of K 21

B.5 Distribution of the second largest uniform random variable out of K 21

B.6 Conditional mean of the exponential of a Gaussian 22

B.7 Series Representation of T and ∂tT . 23

B.8 Polynomial Approximation of T . 26

C Experimental Details 27

C.1 Ψ-samplers . 27

C.2 Improved Curriculum . 27

C.3 Downstream Evaluation Protocol . 28

C.4 Zero-Shot Likelihood . 28

D Additional Experimental results 28

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.1 Tuning κt for the Ψ-samplers . 28

D.2 Distribution of the top k entries of the softmax . 29

D.3 Training Efficiency of Our Fast Curriculum . 29

A Ψ-POSTERIORS

A.1 APPROXIMATE REVERSE MARGINALS

We parameterize the (generative) Ψ-reverse marginals to have a similar form as the true posterior (11).
Therefore, the generative reverse marginals also factorizes over the sequence length. Because x1:L is
not available during sampling, there are two terms in (11) that are intractable. First, we choose to
replace the posterior qs|t(.|zℓt,xℓ) by qs|t(.|zℓt,xℓ = xℓ

θ). Additionally, as we cannot sample from
qs(.|xℓ) without xℓ, we replace xℓ by q0|t(.|zt,xℓ = xℓ

θ), ∀ℓ ∈ [L]. Replacing these two intractable
terms yield our generative reverse marginals:

Ψθ
s|t(.|zt) = κtqs|t(.|zt,x = xθ(zt, t)) + (1− κt)

[
αsq0|t(.|zt,x = xθ(zt, t)) + (1− αs)π

]
.

(14)

Note that for the masked posterior (2), q0|t(.|zt,x = xθ(zt, t)) = xθ(zt, t).

A.2 PROOF THAT THE Ψ-POSTERIORS HAVE THE CORRECT MARGINALS

Let Ψs|t(.|xℓ, zℓt) denote the Ψ-posteriors defined in (11). Let s denotes s(k) = t(k − 1) and t
denotes t(k). To prove that the Ψ-posteriors have the correct marginals, we proceed by (downwards)
induction, similar to Song et al. (2022). First, note that Ψs(z

ℓ
s|xℓ) can be written as a marginalization

over z̃ℓt , for s < t:
Ψs(z

ℓ
s|xℓ) =

∑
z̃ℓ
t

Ψt(z̃
ℓ
t|xℓ)Ψs|t(z

ℓ
s|z̃ℓt,x) (15)

Base Case Let Ψ1(z
ℓ
1|xℓ) denote the marginal at time t = 1. By definition in (11), Ψ1(z

ℓ
1|xℓ) =

Cat(.|π). Therefore, the Ψ-posteriors have the correct marginal for t = 1.

Induction hypothesis Suppose that the Ψ-posteriors have the correct marginal for a certain t ≤ 1,
that is, Ψt(.|xℓ) = qt(.|xℓ).

Inductive step Based on the induction hypothesis, we now show that Ψs(.|xℓ) = qs(.|xℓ), for
s(k) = t(k − 1). Indeed

Ψs(.|xℓ)
(1)
=
∑
z̃ℓ
t

Ψt(z̃
ℓ
t|xℓ)Ψs|t(z

ℓ
s|z̃ℓt,xℓ)

(2)
=
∑
z̃ℓ
t

qt(z̃
ℓ
t|xℓ)Ψs|t(z

ℓ
s|z̃ℓt,xℓ)

(3)
=
∑
z̃t

qt(z̃
ℓ
t|xℓ)

[
κtqs|t(z

ℓ
s|xℓ, z̃ℓt) + (1− κt)qs(z

ℓ
s|xℓ)

]
(4)
= κt

∑
z̃ℓ
t

qt(z̃
ℓ
t|xℓ)qs|t(z

ℓ
s|xℓ, z̃ℓt) + (1− κt)qs(z

ℓ
s|xℓ)

∑
z̃ℓ
t

qt(z̃
ℓ
t|xℓ)

(5)
= κtqs(z

ℓ
s|xℓ) + (1− κt)qs(z

ℓ
s|xℓ) = qs(z

ℓ
s|xℓ).

Specifically, (1) hold by (15), (2) by the induction hypothesis, (3) by definition of the Ψ-posteriors,
(4) by distributing qt(z̃

ℓ
t|xℓ), (5) by definition of marginal probability (first term), and by observing

that
∑

z̃ℓ
t
qt(z̃

ℓ
t|xℓ) = 1 since qt is normalized. This concludes the inductive step, and shows that the

Ψ-posteriors have the correct marginal.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 NEGATIVE EVIDENCE LOWER BOUND

Let zℓ0:1 denote a reverse trajectory with time indices {0, 1
T ,

2
T , . . . , 1} for token ℓ. The joint distribu-

tion of (xℓ, zℓ0:1) under the generative model factorizes as

pθ(xℓ, zℓ0:1) = p(xℓ | zℓ0)Ψ1(z
ℓ
1)

T∏
i=1

Ψθ
s|t(z

ℓ
s(i) | z

ℓ
t(i)), (16)

where each pair (s(i), t(i)) denotes one reverse transition with s(i) < t(i). The marginal likelihood
is

pθ(xℓ) =
∑
zℓ
0:1

pθ(xℓ, zℓ0:1). (17)

Introducing the variational distribution Ψ(zℓ0:1 | xℓ) = Ψ1(z
ℓ
1 | xℓ)

∏T
i=1 Ψs|t(z

ℓ
s(i) | z

ℓ
t(i),x

ℓ),
Jensen’s inequality results in:

− log pθ(xℓ) ≤ EΨ(zℓ
0:1|xℓ)

[
− log p(xℓ | zℓ0)

]
+KL

(
Ψ1(· | xℓ)

∥∥Ψ1

)
(18)

+

T∑
i=1

EΨ(zℓ
t(i)

|xℓ)

[
DKL

(
Ψs|t(· | zℓt(i),x

ℓ)
∥∥Ψθ

s|t(· | z
ℓ
t(i))

)]
. (19)

This expression is similar to the standard diffusion NELBO, with a reconstruction term, a prior
term at t=1, and a sum of KL divergences. As T →∞, p(xℓ | zℓ0) concentrates around xℓ, hence
− log p(xℓ | zℓ0)→ 0. Furthermore, the prior term is zero by definition of the Ψ-posteriors in (11).

A.4 RECOVERING PREDICTOR-CORRECTOR METHODS FOR MASKED DIFFUSION

Suppose that we work with masked diffusion, hence π = m. The Ψ-posteriors can be expanded as

Ψs|t(.|zℓt) = κtqs|t(.|zℓt,xℓ) + (1− κt)
[
αsq0|t(.|zℓt,xℓ) + (1− αs)π

]
(20)

= κt

Cat(.; zℓt), zℓt ̸= m,

Cat
(
.;
(1− αs)m+ (αs − αt)x

ℓ

1− αt

)
, zℓt = m

+ (1− κt)
[
αsx

ℓ + (1− αs)m
]

(21)

(1)
= κt

Cat(.;xℓ), zℓt ̸= m,

Cat
(
.;
(1− αs)m+ (αs − αt)x

ℓ

1− αt

)
, zℓt = m

+ (1− κt)
[
αsx

ℓ + (1− αs)m
]

(22)

=

{
Cat(.;κtx

ℓ + (1− κt)[αsx
ℓ + (1− αs)m]), zℓt ̸= m

Cat
(
.;κt

(1−αs)m+(αs−αt)x
ℓ

1−αt
+ (1− κt)[αsx

ℓ + (1− αs)m]
)
, zℓt = m

(23)

=

{
Cat(.; [κt + (1− κt)αs]x

ℓ + (1− κt)(1− αs)m), zℓt ̸= m

Cat
(
.;
[
κt

αs−αt

1−αt
+ (1− κt)αs

]
xℓ +

[
κt

1−αs

1−αt
+ (1− κt)(1− αs)

]
m
)
, zℓt = m

,

(24)

where (1) holds zℓt ̸= m implies that zℓt = xℓ, since in masked diffusion, the latents zℓt are either a
clean token or the masked token.

To conclude, if we pick κt = 1 − σt

1−αs
, where σt is the free parameter in the ReMDM sampler,

then the equation reduces to the ReMDM posterior. Therefore, the Ψ-posteriors generalize ReMDM,
which itself generalized the FB (Campbell et al., 2022) and DFM (Gat et al., 2024) posteriors.
Additionally, the Ψ-posteriors are not limited to masked diffusion, as we showed in this work.

B FAST CURRICULUM

In this section, we expand on the implementation of the efficient curriculum. In Sec. B.2, we focus
on the overall design and challenges of the curriculum. The soundness of our approach relies on a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

various mathematical results, which we also elaborate on in this section. Specifically, our efficient
curriculum uses inverse transform sampling (Sec. B.3) and the Cumulative Distribution Function
(CDF) distribution of the largest (Sec. B.3) and second largest (Sec. B.5) uniform random variable.
Furthermore, we derive an analytical expression for the conditional mean of the exponential of a
Gaussian random variable in Sec. B.6.

Furthermore, although the efficient curriculum could be implemented using the original definition of
the Diffusion Transformation Operator T , we show that T admits a convenient series expansion in
Sec. B.7. This avoids the need to precompute 100k function values, and simplifies the implementation.
Finally, in Sec. B.8, we show that T can be well approximated by a degree-9 polynomial, which
removes the need to store a large number of coefficients during training

B.1 GENERATING THE K LARGEST GAUSSIAN RANDOM VARIABLES OUT OF K

We show that it is possible to generate the k largest Gaussian random variables out of K via inverse
transform sampling (Suppl. B.3) as follows.

Given a single uniform random variable U ∼ U [0, 1], one can obtain a standard Gaussian random
variable W = Φ−1(U), where Φ is the Gaussian CDF, via inverse transform sampling. Now
assume we have a sorted list of K uniform random variables U1 ≥ U2 ≥ ... ≥ UK . Since Φ is a
monotonically increasing functions, the largest uniform random variable, U1, is mapped to the largest
Gaussian random variable, i.e. Φ−1(U1) is distributed as the largest Gaussian random variable out of
K.

As shown in Prop. B.1 the CDF of the largest uniform random variable out of K has an analytical
solution. For u ∈ [0, 1], P (U1 ≤ u) = uK , hence it can be generated via inverse transform sampling.

Furthermore, the distribution of the second largest, conditioned on U1 = u1 also admits a closed
form solution (Suppl. B.5): for u2 ∈ [0, u1], it is given by P (U2 ≤ u2|U1 = u1) = uK−1

2 u
−(K−1)
1 ,

i.e. it is distributed as the largest uniform variable out of K − 1, supported on [0, u1].

Finally, P (U3 ≤ u3|U2 = u2, U1 = u1) = P (U3 ≤ u3|U2 = u2). Indeed, since U2 ≤ U1, it does
not matter what value U1 takes, since U3 ≤ U2. Therefore P (U3 ≤ u3|U2 = u2) = uK−2

3 u
−(K−2)
2 ,

i.e. the largest uniform out of K − 2.

More generally, the same argument shows that conditioned on Ui = ui, the random variable Ui+1 is
distributed as the largest uniform variable on [0, ui] out of K − i+ 1. This shows that we can sample
U1, ..., Uk in decreasing order and without simulating all the K variables. Finally, the k largest Ui

can be transformed into the k largest standard Gaussians out of K as {Φ−1(Ui)}ki=1.

B.2 HOW TO IMPLEMENT OUR FAST CURRICULUM

Duo’s curriculum is expensive While Duo (Sahoo et al., 2025a) converges to lower validation
perplexities than UDLM (Schiff et al., 2025), the curriculum phase of Duo is expensive. Indeed, it
materializes a Gaussian-diffused vector of size B × L×K, where B represents the batch size, L the
context length, and K the vocabulary size. The Gaussian vector is normalized with a low-temperature
softmax. Directly sampling a tensor of shape B × L×K, applying the softmax, and multiplying
by the embedding table is computationally and memory intensive, especially for large vocabularies,
as the tensor size scales with K. Since Sahoo et al. (2025a) use a low-temperature softmax, only a
few entries are nonzero. This observation motivates our solution: approximate sampling of the top-k
nonzero entries, with k ≪ K.

Three Challenges To approximate Duo’s curriculum, we must address three main challenges:

• First, we need to sample the k largest zero-mean Gaussian random variables out of K, to
emulate the Gaussian Diffusion over the one-hot data samples x (Sec. B.2.1).

• Secondly, we must estimate the normalization constant of the softmax, without actually
sampling the K random variables (Sec. B.2.2).

• Third, we require an efficient method to sample k distinct integers from K without replace-
ment (Sec. B.2.3).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1 Scalable Top-k Approximation for Curriculum Learning

Input Clean token value x, vocabulary size K, top-k parameter k, inverse temperature τ , Gaussian
schedules αt, σt

Output Softmax weights λ ∈ [0, 1]k, top-k indices x̃, index of the largest variable zt.

{z(i)0 }ki=1 ← sample_top_gaussians(k,K − 1, 0, σt) ▷ Algo. 2.
zα ∼ N (αt, σt) ▷ Diffusion at the clean data index.

Ztop ← top-k
(
{zα} ∪ {z(i)0 }

)
▷ Keep the top k.

µ← E[exp(z · τ) | z < min(Ztop)] for z ∼ N (0, σt) ▷ For normalization, Prop. B.5

S ←
∑k

i=1 exp(Z
(i)
top · τ) ▷ S will contain the softmax normalization constant.

if zα ∈ Ztop then
S ← S + (K − k)µ ▷ Approximate non-simulated variables with their conditional mean.
x̃← [x] ∪ sample_neq_x(k − 1) ▷ Indices of the top k, Algo. 2.

else
S ← S + (K − k − 1)µ+ exp(zα · τ)
x̃← sample_neq_x(k)

end if
λi ← exp(Z

(i)
top · τ)/S for i = 0, . . . , k − 1

zt ← argmaxi Z
(i)
top ▷ Index of the top 1.

return λ, x̃, zt

Recall that Algo. 1 shows the pseudocode of the algorithm.

B.2.1 SAMPLING THE TOP k OUT OF K NORMAL RANDOM VARIABLES

Libraries such as numpy and pytorch provide accurate approximations of the Gaussian CDF
Φ and its inverse Φ−1, allowing us to generate Gaussian random variables via inverse transform
sampling (Sec. B.3). To sample K Gaussians, we could naively inverse-transform K uniform random
variables. Crucially, because Φ−1 is monotonic, the k largest uniforms correspond exactly to the k
largest Gaussians.

Finally, and importantly, we do not need to simulate all K uniform random variables to obtain the
top-k. The largest uniform out of K has a closed-form CDF with an analytical inverse (Sec. B.1).
Moreover, the second largest, conditioned on the largest, is itself uniform with a reduced support
(Sec. B.5). Thus, the top-k uniforms can be sampled sequentially, by first drawing the maximum,
then iteratively sample the remaining values in decreasing order.

In practice, a naive implementation of inverse transform sampling is numerically unstable when K is
large. For stability, operations should implemented in log-space, and Algo. 2 shows the pseudocode
for a log-space implementation

B.2.2 ESTIMATING THE NORMALIZATION CONSTANT OF THE SOFTMAX

Computing the normalization constant of the softmax,

softmax(x)i =
exp(xi)∑K
j=1 exp(xj)

, (25)

requires access to all values {xj}Kj=1. However, because K is large, we do not wish to simulate
all K random variables, and therefore cannot compute the softmax normalization constant exactly.
Fortunately, we find that when K is large, the contribution of each non-simulated random variable is
well approximated by E[exp(X) | X < c], where X ∼ N (0, σ) and c is the smallest among the top k
random variables that we have simulated. Recall that the analytical expression of E[exp(X) | X < c]
appears in (13) (proof in Suppl. B.6)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.2.3 SAMPLING INTEGERS WITHOUT REPETITIONS AND WITHOUT SHUFFLING

Suppose that x denotes the one-hot vector of category i. By symmetry, after after applying Gaussian
diffusion to x, all entries xj such that j ̸= i follow the exact same distribution. Therefore, they have
the same probability of being one of the top k largest random variable.

To implement the curriculum, we must not only approximate the weights of the embedding combina-
tion but also select which embeddings to include. Concretely, we sample k random indices without
repetition excluding i. If the random variable at position i, corresponding to the clean token, belongs
to the top-k, we replace one of the sampled indices with i. Otherwise, we use the k sampled indices
directly.

A simple way to sample k random indices without repetition is to shuffle a list of K integers and take
the first k. However, this defeats the purpose of our efficient curriculum, as it requires materializing
large tensors. Instead, Floyd’s algorithm (Bentley, 1999), given in Algo. 3, samples without repetition
while avoiding shuffling. Although sequential with k iterations, it is much faster than shuffling when
k ≪ K.

B.3 INVERSE TRANSFORM SAMPLING

The Inverse Transform Sampling method (Devroye, 1986) is an algorithm for simulating continuous
random variables with a known Cumulative Distribution Function (CDF) FX . Implementing Inverse
Transform Sampling requires access to the inverse CDF F−1

X , and a source of i.i.d uniform random
variables. If X = F−1

X (U), where U ∼ U [0, 1], then X ∼ FX . Indeed,

P(X ≤ x) = P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) = FX(x), (26)

since for a ∈ [0, 1], P(U ≤ a) = a. This shows that X has the correct distribution.

B.4 DISTRIBUTION OF THE LARGEST RANDOM UNIFORM VARIABLES OUT OF K

Additionally, the distribution of the largest uniform random variable out of K admits a simple
closed-form expression:

Proposition B.1 (Distribution of the largest random uniform random variable out of K). U (1) ≥
U (2) ≥ ... ≥ U (K) denote an order statistic over K i.i.d uniform random variables U([0, θ]) with
Cumulative Density Function (CDF) FU . Suppose that u ∈ [0, 1], then FU (u) = u

θ . Then, the
CDF FU(1) and probability density function (PDF) fU(1) of the largest random variable U (1) are as
follows:

FU(1)(u) = FK
U (u) = uKθ−K

fU(1)(u) = KFK−1
U (x)fU (x) = KF

(K−1)
U (x)f(x) = KxK−1θ−K

(27)

Proof.
FU(1)(u) = P(U (1) ≤ u) = P(Ui ≤ u ∀i) = P (U ≤ u)K = FK

U (u). (28)
The PDF is obtained by differentiation:

fU(1)(x) =
d

dx
FU(1)(u) = KFK−1

X (u)fU (u), (29)

B.5 DISTRIBUTION OF THE SECOND LARGEST UNIFORM RANDOM VARIABLE OUT OF K

We use Prop. B.2 to find the distribution of the second largest uniform random variable out of K:
Proposition B.2 (Conditional Density (Berger & Casella, 2001)). Let X,Y be two random variables
with joint density fX,Y and marginals fX , fY . Then, the conditional density of X given Y = y is

fX|Y=y(x|y) =
fX,Y (x, y)

fY (y)
. (30)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Furthermore, the proof relies on the distribution of a pair of order statistic (X(k), X(l)):

Proposition B.3 (Joint Density of Order Statistics (Berger & Casella, 2001)). Let X(N) ≥ ... ≥ X(1)

denote an order statistic over N random variables with CDF F and PDF f . Then, the joint density
of the variables X(k) and X(l), where k < l is given by

fX(k),X(l)(u, v) =

N !

(k − 1)!(l − k − 1)!(N − l)!
F (u)k−1(F (v)− F (u))l−k−1(1− F (v))N−lf(u)f(v).

(31)

See Border (2021) for a proof. Finally, using Prop. B.2 and B.3, we prove the main result:

Proposition B.4 (Conditional Distribution of U (K−1) given U (K)). Let U (K) ≥ · · · ≥ U (1) denote
the order statistics of K independent and uniformly distributed random variables on [0, θ], arranged
in descending order. Conditioned on U (K) = z, U (K−1) is distributed as the largest of (K − 1) i.i.d
uniform random variables on [0, z].

Proof. From Proposition B.3, the joint distribution fX(N−1),X(N)(u, v) is given by

fX(N−1),X(N)(u, v) =
N !

(N − 2)!
F

(N−2)
X (u)f(u)f(v) = N(N − 1)u(n−2)θ−n. (32)

Using Proposition B.2, we can conclude:

fX(N−1)|X(N)(u | v) =
fX(N−1),X(N)(u, v)

fX(N)(v)
=

N(N − 1)u(N−2)θ−N

NvN−1θ−N

= (N − 1)u(N−2)v(N−1),

(33)

which is precisely the density of the largest out of N − 1 independent uniform random variables on
[0, v].

B.6 CONDITIONAL MEAN OF THE EXPONENTIAL OF A GAUSSIAN

Finding the analytical expression of E [exp(X)|X < c] requires the expression for the conditional
density, given that X ∈ A for A are Borel set with non-zero probability:
Proposition B.5 (Conditional Density). Let X be a random variable with density fX , and let A be a
Borel set such that P(X ∈ A) > 0. Then the conditional density of X given X ∈ A is

fX|X∈A(x) =
fX(x)1{x ∈ A}

P(X ∈ A)
. (34)

Proof. Since X admits the density fX , for any Borel set B ⊆ R we have

P(X ∈ B) =

∫
B

fX(x)dx. (35)

By definition of conditional probability, whenever P(X ∈ A) > 0,

P(X ∈ B | X ∈ A) =
P(X ∈ B ∩A)

P(X ∈ A)
. (36)

Using the density representation of the numerator gives

P(X ∈ B | X ∈ A) =

∫
B∩A

fX(x)dx

P(X ∈ A)
. (37)

Define

g(x) =
fX(x)1{x ∈ A}

P(X ∈ A)
(x ∈ R). (38)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then for every Borel set B∫
B

g(x)dx =
1

P(X ∈ A)

∫
B∩A

fX(x)dx = P(X ∈ B | X ∈ A). (39)

In particular, choosing B = R yields
∫
R g(x)dx = 1, so g is a valid probability density. Hence g is a

density that realizes the conditional probabilities, i.e. g = fX|X∈A.

After proving Prop. B.5, we can prove that

logE[exp(X) | X < c] =
σ

2
− log Φ(c/σ) + log Φ(

c− σ2

σ
). (40)

Proof.

E[exp(X) | X < c]

=

∫ c

−∞
exp(x)

fX(x)

P(X < c)
dx

=
1

Φ(c/σ)

∫ c

−∞
exp(x)

1√
2πσ2

exp

(
− x2

2σ2

)
dx

=
1

Φ(c/σ)

1√
2πσ2

∫ c

−∞
exp

(
− x2

2σ2
+ x

)
dx

=
1

Φ(c/σ)

1√
2πσ2

∫ c

−∞
exp

(
− 1

2σ2
(x2 − 2σ2x+ σ4 − σ4)

)
dx

=
exp(σ2/2)

Φ(c/σ)

1√
2πσ2

∫ c

−∞
exp

(
− 1

2σ2
(x− σ2)2

)
dx

=
exp(σ2/2)

Φ(c/σ)
Φ

(
c− σ2

σ

)

Applying a log on both sides yields

logE[exp(X) | X < c] =
σ

2
− log Φ(c/σ) + log Φ(

c− σ2

σ
), (41)

which is the expression in (13).

B.7 SERIES REPRESENTATION OF T AND ∂tT

We begin by station the Series expansion for T (Prop. B.6) and its time-derivative ∂tT (Prop. B.7):
Proposition B.6 (Series Expansion of the Diffusion Transformation Operator). The diffusion trans-
formation operator T can be expressed as:

T (α̃t) =
K

K − 1

[
e−ν2

t /2
∞∑

n=0

νnt
n!

Mn −
1

K

]
(42)

νt =
α̃t√
1−α̃2

t

and Mn =
∫∞
−∞ znϕ(z)ΦK−1(z)dz.

Proposition B.7 (Time-Derivative of the Diffusion Transformation Operator). The time-derivative of
the diffusion transformation operator T can be expressed as:

d

dt
T (α̃t) =

K · e−ν2
t /2

K − 1

α̃′
t

(1− α̃t)3/2

∞∑
n=0

νnt
n!

[In − νtMn] (43)

where νt and Mn are defined as in Prop. B.6. Finally, In =
∫∞
−∞ zn+1ϕ(z)ΦK−1(z)dz, and α̃′

t

denotes the time-derivative of the Gaussian noise schedule α̃t.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

At this point, one might ask what is gained by expressing T as a series expansion. There are two key
advantages. First, since T is intractable, Sahoo et al. (2024) resort to precomputing 100k evaluations,
which can take up to two hours with the GPT-2 tokenizer. Second, they approximate the time
derivative using finite differences. Crucially, observe that Mn and In in Prop. B.6 and B.7 are the
only intractable components of the series expansion, and they are independent of the input α̃t. We
find that the terms of the series decay to zero after roughly 150 terms (with slower decay as t→ 1).
Thus, instead of pre-computing 100k evaluations of T , it suffices to cache Mn and In for n < 150.
In practice, this takes only a few seconds and can be performed at the start of training. We now prove
Prop. B.6 and B.6.

B.7.1 PROOF OF PROPOSITION B.6

To prove the result, we rely on the following proposition:

Proposition B.8 (First Corollary of the Dominated Convergence Theorem (Folland (1999), Theorem
2.25)). If the sum

∑∞
n=0 fn(x) exists for all x and there exists an integrable function g(x) such that∣∣∣∣∣

k∑
n=0

fn(x)

∣∣∣∣∣ ≤ g(x) (44)

for all k, then ∫ ∞

−∞

∞∑
n=0

fn(x)dx =

∞∑
n=0

∫ ∞

−∞
fn(x)dx. (45)

We now prove Prop. B.6 using Prop. B.8:

Proof. Recall that the standard Gaussian PDF is given by

ϕ(x) =
1√
2π

e−x2/2. (46)

For notational convenience, let νt = α̃t√
1−α̃t

2
. We can rewrite ϕ(x− νt) in terms of ϕ(x):

ϕ(x− νt) =
1√
2π

e−(x−νt)
2/2 =

1√
2π

e−(x2−2νtx+ν2
t)/2 = ϕ(x)eνtxe−ν2

t /2. (47)

Using the definition of the infinite series of ex, we can expand eνtx:

ϕ(x− νt) = ϕ(x)e−ν2
t /2

∞∑
n=0

νnt x
n

n!
. (48)

Substituting this into our original integral:∫ ∞

−∞
ϕ (z − νt) Φ

K−1(z)dz =

∫ ∞

−∞
ϕ(z)e−ν2

t /2
∞∑

n=0

νnt z
n

n!
ΦK−1(z)dz (49)

Since Prop. B.8 is satisfied, as the sum is the Taylor series of the exponential function, we can
exchange the order of integration and summation. This leads to our final result:∫ ∞

−∞
ϕ (z − νt) Φ

K−1(z)dz = e−ν2
t /2

∞∑
n=0

νnt
n!

∫ ∞

−∞
znϕ(z)ΦK−1(z)dz

= e−ν2
t /2

∞∑
n=0

νnt
n!

Mn.

(50)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.7.2 PROOF OF PROP. B.7

Once again, we need to exchange the order of operations to prove Prop. B.7, which relies on Prop. B.9:

Proposition B.9 (Second Corollary of the Dominated Convergence Theorem (Folland (1999), The-
orem 2.27)). Let f(x, t) be differentiable in t and suppose there exists a function g(x, t) such
that:

1.
∣∣∣∂f(x,t)∂t

∣∣∣ ≤ g(x, t0) for all x and t in some neighborhood |t− t0| ≤ δ0

2.
∫∞
−∞ g(x, t)dx <∞ for all t

Then
d

dt

∫ ∞

−∞
f(x, t)dx =

∫ ∞

−∞

∂f(x, t)

∂t
dx (51)

In our case, we have

f(x, t) = ϕ

(
z − α̃t√

1− α̃2
t

)
ΦK−1(z) = ϕ (z − νt) Φ

K−1(z) (52)

which has time derivative
(z − νt)ϕ(z − νt)

(1− α2
t)

3/2
ΦK−1(z). (53)

Therefore, we need to find a suitable function g that satisfies Prop. B.9 to justify swapping the order
of integration and differentiation.

Proof. Let 1 > δ0 > 0 and choose t0 = 1−δ0
2 . When |t− t0| ≤ δ0, we have t ∈ [t0 − δ0, t0 + δ0].

Since t0 − δ0 < t0 < 1 and t0 + δ0 = 1−δ0
2 + δ0 < 1, we are guaranteed that t < 1. This ensures

that νt is finite. Because αt ∈ [0, 1) when t < 1, there exist a constant C, such that

C := max
|t−t0|≤δ0

1

(1− α2
t)

3/2
<∞. (54)

For z ∈ R and |t− t0| ≤ δ0, we can bound the absolute value of the time derivative of f as follows:∣∣∣∣∂f(z, t)∂t

∣∣∣∣ = |z − νt|
(1− α2

t)
3/2

ϕ(z − νt) Φ
K−1(z)

≤ C|z − νt|ϕ(z − νt) = g(z, t).

Finally, for all t ∈ [0, 1):∫ ∞

−∞
g(z, t)dz = C

∫ ∞

−∞
|z − νt|ϕ(z − νt)dz = C

∫ ∞

−∞
|z|ϕ(z)dz

= C

∫ ∞

−∞
|z|ϕ(z)dz = 2C

∫ ∞

0

zϕ(z)dz

= 2C

∫ ∞

0

z · 1√
2π

e−z2/2dz

=
2C√
2π

∫ ∞

0

ze−z2/2dz

=
2C√
2π
· 1 = C

√
2

π
<∞,

(55)

where we used the substitution u = z2/2 in the integral
∫∞
0

ze−z2/2dz to obtain
∫∞
0

e−udu = 1.

We can now prove Proposition B.7

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Approximation
Ground-Truth
Approximation

0.0 0.2 0.4 0.6 0.8 1.0

10 8

10 7

10 6

10 5

Error

POLY9

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Approximation

Ground-Truth
Approximation

0.0 0.2 0.4 0.6 0.8 1.0

10 7

10 6

10 5

10 4

10 3

Error

POLY5

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
Approximation

Ground-Truth
Approximation

0.0 0.2 0.4 0.6 0.8 1.0

10 7

10 6

10 5

10 4

10 3

10 2

Error

SIGMOID

Figure 6: Polynomial approximation and approximation error, compared to the series approximation,
truncated at 150 terms. The degree-9 polynomial (left) achieves orders of magnitude lower error than
the degree-5 polynomial (center) and sigmoid (right) approximations.

Proof. We want to compute

d

dνt
T (αt) =

K

K − 1

d

dνt

∫
ϕ(z − νt)Φ

K−1(z)dz (56)

Applying the derivative under the integral sign and using the identity ϕ(z − νt) = ϕ(z)eνtze−ν2
t /2,

we have:
d

dνt
ϕ(z − νt) = ϕ(z)

d

dνt
[eνtz−ν2

t /2]

= ϕ(z)eνtz−ν2
t /2(z − νt)

= (z − νt)ϕ(z − νt)

(57)

Therefore:
d

dνt
T (αt) =

K

K − 1

∫ ∞

−∞
(z − νt)ϕ(z − νt)Φ

K−1(z)dz (58)

Now using the Taylor series of ϕ(z − νt), found earlier, and inverting the sum and integral as before,
we find

d

dνt
T (αt) =

K

K − 1

∫ ∞

−∞
(z − νt)ϕ(z)e

νtze−ν2
t /2ΦK−1(z)dz

=
K · e−ν2

t /2

K − 1

∞∑
n=0

νnt
n!

[∫ ∞

−∞
zn+1ϕ(z)ΦK−1(z)dz − νt

∫ ∞

−∞
znϕ(z)ΦK−1(z)dz

]

=
K · e−ν2

t /2

K − 1

∞∑
n=0

νnt
n!

[In − νtMn] .

(59)
where In =

∫∞
−∞ zn+1ϕ(z)ΦK−1(z)dz and Mn =

∫∞
−∞ znϕ(z)ΦK−1(z)dz.

This expansion allows us to compute the derivative of the diffusion transformation operator with
respect to νt in terms of moments of the standard normal distribution weighted by powers of the
CDF.

B.8 POLYNOMIAL APPROXIMATION OF T

Because the Diffusion Transformation Operator T has a sigmoid-like shape, we approximating it with
S-shaped functions that require only a handful of coefficients. This allows us to store fewer parameters
during training, instead of the 100k values required by the original curriculum or the 300 coefficients
from the series approximation. Concretely, we test several functional forms with fewer than 10
parameters and fit them using non-linear least squares, via scipy.optimize.curve_fit.

As shown in Figure 6, approximations tend to be less accurate at the boundaries, when t ≈ 0 or t ≈ 1.
We find that the degree-9 polynomial works better than a sigmoid function of the form aσ(bt+ c)+d,
especially at the boundaries.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 Ψ-SAMPLERS

C.1.1 OPENWEBTEXT

To evaluate the samplers, we use the pre-trained MDLM (Sahoo et al., 2024) and Duo (Sahoo et al.,
2025a) checkpoints, as well as their distilled variants (using SDTT (Deschenaux & Gulcehre, 2025)
and discrete consistency distillation, respectively, after 5 rounds of 10k steps). We re-state the
training hyperparameters of both models in Suppl. C.2.1. For ReMDM, we use both the official
implementation of Wang et al. (2025) and our re-implementation, which matches the original results
while supporting additional sampling schedules beyond the log-linear one. See Suppl. D.1 for details
on selecting κt.

C.1.2 CIFAR10 (D3PM-LIKE ARCHITECTURE)

Table 3: Model architecture on CIFAR10

Component Value

Vocab size 256
Number of ResNet blocks per scale 2
Base channels 128
Channel multiplier per scale (1,2,2,2)
Attention resolutions 16
Conditional embedding dimension 128
Number of parameters 35.8M

We train a U-Net backbone (Ronneberger et al.,
2015) for 1.5M steps with a batch size of 128,
using class conditioning with a class-dropout
rate of 0.1 (as in Schiff et al. (2025)), and the
default hyperparameters of Austin et al. (2023)
(Table 3). For both MDLM and Duo, we exper-
iment with time-conditional and unconditional
variants, and train models using either cosine
or log-linear noise schedules. See Table 6 for
the ancestral-sampling evaluation of all variants
after pre-training. See Suppl. D.1 for details on
selecting κt.

C.2 IMPROVED CURRICULUM

C.2.1 LANGUAGE MODELING

We adopt the same setup as prior work on discrete diffusion (Lou et al., 2024; Sahoo et al., 2024;
2025a), and restate it for completeness.

LM1B We detokenize the the One Billion Words (Chelba et al., 2014) as in Lou et al. (2024); Sahoo
et al. (2024)1, and tokenize it using the bert-base-uncased tokenizer (Devlin et al., 2019), as
He et al. (2022). We use a context length of 128 and pad shorter documents.

OpenWebText We tokenize OpenWebText (Gokaslan & Cohen, 2019) with the GPT-2 tokenizer,
concatenate sequences to a length of 1024, and insert an eos token between documents. Since the
dataset lacks an official validation split, we reserve the last 100k documents for validation.

Backbone We parameterize all models using the modified diffusion transformer architecture of
Peebles & Xie (2023), following Lou et al. (2024); Sahoo et al. (2024). Our models use 12 layers,
a hidden dimension of 768, 12 attention heads, and a timestep embedding of size 128 for the
uniform-state diffusion variants. Word embeddings are not tied between input and output.

Curriculum Lookup For the Duo baseline, we train models using the original code. To implement
the efficient curriculum, we replace the full linear combination of embeddings by a sparse lookup,
implemented using torch.nn.functional.embedding_bag to avoid materializing interme-
diate tensors. The curriculum phase lasts for the first 500k steps, after which we perform regular
embedding table lookups, just like Sahoo et al. (2025a).

1https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/
main/data.py

27

https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py
https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Optimization We train all models with the AdamW optimizer (Loshchilov & Hutter, 2019) using a
batch size of 512. The learning rate is linearly warmed up from 0 to 3× 10−4 over 2,500 steps, then
kept constant for the remainder of training. We apply a dropout rate of 0.1 throughout.

C.3 DOWNSTREAM EVALUATION PROTOCOL

We evaluate downstream performance using the lm-eval-harness library (Gao et al., 2024),
following the protocol of Deschenaux et al. (2025). We focus on multiple choice tasks, where
the log-likelihood of each candidate answer, given a prompt, is computed and the answer with the
highest score is selected. For diffusion language models, which optimize a variational bound on the
log-likelihood of the full sequence, we adapt the evaluation by using Bayes’ rule:

log p(yi|x) = log p(x,yi)− log p(x) ∝ log p(x,yi), (60)

Since log p(x) does not depend on the candidate yi, we simply select the answer that maximizes
log p(x,yi). In practice, we use the log-likelihood ELBO (4), estimated via Monte Carlo with 1024
samples, and choose the continuation yi with the highest estimated likelihood.

C.4 ZERO-SHOT LIKELIHOOD

Our setting is the same as used by Sahoo et al. (2025a). Specifically, we measure the likelihood
of the models trained on OpenWebText using the validation splits of seven diverse datasets: Penn
Tree Bank (PTB; Marcus et al. (1993)), Wikitext (Merity et al., 2016), One Billion Words (LM1B;
Chelba et al. (2014)), Lambada (Paperno et al., 2016), AG News (Zhang et al., 2016), and Scientific
Papers (Pubmed and Arxiv subsets; Cohan et al. (2018)). The datasets are detokenized following
the protocol of Lou et al. (2024); Sahoo et al. (2025a). We wrap all sequences to a maximum length
of 1024 tokens and do not insert eos tokens between them. Table 5 shows that we reach similar
performance as Duo.

D ADDITIONAL EXPERIMENTAL RESULTS

In Suppl. D.1, we elaborate on the impact of κt on the performance of the Ψ-samplers. In Suppl. D.2,
we show that our efficient curriculum produces weights with the same marginal distributions as Sahoo
et al. (2025a).

D.1 TUNING κt FOR THE Ψ-SAMPLERS

As discussed in Sec. 5.1, the choice of κt is critical for strong performance. With a poor choice of
κt, Ψ-samplers can underperform ancestral sampling. Below, we report all of our hyperparameter
sweeps across datasets.

• We perform image modeling on CIFAR-10 using the U-Net architecture of Austin et al.
(2023); Schiff et al. (2025), and use horizontal flipping as the sole data augmentation.

• We evaluate Ψ-samplers on OpenWebText (Gokaslan & Cohen, 2019) using the original
checkpoint of MDLM (Sahoo et al., 2024) and Duo (Sahoo et al., 2025a).

D.1.1 CIFAR-10

We report FID (Heusel et al., 2018), computed between 50k generated samples and the training set.
Before evaluating Ψ-samplers, we ablate on the training hyperparameters. Specifically, we train
models with cosine and log-linear noise schedule, optionally with time-conditioning. We sample
with both cosine and log-linear schedules. Finally, we check whether nucleus sampling (Holtzman
et al., 2020) and greedy decoding on the final step can help, compared to vanilly ancestral sampling.
Since nucleus sampling helps Duo but not MDLM, we compare the two models without nucleus
sampling. Table 6 shows the validation perplexity and FID for a few number of sampling steps.
Table 7 reports FID for ancestral sampling using step counts that are powers of two, from 32 up to
4096. Table 8 shows the results with ReMDM. Table 9 reports FID scores for Ψ-samplers using a
stepwise-constant κ schedule. Table 11 shows the performance of Ψ-samplers using the κ schedule
equivalent to ReMDM. We obtain similar results, which supports our theoretical claims.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• MDLM (Ancestral). Training with cosine noise schedule and time conditioning yields the
best validation perplexity and FID.

• MDLM (ReMDM). We find that ReMDM improves the best FID over ancestral sampling,
from 24.73 to 23.71 using 4096 sampling steps. Nucleus sampling can help at very low step
counts, but the best performance is obtained with ancestral sampling. As the number of
steps increases, nucleus sampling worsen the FID.

• Duo (Ancestral). Cosine training without time conditioning yields the lowest perplexity,
while log-linear training without time conditioning gives the best FID. We use the latter in
downstream experiments. Nucleus sampling improves FID, and greedy decoding slightly
worsen it.

• Duo (Ψ-samplers). Ψ-samplers further improve performance beyond ReMDM. With the
log-linear sampling schedule (as used by ReMDM), Ψ-samplers reduce the FID from 23.71
to 20.71. Using a cosine sampling schedule further improves the FID. Overall, Duo improves
from an FID of 25.63 (ancestral) to 15.05 with Ψ-samplers, and MDLM improves from
24.73 (ancestral) to 17.86 with Ψ-samplers.

D.1.2 OPENWEBTEXT

We report the generative perplexity using GPT-2 Large, following standard practice (Sahoo et al.,
2024; 2025a). Because language models can artificially lower the generative perplexity by producing
repetitive text, we also report unigram entropy (Dieleman et al., 2022), as a proxy.

Some Ψ-samplers schedules reduce the unigram entropy more than others. Therefore, for figures,
we select the κ schedule whose unigram entropy matches (or is closest to) the entropy of samples
generated with ancestral sampling. If multiple schedules achieve the same entropy, we choose the
one with the lowest generative perplexity. We indicate which schedule is used for plots byhighlight
the corresponding row in blue in the tables. Overall, the Ψ-samplers can reduce the Gen. PPL of all
models while retaining the unigram entropy. Best results are achieved using the rescale schedule with
η ∈ {0.01, 0.02}, for both MDLM and Duo.

Table 13 shows the generative perplexity of MDLM and Duo after pre-training and after distillation
with SDTT (Deschenaux & Gulcehre, 2025) or DCD (Sahoo et al., 2025a) respectively, with and
without nucleus sampling, using ancestral sampling. Table 14 shows the results when sampling with
Ψ-samplers that are equivalent to ReMDM (Wang et al., 2025), with the non-distilled models, while
Table 15 shows the result for the distilled models.

D.2 DISTRIBUTION OF THE TOP k ENTRIES OF THE SOFTMAX

To verify that our sparse implementation accurately approximates the curriculum weights of Sahoo
et al. (2025a), we compare the empirical distributions of the top-k largest entries between the original
and our efficient implementation. While matching marginal distributions does not guarantee matching
joint distributions, matching marginals are necessary for matching joints, and are easier to visualize.
Recall that experimentally, our efficient implementation is sufficient to achieve strong performance
(Sec. 5.2). Specifically, we show histograms using a tokenizer with 100k tokens in Figures 8, 9,
10, 11, and with the GPT-2 tokenizer in Figures 12, 13, 14, 15, with varying temperature and log
signal-to-noise ratios. In all cases, the top k variables have matching distributions.

D.3 TRAINING EFFICIENCY OF OUR FAST CURRICULUM

As shown in Table 4, our sparse curriculum achieves a 33% reduction in peak memory usage and
reaches an average throughput 25% higher than Duo, at a context length of 1024.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 4: Training efficiency comparison between Duo and Duo++ on 138M parameter models. All
measurements are conducted on a training job on 8 NVIDIA GH200-120GB GPU with batch size
32. We report the average throughput in sequence per second. The row “Duo (afer CL)” denotes
the resources consumption of Duo after the Curriculum phase. The impact of k is minimal when
k ∈ {2, 3, 5}, and Duo++ uses similar resources.

Method Throughput Peak Memory
(samples/s) ↑ (GiB) ↓

Duo 81.8 94.3
Duo (after the CL) 122.4 63.3
Duo++ (k ∈ {2, 3, 5}) 121.9 63.4

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 5: Zero-shot perplexity (PPL) on seven datasets. Lower is better. †Results taken from Sahoo
et al. (2025a). Duo++ (k = 2) achieves a slightly lower zero-shot perplexity than Duo on 6 of 7
datasets.

PTB Wiki LM1B LBD AG News PubMed ArXiv

Autoregressive
Transformer† 82.05 25.75 51.25 51.28 52.09 49.01 41.73

Diffusion (138M)
SEDD Uniform† 105.51 41.10 82.62 57.29 82.64 55.89 50.86
UDLM† 112.82 39.42 77.59 53.57 80.96 50.98 44.08
Duo† 89.35 33.57 73.86 49.78 67.81 44.48 40.39
Duo++ (k = 2) 94.96 34.05 73.80 48.67 67.14 43.98 38.93
Duo++ (k = 3) 91.94 34.65 74.16 49.89 66.89 44.87 40.42
Duo++ (k = 5) 94.46 34.52 74.91 50.93 68.72 46.79 41.04

Algorithm 2 Reverse Sampling from Order Statistics of Gaussian Random Variables

Input Number of variables N , standard deviation σ, number of top values k
Sample Uℓ ∼ U(0, 1), for N ≥ ℓ ≥ N − k + 1

Compute the random variables: Rℓ =
logUℓ

ℓ

Compute the cumulative sums: Pℓ =
∑N

m=ℓ Rm

Let Vℓ = exp(Pℓ), the ℓ-th sample from the (uniform) order statistic.
Apply inverse normal CDF: X(ℓ) = Φ−1(Vℓ) · σ
return {X(ℓ)}N−k+1

ℓ=N

Algorithm 3 Floyd’s Algorithm for Sampling Without Repetition

Input Number of possible values N , number of samples k.
Initialize array S of size k to store samples
for t = 0 to k − 1 do

Sample j ∼ Randint(0, N − k + t)
if t > 0 and j appears in S[0 : t] then
S[t]← N − k + t {Use largest remaining value}

else
S[t]← j

end if
end for
return S

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

32 128 256 512 1024 4096
NFE

15
20

30

50

80

120

200

Ge
n.

 P
PL

(5.7)
(5.6) (5.6) (5.6) (5.6) (5.6)

(5.5)
(5.5) (5.5) (5.5) (5.5) (5.5)

(5.5)

(5.4)
(5.4)

(5.4)
(5.3)

(5.2)

(5.5) (5.5)
(5.4)

(5.4)

(5.3)

(5.2)

MDLM
Duo
MDLM+ReMDM
Duo+ + + -sampler

(a) Generative perplexity of Duo++ (ours) as a func-
tion of the number of sampling steps (NFEs). Duo++

generalizes ReMDM (Wang et al., 2025) and the per-
formance consistently improve with the number of
sampling steps. We annotate each curve with the av-
erage unigram entropy per generated sequence as a
proxy for diversity. Nucleus sampling (p = 0.9) is
used for ReMDM but not other samplers

32 128 256 512 1024 2048 4096
NFE

17
20

25
30

40

60

90

130

FI
D

Duo
Duo+ + + -samplers
MDLM
MDLM+ReMDM

(b) On CIFAR-10, Duo++ achieves lower FID than
MDLM (with ReMDM). Moreover, Duo++ obtains a
better FID in just 128 steps than Duo with ancestral
sampling in 4096 steps. We use temperature scaling
(T=0.8) in all experiments.

32 128 256 512 1024 2048 4096
NFE

4

5

6

7

8

9

10

IS

Duo
Duo+ + + -samplers
MDLM
MDLM+ReMDM

(c) On CIFAR-10, Duo++ achieves lower Incep-
tion Score than MDLM (with ReMDM). Moreover,
Duo++ obtains a better FID in just 128 steps than
Duo with ancestral sampling in 4096 steps. We use
temperature scaling (T=0.8) in all experiments.

Figure 7: Additional comparison of ancestral and Ψ-samplers on CIFAR-10 and OWT.

0.2 0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

top-1

0.0 0.2 0.4

100

101

top-2

0.0 0.1 0.2 0.3
10 3

10 2

10 1

100

101

102

top-3

0.0 0.1 0.2
10 3

10 2

10 1

100

101

102

top-4

0.00 0.05 0.10 0.15

10 2

10 1

100

101

102

top-5Efficient
Naive

Figure 8: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 100, and log signal-to-noise ratio −2. The histograms of the efficient and naive imple-
mentation match closely.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

102
top-1

0.0 0.2 0.4

10 1

100

101

102
top-2

0.0 0.1 0.2 0.3
10 3

10 2

10 1

100

101

102

top-3

0.000 0.025 0.050 0.075

10 2

10 1

100

101

102

103
top-4

0.00 0.01 0.02

10 1

101

103

105

top-5Efficient
Naive

Figure 9: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio −1. The histograms of the efficient and naive
implementation match closely.

0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

102
top-1

0.0 0.2 0.4

10 1

100

101

102
top-2

0.0 0.1 0.2 0.3
10 3

10 2

10 1

100

101

102

top-3

0.000 0.025 0.050 0.075 0.100

10 2

10 1

100

101

102

103

top-4

0.00 0.01 0.02
10 2

10 1

100

101

102

103

104
top-5Efficient

Naive

Figure 10: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio −2. The histograms of the efficient and naive
implementation match closely.

0.6 0.8 1.0

10 3

10 2

10 1

100

101

102
top-1

0.0 0.2 0.4
10 3

10 2

10 1

100

101

102
top-2

0.000 0.025 0.050 0.075 0.100

10 2

10 1

100

101

102

103
top-3

0.00 0.02 0.04

10 1

101

103

105

top-4

0.0 0.5 1.0 1.5
1e 5

102

103

104

105

106

107

top-5Efficient
Naive

Figure 11: Marginal distributions of the top-5 entries using a tokenizer with 100k tokens, inverse
temperature 1000, and log signal-to-noise ratio −4. The histograms of the efficient and naive
implementation match closely.

0.2 0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

top-1

0.0 0.2 0.4

100

101

top-2

0.0 0.1 0.2 0.3

10 2

10 1

100

101

102

top-3

0.0 0.1 0.2
10 3

10 2

10 1

100

101

102

top-4

0.00 0.05 0.10 0.15

10 2

10 1

100

101

102

top-5Efficient
Naive

Figure 12: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
100, and log signal-to-noise ratio −2. The histograms of the efficient and naive implementation
match closely.

0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

102
top-1

0.0 0.2 0.4

10 1

100

101

102
top-2

0.0 0.1 0.2 0.3
10 3

10 2

10 1

100

101

102

top-3

0.00 0.05 0.10

10 2

10 1

100

101

102

103
top-4

0.00 0.02 0.04 0.06 0.08

10 2

10 1

100

101

102

103

104
top-5Efficient

Naive

Figure 13: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio −1. The histograms of the efficient and naive implementation
match closely.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0.4 0.6 0.8 1.0

10 3

10 2

10 1

100

101

102
top-1

0.0 0.2 0.4

10 1

100

101

102
top-2

0.0 0.1 0.2 0.3
10 3

10 2

10 1

100

101

102

top-3

0.00 0.05 0.10 0.15

10 2

10 1

100

101

102

103
top-4

0.000 0.001 0.002 0.003
10 1

100

101

102

103

104

top-5Efficient
Naive

Figure 14: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio −2. The histograms of the efficient and naive implementation
match closely.

0.6 0.8 1.0
10 3

10 2

10 1

100

101

102
top-1

0.0 0.2 0.4
10 3

10 2

10 1

100

101

102
top-2

0.00 0.02 0.04 0.06 0.08

10 2

10 1

100

101

102

103
top-3

0.00 0.02 0.04 0.06 0.08

10 2

10 1

100

101

102

103

top-4

0 2 4 6
1e 5

102

104

106

108
top-5Efficient

Naive

Figure 15: Marginal distributions of the top-5 entries using the GPT-2 tokenizer, inverse temperature
1000, and log signal-to-noise ratio −4. The histograms of the efficient and naive implementation
match closely.

Table 6: FID on CIFAR-10 with ancestral sampling. We train and sample with the log-linear and
cosine scheduler. MDLM performs best with time-conditioning while Duo does not. We sample with
discrete classifier-free guidance (Schiff et al., 2025) with strength 1, and greedy predictions on the
last step.

Scheduler Time PPL ↓ FID ↓ (Cosine) FID ↓ (Log-linear)

64 256 1024 2048 64 256 1024 2048

MDLM
Cosine ✗ 8.86 42.60 27.71 24.90 24.56 107.62 40.81 27.65 25.73
Cosine ✓ 8.72 41.89 27.03 24.67 24.24 114.56 40.60 27.08 25.50
Log-linear ✗ 8.76 43.95 29.01 26.11 25.67 111.77 42.15 28.85 26.89
Log-linear ✓ 8.75 49.36 32.10 28.76 28.21 122.70 41.79 27.89 26.02

MDLM (nucleus p=0.9)
Cosine ✓ 8.72 34.81 44.04 47.84 48.37 41.73 33.33 43.12 45.98

MDLM (no greedy)
Cosine ✓ 8.72 42.14 27.19 24.47 24.46 114.55 40.92 27.13 25.60

Duo
Cosine ✗ 10.27 32.37 27.28 26.38 26.02 33.93 27.93 26.51 26.03
Cosine ✓ 10.32 33.74 27.98 26.81 26.96 36.23 28.77 27.08 26.79
Log-linear ✗ 10.49 31.78 27.03 26.00 25.75 33.44 27.46 26.08 25.87
Log-linear ✓ 10.45 34.05 27.74 26.58 26.37 36.46 28.49 26.60 26.22

Duo (nucleus p=0.9)
Log-linear ✗ 10.49 23.13 22.21 22.58 22.49 24.24 22.41 22.35 22.54

Duo (no greedy)
Log-linear ✗ 10.49 33.03 27.43 26.16 25.96 34.81 27.76 26.30 26.06

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 7: FID on CIFAR-10 with ancestral sampling and a finer grid. We pick the variant with the best
FID from Table 6.

Algo Train Sample p FID ↓

32 64 128 256 512 1024 2048 4096

Duo log-lin log-lin 1.0 42.71 33.44 29.18 27.46 26.62 26.08 25.87 25.79
Duo log-lin log-lin 0.9 28.53 24.24 22.89 22.41 22.56 22.35 22.54 22.41

Duo log-lin cos 1.0 39.65 31.78 28.55 27.03 26.03 25.89 25.75 25.63
Duo log-lin cos 0.9 25.96 23.13 22.68 22.21 22.26 22.58 22.49 22.49

MDLM cos log-lin 1.0 212.95 114.56 62.86 40.60 31.05 27.08 25.50 24.73
MDLM cos log-lin 0.9 84.85 41.73 31.28 33.33 38.49 43.12 45.98 55.37

MDLM cos cos 1.0 73.82 41.89 36.21 27.03 25.63 24.67 24.24 23.93
MDLM cos cos 0.9 58.31 34.81 37.91 44.04 45.32 47.84 48.37 49.23

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 8: FID on CIFAR-10 with ReMDM (best checkpoints, as shown in Table 7). We sample
with/without nucleus sampling, and with the 3 schedules of Wang et al. (2025) (cap, loop, rescale).
For the loop schedule, we use ton = 0.55, toff = 0.05, αon = 0.9, following ReMDM. Sampling
experiments are executed in the original codebase of Wang et al. (2025).

Number of steps

32 64 128 256 512 1024 2048 4096

ReMDM cap (p=1.0)
η = 0.005 215.67 116.24 63.37 40.82 31.40 27.28 24.97 24.78
η = 0.010 218.41 118.25 64.50 41.77 32.40 28.68 27.91 33.68
η = 0.020 224.20 122.61 66.95 44.54 36.26 35.39 46.01 92.48
η = 0.050 242.25 143.21 84.41 64.10 73.89 132.13 210.60 203.14

ReMDM loop (p=1.0)
η = 0.01 307.56 234.55 138.56 80.50 55.86 47.05 45.44 50.44
η = 0.02 307.81 237.28 142.21 83.68 59.96 53.88 60.50 87.54
η = 0.04 308.24 242.70 152.28 94.63 76.93 88.53 135.05 196.58
η = 0.06 308.88 248.76 165.79 114.92 113.26 157.92 223.70 237.16

ReMDM rescale (p=1.0)
η = 0.01 216.92 116.73 63.56 40.65 30.86 26.03 23.77 23.71
η = 0.02 221.21 119.79 65.08 42.02 32.29 28.11 28.66 39.39
η = 0.04 229.72 127.94 70.89 46.98 38.74 41.23 67.44 130.05
η = 0.05 234.35 133.08 75.02 50.92 45.01 57.03 107.13 164.44

ReMDM cap (p=0.9)
η = 0.005 88.08 40.02 27.31 29.43 36.50 45.10 57.08 73.40
η = 0.010 87.68 39.55 27.35 31.24 41.22 54.55 71.65 93.06
η = 0.020 85.95 38.46 27.80 35.01 50.50 69.60 91.49 118.87
η = 0.050 81.91 35.56 29.39 46.90 70.24 95.24 125.60 163.32

ReMDM loop (p=0.9)
η = 0.01 209.24 100.01 47.27 29.44 27.55 30.50 34.21 37.56
η = 0.02 208.36 99.29 47.12 29.38 27.74 31.17 35.42 39.52
η = 0.04 206.51 98.18 46.87 29.28 28.09 32.12 37.19 42.45
η = 0.06 204.83 97.24 46.72 29.19 28.30 32.77 38.47 44.64

ReMDM rescale (p=0.9)
η = 0.01 87.31 39.51 27.25 30.74 40.22 53.30 70.24 91.79
η = 0.02 85.94 38.45 27.45 34.13 49.00 67.89 90.61 118.10
η = 0.04 83.47 36.44 28.29 41.76 63.40 87.03 115.60 153.03
η = 0.05 82.26 35.69 28.99 44.69 68.80 94.07 125.42 165.62

ReMDM
Best (p = 1.0) 215.67 116.24 63.37 40.65 30.86 26.03 23.77 23.71
Best (p = 0.9) 81.91 81.91 27.25 29.19 27.55 30.50 34.21 37.56

MDLM
Ancestral (p=1.0) 212.95 114.56 62.86 40.60 31.05 27.08 25.50 24.73
Ancestral (p=0.9) 84.85 41.73 31.28 33.33 38.49 43.12 45.98 55.37

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 9: FID on CIFAR-10 with Ψ-samplers, where Ψ-samplers are activated for steps with t ∈
[toff, ton], when κt is kept constant (according to the κ column, 1 otherwise). We use the same
checkpoints as in Table 7. Using a cosine sampling schedule and light noise injection (κ close to 1)
generally perform best. The CIFAR-10 curves in Fig. 1 show the best FID per number of steps.

Algo κ Train Sample ton toff
FID ↓

32 64 128 256 512 1024 2048 4096

Duo 0.02 log-lin cos 0.2 0.15 40.64 33.06 30.36 29.85 31.31 34.36 39.06 38.38
Duo 0.02 log-lin cos 0.5 0.45 41.81 33.67 29.50 26.55 24.83 25.12 31.63 51.83
Duo 0.02 log-lin cos 0.8 0.7 43.99 37.41 35.68 38.88 46.76 59.68 75.46 91.73

Duo 0.5 log-lin cos 0.2 0.1 39.95 32.14 28.86 27.18 26.57 26.46 27.29 28.35
Duo 0.5 log-lin cos 0.6 0.4 39.54 29.40 23.46 20.77 23.72 38.42 72.97 105.75
Duo 0.5 log-lin cos 0.9 0.65 43.00 34.68 31.85 34.73 45.68 64.97 88.07 107.36

Duo 0.95 log-lin cos 0.5 0.1 39.30 30.58 26.15 23.46 20.93 18.48 16.38 15.05
Duo 0.95 log-lin cos 0.6 0.1 39.19 30.15 25.14 21.54 18.64 16.70 16.30 18.99
Duo 0.95 log-lin cos 0.9 0.3 39.04 29.88 24.72 20.90 19.20 21.09 30.00 51.43
Duo 0.95 log-lin cos 0.9 0.4 39.21 30.29 25.26 21.57 19.92 21.50 30.03 50.88

Duo 0.98 log-lin cos 1.0 0.05 39.31 30.97 26.39 23.13 20.56 18.80 19.46 25.83
Duo 0.98 log-lin cos 1.0 0.1 39.31 30.99 26.40 23.14 20.58 18.83 19.48 25.82

Duo 0.99 log-lin cos 1.0 0.05 39.34 31.56 27.46 24.73 22.35 20.07 18.50 19.39
Duo 0.99 log-lin cos 1.0 0.1 39.35 31.57 27.46 24.73 22.37 20.09 18.51 19.41

Duo 0.02 log-lin log-lin 0.2 0.15 42.25 33.71 29.84 27.95 27.64 27.56 29.35 31.02
Duo 0.02 log-lin log-lin 0.5 0.45 43.86 36.29 33.35 33.24 34.74 36.97 36.77 37.30
Duo 0.02 log-lin log-lin 0.8 0.7 43.95 33.75 28.32 27.78 37.12 69.66 113.05 132.86

Duo 0.5 log-lin log-lin 0.2 0.1 42.10 33.40 29.19 27.14 26.22 25.52 25.10 24.71
Duo 0.5 log-lin log-lin 0.6 0.4 42.44 33.68 29.15 25.93 24.16 22.44 21.00 27.97
Duo 0.5 log-lin log-lin 0.9 0.65 42.87 31.04 26.37 31.86 61.36 121.64 155.77 151.48

Duo 0.95 log-lin log-lin 0.5 0.1 41.74 32.97 28.57 26.05 24.62 23.13 21.81 20.16
Duo 0.95 log-lin log-lin 0.6 0.1 41.46 32.47 27.74 24.97 22.94 20.83 18.87 16.82
Duo 0.95 log-lin log-lin 0.9 0.3 41.10 30.55 24.54 20.50 17.97 18.04 22.14 35.43
Duo 0.95 log-lin log-lin 0.9 0.4 41.18 30.58 24.71 20.59 18.08 18.02 22.07 35.44

Duo 0.98 log-lin log-lin 1.0 0.05 41.80 31.96 26.83 23.17 20.10 18.12 18.38 22.89
Duo 0.98 log-lin log-lin 1.0 0.1 41.81 31.98 26.85 23.17 20.12 18.15 18.40 22.94

Duo 0.99 log-lin log-lin 1.0 0.05 41.99 32.63 27.74 24.67 22.13 19.72 17.93 18.25
Duo 0.99 log-lin log-lin 1.0 0.1 41.99 32.63 27.75 24.67 22.13 19.75 17.95 18.28

MDLM 0.02 cos cos 0.2 0.15 75.63 49.18 45.02 54.67 83.47 181.18 280.42 297.52
MDLM 0.02 cos cos 0.5 0.45 117.57 89.53 111.75 200.49 283.55 310.51 314.98 313.93
MDLM 0.02 cos cos 0.8 0.7 172.24 197.61 232.36 262.87 269.22 267.86 264.57 259.88

MDLM 0.5 cos cos 0.2 0.1 73.13 46.10 38.47 39.71 48.49 75.27 173.09 266.36
MDLM 0.5 cos cos 0.6 0.4 134.11 114.88 144.25 217.74 268.03 274.83 270.53 256.03
MDLM 0.5 cos cos 0.9 0.65 151.90 131.04 147.67 177.75 198.33 201.97 193.77 184.76

MDLM 0.95 cos cos 0.5 0.1 73.03 44.15 33.68 30.50 29.93 31.50 35.72 51.53
MDLM 0.95 cos cos 0.6 0.1 74.57 45.00 34.07 30.32 29.16 31.03 37.46 64.74
MDLM 0.95 cos cos 0.9 0.3 79.25 47.02 33.97 27.84 24.24 23.43 26.96 42.58
MDLM 0.95 cos cos 0.9 0.4 78.18 46.36 33.06 26.69 22.67 20.91 21.90 28.82

MDLM 0.98 cos cos 1.0 0.05 74.05 43.85 32.32 26.69 23.22 20.81 19.41 20.20
MDLM 0.98 cos cos 1.0 0.1 74.05 43.85 32.31 26.65 23.17 20.76 19.26 19.98

MDLM 0.99 cos cos 1.0 0.05 72.39 42.87 31.79 26.65 23.72 21.07 19.24 17.94
MDLM 0.99 cos cos 1.0 0.1 72.38 42.87 31.78 26.64 23.69 21.04 19.19 17.86

MDLM 0.02 cos log-lin 0.2 0.15 217.56 118.08 68.02 51.76 55.02 78.21 171.72 275.25
MDLM 0.02 cos log-lin 0.5 0.45 247.31 157.61 124.97 162.92 256.01 298.74 305.05 310.28
MDLM 0.02 cos log-lin 0.8 0.7 298.96 294.71 298.95 312.49 317.03 312.60 308.42 302.37

MDLM 0.5 cos log-lin 0.2 0.1 216.08 116.99 65.73 45.72 41.32 45.95 68.60 152.77
MDLM 0.5 cos log-lin 0.6 0.4 266.16 195.76 171.73 212.68 273.48 281.96 272.45 260.26
MDLM 0.5 cos log-lin 0.9 0.65 296.08 268.98 265.73 278.38 281.68 275.20 265.49 247.21

MDLM 0.95 cos log-lin 0.5 0.1 216.90 117.05 64.76 43.50 36.06 34.84 37.06 44.92
MDLM 0.95 cos log-lin 0.6 0.1 218.58 118.21 65.33 44.32 37.14 36.09 39.42 55.34
MDLM 0.95 cos log-lin 0.9 0.3 225.19 124.03 67.82 44.06 35.20 33.97 42.48 80.34
MDLM 0.95 cos log-lin 0.9 0.4 223.84 123.04 67.19 43.29 33.85 32.00 37.23 63.89

MDLM 0.98 cos log-lin 1.0 0.05 218.15 118.08 63.97 40.97 30.67 25.69 23.64 25.40
MDLM 0.98 cos log-lin 1.0 0.1 218.14 118.09 63.96 40.96 30.65 25.64 23.57 25.29

MDLM 0.99 cos log-lin 1.0 0.05 215.41 116.02 63.30 40.42 30.43 25.37 22.45 20.77
MDLM 0.99 cos log-lin 1.0 0.1 215.40 116.03 63.27 40.41 30.43 25.35 22.42 20.71

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 10: Inception Score on CIFAR-10 with Ψ-samplers, where Ψ-samplers are activated for steps
with t ∈ [toff, ton], when κt is kept constant (according to the κ column, 1 otherwise). We use the
same checkpoints as in Table 7. The CIFAR-10 curves in Fig. 5 show the best Inception Score per
number of steps.

Algo κ Train Sample ton toff
Inception Score ↑

32 64 128 256 512 1024 2048 4096

Duo 0.02 log-lin cos 0.2 0.15 7.02 7.25 7.35 7.48 7.52 7.47 7.38 7.63
Duo 0.02 log-lin cos 0.5 0.45 7.09 7.44 7.64 8.04 8.32 8.59 8.57 7.94
Duo 0.02 log-lin cos 0.8 0.7 6.84 6.99 7.00 6.91 6.64 6.16 5.67 5.19

Duo 0.5 log-lin cos 0.2 0.1 6.96 7.21 7.28 7.39 7.45 7.48 7.56 7.73
Duo 0.5 log-lin cos 0.6 0.4 7.31 7.73 8.14 8.51 8.46 7.91 6.40 5.39
Duo 0.5 log-lin cos 0.9 0.65 6.87 7.10 7.22 7.11 6.72 5.97 5.23 4.67

Duo 0.95 log-lin cos 0.5 0.1 6.98 7.26 7.45 7.53 7.67 7.89 8.06 8.29
Duo 0.95 log-lin cos 0.6 0.1 7.00 7.31 7.45 7.70 7.91 8.17 8.34 8.46
Duo 0.95 log-lin cos 0.9 0.3 7.08 7.37 7.54 7.84 8.01 8.07 7.72 6.84
Duo 0.95 log-lin cos 0.9 0.4 7.04 7.31 7.50 7.78 7.92 8.08 7.78 6.89

Duo 0.98 log-lin cos 1.0 0.05 7.00 7.25 7.40 7.55 7.73 7.97 8.10 7.91
Duo 0.98 log-lin cos 1.0 0.1 6.99 7.25 7.40 7.55 7.74 7.97 8.09 7.91

Duo 0.99 log-lin cos 1.0 0.05 6.98 7.22 7.37 7.45 7.58 7.77 7.96 8.08
Duo 0.99 log-lin cos 1.0 0.1 6.98 7.22 7.37 7.46 7.58 7.77 7.96 8.10

Duo 0.02 log-lin log-lin 0.2 0.15 6.82 7.09 7.22 7.30 7.36 7.44 7.46 7.43
Duo 0.02 log-lin log-lin 0.5 0.45 6.95 7.28 7.45 7.64 7.67 7.70 8.06 8.68
Duo 0.02 log-lin log-lin 0.8 0.7 7.00 7.54 8.02 8.18 7.89 6.46 5.03 4.55

Duo 0.5 log-lin log-lin 0.2 0.1 6.81 7.04 7.20 7.26 7.29 7.36 7.47 7.50
Duo 0.5 log-lin log-lin 0.6 0.4 7.04 7.45 7.73 7.93 8.20 8.51 9.00 9.50
Duo 0.5 log-lin log-lin 0.9 0.65 7.05 7.61 7.97 7.74 6.45 4.46 3.77 4.07

Duo 0.95 log-lin log-lin 0.5 0.1 6.80 7.10 7.25 7.31 7.35 7.43 7.55 7.63
Duo 0.95 log-lin log-lin 0.6 0.1 6.85 7.12 7.28 7.40 7.46 7.66 7.81 7.97
Duo 0.95 log-lin log-lin 0.9 0.3 6.89 7.27 7.58 7.78 8.10 8.22 8.20 7.67
Duo 0.95 log-lin log-lin 0.9 0.4 6.89 7.25 7.58 7.80 8.05 8.25 8.26 7.69

Duo 0.98 log-lin log-lin 1.0 0.05 6.85 7.19 7.36 7.49 7.72 7.96 8.05 8.03
Duo 0.98 log-lin log-lin 1.0 0.1 6.85 7.20 7.38 7.49 7.72 7.96 8.04 8.02

Duo 0.99 log-lin log-lin 1.0 0.05 6.81 7.13 7.32 7.45 7.61 7.71 7.98 8.12
Duo 0.99 log-lin log-lin 1.0 0.1 6.81 7.14 7.32 7.45 7.62 7.70 7.99 8.13

MDLM 0.02 cos cos 0.2 0.15 5.56 6.61 6.90 6.75 5.52 2.68 1.57 1.56
MDLM 0.02 cos cos 0.5 0.45 4.22 5.11 4.36 2.44 1.61 1.41 1.45 1.56
MDLM 0.02 cos cos 0.8 0.7 3.12 2.82 2.41 2.03 1.96 1.97 2.02 2.09

MDLM 0.5 cos cos 0.2 0.1 5.63 6.63 7.00 7.09 6.90 5.68 2.78 1.73
MDLM 0.5 cos cos 0.6 0.4 3.83 4.32 3.55 2.35 1.85 2.14 2.51 2.99
MDLM 0.5 cos cos 0.9 0.65 3.62 4.18 3.95 3.47 3.18 3.15 3.37 3.75

MDLM 0.95 cos cos 0.5 0.1 5.66 6.68 7.13 7.29 7.44 7.41 7.44 6.77
MDLM 0.95 cos cos 0.6 0.1 5.59 6.70 7.21 7.41 7.52 7.57 7.45 6.33
MDLM 0.95 cos cos 0.9 0.3 5.43 6.68 7.25 7.63 7.90 8.15 8.18 7.58
MDLM 0.95 cos cos 0.9 0.4 5.45 6.66 7.25 7.64 7.93 8.14 8.30 8.18

MDLM 0.98 cos cos 1.0 0.05 5.57 6.71 7.22 7.45 7.71 7.93 8.14 8.30
MDLM 0.98 cos cos 1.0 0.1 5.57 6.72 7.22 7.46 7.72 7.93 8.15 8.31

MDLM 0.99 cos cos 1.0 0.05 5.60 6.73 7.18 7.39 7.53 7.81 7.97 8.12
MDLM 0.99 cos cos 1.0 0.1 5.60 6.73 7.19 7.39 7.53 7.81 7.97 8.14

MDLM 0.02 cos log-lin 0.2 0.15 2.63 4.59 5.86 6.46 6.45 5.59 2.78 1.67
MDLM 0.02 cos log-lin 0.5 0.45 2.21 3.56 4.08 3.06 1.78 1.43 1.38 1.36
MDLM 0.02 cos log-lin 0.8 0.7 1.65 1.63 1.55 1.43 1.42 1.60 1.80 1.96

MDLM 0.5 cos log-lin 0.2 0.1 2.66 4.60 5.91 6.58 6.81 6.76 5.77 3.15
MDLM 0.5 cos log-lin 0.6 0.4 1.97 2.78 2.99 2.27 1.62 1.58 1.92 2.33
MDLM 0.5 cos log-lin 0.9 0.65 1.69 1.91 1.90 1.79 1.91 2.35 2.87 3.29

MDLM 0.95 cos log-lin 0.5 0.1 2.65 4.60 5.95 6.64 6.93 7.03 7.07 6.78
MDLM 0.95 cos log-lin 0.6 0.1 2.62 4.55 5.94 6.66 6.98 7.16 7.10 6.47
MDLM 0.95 cos log-lin 0.9 0.3 2.51 4.45 5.93 6.84 7.35 7.61 7.31 5.83
MDLM 0.95 cos log-lin 0.9 0.4 2.54 4.46 5.94 6.85 7.40 7.69 7.59 6.60

MDLM 0.98 cos log-lin 1.0 0.05 2.62 4.56 6.04 6.85 7.31 7.66 7.79 8.01
MDLM 0.98 cos log-lin 1.0 0.1 2.62 4.56 6.03 6.85 7.32 7.67 7.81 8.03

MDLM 0.99 cos log-lin 1.0 0.05 2.68 4.64 6.02 6.84 7.21 7.47 7.70 7.93
MDLM 0.99 cos log-lin 1.0 0.1 2.68 4.64 6.02 6.84 7.21 7.47 7.70 7.93

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 11: FID on CIFAR-10 using Ψ-samplers whose κt schedulers are equivalent to ReMDM. We
use no nucleus sampling, no temperature scaling, and cfg = 1. As expected, with the log-linear
scheduler, we reach a similar FID as when using the ReMDM codebase (Table 8). However, note
that by using a log-linear scheduler, using a constant κt = 0.99, we reach a better FID than with the
original ReMDM scheduler.

Algo Train Sample FID ↓

32 64 128 256 512 1024 2048 4096

Duo with the ReMDM rescale schedule
Duo log-lin cos 39.64 32.03 28.49 26.95 26.16 25.71 25.25 25.02
Duo log-lin log-lin 42.27 33.58 29.49 27.36 26.33 25.86 25.07 25.21

ReMDM Rescale (η = 0.01)
MDLM cos cos 70.64 41.94 31.60 27.31 25.27 24.61 23.41 23.25
MDLM cos log-lin 213.22 114.24 62.51 40.51 30.28 26.21 23.61 23.40

ReMDM Cap (η = 0.005)
MDLM cos log-lin 215.75 115.77 63.20 41.25 31.60 27.30 25.16 24.79

ReMDM Loop (ton = 0.55, toff = 0.05, αon = 0.9, η = 0.01)
MDLM cos log-lin 305.30 224.84 120.58 66.39 45.70 39.06 41.44 52.71

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 12: FID scores across different numbers of sampling steps for various hyperparameter ablations.
Lower is better. The section “Ψ-samplers Loop” denote the ReMDM-inspired scheduler, where
t is linearly decreased to αton (from t = 1 to t = ton), then kept constant until toff. The section
“Ψ-samplers Linear” denote the Linear scheduler, where t linearly decreases, like during ancestral
sampling. We omit certain settings (denoted by –), to spare compute costs, as each cell FID requires
generating 50k samples.

Number of steps

32 128 256 512 1024 2048 4096

Uniform Diffusion (Ancestral)
Duo (log-lin.) 85.3 56.7 52.6 50.9 49.7 49.2 49.0
Duo (cosine) 77.7 51.9 47.6 45.9 45.0 44.6 44.3
+Greedy 64.9 47.5 44.2 42.8 42.2 41.8 41.6
+Guid. (γ = 1) 57.3 41.6 39.4 37.9 37.6 37.2 36.9
+temp. T = 0.8 39.2 27.6 26.3 25.4 25.4 25.0 25.3

Uniform Diffusion (Ψ-samplers Loop)
αton = 0.85, toff = ton + 0.05, κ = 0.02 40.4 27.5 25.9 24.9 24.3 23.8 25.1
αton = 0.45, toff = ton + 0.05, κ = 0.02 45.0 29.3 27.6 28.2 33.4 – –
αton = 0.1, toff = ton + 0.05, κ = 0.02 43.0 31.8 41.7 67.2 129.8 – –
αton = 0.8, toff = ton + 0.1, κ = 0.02 40.9 27.2 25.3 24.0 23.7 28.3 52.5
αton = 0.8, toff = ton + 0.1, κ = 0.5 41.0 27.3 25.6 24.6 23.7 23.4 27.9
αton = 0.7, toff = ton + 0.2, κ = 0.5 43.2 26.2 23.6 22.4 25.0 – –

Uniform Diffusion (Ψ-samplers Linear)
αton = 0.85, toff = ton + 0.05, κ = 0.02 39.1 27.4 25.7 24.5 23.8 23.8 28.2
αton = 0.45, toff = ton + 0.05, κ = 0.02 41.9 29.1 27.8 34.6 61.4 – –
αton = 0.1, toff = ton + 0.05, κ = 0.02 39.4 27.8 26.5 25.7 25.4 – –
αton = 0.8, toff = ton + 0.1, κ = 0.5 38.9 26.9 25.2 23.9 23.1 23.4 31.6
ton = 0.3, toff = 0.1 κ = 0.75 38.7 26.2 24.2 22.5 22.0 25.4 43.9
ton = 0.4, toff = 0.1 κ = 0.9 38.7 25.7 23.4 21.5 20.9 23.4 37.3
ton = 0.5, toff = 0.1 κ = 0.95 38.6 25.2 22.7 20.7 20.2 22.6 35.4
ton = 0.6, toff = 0.1 κ = 0.95 38.5 24.2 21.4 20.0 22.3 32.7 59.0
ton = 0.6, toff = 0.1 κ = 0.98 38.8 25.9 23.4 21.3 20.2 21.3 28.7

Masked Diffusion (Ancestral)
MDLM (cosine) 104.2 51.9 46.7 45.1 44.5 45.3 48.0
MDLM (log-lin. / cosine) 81.8 48.0 40.0 39.3 37.8 38.0 38.7
MDLM (log-lin.) 208.3 74.2 48.4 38.0 34.2 33.3 33.1
+Greedy 208.3 74.2 48.4 38.1 34.2 33.3 33.1
+Guid. (γ = 1) 198.6 62.9 41.8 33.2 29.5 28.1 27.6
+temp. T = 0.8 126.2 33.2 25.1 24.0 24.7 25.7 26.6

Masked Diffusion (Ψ-samplers Linear)
ton = 0.3, toff = 0.1 κ = 0.75 125.5 33.3 25.2 24.1 24.9 26.2 28.5
ton = 0.5, toff = 0.1 κ = 0.95 125.5 33.1 25.2 24.2 25.2 – –
ton = 0.6, toff = 0.1 κ = 0.95 125.2 32.9 24.8 23.8 25.0 27.3 31.9
ton = 0.6, toff = 0.1 κ = 0.98 125.7 33.1 25.0 24.0 25.0 – –
ton = 0.85, toff = 0.8 κ = 0.02 183.7 79.2 88.8 113.1 138.0 – –
ton = 0.45, toff = 0.4 κ = 0.02 130.9 39.8 37.3 43.1 55.9 – –
ton = 0.15, toff = 0.1 κ = 0.02 125.9 33.2 25.1 24.0 24.7 25.6 26.9

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 13: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
& Cohen, 2019) with ancestral sampling (no nucleus, no temperature scaling). We train using the
log-linear noise scheduler, and sampling with the cosine scheduler is slightly better. We stick to to
the log-linear schedule for sampling in further experiments, to follow prior work, and since the cosine
schedule only marginally reduce the Gen. PPL.

Algo Dist. p Sched. Gen. PPL

32 64 128 256 512 1024 2048 4096

Duo ✗ 1.0 cos 87.23 (5.54) 79.94 (5.55) 75.87 (5.53) 73.95 (5.54) 72.13 (5.54) 71.41 (5.53) 72.29 (5.53) 70.77 (5.52)
Duo ✗ 1.0 log-lin 96.76 (5.57) 86.01 (5.56) 79.97 (5.55) 78.46 (5.53) 76.93 (5.54) 75.02 (5.53) 75.65 (5.52) 75.39 (5.52)

Duo ✗ 0.9 cos 42.42 (5.36) 39.26 (5.37) 37.62 (5.35) 36.52 (5.35) 35.21 (5.34) 35.37 (5.34) 35.39 (5.34) 34.91 (5.33)
Duo ✗ 0.9 log-lin 44.24 (5.40) 40.08 (5.40) 37.93 (5.39) 36.66 (5.37) 35.77 (5.37) 34.79 (5.35) 34.93 (5.35) 34.75 (5.35)

Duo ✓ 1.0 cos 67.04 (5.47) 61.09 (5.45) 59.65 (5.42) 57.76 (5.42) 57.90 (5.42) 56.81 (5.43) 56.39 (5.41) 57.32 (5.42)
Duo ✓ 1.0 log-lin 68.35 (5.54) 62.92 (5.54) 59.82 (5.50) 58.77 (5.46) 58.32 (5.46) 57.82 (5.45) 55.39 (5.43) 55.89 (5.42)

Duo ✓ 0.9 cos 34.20 (5.31) 31.79 (5.29) 31.09 (5.25) 30.05 (5.25) 29.82 (5.26) 29.68 (5.27) 29.52 (5.24) 29.73 (5.23)
Duo ✓ 0.9 log-lin 35.92 (5.41) 32.98 (5.40) 31.49 (5.36) 30.32 (5.31) 30.06 (5.29) 30.00 (5.28) 28.90 (5.25) 29.19 (5.25)

MDLM ✗ 1.0 cos 168.66 (5.68) 131.55 (5.66) 115.74 (5.64) 111.72 (5.63) 106.63 (5.63) 104.56 (5.62) 103.12 (5.62) 104.73 (5.62)
MDLM ✗ 1.0 log-lin 194.09 (5.74) 141.67 (5.69) 120.95 (5.67) 111.85 (5.65) 107.89 (5.64) 105.64 (5.64) 105.40 (5.63) 105.03 (5.62)

MDLM ✗ 0.9 cos 58.33 (5.39) 46.71 (5.36) 40.66 (5.32) 39.43 (5.33) 37.64 (5.32) 37.39 (5.33) 36.98 (5.31) 36.87 (5.31)
MDLM ✗ 0.9 log-lin 70.34 (5.49) 51.14 (5.43) 43.60 (5.39) 40.01 (5.37) 39.02 (5.35) 37.91 (5.34) 37.59 (5.32) 36.76 (5.31)

MDLM ✓ 1.0 cos 63.04 (5.45) 52.72 (5.43) 47.83 (5.41) 45.94 (5.42) 44.67 (5.41) 44.60 (5.41) 44.50 (5.41) 44.42 (5.41)
MDLM ✓ 1.0 log-lin 68.61 (5.48) 55.26 (5.45) 49.51 (5.44) 46.13 (5.42) 45.61 (5.42) 44.87 (5.42) 44.53 (5.41) 44.38 (5.42)

MDLM ✓ 0.9 cos 31.47 (5.21) 26.52 (5.19) 24.14 (5.18) 23.49 (5.17) 22.93 (5.17) 22.64 (5.17) 22.38 (5.16) 22.49 (5.17)
MDLM ✓ 0.9 log-lin 34.85 (5.26) 28.21 (5.23) 25.27 (5.21) 24.01 (5.19) 23.25 (5.18) 22.75 (5.17) 22.73 (5.17) 22.46 (5.16)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 14: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
& Cohen, 2019) with Ψ-samplers using κt schedules matching ReMDM (log-linear step size) and
non-distilled models (as in Table 13). We experiment with nucleus sampling, following Wang et al.
(2025). The rescale schedule is most effective to improve the Gen. PPL while retaining the unigram
entropy. The lightblue rows are the ones plotted in Fig. 1 (left).

Algo Eta Nucleus P Gen. PPL

32 64 128 256 512 1024 2048 4096

Ancestral Sampling
Duo N.A 1.0 96.76 (5.57) 86.01 (5.56) 79.97 (5.55) 78.46 (5.53) 76.93 (5.54) 75.02 (5.53) 75.65 (5.52) 75.39 (5.52)
Duo N.A 0.95 56.65 (5.49) 50.78 (5.48) 48.68 (5.48) 47.26 (5.46) 45.42 (5.45) 45.11 (5.44) 45.12 (5.44) 44.84 (5.44)
Duo N.A 0.9 44.24 (5.40) 40.08 (5.40) 37.93 (5.39) 36.66 (5.37) 35.77 (5.37) 34.79 (5.35) 34.93 (5.35) 34.75 (5.35)

MDLM N.A 1.0 194.09 (5.74) 141.67 (5.69) 120.95 (5.67) 111.85 (5.65) 107.89 (5.64) 105.64 (5.64) 105.40 (5.63) 105.03 (5.62)
MDLM N.A 0.95 106.28 (5.61) 77.06 (5.55) 68.34 (5.53) 63.19 (5.51) 58.80 (5.49) 56.94 (5.48) 57.54 (5.47) 56.44 (5.46)
MDLM N.A 0.9 70.34 (5.49) 51.14 (5.43) 43.60 (5.39) 40.01 (5.37) 39.02 (5.35) 37.91 (5.34) 37.59 (5.32) 36.76 (5.31)

Cap Schedule
Duo 0.005 1.0 88.78 (5.58) 77.12 (5.57) 72.05 (5.56) 66.44 (5.54) 61.63 (5.53) 57.14 (5.51) 52.49 (5.51) 45.64 (5.45)
Duo 0.01 1.0 86.89 (5.58) 75.23 (5.56) 68.98 (5.55) 63.66 (5.54) 57.34 (5.52) 52.06 (5.50) 46.04 (5.46) 39.48 (5.39)
Duo 0.005 0.95 55.56 (5.49) 48.74 (5.47) 44.93 (5.46) 40.53 (5.43) 36.26 (5.41) 30.85 (5.37) 25.66 (5.32) 20.22 (5.22)
Duo 0.01 0.95 54.07 (5.48) 46.27 (5.46) 41.93 (5.45) 36.60 (5.41) 30.98 (5.37) 25.53 (5.31) 20.10 (5.23) 15.19 (5.07)
Duo 0.005 0.9 44.06 (5.41) 38.38 (5.39) 34.84 (5.37) 30.95 (5.33) 27.37 (5.30) 22.78 (5.24) 18.66 (5.16) 14.33 (5.03)
Duo 0.01 0.9 43.05 (5.40) 36.75 (5.38) 32.27 (5.35) 27.83 (5.30) 23.38 (5.26) 18.74 (5.17) 14.40 (5.06) 10.88 (4.87)

MDLM 0.005 1.0 195.83 (5.74) 142.25 (5.70) 121.99 (5.68) 113.94 (5.67) 110.75 (5.66) 112.78 (5.67) 119.61 (5.69) 131.85 (5.71)
MDLM 0.01 1.0 198.02 (5.75) 144.89 (5.70) 125.25 (5.68) 117.84 (5.68) 116.62 (5.68) 126.32 (5.71) 143.96 (5.73) 186.72 (5.76)
MDLM 0.005 0.95 106.40 (5.61) 74.97 (5.54) 63.15 (5.52) 55.82 (5.49) 50.31 (5.47) 43.78 (5.44) 37.04 (5.40) 30.46 (5.34)
MDLM 0.01 0.95 105.45 (5.61) 73.92 (5.54) 61.41 (5.51) 52.81 (5.48) 46.03 (5.45) 38.85 (5.42) 31.30 (5.34) 24.31 (5.23)
MDLM 0.005 0.9 69.20 (5.49) 49.59 (5.42) 41.08 (5.38) 35.19 (5.34) 31.49 (5.31) 26.33 (5.26) 21.16 (5.18) 15.87 (5.04)
MDLM 0.01 0.9 68.57 (5.48) 48.30 (5.42) 38.80 (5.37) 32.38 (5.32) 27.66 (5.28) 21.57 (5.18) 16.26 (5.05) 11.67 (4.79)

Rescale Schedule
Duo 0.01 1.0 89.63 (5.58) 79.80 (5.57) 76.11 (5.56) 73.43 (5.55) 70.66 (5.54) 70.46 (5.53) 69.20 (5.54) 68.25 (5.53)
Duo 0.02 1.0 89.55 (5.58) 79.44 (5.57) 75.98 (5.56) 72.99 (5.54) 69.85 (5.54) 68.39 (5.53) 66.60 (5.53) 63.70 (5.52)
Duo 0.01 0.95 56.68 (5.49) 50.80 (5.48) 48.38 (5.47) 46.91 (5.46) 45.24 (5.45) 44.64 (5.44) 44.11 (5.44) 43.49 (5.43)
Duo 0.02 0.95 56.68 (5.49) 50.66 (5.48) 48.09 (5.47) 46.19 (5.46) 44.17 (5.44) 42.71 (5.43) 41.47 (5.43) 38.06 (5.40)
Duo 0.01 0.9 45.03 (5.41) 40.02 (5.40) 38.17 (5.39) 36.60 (5.36) 35.25 (5.35) 34.35 (5.34) 34.27 (5.35) 33.07 (5.33)
Duo 0.02 0.9 45.04 (5.41) 40.00 (5.40) 38.05 (5.39) 36.15 (5.36) 34.74 (5.35) 33.13 (5.33) 31.79 (5.32) 29.08 (5.30)
Duo 0.03 0.9 44.87 (5.41) 40.05 (5.40) 37.61 (5.39) 35.26 (5.36) 33.35 (5.34) 31.17 (5.32) 28.90 (5.31) 24.93 (5.26)
Duo 0.04 0.9 44.43 (5.41) 39.67 (5.39) 37.21 (5.38) 34.75 (5.35) 32.47 (5.34) 29.30 (5.31) 26.15 (5.28) 22.05 (5.22)
Duo 0.05 0.9 44.52 (5.41) 39.49 (5.40) 36.41 (5.38) 33.68 (5.35) 31.06 (5.34) 26.94 (5.28) 23.61 (5.25) 19.21 (5.17)

MDLM 0.01 1.0 194.29 (5.74) 141.40 (5.69) 121.04 (5.67) 112.95 (5.65) 107.80 (5.64) 105.58 (5.64) 105.69 (5.63) 105.64 (5.63)
MDLM 0.02 1.0 194.54 (5.74) 140.81 (5.69) 120.86 (5.67) 112.64 (5.65) 108.26 (5.64) 105.65 (5.64) 104.47 (5.63) 105.61 (5.64)
MDLM 0.01 0.95 106.43 (5.61) 76.89 (5.55) 65.42 (5.52) 61.07 (5.50) 58.77 (5.49) 56.34 (5.47) 56.29 (5.47) 54.42 (5.45)
MDLM 0.02 0.95 105.92 (5.60) 76.23 (5.55) 65.43 (5.52) 60.80 (5.50) 57.32 (5.49) 54.94 (5.47) 53.92 (5.46) 50.57 (5.45)
MDLM 0.01 0.9 70.45 (5.49) 51.33 (5.43) 43.59 (5.39) 40.14 (5.36) 38.68 (5.35) 37.64 (5.34) 36.48 (5.32) 35.10 (5.31)
MDLM 0.02 0.9 70.31 (5.49) 51.06 (5.43) 43.51 (5.39) 39.61 (5.36) 37.88 (5.35) 36.28 (5.33) 34.53 (5.31) 31.62 (5.29)
MDLM 0.03 0.9 69.89 (5.49) 50.76 (5.42) 43.23 (5.39) 38.86 (5.36) 36.77 (5.34) 34.62 (5.32) 31.44 (5.29) 27.19 (5.25)
MDLM 0.04 0.9 69.54 (5.49) 50.30 (5.42) 42.84 (5.39) 38.02 (5.35) 35.73 (5.33) 32.44 (5.31) 28.55 (5.27) 23.72 (5.21)
MDLM 0.05 0.9 69.44 (5.48) 50.15 (5.42) 42.39 (5.38) 37.27 (5.35) 34.10 (5.33) 30.29 (5.30) 26.03 (5.25) 20.85 (5.16)

Loop Schedule
Duo 0.01 1.0 108.15 (5.58) 83.10 (5.58) 71.16 (5.56) 66.15 (5.55) 60.49 (5.55) 56.35 (5.53) 53.06 (5.51) 48.93 (5.48)
Duo 0.02 1.0 103.48 (5.58) 79.75 (5.58) 67.99 (5.56) 63.05 (5.55) 56.92 (5.54) 52.69 (5.51) 48.63 (5.47) 43.28 (5.37)
Duo 0.01 0.95 65.29 (5.49) 51.36 (5.48) 43.27 (5.46) 37.64 (5.43) 32.04 (5.40) 26.97 (5.35) 22.94 (5.30) 18.40 (5.20)
Duo 0.02 0.95 61.61 (5.48) 47.46 (5.47) 38.78 (5.44) 32.69 (5.40) 27.26 (5.36) 22.35 (5.29) 18.43 (5.22) 14.31 (5.06)
Duo 0.01 0.9 52.12 (5.40) 40.27 (5.39) 33.71 (5.37) 28.73 (5.33) 24.47 (5.29) 20.32 (5.23) 17.01 (5.16) 13.61 (5.05)
Duo 0.02 0.9 49.08 (5.40) 37.00 (5.38) 30.08 (5.34) 24.88 (5.29) 20.59 (5.24) 16.69 (5.16) 13.61 (5.06) 10.77 (4.92)

MDLM 0.01 1.0 340.32 (5.81) 192.48 (5.74) 140.70 (5.70) 127.32 (5.70) 119.34 (5.69) 127.63 (5.70) 149.13 (5.73) 198.48 (5.77)
MDLM 0.02 1.0 338.82 (5.82) 193.71 (5.75) 144.92 (5.72) 140.73 (5.72) 136.30 (5.71) 162.47 (5.75) 246.89 (5.81) 354.65 (5.78)
MDLM 0.01 0.95 182.65 (5.67) 101.56 (5.61) 71.76 (5.56) 58.43 (5.52) 51.33 (5.50) 45.27 (5.47) 39.08 (5.43) 33.48 (5.38)
MDLM 0.02 0.95 177.31 (5.67) 97.61 (5.61) 68.49 (5.55) 55.21 (5.51) 47.71 (5.49) 41.64 (5.45) 34.91 (5.40) 29.63 (5.33)
MDLM 0.01 0.9 117.28 (5.55) 65.24 (5.48) 46.91 (5.43) 37.62 (5.38) 31.93 (5.34) 27.80 (5.31) 23.38 (5.25) 19.78 (5.20)
MDLM 0.02 0.9 112.21 (5.55) 61.93 (5.48) 43.89 (5.42) 34.69 (5.37) 28.99 (5.33) 24.58 (5.29) 20.09 (5.20) 16.68 (5.13)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 15: Generative Perplexity (Gen. PPL) and Unigram Entropy on OpenWebText (Gokaslan
& Cohen, 2019) with Ψ-samplers using κt schedules matching ReMDM (log-linear step size) and
distilled models (as in Table 13). We experiment with nucleus sampling, following Wang et al.
(2025).

Algo Eta Nucleus P Gen. PPL

32 64 128 256 512 1024 2048 4096

Ancestral Sampling
Duo N.A 1.0 68.35 (5.54) 62.92 (5.54) 59.82 (5.50) 58.77 (5.46) 58.32 (5.46) 57.82 (5.45) 55.39 (5.43) 55.89 (5.42)
Duo N.A 0.95 44.94 (5.47) 41.78 (5.46) 40.32 (5.43) 38.93 (5.39) 38.69 (5.37) 38.45 (5.36) 36.92 (5.33) 37.26 (5.33)
Duo N.A 0.9 35.92 (5.41) 32.98 (5.40) 31.49 (5.36) 30.32 (5.31) 30.06 (5.29) 30.00 (5.28) 28.90 (5.25) 29.19 (5.25)

MDLM N.A 1.0 68.61 (5.48) 55.26 (5.45) 49.51 (5.44) 46.13 (5.42) 45.61 (5.42) 44.87 (5.42) 44.53 (5.41) 44.38 (5.42)
MDLM N.A 0.95 46.07 (5.37) 36.55 (5.33) 32.91 (5.31) 30.96 (5.30) 30.26 (5.29) 29.73 (5.29) 29.54 (5.28) 29.53 (5.28)
MDLM N.A 0.9 34.85 (5.26) 28.21 (5.23) 25.27 (5.21) 24.31 (5.19) 23.25 (5.18) 22.75 (5.17) 22.73 (5.17) 22.46 (5.16)

Cap Schedule
Duo 0.005 1.0 66.13 (5.54) 58.49 (5.52) 53.61 (5.48) 47.85 (5.42) 41.59 (5.39) 34.05 (5.34) 25.67 (5.22) 19.25 (5.11)
Duo 0.01 1.0 64.22 (5.53) 55.84 (5.51) 49.90 (5.48) 40.95 (5.39) 33.90 (5.34) 26.29 (5.24) 19.34 (5.11) 14.31 (4.96)
Duo 0.005 0.95 43.68 (5.47) 38.77 (5.45) 35.55 (5.40) 31.36 (5.33) 26.74 (5.28) 21.84 (5.22) 16.22 (5.08) 12.00 (4.94)
Duo 0.01 0.95 42.34 (5.46) 37.14 (5.44) 32.39 (5.38) 27.25 (5.30) 21.84 (5.22) 16.74 (5.10) 11.70 (4.92) 8.68 (4.72)
Duo 0.005 0.9 34.80 (5.40) 30.95 (5.38) 28.15 (5.34) 24.47 (5.26) 21.25 (5.18) 17.02 (5.12) 12.86 (4.99) 9.48 (4.81)
Duo 0.01 0.9 33.91 (5.40) 29.27 (5.37) 25.28 (5.31) 21.40 (5.21) 17.36 (5.13) 13.22 (5.00) 9.55 (4.82) 6.92 (4.56)

MDLM 0.005 1.0 67.27 (5.48) 52.34 (5.45) 44.38 (5.42) 38.14 (5.40) 32.35 (5.37) 26.37 (5.34) 20.64 (5.27) 15.80 (5.19)
MDLM 0.01 1.0 65.29 (5.47) 49.78 (5.44) 41.29 (5.40) 33.39 (5.38) 27.16 (5.34) 21.04 (5.28) 16.13 (5.19) 12.16 (5.08)
MDLM 0.005 0.95 44.71 (5.36) 34.56 (5.32) 29.42 (5.30) 25.28 (5.27) 21.55 (5.23) 17.39 (5.18) 13.63 (5.09) 10.47 (4.98)
MDLM 0.01 0.95 43.20 (5.36) 32.84 (5.32) 26.90 (5.29) 22.19 (5.24) 17.80 (5.19) 13.93 (5.11) 10.61 (4.98) 7.68 (4.76)
MDLM 0.005 0.9 33.81 (5.26) 26.71 (5.22) 22.81 (5.19) 19.65 (5.16) 16.67 (5.11) 13.79 (5.06) 10.74 (4.94) 8.10 (4.78)
MDLM 0.01 0.9 32.94 (5.25) 25.51 (5.22) 20.89 (5.18) 17.19 (5.13) 13.91 (5.05) 10.91 (4.95) 8.15 (4.78) 5.93 (4.54)

Rescale Schedule
Duo 0.01 1.0 68.33 (5.54) 62.77 (5.53) 59.65 (5.50) 57.89 (5.46) 57.43 (5.45) 56.18 (5.44) 53.13 (5.42) 51.93 (5.41)
Duo 0.02 1.0 68.18 (5.54) 62.24 (5.53) 59.07 (5.50) 56.96 (5.46) 55.73 (5.44) 53.31 (5.43) 48.20 (5.40) 44.51 (5.38)
Duo 0.01 0.95 45.04 (5.47) 41.74 (5.46) 39.99 (5.43) 38.80 (5.38) 38.10 (5.37) 37.51 (5.36) 35.43 (5.33) 34.71 (5.32)
Duo 0.02 0.95 44.89 (5.47) 41.33 (5.46) 39.81 (5.43) 38.09 (5.38) 36.79 (5.36) 35.47 (5.35) 31.97 (5.31) 29.25 (5.28)
Duo 0.01 0.9 35.91 (5.41) 33.05 (5.40) 31.55 (5.36) 30.39 (5.31) 29.94 (5.29) 29.70 (5.28) 27.73 (5.25) 27.43 (5.24)
Duo 0.02 0.9 35.81 (5.41) 32.77 (5.40) 31.17 (5.36) 29.70 (5.30) 28.70 (5.28) 27.70 (5.26) 25.31 (5.22) 22.83 (5.19)

MDLM 0.01 1.0 68.66 (5.48) 55.16 (5.45) 49.71 (5.43) 45.88 (5.42) 45.11 (5.42) 43.79 (5.41) 42.55 (5.40) 40.90 (5.40)
MDLM 0.02 1.0 68.73 (5.48) 54.85 (5.45) 48.12 (5.43) 45.35 (5.42) 44.10 (5.42) 41.48 (5.41) 38.76 (5.39) 34.66 (5.38)
MDLM 0.01 0.95 46.01 (5.37) 36.58 (5.33) 32.80 (5.31) 30.65 (5.30) 29.92 (5.29) 29.18 (5.28) 28.34 (5.28) 27.38 (5.27)
MDLM 0.02 0.95 45.92 (5.37) 36.45 (5.33) 32.49 (5.31) 30.25 (5.29) 29.01 (5.28) 27.68 (5.28) 25.75 (5.26) 22.95 (5.24)
MDLM 0.01 0.9 34.83 (5.26) 28.15 (5.23) 25.24 (5.21) 23.73 (5.19) 23.03 (5.18) 22.36 (5.17) 21.75 (5.17) 20.93 (5.15)
MDLM 0.02 0.9 34.83 (5.26) 28.17 (5.23) 24.97 (5.21) 23.34 (5.19) 22.34 (5.17) 21.33 (5.17) 19.88 (5.15) 17.75 (5.12)

Loop Schedule
Duo 0.01 1.0 80.39 (5.55) 61.64 (5.54) 52.51 (5.52) 47.30 (5.48) 40.27 (5.44) 34.27 (5.40) 27.28 (5.32) 21.97 (5.26)
Duo 0.02 1.0 75.97 (5.55) 57.36 (5.53) 47.47 (5.52) 41.33 (5.47) 34.18 (5.41) 28.72 (5.36) 22.16 (5.26) 17.67 (5.18)
Duo 0.01 0.95 51.76 (5.48) 40.91 (5.47) 34.68 (5.44) 30.83 (5.39) 25.86 (5.34) 21.31 (5.27) 17.15 (5.18) 13.69 (5.10)
Duo 0.02 0.95 48.78 (5.48) 37.61 (5.46) 30.95 (5.43) 26.55 (5.36) 21.60 (5.30) 17.64 (5.22) 13.84 (5.11) 11.15 (5.02)
Duo 0.01 0.9 41.15 (5.42) 32.51 (5.40) 27.96 (5.38) 24.49 (5.32) 20.52 (5.25) 17.17 (5.19) 13.90 (5.10) 11.44 (5.02)
Duo 0.02 0.9 38.73 (5.42) 30.04 (5.40) 24.99 (5.37) 21.24 (5.29) 17.40 (5.21) 14.25 (5.13) 11.51 (5.02) 9.51 (4.94)

MDLM 0.01 1.0 99.76 (5.51) 62.76 (5.48) 47.50 (5.45) 39.07 (5.43) 32.85 (5.41) 28.01 (5.38) 23.18 (5.34) 19.32 (5.29)
MDLM 0.02 1.0 93.99 (5.51) 58.00 (5.48) 43.00 (5.45) 33.84 (5.42) 28.60 (5.39) 24.13 (5.36) 19.81 (5.30) 16.32 (5.24)
MDLM 0.01 0.95 65.09 (5.40) 41.85 (5.37) 31.76 (5.33) 26.11 (5.30) 22.21 (5.28) 19.19 (5.24) 16.12 (5.20) 13.59 (5.15)
MDLM 0.02 0.95 61.24 (5.40) 38.68 (5.36) 28.92 (5.33) 23.21 (5.29) 19.45 (5.26) 16.60 (5.21) 13.84 (5.16) 11.73 (5.09)
MDLM 0.01 0.9 48.86 (5.29) 32.03 (5.26) 24.51 (5.23) 20.56 (5.20) 17.79 (5.18) 15.42 (5.14) 13.19 (5.09) 11.29 (5.04)
MDLM 0.02 0.9 46.12 (5.29) 29.77 (5.27) 22.52 (5.22) 18.46 (5.19) 15.86 (5.16) 13.57 (5.11) 11.54 (5.05) 9.85 (4.98)

43

	Introduction
	Background
	Discrete Diffusion Models
	Masked Diffusion Processes
	Uniform-state Diffusion Processes

	Diffusion Guidance

	The Psi-Posteriors
	Scalable Curriculum for Faster Training
	Experiments
	Psi-Samplers
	Language Modeling
	Image Modeling

	Fast Curriculum

	Related work
	Conclusion
	Psi-Posteriors
	Approximate Reverse Marginals
	Proof that the Psi-posteriors have the correct marginals
	Negative Evidence Lower Bound
	Recovering Predictor-Corrector Methods for Masked Diffusion

	Fast Curriculum
	Generating the k largest Gaussian random variables out of K
	How to Implement Our Fast Curriculum
	Inverse Transform Sampling
	Distribution of the largest random uniform variables out of K
	Distribution of the second largest uniform random variable out of K
	Conditional mean of the exponential of a Gaussian
	Series Representation of T and dt T
	Polynomial Approximation of T

	Experimental Details
	-samplers
	Improved Curriculum
	Downstream Evaluation Protocol
	Zero-Shot Likelihood

	Additional Experimental results
	Tuning kappa for the psi-samplers
	Distribution of the top k entries of the softmax
	Training Efficiency of Our Fast Curriculum

