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Abstract

We study Inexact Langevin Algorithm (ILA) for sampling using an estimated
score function when the target distribution satisfies log-Sobolev inequality (LSI),
motivated by Score-based Generative Modeling (SGM). We prove convergence in
Kullback-Leibler (KL) divergence under a sufficient assumption on the error of
score estimator called bounded Moment Generating Function (MGF) assumption.
Our assumption is weaker than the previous assumption which requires the error
has finite L∞ norm everywhere. Under the L∞ error assumption, we also prove
convergence in Rényi divergence, which is stronger than KL divergence. On the
other hand, under Lp error assumption for any 1 ≤ p <∞ which is weaker than
bounded MGF assumption, we show that the stationary distribution of Langevin
dynamics with an Lp-accurate score estimator can be far away from the desired
distribution. Thus having an Lp-accurate score estimator cannot guarantee conver-
gence. Our results suggest controlling mean squared error which is the form of
commonly used loss function when using neural network to estimate score function
is not enough to guarantee the upstream algorithm will converge, hence in order
to get a theoretical guarantee we need a stronger control over the error in score
matching. Despite requiring an exponentially decaying error probability, we give
an example to demonstrate the bounded MGF assumption is achievable when using
Kernel Density Estimation (KDE)-based score estimator.

1 Introduction

Score-based Generative Modeling (SGM) is a family of sampling methods which have state-of-the-art
performance in many applied areas (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021), but
the theoretical understanding of the methods is still lacking. The basic idea of SGM is a two-step
procedure. The first step is to estimate the score function from the data (for example via score
matching using neural network), the second step is to get new samples from the estimated score via
Langevin dynamics. There have been extensive studies on convergence rate of Langevin dynamics
and related discrete time algorithms in the setting of knowing exact score function (Vempala and
Wibisono, 2019; Chewi et al., 2022). In contrast, theoretical analysis in the setting of using estimated
score is limited. De Bortoli et al. (2021) studied the convergence in total variation that requires L∞

error assumption. Although L∞ is sufficient to guarantee the convergence, it is too strong to hold in
practice since it requires a finite and uniform error at every point x. Lee et al. (2022) and De Bortoli
(2022) studied the convergence in total variation and Wasserstein distance of order one respectively
under L2 error assumption. The convergence results are achieved after running the algorithm for a
moderate amount of time. The reason why we cannot run the algorithm for infinitely long time is
that the stationary distribution of Langevin dynamics with an L2-accurate score estimator can be far
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away from the desired distribution (Balasubramanian et al., 2022; Lee et al., 2022). This suggests
having an L2-accurate score estimator is not sufficient to guarantee a distribution which is close
to the desired one after running the algorithm for a long time. Therefore there is a need to find a
sufficient assumption on the error of score estimator which is achievable in practice and meanwhile
can guarantee convergence.

Our contribution We prove convergence in KL divergence under a sufficient assumption on the
error of score estimator called bounded Moment Generating Function (MGF) assumption which
is weaker than L∞ but stronger than Lp for 1 ≤ p < ∞. We also prove convergence in Rényi
divergence under L∞ error assumption, which is stronger than KL divergence. Contrary to previous
results (Lee et al., 2022; De Bortoli, 2022), our convergence result is stable. Moreover our results
hold in KL divergence, which is stronger than TV. We also show that Lp error assumption for any
1 ≤ p < ∞ is not sufficient to guarantee long-term convergence even in TV. Our analysis in this
paper suggests controlling mean squared loss in score matching is not enough, we may need a
stronger control over the error when constructing the loss function for neural network to train the
score function, such as MGF of the error (mean of exponential of squared error). We show the
bounded MGF assumption is achievable by giving an example when using Kernel Density Estimator
(KDE) to approximate the score function in Gaussian data. Since our original submission to this
workshop, we have generalized our analysis to score-based generative models and proved a similar
stable convergence result in KL divergence (more details in Wibisono and Yang (2022)).

Notations In this paper, we use Hν(ρ) to denote KL divergence of ρ w.r.t. ν, Jν(ρ) to denote
relative Fisher information of ρ w.r.t. ν, Rq,ν(ρ) to denote Rényi divergence of order q of ρ w.r.t. ν.
We provide a review on the definitions in Appendix A.

2 Preliminaries

Given the target distribution ν ∝ e−f in Rn, the Unadjusted Langevin Algorithm (ULA) with step
size h > 0 is the following discrete-time algorithm

xk+1 = xk + h∇ log ν(xk) +
√
2hzk (1)

where zk ∼ N(0, I) are independent standard Gaussians in Rn. This is a discretization of the
Langevin dynamics in continuous time, which is a stochastic process that converges to the target
distribution. The convergence properties of the Langevin dynamics have been well studied under
various assumptions such as strong log-concavity or weaker isoperimetric inequality such as log-
Sobolev inequlity (LSI), which allows for some non-log-concavity. There are also convergence
guarantees in discrete time with small bias under LSI and smoothness with small step size (Vempala
and Wibisono, 2019; Balasubramanian et al., 2022).

In practice, for example in SGM, we may not know true score function ∇ log ν(x), so we replace it
by an estimated score function s(x) in Eq. (1) and we run Inexact Langevin Algorithm (ILA) with
s(x) as follows

xk+1 = xk + hs(xk) +
√
2hzk. (2)

We study the convergence of above algorithm. One step of the algorithm is the solution xk+1 = Xh

of the following SDE at time h starting from X0 = xk

dXt = s(X0)dt+
√
2dWt (3)

where Wt is the standard Brownian motion in Rn. We present the following lemma on Eq. (3), which
will be used later.

Lemma 1. Let ρt be the law of Eq. (3), then we have the following bound for time derivative of KL
divergence

d

dt
Hν(ρt) ≤ −3

4
Jν(ρt) + Eρ0t

[
∥s(X0)−∇ log v(Xt)∥2

]
.

Proof of Lemma 1 is in Appendix B.
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3 Main results

3.1 Convergence under bounded MGF assumption

We first introduce the following assumptions.
Assumption 1 (LSI). The target distribution ν satisfies LSI with constant α > 0, which means for
any probability distribution ρ

Hν(ρ) ≤
1

2α
Jν(ρ).

Assumption 2 (L-smoothness). f = − log ν is L-smooth, which means ∇f is L-Lipschitz.
Assumption 3 (Lipschitz score estimator). The score estimator s(x) is Ls-Lipschitz.
Assumption 4 (MGF error assumption). The error of score estimator s(x) has finite moment
generating function of some order r, i.e.

M2 = Eν
[
exp

(
r∥∇ log ν(x)− s(x)∥2

) ]
<∞.

Later in this paper we will compare the above assumption with the following.
Assumption 5 (L∞ error assumption). The error of score estimator s(x) has finite L∞ norm at
every x, i.e.

M∞ = sup
x∈Rn

∥∇ log ν(x)− s(x)∥ <∞.

Assumption 6 (Lp error assumption). The error of score estimator s(x) has finite moment of order p
for some 1 ≤ p <∞, i.e.

Mp = Eν
[
∥∇ log ν(x)− s(x)∥p

]
<∞.

Our main result is the following, which shows biased convergence rate of ILA under the MGF error
assumption.
Theorem 1 (Convergence of KL divergence under MGF error assumption). Suppose Assumption 1-3
and 4 with r = 9

α hold. If 0 < h < min( α
12LsL

, 1
2α ), then after k iterations of ILA (2)

Hν(ρk) ≤ e−
1
4αhkHν(ρ0) + C1h+ C2 logM

where C1 = O(
nL2

sL
α ) and C2 = 16

3 .

Proof of Theorem 1 is in Appendix C. The convergence rate is similar to Theorem 1 in Vempala and
Wibisono (2019) in the setting of knowing exact score function but has an extra non-vanishing term
induced by the error of score estimator. So in order to have a small asymptotic error, we need an
accurate score estimator. Theorem 1 directly implies the following corollary.
Corollary 1. Suppose Assumption 1-3 hold. For any ε > 0, if the score estimator s(x) has a small
MGF error

logEν
[
exp

(
9

α
∥∇ log ν(x)− s(x)∥2

)]
≤ 3

16
ε,

then running ILA (2) with step size h ≤ ε

4C1
= O

(
εα

nL2
sL

)
for at least k =

4

αh
log

4Hν(ρ0)

ε
iterations reaches Hν(ρk) ≤ ε.

3.2 Comparing different error assumptions

Because L∞ implies MGF error assumption, the convergence result in Theorem 1 also holds under
Assumption 5 in place of Assumption 4. In this case, we provide a simpler proof in Appendix D. In
addition, under L∞ error assumption, we prove convergence in Rényi divergence of order q ≥ 1,
which is stronger than KL divergence. We conjecture the convergence holds under the MGF error
assumption and leave it for future work.
Theorem 2 (Convergence of Rényi divergence under L∞ error assumption). Suppose Assumption
1-3 and 5 hold. Let q ≥ 1. If 0 < h < min( α

12LLsq
, q
4α ), then after k iterations of ILA (2)

Rq,ν(ρk) ≤ e−
α
2 hkRq,ν(ρ0) + C1h+ C2M

2
∞,

where C1 = O(
hL2

sLq
2

α ) and C2 = O( q
2

α ).
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Proof of Theorem 2 is in Appendix E.

L∞-accurate score estimator requires a finite and uniform error at every point x, which is too strong
and may not hold in practice. By the construction of loss function in score estimation, the estimated
score is only L2-accurate with high probability (Proposition 9 in Block et al. (2020)). However,
the stationary distribution of Langevin dynamics with L2-accurate score can be far away from the
true distribution in TV (Lee et al., 2022; Balasubramanian et al., 2022). So having an L2-accurate
score estimator cannot guarantee the sampling algorithm will converge to the desired distribution.
We further claim that any finite higher moment (Assumption 6) cannot guarantee the convergence
either. This is to say, the stationary distribution of Langevin dynamics with an Lp-accurate score
estimator where 1 ≤ p <∞ can also be far away from the true distribution. We use the example in
Balasubramanian et al. (2022) to illustrate this.
Example 1 (Lp bound is not sufficient). Let ν = 3

4N (−m, 1) + 1
4N (m, 1) and µ = 1

2N (−m, 1) +
1
2N (m, 1). For all m ≥ 1

80 and p ≥ 1, the following holds

Eν
[
∥∇ log ν −∇ logµ∥p

]
≤ 4p−1mp exp(−m

2

2
) → 0 as m→ ∞.

However, the total variation between µ and ν is large, TV(µ, ν) ≥ 1
800 .

The example above shows if the target distribution is ν, but we run Langevin dynamics with an
Lp-accurate score estimator s = ∇ logµ, then the limiting distribution will be µ, hence TV (µ, ν) is
the asymptotic bias. We provide more details of Example 1 in Appendix F. Therefore, in order to
obtain a convergence guarantee with an achievable sufficient assumption, we need the error of score
estimator in between Lp and L∞.

The MGF error assumption is weaker than L∞ but stronger than Lp error bound for any 1 ≤ p <∞.
Indeed, the MGF error assumption implies Pν(∥∇ log ν(x)− s(x)∥2 ≥ cn) → 0 exponentially as
cn → ∞, which is strong. It is not clear whether the assumption holds via score matching using
neural network. But here we show an example where the assumption is achieved when using a simple
KDE-based score estimator in Gaussian data.
Example 2. Let ν = N(µ, σ2), then f = − log ν is 1/σ2-strongly convex, thus ν satisfies LSI with
constant 1/σ2. The score function is ∇ log ν(x) = − (x− µ) /σ2. We estimate the score function
via Gaussian KDE with bandwidth h > 0, so the score estimator is

s(x) = ∇ log(ν ∗N(0, h2)) = − x− µ

σ2 + h2

and s(x) is 1
σ2+h2 -Lipschitz. Let r = 9σ2. If h < σ√

3
√
2−1

, then the MGF is finite,

Eν
[
exp

(
r∥∇ log ν(x)− s(x)∥2

)]
= EN(0,1)

[
exp

(
9h4

(h2 + σ2)2
Z2

)]
=

h2 + σ2

√
σ4 + 2h2σ2 − 17h4

.

4 Discussion

In this paper we study the convergence of Inexact Langevin Algorithm (ILA) using estimated score
function, motivated by SGM. We prove convergence result in KL divergence under MGF error
assumption, which is weaker than L∞ error assumption. In addition, under L∞ assumption, we
provide convergence in Rényi divergence, which is stronger than KL divergence. On the other hand,
we show Lp error assumption for any 1 ≤ p < ∞ is not sufficient to guarantee convergence. Our
results suggest controlling L2 loss (mean squared error) in score matching is not enough to guarantee
the upstream algorithm will converge, therefore in order to get a theoretical guarantee one may need
a stronger control over the error when constructing the loss function for neural network to estimate
the score function, such as MGF (mean of exponential of squared error). Using such loss functions
will give us a more accurate score estimator especially in low density regions, since they punish more
on those large errors which are usually from low density areas (Song and Ermon, 2019). Although
the MGF error assumption requires an exponentially decaying tail, we show it is achievable when
using a simple KDE score estimator in Gaussian data. It is intriguing to explore if the KDE score
estimator satisfies the assumption for a larger class of distributions, such as strongly log-concave
distributions. It is also interesting to investigate if the score matching estimator by neural network
satisfies this assumption.
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A A review on notations and definitions

In this section, we review notations and definitions of Kullback-Leibler (KL) divergence, relative
Fisher information, Rényi divergence and Rényi information. Let ρ, ν be two probability distributions
in Rn denoted by their probability density functions w.r.t. Lebesgue measure on Rn. Assume ρ and ν
have full support on Rn.
Definition 1 (KL divergence). The Kullback-Leibler (KL) divergence of ρ w.r.t. ν is

Hν(ρ) =

∫
Rn

ρ log
ρ

ν
dx.

Definition 2 (Relative Fisher information). The relative Fisher information of ρ w.r.t. ν is

Jν(ρ) =

∫
Rn

ρ∥∇ log
ρ

ν
∥2dx.

Definition 3 (Rényi divergence). For q ≥ 0, q ̸= 1, the Rényi divergence of order q of ρ w.r.t. ν is

Rq,ν(ρ) =
1

q − 1
logFq,ν(ρ)

where
Fq,ν(ρ) = Eν

[(ρ
ν

)q]
.

Definition 4 (Rényi information). For q ≥ 0, the Rényi information of order q of ρ w.r.t. ν is

Gq,ν(ρ) = Eν
[(ρ
ν

)q
∥∇ log

ρ

ν
∥2
]
=

4

q2
Eν

[
∥∇

(ρ
ν

) q
2 ∥2

]
.

B Proof of Lemma 1

Proof. The continuity equation corresponding to Eq. (3) is
∂ρt(x)

∂t
= −∇ ·

(
ρt(x)Eρ0|t [s(x0)|xt = x]

)
+∆ρt(x).

Therefore
d

dt
Hν(ρt) =

∫
Rn

∂ρt
∂t

log
ρt
ν
dx

=

∫
Rn

(
−∇ ·

(
ρtEρ0|t [s(x0)|xt = x]

)
+∆ρt

)
log

ρt
ν
dx

=

∫
Rn

(
−∇ ·

(
ρtEρ0|t [s(x0)|xt = x]

)
+∇ · (ρt∇ log

ρt
ν
) +∇ · (ρt∇ log ν)

)
log

ρt
ν
dx

=

∫
Rn

(
∇ ·

(
ρt(∇ log

ρt
ν

− Eρ0|t [s(x0)|xt = x] +∇ log ν)
))

log
ρt
ν
dx

= −
∫
Rn

ρt⟨∇ log
ρt
ν

− Eρ0|t [s(x0)|xt = x] +∇ log ν,∇ log
ρt
ν
⟩dx integrating by parts

= −
∫
Rn

ρt∥∇ log
ρt
ν
∥2dx+

∫
Rn

ρt⟨Eρ0|t [s(x0)|xt = x]−∇ log ν,∇ log
ρt
ν
⟩dx

= −Jν(ρt) +
∫
Rn

ρt⟨Eρ0|t [s(x0)|xt = x]−∇ log ν,∇ log
ρt
ν
⟩dx

= −Jν(ρt) + Eρ0t
[
⟨s(x0)−∇ log v(xt),∇ log

ρt(xt)

ν(xt)
⟩
]

by renaming x as xt

≤ −Jν(ρt) + Eρ0t
[
∥s(x0)−∇ log v(xt)∥2

]
+

1

4
Eρ0t

[
∥∇ log

ρt(xt)

ν(xt)
∥2
]

by ⟨a, b⟩ ≤ ∥a∥2 + 1

4
∥b∥2

= −Jν(ρt) + Eρ0t
[
∥s(x0)−∇ log v(xt)∥2

]
+

1

4
Jν(ρt)

= −3

4
Jν(ρt) + Eρ0t

[
∥s(x0)−∇ log v(xt)∥2

]
.
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C Proof of Theorem 1

We restate the full theorem here.

Theorem 1. Suppose the target distribution ν ∝ e−f satisfies LSI with constant α > 0 and f is
L-smooth. Let s(x) : Rn → Rn be an Ls-Lipschitz score estimator and the error satisfies Assumption
4. Let 0 < h < min( α

12LsL
, 1
2α ), after k iterations of ILA (2)

Hν(ρk) ≤ e−
1
4αhkHν(ρ0) +

768nL2
sL

α
h2 +

128nL2
s

α
h+

16

3
logM.

To prove Theorem 1, we will use the following auxiliary result.

Lemma 2. If the score estimator s(x) is Ls-Lipschitz and t ≤ 1
3Ls

, then

∥s(xt)− s(x0)∥2 ≤ 18L2
st

2∥s(xt)−∇ log ν(xt)∥2 + 18L2
st

2∥∇ log ν(xt)∥2 + 6L2
st∥z0∥2.

Lemma 3. Suppose the assumptions in Theorem 1 hold, then along each step of ILA (2),

Hν(ρk+1) ≤ e−
1
4αhHν(ρk) + 144nL2

sLh
3 + 24nL2

sh
2 + αh logM.

Proof of Lemma 2. By Ls-Lipschitzness

∥s(xt)− s(x0)∥2 ≤ L2
s∥xt − x0∥2 = L2

s∥ts(x0) +
√
2tz0∥2 ≤ 2L2

st
2∥s(x0)∥2 + 4L2

st∥z0∥2.

It is more convenient for our subsequent analysis to have a bound in terms of s(xt) rather than s(x0),
so we use

Ls∥xt − x0∥ ≥ ∥s(xt)− s(x0)∥ ≥ ∥s(x0)∥ − ∥s(xt)∥.
Rearranging it gives

∥s(x0)∥ ≤ Ls∥xt − x0∥+ ∥s(xt)∥
= Ls∥ts(x0) +

√
2tz0∥+ ∥s(xt)∥ since xt = x0 + ts(x0) +

√
2tz0

= Lst∥s(x0)∥+ Ls
√
2t∥z0∥+ ∥s(xt)∥ by triangle inequality

≤ 1

3
∥s(x0)∥+ Ls

√
2t∥z0∥+ ∥s(xt)∥ since t ≤ 1

3Ls
⇐= t ≤ h ≤ α

12LsL
and α ≤ L

Therefore

∥s(x0)∥ ≤ 3

2
∥s(xt)∥+

3√
2
Ls

√
t∥z0∥

=⇒ ∥s(x0)∥2 ≤ 9

2
∥s(xt)∥2 + 9L2

st∥z0∥2 by ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2
(4)

So we can bound ∥s(xt)− s(x0)∥2 as follows

∥s(xt)− s(x0)∥2 ≤ 2L2
st

2∥s(x0)∥2 + 4L2
st∥z0∥2

≤ 2L2
st

2
(9
2
∥s(xt)∥2 + 9L2

st∥z0∥2
)
+ 4L2

st∥z0∥2 by plugging in Eq. (4)

= 9L2
st

2∥s(xt)∥2 + (18L4
st

3 + 4L2
st)∥z0∥2

≤ 9L2
st

2∥s(xt)∥2 + 6L2
st∥z0∥2 since t ≤ 1

3Ls

= 9L2
st

2∥s(xt)−∇ log ν(xt) +∇ log ν(xt)∥2 + 6L2
st∥z0∥2

≤ 18L2
st

2∥s(xt)−∇ log ν(xt)∥2 + 18L2
st

2∥∇ log ν(xt)∥2 + 6L2
st∥z0∥2.

Proof of Lemma 3. For simplicity suppose k = 0, then one step of ULA using estimated score with
step size h > 0 is

x1
d
= x0 + hs(x0) +

√
2hz0.
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This is the solution to the following SDE at time t = h

dXt = s(X0)dt+
√
2dWt

where Wt is the standard Brownian motion in Rn.

Let M(x) = ∥∇ log ν(x)− s(x)∥2. By Lemma 1,

∂

∂t
Hν(ρt) ≤ −3

4
Jν(ρt) + Eρ0t

[
∥s(x0)−∇ log v(xt)∥2

]
≤ −3

4
Jν(ρt) + 2Eρ0t

[
∥s(x0)− s(xt)∥2

]
+ 2Eρt

[
∥s(xt)−∇ log v(xt)∥2

]
≤ −3

4
Jν(ρt) + 2Eρ0t

[
18L2

st
2∥s(xt)−∇ log ν(xt)∥2 + 18L2

st
2∥∇ log ν(xt)∥2 + 6L2

st∥z0∥2
]

+ 2Eρt
[
M(x)

]
by Lemma 2

= −3

4
Jν(ρt) +

(
36L2

st
2 + 2

)
Eρt

[
M(x)

]
+ 36L2

st
2Eρt

[
∥∇ log ν(xt)∥2

]
+ 12nL2

st

(i)

≤ −3

4
Jν(ρt) +

9

4
Eρt

[
M(x)

]
+ 36L2

st
2Eρt

[
∥∇ log ν(xt)∥2

]
+ 12nL2

st

(ii)

≤ −3

4
Jν(ρt) +

9

4
Eρt

[
M(x)

]
+ 36L2

st
2
(4L2

α
Hν(ρt) + 2nL

)
+ 12nL2

st

= −3

4
Jν(ρt) +

9

4
Eρt

[
M(x)

]
+

144L2
st

2L2

α
Hν(ρt) + 72nL2

st
2L+ 12nL2

st

≤ −3

4
Jν(ρt) +

9

4
Eρt

[
M(x)

]
+ αHν(ρt) + 72nL2

st
2L+ 12nL2

st since t2 ≤ h2 ≤ α2

144L2
sL2

≤ −3

2
αHν(ρt) +

9

4
Eρt

[
M(x)

]
+ αHν(ρt) + 72nL2

st
2L+ 12nL2

st by LSI

= −1

2
αHν(ρt) +

9

4
Eρt

[
M(x)

]
+ 72nL2

st
2L+ 12nL2

st.

where (i) is because t2 ≤ h2 ≤ α2

144L2
sL

2 ≤ 1
144L2

s
and (ii) is by Lemma 12 in Vempala and Wibisono

(2019). We then bound the second term by applying Donsker–Varadhan variational characterizations
of KL divergence EP [f(x)] ≤ logEQef(x) +HQ(P ) for f(x) = 9

αM(x), P = ρt and Q = ν

Eρt
[ 9
α
M(x)

]
≤ logEν

[
e

9
αM(x)

]
+Hν(ρt)

⇐⇒ Eρt
[
M(x)

]
≤ α

9
logEν

[
e

9
αM(x)

]
+
α

9
Hν(ρt).

Therefore
∂

∂t
Hν(ρt) ≤ −1

2
αHν(ρt) +

α

4
logEν

[
e

9
αM(x)

]
+

1

4
αHν(ρt) + 72nL2

st
2L+ 12nL2

st

= −1

4
αHν(ρt) +

α

4
logEν

[
e

9
αM(x)

]
+ 72nL2

st
2L+ 12nL2

st

≤ −1

4
αHν(ρt) +

1

2
α logM + 72nL2

st
2L+ 12nL2

st by MGF error assumption

≤ −1

4
αHν(ρt) +

1

2
α logM + 72nL2

sh
2L+ 12nL2

sh since t ∈ (0, h)

This is equivalent to

∂

∂t
e

1
4αtHν(ρt) ≤ e

1
4αt

(1
2
α logM + 72nL2

sh
2L+ 12nL2

sh
)

=⇒ e
1
4αhHν(ρh) ≤ Hν(ρ0) +

4(e
1
4αh − 1)

α

(1
2
α logM + 72nL2

sh
2L+ 12nL2

sh
)

=⇒ Hν(ρh) ≤ e−
1
4αhHν(ρ0) + 2h

(1
2
α logM + 72nL2

sh
2L+ 12nL2

sh
)
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since e−
1
4αh ≤ 1 and ec − 1 ≤ 2c for c = α

4 h ∈ (0, 1). Renaming ρ0 as ρk and ρh as ρk+1,

Hν(ρk+1) ≤ e−
1
4αhHν(ρk) + 144nL2

sLh
3 + 24nL2

sh
2 + αh logM.

The proof of Theorem 1 then follows Lemma 3.

Proof of Theorem 1. Applying the recursion contraction k times

Hν(ρk) ≤ e−
1
4αhkHν(ρ0) +

k−1∑
i=0

e−
1
4αhi

(
αh logM + 144nL2

sh
3L+ 24nL2

sh
2
)

≤ e−
1
4αhkHν(ρ0) +

1

1− e−
1
4αh

(
αh logM + 144nL2

sh
3L+ 24nL2

sh
2
)

≤ e−
1
4αhkHν(ρ0) +

16

3αh

(
αh logM + 144nL2

sh
3L+ 24nL2

sh
2
)

= e−
1
4αhkHν(ρ0) +

768nL2
sL

α
h2 +

128nL2
s

α
h+

16

3
logM.

D Proof of convergence of KL divergence under L∞ error assumption

We state the theorem here.

Theorem 3. Suppose the target distribution ν ∝ e−f satisfies LSI with constant α > 0 and f is
L-smooth. Let s(x) : Rn → Rn be an Ls-Lipschitz score estimator with error bound in L∞, i.e.

M∞ = max
x∈Rn

∥∇ log ν(x)− s(x)∥ <∞.

Let 0 < h < min( α
12LsL

, 1
2α ), then after k iterations of ILA (2)

Hν(ρk) ≤ e−
α
2 hkHν(ρ0) + C1h+ C2M

2
∞,

for some constants C1 and C2.

We will use the following auxiliary result.

Lemma 4. Suppose the assumptions in Theorem 3 hold, then along each step of ILA (2)

Hν(ρk+1) ≤ e−
αh
2 Hν(ρk) + 144nLL2

sh
3 + 24nL2

sh
2 + (72L2

sh
3 + 4h)M2

∞.

Proof of Lemma 4.

d

dt
Hν(ρt) ≤ −3

4
Jν(ρt) + Eρ0t

[
∥s(x0)−∇ log v(xt)∥2

]
by Lemma 1

= −3

4
Jν(ρt) + Eρ0t

[
∥s(x0)− s(xt) + s(xt)−∇ log v(xt)∥2

]
≤ −3

4
Jν(ρt) + 2Eρ0t

[
∥s(x0)− s(xt)∥2

]
+ 2Eρt

[
∥s(xt)−∇ log v(xt)∥2

]
≤ −3

4
Jν(ρt) + 2Eρ0t

[
∥s(x0)− s(xt)∥2

]
+ 2M2

∞ by L∞ error assumption.

By Lemma 2,

∥s(xt)− s(x0)∥2 ≤ 18L2
st

2∥s(xt)−∇ log ν(xt)∥2 + 18L2
st

2∥∇ log ν(xt)∥2 + 6L2
st∥z0∥2

≤ 18L2
st

2M2
∞ + 18L2

st
2∥∇ log ν(xt)∥2 + 6L2

st∥z0∥2 by L∞ error assumption.
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The condition t ≤ 1
3Ls

in Lemma 2 is satisfied since t ≤ h ≤ α
12LsL

and α ≤ L. Therefore,

2Eρ0t
[
∥s(xt)− s(x0)∥2

]
≤ 36L2

st
2M2

∞ + 36L2
st

2Eρt
[
∥∇ log ν(xt)∥2

]
+ 12nL2

st

≤ 36L2
st

2M2
∞ + 36L2

st
2
(4L2

α
Hν(ρt) + 2nL

)
+ 12nL2

st

=
144L2

st
2L2

α
Hν(ρt) + 72nLL2

st
2 + 12nL2

st+ 36L2
st

2M2
∞.

The second inequality is by Lemma 12 in Vempala and Wibisono (2019). Therefore, the time
derivative of KL divergence is bounded by

d

dt
Hν(ρt) ≤ −3

4
Jν(ρt) +

144L2
st

2L2

α
Hν(ρt) + 72nLL2

st
2 + 12nL2

st+ 36L2
st

2M2
∞ + 2M2

∞

≤ −3α

2
Hν(ρt) +

144L2
st

2L2

α
Hν(ρt) + 72nLL2

st
2 + 12nL2

st+ 36L2
st

2M2
∞ + 2M2

∞ by LSI

≤ −3α

2
Hν(ρt) +

144L2
sh

2L2

α
Hν(ρt) + 72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞ since t ∈ (0, h)

≤ −3α

2
Hν(ρt) + αHν(ρt) + 72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞ since h2 ≤ α2

144L2
sL2

= −α
2
Hν(ρt) + 72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞

This is equivalent to

d

dt
e

α
2 tHν(ρt) ≤ e

α
2 t
(
72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞

)
.

Integrating from 0 to h

e
α
2 hHν(ρh)−Hν(ρ0) ≤

2(e
α
2 h − 1)

α

(
72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞

)
≤ 2h

(
72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞

)
.

where the last inequality is from ec − 1 ≤ 2c for c = α
2 h ∈ (0, 1). Rearranging gives

Hν(ρh) ≤ e−
α
2 hHν(ρ0) + e−

α
2 h2h

(
72nLL2

sh
2 + 12nL2

sh+ 36L2
sh

2M2
∞ + 2M2

∞

)
≤ e−

α
2 hHν(ρ0) + 144nLL2

sh
3 + 24nL2

sh
2 +

(
72L2

sh
3 + 4h

)
M2

∞ since e−
α
2
h ≤ 1.

Rename ρ0 ≡ ρk, ρh ≡ ρk+1,

Hν(ρk+1) ≤ e−
α
2 hHν(ρk) + 144nLL2

sh
3 + 24nL2

sh
2 +

(
72L2

sh
3 + 4h

)
M2

∞. (5)

Proof of Theorem 3. Applying the recursion (5) k times, we obtain

Hν(ρk) ≤ e−
α
2 hkHν(ρ0) +

k−1∑
i=0

e−
α
2 hi

(
144nLL2

sh
3 + 24nL2

sh
2 + 72L2

sh
3M2

∞ + 4M2
∞h

)
≤ e−

α
2 hkHν(ρ0) +

1

1− e−
α
2 h

(
144nLL2

sh
3 + 24nL2

sh
2 + 72L2

sh
3M2

∞ + 4M2
∞h

)
(i)

≤ e−
α
2 hkHν(ρ0) +

8

3αh

(
144nLL2

sh
3 + 24nL2

sh
2 + 72L2

sh
3M2

∞ + 4M2
∞h

)
≤ e−

α
2 hkHν(ρ0) +

384nLL2
s

α
h2 +

64nL2
s

α
h+

(192L2
sh

2

α
+

32

3α

)
M2

∞.

where (i) is because 1− e−c ≥ 3
4c for 0 < c = α

2 h <
1
4 .
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E Proof of Theorem 2

We restate the full theorem here.
Theorem 2. Suppose the assumptions in Theorem 3 hold and let 0 < h < min( α

12LLsq
, q
4α ), then

after k iterations of ILA (2)

Rq,ν(ρk) ≤ e−
α
2 hkRq,ν(ρ0) +

192nLL2
sq

2

α
h2 +

32nL2
sq

2

α
h+

(96L2
sh

2q2

α
+

16q2

3α

)
M2

∞

≤ e−
α
2 hkRq,ν(ρ0) + C1h+ C2M

2
∞,

for some constants C1 and C2.

We will use the following auxiliary result.

Lemma 5. Let φt = ρt
ν and ψt =

φq−1
t

Eν [φ
q
t ]

=
φq−1

t

Fq,ν(ρt)
, then

∂

∂t
Rq,ν(ρt) ≤ −3

4
q
Gq,ν(ρt)

Fq,ν(ρt)
+ qEρ0t

[
ψt(xt)∥s(x0)−∇ log ν(xt)∥2

]
.

This is a generalized version of Proposition 15 in Chewi et al. (2022) to the setting of estimated score.
Lemma 6. Suppose the assumptions in Theorem 2 hold, then along each step of ILA (2)

Rq,ν(ρk+1) ≤ e−
α
q hRq,ν(ρk) + 144nLL2

sqh
3 + 24nL2

sqh
2 + (72L2

sqh
3 + 4qh)M2

∞.

Proof of Lemma 5.

∂

∂t
Rq,v(ρt) =

1

q − 1

∫ ∂
∂tρ

q
t

vq−1 dx

Fq,v(ρt)

=
q

q − 1

∫ (
ρt
v

)q−1 ∂ρt
∂t dx

Fq,v(ρt)

=
q

(q − 1)Fq,v(ρt)

∫ (ρt
v

)q−1 ∂ρt
∂t

dx

=
q

(q − 1)Fq,v(ρt)

∫ (ρt
v

)q−1
(
−∇ ·

(
ρtEρ0|t [s(x0)|xt = x]

)
+∆ρt

)
dx

=
q

(q − 1)Fq,v(ρt)

∫
−ρt

〈
∇
(ρt
v

)q−1
,∇ log

ρt
ν

− Eρ0|t [s(x0)|xt = x] +∇ log ν
〉
dx integrating by parts

=
q

(q − 1)Fq,v(ρt)

(∫
−ρt

〈
∇
(ρt
v

)q−1
,∇ log

ρt
ν

〉
dx

+

∫
ρt
〈
∇
(ρt
v

)q−1
,Eρ0|t [s(x0)|xt = x]−∇ log ν

〉
dx

)
=

q

(q − 1)Fq,v(ρt)

(
−
∫
ν
〈
∇
(ρt
v

)q−1
,∇ρt

ν

〉
dx︸ ︷︷ ︸

A1

+

∫
ρt
〈
∇
(ρt
v

)q−1
,Eρ0|t [s(x0)|xt = x]−∇ log ν

〉
dx︸ ︷︷ ︸

A2

)

A1 = 4(q−1)
q2 Eν

[
∥∇

(
ρt
v

) q
2 ∥2

]
, because〈

∇
(ρt
v

)q−1
,∇ρt

ν

〉
= (q − 1)

〈(ρt
v

)q−2∇ρt
ν
,∇ρt

ν

〉
= (q − 1)

〈(ρt
v

) q−2
2 ∇ρt

ν
,
(ρt
v

) q−2
2 ∇ρt

ν

〉
= (q − 1)∥2

q
∇
(ρt
v

) q
2 ∥2

=
4(q − 1)

q2
∥∇

(ρt
v

) q
2 ∥2.
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Then we computeA2. Note that ∇
(
ρt
v

)q−1
= (q−1)

(
ρt
v

)q−2∇ρt
v = (q−1)

(
ρt
v

) q−2
2
(
ρt
v

) q−2
2 ∇ρt

v =

(q − 1)
(
ρt
v

) q−2
2 2

q∇
(
ρt
v

)q/2
, therefore

A2 =

∫
ρt
〈
∇
(ρt
v

)q−1
,Eρ0|t [s(x0)|xt = x]−∇ log ν

〉
dx

= 2
q − 1

q
Eρ0t

[(ρt
v

) q−2
2
〈
∇
(ρt
v

) q
2 , s(x0)−∇ log ν(xt)

〉]
= 2

q − 1

q
Eρ0t

[〈(ρt
v

)− 1
2∇

(ρt
v

) q
2 ,
(ρt
v

) q−1
2
(
s(x0)−∇ log ν(xt)

)〉]
.

Applying ⟨x, y⟩ ≤ 1
2q∥x∥

2+ q
2∥y∥

2 to x =
(
ρt
v

)− 1
2∇

(
ρt
v

) q
2 and y =

(
ρt
v

) q−1
2
(
s(x0)−∇ log ν(xt)

)
,

〈(ρt
v

)− 1
2∇

(ρt
v

) q
2 ,
(ρt
v

) q−1
2
(
s(x0)−∇ log ν(xt)

)〉
≤ 1

2q
∥
(ρt
v

)− 1
2∇

(ρt
v

) q
2 ∥2 + q

2
∥
(ρt
v

) q−1
2
(
s(x0)−∇ log ν(xt)

)
∥2

=
1

2q

ν

ρt
∥∇

(ρt
ν

) q
2 ∥2 + q

2

(ρt
ν

)q−1∥s(x0)−∇ log ν(xt)∥2.

=⇒ A2 ≤ 2
q − 1

q

( 1

2q
Eν

[
∥∇

(ρt
ν

) q
2 ∥2

]
+
q

2
Eρ0t

[(ρt
ν

)q−1∥s(x0)−∇ log ν(xt)∥2
])

=
q − 1

q2
Eν

[
∥∇

(ρt
ν

) q
2 ∥2

]
+ (q − 1)Eρ0t

[(ρt
ν

)q−1∥s(x0)−∇ log ν(xt)∥2
]
.

Therefore

∂

∂t
Rq,ν(ρt) =

q

(q − 1)Fq,v(ρt)
(−A1 +A2)

≤ q

(q − 1)Fq,v(ρt)

(
− 3(q − 1)

q2
Eν

[
∥∇

(ρt
ν

) q
2 ∥2

]
+ (q − 1)Eρ0t

[(ρt
ν

)q−1∥s(x0)−∇ log ν(xt)∥2
])

= − 1

Fq,v(ρt)

(3
q
Eν

[
∥∇

(ρt
ν

) q
2 ∥2

]
− qEρ0t

[(ρt
ν

)q−1∥s(x0)−∇ log ν(xt)∥2
])
.

Let φt = ρt
ν and ψt =

φq−1
t

Eν [φ
q
t ]

=
φq−1

t

Fq,ν(ρt)
, then

∂

∂t
Rq,ν(ρt) ≤ −3

4
q
Gq,ν(ρt)

Fq,ν(ρt)
+ qEρ0t

[
ψt(xt)∥s(x0)−∇ log ν(xt)∥2

]
.

Proof of Lemma 6. Lemma 5 states

∂

∂t
Rq,ν(ρt) ≤ −3

4
q
Gq,ν(ρt)

Fq,ν(ρt)
+ qEρ0t

[
ψt(xt)∥s(x0)−∇ log ν(xt)∥2

]
.

All we need is to bound Eρ0t
[
ψt(xt)∥s(x0)−∇ log ν(xt)∥2

]
.

Eρ0t
[
ψt(xt)∥s(x0)−∇ log ν(xt)∥2

]
≤ 2Eρ0t

[
ψt(xt)∥s(x0)− s(xt)∥2

]︸ ︷︷ ︸
A3

+2Eρt
[
ψt(x)∥s(x)−∇ log ν(x)∥2

]
where

A3 ≤ Eρ0t
[
ψt(xt)

(
18L2

st
2∥s(xt)−∇ log ν(xt)∥2 + 18L2

st
2∥∇ log ν(xt)∥2 + 6L2

st∥z0∥2
)]

by Lemma 2

= 18L2
st

2Eρt
[
ψt(x)

(
∥s(x)−∇ log ν(x)∥2

)]
+ 18L2

st
2Eρt

[
ψt(x)∥∇ log ν(x)∥2

]
+ 6L2

stn

= 18L2
st

2Eρtψt

[
∥s(x)−∇ log ν(x)∥2

]
+ 18L2

st
2Eρtψt

[
∥∇ log ν(x)∥2

]
+ 6L2

stn.
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So we have

Eρ0t
[
ψt(xt)∥s(x0)−∇ log ν(xt)∥2

]
≤ (36L2

st
2 + 2)Eρtψt

[
∥s(x)−∇ log ν(x)∥2

]
+ 36L2

st
2Eρtψt

[
∥∇ log ν(x)∥2

]
+ 12L2

stn

≤ (36L2
st

2 + 2)M2
∞ + 36L2

st
2 Eρtψt

[
∥∇ log ν(x)∥2

]
︸ ︷︷ ︸

A5

+12L2
stn.

By Lemma 16 in Chewi et al. (2022) under the assumption of ∇ log ν being L-Lipschitz,

A5 ≤ Eρtψt

[
∥∇ log

ρtψt
ν

∥2
]
+ 2nL

= Eρtψt

[
∥ ν

ρtψt
∇ρtψt

ν
∥2
]
+ 2nL

= Eρtψt

[
∥ ν

ρtψt

1

Fq,ν(ρt)
∇φqt∥2

]
+ 2nL

=

∫
ν2

ρtψtF 2
q,ν(ρt)

∥∥∇φqt∥2dx+ 2nL

=
Eν

[
1
φq

t

∥∥∇φqt∥2]
Fq,ν(ρt)

+ 2nL

=
4Eν

[∥∥∇φ q
2
t ∥2

]
Fq,ν(ρt)

+ 2nL by
1

φq
t

∥∥∇φq
t∥

2 = 4
∥∥∇φ

q
2
t ∥

2

= q2
Gq,ν(ρt)

Fq,ν(ρt)
+ 2nL.

Putting together,

∂

∂t
Rq,ν(ρt) ≤

(
36L2

st
2q2 − 3

4
q
)Gq,ν(ρt)
Fq,ν(ρt)

+
(
36L2

st
2 + 2

)
M2

∞q + 72L2
st

2nLq + 12L2
stnq

≤ −1

2
q
Gq,ν(ρt)

Fq,ν(ρt)
+
(
36L2

sh
2 + 2

)
M2

∞q + 72L2
sh

2nLq + 12L2
shnq since t2 ≤ h2 ≤ α2

144L2
sq2L2

≤ −α
q
Rq,ν(ρt) +

(
36L2

sh
2 + 2

)
M2

∞q + 72L2
sh

2nLq + 12L2
shnq

where the last inequality is from Lemma 5 in Vempala and Wibisono (2019) under the assumption of
ν satisfying LSI. Therefore

∂

∂t
e

α
q tRq,ν(ρt) ≤ e

α
q t
(
72L2

snLqh
2 + 12L2

snqh+
(
36L2

sh
2 + 2

)
M2

∞q
)
.

Integrating from 0 to h,

e
α
q hRq,ν(ρh) ≤ Rq,ν(ρ0) +

q(e
α
q h − 1)

α

(
72L2

snLqh
2 + 12L2

snqh+
(
36L2

sh
2 + 2

)
M2

∞q
)

≤ Rq,ν(ρ0) + 2h
(
72L2

snLqh
2 + 12L2

snqh+
(
36L2

sh
2 + 2

)
M2

∞q
)

where the last inequality is because ec − 1 ≤ 2c for c = α
q h ∈ (0, 1). Rearranging and renaming

ρ0 ≡ ρk, ρh ≡ ρk+1, we obtain the recursive contraction

Rq,ν(ρk+1) ≤ e−
α
q hRq,ν(ρ0) + 144L2

snLqh
3 + 24L2

snqh
2 +

(
72L2

sh
3 + 4h

)
M2

∞q.
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Proof of Theorem 2. Applying the recursion in Lemma 6 k times, we have

Rq,ν(ρk) ≤ e−
α
q hkRq,ν(ρ0) +

k−1∑
i=1

e−
α
q hi

(
144L2

snLqh
3 + 24L2

snqh
2 +

(
72L2

sh
3 + 4h

)
M2

∞q
)

≤ e−
α
q hkRq,ν(ρ0) +

1

1− e−
α
q h

(
144L2

snLqh
3 + 24L2

snqh
2 +

(
72L2

sh
3 + 4h

)
M2

∞q
)

(i)

≤ e−
α
q hkRq,ν(ρ0) +

4q

3αh

(
144L2

snLqh
3 + 24L2

snqh
2 +

(
72L2

sh
3 + 4h

)
M2

∞q
)

≤ e−
α
2 hkRq,ν(ρ0) +

192nLL2
sq

2

α
h2 +

32nL2
sq

2

α
h+

(96L2
sh

2q2

α
+

16q2

3α

)
M2

∞.

where (i) is because 1− e−c ≥ 3
4c for c ∈ (0, 14 ].

F Details of Example 1

Proof. Consider ν as target distribution and we estimate ∇ log ν by ∇ logµ. We will show Lp-
accuracy goes to 0 as m→ ∞ but the total variation between ν and µ is lower bounded by a positive
number.

For convenience, let ν0 = N (−m, 1), ν1 = N (m, 1) and rewrite ν = 3
4ν0 +

1
4ν1, µ = 1

2ν0 +
1
2ν1.

The lower bound of TV(ν, µ) follows from Devroye et al. (2018); Balasubramanian et al. (2022).

Moreover, Proposition 1 in Balasubramanian et al. (2022) calculates

∇ log ν −∇ logµ = −mν0ν1
2νµ

.

Therefore,

Eν
[
∥∇ log ν −∇ logµ∥p

]
=
mp

2p

∫
ν
νp0ν

p
1

νpµp

=
mp

2p

∫
νp0ν

p
1

νp−1µp

=
mp

2p

∫
νp0ν

p
1(

3
4ν0 +

1
4ν1

)p−1( 1
2ν0 +

1
2ν1

)p
= 4p−1mp

∫
νp0ν

p
1(

3ν0 + ν1
)p−1(

ν0 + ν1
)p

≤ 4p−1mp

∫
νp0ν

p
1(

ν0 + ν1
)2p−1 since 3ν0 + ν1 ≥ ν0 + ν1

≤ 4p−1mp
(∫

R−

νp1
νp−1
0

+

∫
R+

νp0
νp−1
1

)
.

Since ∫
R−

νp1
νp−1
0

=
exp

(
2p(2p− 1)m2

)
√
2π

∫
R−

exp
(
− 1

2

(
x− (2p− 1)m

)2)
dx

= exp
(
2p(2p− 1)m2

)
PN(0,1){Z ≤ (2p− 1)m}

= exp
(
2p(2p− 1)m2

)
PN(0,1){Z ≥ −(2p− 1)m}

≤ 1

2
exp

(
2p(2p− 1)m2

)
exp(− (2p− 1)2m2

2
) by Gaussian tail

=
1

2
exp

(
− m2

2

)
.

14



and similarly∫
R+

νp0
νp−1
1

=
exp

(
2p(2p− 1)m2

)
√
2π

∫
R−

exp
(
− 1

2

(
x+ (2p− 1)m

)2)
dx

= exp
(
2p(2p− 1)m2

)
PN(0,1){Z ≥ −(2p− 1)m}

≤ 1

2
exp

(
− m2

2

)
.

Therefore,

Eν
[
∥∇ log ν −∇ logµ∥p

]
≤ 4p−1mp exp

(
− m2

2

)
→ 0 as m→ ∞.
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