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Abstract

Motivated by applications for set containment problems, we consider the following
fundamental problem: can we design set-to-vector functions so that the natural
partial order on sets is preserved, namely S ⊆ T if and only if F (S) ≤ F (T ).
We call functions satisfying this property Monotone and Separating (MAS) set
functions. We establish lower and upper bounds for the vector dimension necessary
to obtain MAS functions, as a function of the cardinality of the multisets and
the underlying ground set. In the important case of an infinite ground set, we
show that MAS functions do not exist, but provide a model called MASNET
which provably enjoys a relaxed MAS property we name “weakly MAS” and
is stable in the sense of Holder continuity. We also show that MAS functions
can be used to construct universal models that are monotone by construction
and can approximate all monotone set functions. Experimentally, we consider
a variety of set containment tasks. The experiments show the benefit of using
our MASNET model, in comparison with standard set models which do not
incorporate set containment as an inductive bias. Our implementation is available
in https://github.com/structlearning/MASNET.

1 Introduction
A multiset {{x1, . . . , xn}} is an unordered collection of vectors, where order does not matter (like sets)
and repetitions are allowed (unlike sets). In recent years, there has been increased interest in neural
networks that can map multisets to vectors, with applications for physical simulations [1], processing
point clouds [2], and graph neural networks [3]. Another important application of multiset-to-vector
maps is set-containment search [4, 5, 6]. Here the goal is to check whether a given multiset S is
(approximately) a subset of T , and this is often carried out by learning a multiset-to-vector mapping
F , and then checking whether F (S) ≤ F (T ) (element-wise), in which case, one deduces that S is a
subset of T . In this paper, we look into this problem from a theoretical perspective.

Monotone and Separable functions We begin our analysis with some definitions: we say that
a function F mapping sets to vectors is monotone if S ⊆ T ⊆ V implies that F (S) ≤ F (T ), and
we will say that F is separable if F (S) ≤ F (T ) implies that S ⊆ T . When F is simultaneously
monotone and separable, we call it a MAS function. When F is a MAS function, we can safely test
whether F (S) ≤ F (T ), and this will be fully equivalent to checking whether S ⊆ T .

Motivation for MAS functions It is natural to ask why we’re interested in functions that are
MAS instead of just being monotone or just separable. For this, we begin with a couple of real-life
applications based on the set-containment task: (I) In recommendation system design, one problem is
to recommend item having a particular set of features, S. Here, we represent each item as a set of
corresponding features T , and the problem is to find all sets T such that approximately, S ⊆ T . (II)
Text entailment where we are given a small query sentence q nd the goal is to find the set of corpus
items c from a large corpus C, where q =⇒ c or c entails q. Here, q and c are typically represented
as sets of contextual embeddings (S for q and T for c) and the entailment problem can be cast as the
problem of checking if S ⊂ T .
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In a neural network setting, such problems require us to design a function F such that the "order"
between F (S) and F (T ) can serve as a boolean test for whether S is a subset of T . For this, F needs
to satisfy two conditions: (A) F (S) ≤ F (T ) implies S ⊆ T (B) F (S) ̸≤ F (T ) implies S ̸⊆ T .
Here, we like to emphasize that, for high accuracy, F needs to satisfy both conditions A and B as
above. Monotone functions satisfy condition (B) without necessarily satisfying condition (A). As a
result, if we predict S ⊆ T based on F (S) ≤ F (T ) when F is monotone but not separable, it will
give large number of false positives. Similarly, if F is separable but not monotone, then F satisfies
condition (A) without satisfying condition (B). Thus, using such for checking S ⊆ T results in a
large number of false negatives. Hence, both monotonicity and separability are necessary to develop
an accurate test for set-containment

Related works Monotone set functions have been widely studied in the theory of capacities [7],
fuzzy measures [8, 9], game theory and economics [10], combinatorial auctions [11, 12, 13], and
learning theory [14, 15, 16, 17, 18, 19]. These works primarily focus on scalar-valued set functions
or vector-valued models without structural order constraints.

To the best of our knowledge, jointly monotone and separable multiset (MAS) functions, i.e.,
multiset-to-vector maps that preserve the partial order induced by multiset containment—have not
been previously formalized. Classical results on partially ordered sets, such as order dimension [20],
provide relevant mathematical background but do not address learnable or differentiable constructions.
Our goal is to characterize the existence of MAS functions and develop models that satisfy MAS
constraints by construction for multiset containment tasks.

This work is also related to injective multiset representations. Foundational results on permutation-
invariant functions include [21, 3], with subsequent work analyzing the latent dimension required for
injectivity [22, 23, 24] and proposing differentiable injective or bi-Lipschitz embeddings [25, 26, 27].
In this work, we study MAS functions, which impose strictly stronger constraints than injectivity (see
Subsection 2.1).

An additional goal of this work is stability: in most learning scenarios, we are looking for S, which
is only approximately a subset of T . Accordingly, we would like to design functions F that are not
only MAS but also stable, in the sense that when S is approximately a subset of T , then F (S) is
approximately dominated by F (T ).

Summary of our goal In summary, in this work, we aim to characterize (MAS) set functions
that output finite-dimensional set representations and subsequently design neural networks for such
functions. At a high level, we seek to address the following questions: (1) What are the conditions
for existence of a finite dimensional MAS functions? (2) What are the permissible relaxations to
monotonicity and separability if the existential conditions identified in (1) are not satisfied? (3) What
are the possible neural architectures for these functions? (4) Are these functions stable? We expect
that the design of trainable models with built-in guarantees of monotonicity, separability, and stability
will significantly enhance the inductive bias for set containment applications.

1.1 Main Results
We address the goal specified in the previous subsection by providing a detailed characterization and
neural architecture for monotone and separable set functions. Our main results are as follows:

Existential characterization of MAS functions Our first objective is to determine whether it is
possible to obtain a MAS set function with finite output dimension m. We begin our analysis in the
case where set elements are assumed to be taken from a finite ground set V , and show that in this
case a MAS function exists if, and only if, m ≥ |V |. Next, we add the assumption that the cardinality
of the input multisets is bounded by k, and provide lower and upper bounds for m in this case. When
the ground set is infinite, we show that MAS set functions do not exist.

Weakly MAS functions In most applications, the ground set is V = RD, and our analysis shows
that in this case, MAS functions do not exist in general. To address this, we introduce the notion of
weakly MAS functions by extending the set functions to parametric set functions F (S,w), where w
is a parameter. Weakly MAS functions requires that (i) F (:, w) is monotone, for all w, and (ii) for
any S ̸⊂ T , there exists at least one w ∈ W such that F (:, w) separates S and T . We explain how,
by choosing suitable activations, it is possible to construct simple deep sets [21] models which are
weakly MAS, and name the resulting model MASNET.

Stability We define the notion of stability as discussed above, separability notions are Boolean
and fail to capture graded distance. We would like to guarantee that F (T ) is ’almost’ larger than
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F (S) when S is ’almost’ a subset of T . To address this, we propose a novel asymmetric set distance
and present a Holder separability condition [28] which ensures stability in terms of this asymmetric
distance.

Monotone Functions Finally, we show that MAS functions can be used to provide universal models
for computing set-to-vector functions. Thus, MAS functions may be a useful concept also outside of
the set containment setting.

Experiments We provide a number of experiments showing that for set containment problems,
using our weakly MAS model leads to stronger results in comparison with standard multiset models
like DeepSets and SetTransformer, which do not incorporate MAS considerations as an inductive
bias.

Summary of contributions Our main contributions in this paper are: (1) We introduce the novel
notion of monotone and separating (MAS) multiset functions. (2) We discuss lower and upper bounds
for the embedding dimension for MAS functions, and suggest a model MASNET, which is weakly
MAS. (3) We show the stability of MASNET. (4) Experimentally, we prove the effectiveness of
MASNET for set containment tasks.

2 Existential characterization of MAS functions
We begin by stating the notation we will use for our paper.

Notation We denote by V to be the ground set and P<∞(V ) to be the collections of all multisets
from V with finite cardinality S = {{x1, · · · , xs}} where xi ∈ V . We denote the space of all multisets
with at most k elements by P≤k(V ). We use [d] to denote the set {1, · · · , d}. Given two vectors
v, u ∈ Rd, we say v ≤ u if v[i] ≤ u[i] for all i ∈ [d]. Also, for an element v ∈ V and a multiset
S ∈ P<∞(V ), we use cS(v) to denote the number of times v occurs in S. We say S ⊆ T if
cS(v) ≤ cT (v) for all v ∈ V .

Proofs All proofs for the results stated in the paper are provided in Appendix B.

In this section, our goal is to understand when an MAS function F : P≤k(V ) → Rm or F :
P<∞(V ) → Rm exists, and if it does, what is the smallest m for which such a mapping exists. We
denote this minimal dimension as m⋆(V, k), and m⋆(V,∞), respectively.
2.1 Prologue: Relation to injectivity
Our inquiry is related to the notion of injective multiset functions, as every MAS function F is, in
particular, injective. Indeed, suppose for two sets S, T we have F (S) = F (T ). Then, we have both
F (S) ≤ F (T ) and F (T ) ≤ F (S). Hence, we have both S ⊆ T and T ⊆ S by separability, which
implies S = T . Thus, injectivity follows from separability.

Injective multiset functions f : P≤k(V ) → Rm are attainable even for m = 1, providing that V is
finite or even infinite [21, 3, 22, 25]. As we will see, attaining the strong condition of MAS multiset
functions requires high dimension, and in some cases (infinite V ), it does not even exist. This can be
seen even in the following very simple example:

Example 1. Assume the ground set consists of only two elements V = {0, 1}, and we only look for
multisets of cardinality ≤ k = 1. In this case, there are only three multisets in the space P≤1(V ):
the empty set, S = {0}, and T = {1}. As discussed previously, there exists a multiset function
F : P≤1(V ) → R which is injective. However, no such function can be separated. This is because
neither S nor T is a subset of the other. However, because real numbers are totally ordered, we have
either F (S) ≤ F (T ) or F (T ) ≤ F (S), violating the separability condition.

We note that the monotonicity can be satisfied bu using functions of the form F (S) =
∑

x∈S f(x) for
non-negative f . Thus, achieving separation is harder than achieving monotonicity.

The key reason for the non-existence of a scalar MAS set function is that multisets (or sets) are not
totally ordered, but scalars are. However, this issue does not arise for multidimensional set functions,
where vectors, similar to sets, are partially ordered. So, when mapping to vectors, when and how can
MAS functions be constructed? We will now discuss this.

2.2 Existence of MAS functions: finite ground set, unbounded cardinality

We study MAS functions F : P<∞(V ) → Rm, where input multisets may have an arbitrarily large
finite cardinality, and the ground set is finite |V | = n. In this case, we can show that the smallest
possible dimension m⋆(V, k) of a MAS function is exactly n:

3



Theorem 1 (Dimension of MAS Function). For a finite ground set V of size n, there exists a MAS
function F : P<∞(V ) → Rn. In addition, any MAS function must have a dimension of at least n. In
other words, m⋆(V,∞) = n.

Proof Sketch The construction of a monotone embedding with n = |V | simply uses one-hot
encoding. Namely, we identify V with [n]. For every S ∈ P<∞(V ), we define

F (S) =
∑
s∈S

es ∈ Rn (1)

where es ∈ Rn is the vector with es[s] = 1 and es[j] = 0 for all j ̸= s. It’s clear F satisfies
all conditions. For the second part, assume we have an embedding of dimension m, for every
output dimension i ∈ [m], there is a "maximal singleton element" v∗i ∈ V such that F ({v∗i })[i] ≥
F ({v})[i],∀v ∈ V . The value of the set function F applied to T = {v∗1 , . . . , v∗m} will dominate any
singleton, due to the monotonicity of F . However, if m < |V |, then we can select a u ∈ V \ T and
then F ({u}) ≤ F (T ), which contradicts separability.

2.3 Existence of MAS functions: finite ground set, finite cardinality

We now consider the case where the ground set V is finite, as before, but now the multisets have
bounded cardinality k < |V |. Indeed, in many practical applications, input multiset cardinality is
much smaller than |V |, even when |V | is large. In this setting, we show that we can get a lower
embedding dimension m than in Theorem 1. In fact, we show the minimal output dimension m of
a MAS function F : P≤k(V ) → Rm can scale logarithmically with the size of the ground set |V |.
However, this comes at the price of an exponential dependence on k:
Theorem 2 (Upper Bound on m⋆(V, k)). Let k < n be natural numbers, and let V be a ground set
with |V | = n. Then there exists a MAS function F : P≤k(V ) → Rm with embedding dimension
m = (k + 2)k+2 log(n).

Proof sketch We construct the MAS function by taking the one-hot embedding F : P≤k(V ) → Rn

from (1), and then applying m random projections defined by vectors in Rn with non-negative entries.
The non-negativity ensures monotonicity, and we prove that for the stated value of m, the probability
of achieving a MAS function using this procedure is strictly positive.

The theorem shows that m⋆(V, k) ≤ (k + 2)k+2 log(n). We now give two lower bounds on the
embedding dimension: we show that m must depend at least linearly on k, and at least double
logarithmically on n:
Theorem 3 (Lower bounds on m⋆(V, k)). Let k ≥ 2 and n be natural numbers, and let V be a
ground set with |V | = n. Then the smallest possible dimension m⋆(V, k) of a MAS function satisfied
m⋆(V, k) ≥ log2(log3 n). Moreover, if k ≤ n−1

2 then m⋆(V, k) ≥ 2k

Proof Sketch To obtain the first lower bound, we consider the sequence of singleton-set embeddings
M := (F ({1}), . . . , F ({n}). By the Erdös-Szekers theorem [29], every scalar sequence with n

elements has a monotone subsequence of length ∼ n
1
2 . Applying this recursively to vectors of

length m gets us a monotone subsequence in all m coordinates of the vector, of length ∼ n
1

2m .
If this subsequence is of length ≥ 3 then we will have three distinct elements v1, v2, v3 ∈ V
such that F ({v1})[i] ≤ F ({v2})[i] ≤ F ({v3})[i] or F ({v3})[i] ≤ F ({v2})[i] ≤ F ({v1})[i],∀i ∈
[m] Monotonicity implies that F ({v2})[i] is dominated by F ({v1, v3})[i], for all i ∈ [m], thus
contradicting separability. It follows that MAS existence can only happen when n

1
2m ≤ 2, which

leads to the double logarithmic lower bound.

For the lower bound in terms of k, the argument is similar to the proof of Theorem 1, where we select
a "maximal singleton element" v∗i for every dimension i ∈ [m]. Since m < |V | − 1, we can find
elements {u1, u2} disjoint from the collection

⋃m
i=1 {v∗i }, and WLOG F ({u1})[i] ≥ F ({u2})[i] for

at least half of the indices in [m]. We then construct S = {u2} and T to be union of u1 and all the v∗i
for all dimensions i, where F ({u1})[i] ≤ F ({u2})[i]. Then monotonicity implies F (S) ≤ F (T ),
but S ̸⊆ T . This implies k ≤ |T | − 1 ≤ m/2, as otherwise separability of F in P≤k(V ) is violated.
2.4 Non-existence of MAS functions: for infinite ground set

For most practical applications, we deal with infinite (often uncountable) ground sets, for example
V = Rd. Thus, we would like to analyze whether MAS functions exists when |V | = ∞. The answer
to this question is negative:
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Corollary 4. Given a ground state V with |V | = ∞, and k ≥ 2, there does not exist a MAS function
F : P≤k(V ) → Rm for any finite m ∈ N.

This corollary is a simple consequence of the result in Theorem 3 that the embedding dimension
cannot be larger than log log |V | when V is finite. We note that this result makes the minimal
assumption k ≥ 2. In Appendix B we show this assumption is necessary, and that in the degenerate
case k = 1 there is a MAS function F : P≤1(V ) → R2 for V = [−1, 1].

Summary In this section, we provided lower and upper bounds for the smallest value m⋆(V, k) for
which an MAS function F : P≤k(V ) → Rm exists. Our results are summarized in Table 1. We note
that some of these results require weak assumptions, which are stated in the theorems but not in the
table.

Ground set size : |V | = n < ∞ |V | = n = ∞
Input multiset size : k < ∞ k = ∞ k = 1 k ≥ 2

m⋆(V, k) ≤ min{n, (k + 2)k+2 log(n)},
m⋆(V, k) ≥ max{2k, log2 log3 n}

m⋆(V, k) = n m⋆(V, k) = 2 Not possible

Table 1: This table summarizes the lower and upper bounds for the smallest value m⋆(V, k) for
which an MAS function F : P≤k(V ) → Rm exists, where k is maximal set cardinality and n denotes
the cardinality of the ground set V .

3 Relaxations of MAS functions
Our definitions so far did not address differential parameterized set functions F (S,w), which are the
natural object of interest for set learning applications. One natural way to address this could be to
require that there exists w such that F (•, w) is a MAS function; however, since our theoretical results
show that MAS functions do not exist when |V | = ∞, this requirement is too restrictive. Instead, we
retain monotonicity as a hard constraint for every parameter w ∈ W , while treating separability as an
existential condition over the parameter space.
3.1 The notion of weakly MAS functions
Formally, given a ground set V , and a probability space (W,B, µ), we consider parametric set
functions F : P<∞(V )×W → Rm, where F (S, •) is measurable for all S. We then define weakly
MAS functions as:
Definition 5 (weakly MAS function). The set function F : P<∞(V )×W → R is a weakly MAS
function if the following two conditions are satisfied:
(1) Pointwise monotonicity For any w ∈ W and S ⊆ T , we have that F (S,w) ≤ F (T,w).
(2) Weak separability If S ̸⊆ T , then there exists w ∈ W such that F (S;w) > F (T ;w).

Which condition, monotonicity or separability, should be relaxed? In our definition, we relax
the separability requirement so that different multiset pairs can be separated by different parameters,
while we maintain strict requirements of pointwise monotonicity. This is because, as discussed
in Example 1, constructing monotone set functions is straightforward, even in one dimension. In
contrast, separability is a much stronger and more difficult condition to satisfy. This is a key reason
why MAS functions do not exist when |V | = ∞. Indeed, as shown in Appendix B, there can be no
continuous separable set function even without the monotonicity assumption when the ground set
is V = RD. Therefore, separability is the natural condition for relaxation. Moreover, monotonicity
remains a useful and often necessary constraint in many applications.

Are scalar deep sets weakly MAS? Equipped with the new notion of weakly MAS functions, we
ask the question of how to construct such a class of functions. As a first step to achieve this goal, we
look into a simple instance of DeepSets [21]. DeepSets defines a set function by applying an ’inner’
MLP M1 to each set element, summing over the result, and then applying an ’outer’ MLP M2. We
consider the case where M1 is a shallow MLP M1(x) = σ(Ax + b) which gives us models of the
form

F (S; (A, b)) = M2

(∑
x∈S σ(Ax+ b)

)
(2)

To ensure monotonicity for every parameter choice A, b, we will require that M2 is a monotone
vector-to-vector function, and the activation σ is non-negative. While these choices automatically
ensure monotonicity, they may not lead to weak MAS functions as for many activations there will be
no separation:
Proposition 6. If the deep set model in (2) is implemented with a vector-to-vector monotonously
increasing function M2 and a non-negative activation σ, then F (•; (A, b)) is monotone for every
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Figure 2: Using a multiset model as in (2) with activations which are not always non-negative, like
σ = Tanh will not be monotone. ReLU will be monotone, but to be weakly MAS, two layers are
required. TRI and more general hat functions are weakly MAS even with a single layer.

(A, b). If in addition σ is monotone (increasing or decreasing), then there exists S ̸⊆ T with
F (S; (A, b)) ≤ F (T ; (A, b)) for all A, b.

Proof idea The monotonicity is rather straightforward. To prove lack of separation when σ is
monotone, choose x ̸= y, z = 1

2 (x+ y), S = {z}, T = {x, y}, and then Az + b is the average of
Ax+ b and Ay + b, which can be used to show that F (T ; (A, b)) ≥ F (S; (A, b)) for all A, b.

Are Set Transformers weakly MAS? Now we ask the quedtion if Set Transformers [30] are weakly
MAS. We notice in the following that Set Transformers are not even monotone in the following re-
sult. For this, we consider Set Transformer with sum-pooling, namely F (S;WQ,WK ,WV ) =
SumPool(Attn(S)). Explicity, this is defined for a give multiset X = {x1, · · · ,xn} by first
defining query, key, values per-point: qi = WQxi,ki = WKxi,vi = WV xi, and then taking
a weighted average, defined by weights: αi,j =

eqi·kj∑
s eqi·ks

to obtain a permutation-invariant function
F (S;WQ,WK ,WV ) :=

∑
i,j αi,jvi

Proposition 7. Let V = Rd and let F : P<∞(V ) → RD be a Set Transformer defined by
F (S;WQ,WK ,WV ) := SumPool(Attn(S)). Then F is not a point-wise monotone function.
Proof Idea We consider full rank matrices WQ = WK and any non-zero WV . We choose
x1 ∈ Rd such that v1 := WV x1 ̸= 0, and consider the sets S = {x1} , T = {x1,0d}. Then,
F (S;WQ,WK ,WV ) = v1 and F (T ;WQ,WK ,WV ) = (α1,1+α1,2)v1. Note that, α1,1+α1,2 > 1
and thus, for any negative v1[j], we have F (T ;WQ,WK ,WV )[j] < F (S;WQ,WK ,WV )[j] and
thus, monotonicity is violated.

Thus, unlike Deep Sets, it’s not obvious how to make Set Transformers monotone, let alone weakly
separable. Thus, in the following sections, we shall focus on obtaining weakly-MAS functions from
DeepSet-like models only.
3.2 The Hat activation class
Note that most commonly used non-negative activation functions, such as ReLU or sigmoid, are
monotonically non-decreasing and therefore, from Proposition 6, using them as σ above will fail
weak separability. Here, we consider a novel class of activation functions we call ’Hat Activations’,
which will all make F in Eq. (2) weakly MAS.
Definition 8 (The Hat activation function). We call a function σ : R → R a hat activation if it is (a)
non-negative (b) compactly supported (c) not identically zero and (d) continuous.
Examples of hat functions are the third and fourth functions in Figure 2. When σ is a hat function,
Equation (2) is weakly MAS, even when the output of F is taken to be scalar. For this result, we will
need to require that M2 is strictly monotone. This can be handled by simply setting M2 to be the
identity.
Proposition 9. If M2 is strictly monotone increasing, and σ is a hat activation function, then
M2(

∑
x∈S σ(a⊤x+ b)) is weakly MAS function.

Proof idea If S is not a subset of T , there is an element s whose multiplicity in S is larger than its
multiplicity in T . We can then choose a, b so that s is in the support of σ(ax+ b) but the elements of
T are not.
3.3 Slightly larger ReLU networks

So far, we have considered simple models as in (2) which apply a single linear layer before applying
activation and summation. In this case, we saw that ReLU and other activations do not create weakly
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MAS functions, and defined the notion of hat activations, which are weakly MAS functions. But
what happens if we use ReLU activations but allow deeper networks?

We can use our previous analysis to show that very small ReLU networks with two lay-
ers can already be MAS functions. To see this, we consider a candidate from the hat
function class, namely the TRI function from Figure 2, and observe that: TRI(x) =
ReLU (ReLU(2x) + ReLU(2x− 2)− ReLU(4x− 2)) We use this to deduce the following result:

Proposition 10. Given V ⊆ Rd, we consider affine transformations A2 : Rd → R3,A1 : R3 → R.
Thus, here A2(t) := A2t+ b2 and A1(z) = a⊤1 z+ b1, where A2 ∈ R3×d, b2 ∈ R3, a1 ∈ R3, b1 ∈ R
are the respective parameters. Then, the set functions of the form

F : P<∞(V ) → R, F (S;A1,A2) = M2

(∑
x∈S ReLU ◦ A1 ◦ ReLU ◦ A2(x)

)
(3)

are weakly MAS functions.

Our results so far are summarized in Figure 2. If σ is not a non-negative function, then F will not be
monotone. We can attain weakly MAS functions with a two-layer ReLU network, or with a one-layer
network with hat activations.

3.4 Asymmetric distance induced Holder separability

Why weak separability is not sufficient While weak separability is a key relaxation for weakly
MAS functions (Definition 5), it has two key limitations: (1) Separation should ideally hold over a
non-negligible subset of W , not just a single point w; (2) it treats separability as a boolean condition,
ignoring approximate containment. We would like to guarantee that if S is almost a subset of T , then
F (S,w) will be close to dominated by F (T,w). This motivates us to create an asymmetric (pseudo)
metric to quantify the size of set difference and create stronger notions of separability based on that.

Asymmetric set distance For a ground set V ⊆ Rd and two sets S, T ∈ P<∞(V ) such that
|S| ≤ |T |. We define the asymmetric distance from S to T as the Earth Mover Distance (EMD)
between S and the subset of T that is closest to S with the same cardinality as S.

∆(S, T ) = min
T ′⊆T :|S|=|T ′|

EMD(S, T ′) (4)

∆(•, •) captures graded set containment: if S ̸⊆ T , but is "very close" to a subset of T in EMD
metric, then ∆(S, T ) is small. Moreover, ∆(S, T ) = 0 ⇐⇒ S ⊆ T . Based on ∆, we propose a
newer separability notion for parametric functions.

Lower Hölder separability of set functions Davidson and Dym [28] introduced Hölder continuity
through expectation over parameters. Unlike their symmetric EMD, we define Hölder separability
using the asymmetric distance ∆(4).
Definition 11 (Lower Hölder separability). Let V ⊆ Rd be the ground set and (W,B, µ) be a
probability space, and a constant λ > 0. A parametric set function F (•, w) : P≤k(V ) → Rm with
w ∼ µ(·) is λ lower Hölder separable if there exists c > 0 such that:

Ew∼µ(·)∥[F (S;w)− F (T ;w)]+∥1 ≥ c ·∆(S, T )λ, for all S, T ∈ P≤k(V ) (5)

3.5 Hölder separable Set functions

Hölder separability using Hat activation Proposition 9 shows how to construct weakly MAS
functions using Hat activations. We now show that these constructions are also lower Hölder, under
additional weak assumptions on the hat functions and M2:
Theorem 12 (F is lower Hölder). Let V ⊂ Rd be a compact set, and σ a Hat activation function
which is piecewise continuously differentiable supported in some interval [γ1, γ2], and satisfying

the condition: limt→γ+
1

dσ

dt
> 0. Let M2 : R → R be a lower Lipschitz function. Consider the

function F (S; (a, b, c)) = M2

(∑
x∈S σ

(
a⊤x+b

c

))
, where the multisets S come from P≤k(V ), and

a ∼ Unif(Sd−1), b ∼ Unif([−1, 1]), c ∼ Unif((0, 2]). Then, F (•, (a, b, c)) is Monotone Hölder
separable with exponent λ = 2.

Probability of successful separation Given S, T ⊆ V , we can consider [F (S; (a, b, c)) −
F (T ; (a, b, c))]+ to be a real-valued non-negative random variable, where the randomness is over
the parameter space (a, b, c) ∈ W = Rd × R× R equipped with a probability measure. The above
result on lower Hölder stability gives us a lower bound on the probability of a parameter tuple
(a, b, c) separating two non-subsets S, T proportional to the set distance ∆(S, T ). Moreover, the
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functions we have considered so far are scalar-valued set functions. By considering independent
copies of the parameters across multiple dimensions, we can increase the probability of separation,
since F (S), F (T ) are not separated iff F (S)[i] ≤ F (T )[i] across each embedding dimension i. We
formalize the above observations as follows:

Theorem 13 (Probability bounds on separation). Let V ⊆ Rd and σ be as in Theorem 12, and let
A ∈ Rm×d, b ∈ Rm, c ∈ Rm whose m columns (respectively entries) are drawn independently from
the distribution on aj , bj , cj described in Theorem 12, and consider the function

F (S;A, b, c) =
∑

x∈S σ
(
c−1 ⊙ (Ax+ b)

)
. (6)

Then there exists C > 0, so that for all S ̸⊆ T , P (F (S) ≤ F (T )) ≤
(
1− C∆2(S, T )

)m
.

In Equation (6) c−1 stands for the elementwise inverse and ⊙ stands for elementwise multiplication.

Note that the probability of failed separation goes to zero exponentially as m increases, and also
becomes smaller as ∆(S, T ) increases. This supports the idea that a larger measure of parameters
separates sets with larger asymmetric distance and that separability becomes easier with larger
embedding dimensions (which we saw previously in the existential results)

Hölder separable set functions using ReLU As seen in Proposition 10, one can construct weakly
MAS functions with a two layer neural network with ReLU activation. Our proof used that two layer
ReLU networks can basically "simulate" a Hat function. Under the light of the above results on
Hölder separability, one can argue that two-layer ReLU networks would also have such guarantees.
Also, we show in Appendix B that under certain structure on the ground set V (for example, V being
a hypersphere), even with one layer ReLU networks, functions of the form in Equation (2) will also
have Lower Hölder separability guarantees.

Upper Lipschitz bounds In Appendix. B we complement our results on lower Holder stability by
showing that the construction in Theorem 13 is also upper Lipschitz in an appropriate sense.

3.6 Monotone Universality and the role of M2

Besides set containment-based applications, there are other interesting scenarios where one would
like to construct monotone multiset-to-vector functions. The following theorem shows that on finite
ground sets, the combination of a MAS function and a universal monotone vector-to-vector (such as
[31]) can approximate all monotone multiset-to-vector functions.

Theorem 14 (Universality). Let V be a finite ground state, and let F : P≤k(V ) → Rm be a MAS
function. Then for every multiset-to-vector monotone function f : P≤k(V ) → Rs, there exists a
vector-to-vector monotone function M : Rm → Rs such that F (S) = M ◦ f(S).

4 MASNET: Neural Modeling of MAS functions
Now, our goal is to leverage our theoretical analysis to design neural network-based multiset-to-vector
models that preserve monotonicity and weak separability. Motivated by the formulation in DeepSets
and our analysis so far, we wish to design neural set functions of the form:

MASNET(S) = Mθ2

(∑
x∈S σ (Mθ1(x))

)
(7)

In our analysis, we required Mθ2 to be a monotone vector-to-vector function. In most of our
experiments, we enforce this simply by choosing M2(x) = x, but this can also be enforced by using
monotone activations and non-negative parameters.

MASNET-Hat To enforce weakly MAS in Equation (7),our results from Prop. 9 and Theorem 12
suggests using a Hat activation as σ. In our experiment, we do it by not choosing σ to be a specific
hat activation, but rather the parametric form:

σα,β,γ(x) = ReLU
(

x−α
γ·β

)
+ReLU

(
x−(α+β)
(1−γ)·β

)
− ReLU

(
x−(α+γ·β)
γ·(1−γ)·β

)
(8)

For all α, β > 0, and γ ∈ (0, 1), σα,β,γ is a hat function (Definition 8) with support [α, α+ β] and
peak at α+mβ. Examples include the third and fourth functions in Figure 2. Applying this to an
m-dimensional output with independent α, β, γ per dimension yields 3m parameters total.

MASNET with ReLU Motivated by our theoretical results from Theorem 10 of 2-Layer ReLU
networks being weakly MAS and from our discussion of ReLU networks being Hölder separable
(under appropriate assumptions) in Section 3.5, we propose use ReLU in MASNET, which case Mθ1
will have to be a network with at least 2 layers to ensure weakly MAS as in Theorem 10. This gives
one more way to design MASNET and we refer to this option as MASNET-ReLU.
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Other variants of MASNET Definition 8 establishes a general hat function class extending
beyond the piecewise linear functions as in (8). We present MASNET-INT in Appendix C, which
achieves universal approximation of the Hat class by modeling its derivative via neural networks and
approximating the integral. Additionally, using the specific hat activation TRI (Figure 2) as σ yields
an alternative formulation called MASNET-TRI.

Which MASNET to choose and when? We have given multiple recipes of MASNET in the
above discussion, and the question arises: which one to choose? We show via our experiments:
For parameter-constrained scenarios requiring single-layer Mθ1 networks, MASNET-Hat provides
optimal separability (both theoretically and empirically). For deeper Mθ1 (≥ 2 layers), both MAS-
NET-ReLU and Hat-based variants perform similarly, with MASNET-ReLU often providing more
stable training and better performance overall.

5 Experiments
We evaluate the MASNET variants (Section 4) on synthetic, text and point-cloud datasets to character-
ize monotonicity and separability. Specifically, we focus on (exact and approximate) set containment.
Given sets S and T , with binary label y(S, T ) ∈ {0, 1} indicating (exact or approximate) set
containment, we evaluate how accurately MASNET predicts y(S, T ).

5.1 Set Containment
We perform experiments on a synthetically generated dataset, four text datasets, and one image dataset.
In each case, we split the dataset into 5:2:2 train, test, and dev folds. We minimize the following
fixed-margin hinge loss that enforces vector dominance, to train the parameters of MASNET.∑

S,T

(1− y(S, T )) min
i∈[m]

[F (S)[i]− F (T )[i] + δ]+ + y(S, T ) max
i∈[m]

[F (S)[i]− F (T )[i] + δ]+ (9)

|S| |T | DS ST M-ReLU M-Hat
1 2 0.98 0.98 0.99 0.99
1 10 0.59 0.59 0.99 0.99
10 30 0.89 0.80 1.00 1.00
10 100 0.54 0.57 0.98 0.99
Table 3: Accuracy on synthetic data

Analysis on synthetic datasets To generate our
synthetic dataset, we first sample a target set T ⊂ Rd,
where each element x ∈ T is drawn from N (0, I),
i.i.d. Given T , we compute S with a fixed size |S| =
s as follows. We first obtain S with positive labels
y(S, T ) = 1 by drawing a subset from T , uniformly at random, without replacement. To generate S
with y(S, T ) = 0, we sample s from N (0, I) independently. We chose d = 4 and the set embeddings
have m = 256 dimensions, the class-ratio of subsets to non-subsets was taken to be 1:1.

We compare two variants of MASNET— MASNET-ReLU (M-ReLU) and MASNET-Hat (M-
Hat)— against Deep Sets (DS) [21] and Set Transformer (ST) [30]. Table 3 summarizes the results
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Figure 4: Acc vs |T | for 1-layer MLP

for varying values of |S| and |T |. We observe that: (1) Both
variants of our method outperform the baselines; (2) the base-
lines degrade significantly as |T | increases (with fixed |S|), as
predicting separability becomes harder as the gap between |T |
and |S| increases; (3) The performance of M-ReLU and M-
Hat is comparable. We now compare 1-layer pointwise mod-
els ending in ReLU and Hat activation respectively, followed
by aggregation: we call them 1layer-ReLU and 1layerM-Hat.
We see in Fig. 4 that: (1) 1layerM-Hat performs significantly
than 1layer-ReLU, validating the results from Propn. 6. (2)
acc. declines for both as |T | increases, consistent with the
intuition that larger |T \ S| gaps make the task harder.

Set containment on Text datasets We evaluate on MSWEB, MSNBC, and Amazon Registry
datasets, which exhibit natural set containment from user behavior. Each datapoint is a wordbag;
we compute BERT embeddings for all unique words to form the ground set. (S, T ) pairs are
sampled from these (Appendix D), and labeled via set containment. For inexact containment, small

Model Bedding Feeding MSWEB MSNBC
DeepSets 0.51 0.50 0.88 0.67
SetTransformer 0.77 0.79 0.90 0.94
FlexSubNet 0.88 0.85 0.92 0.91
Neural SFE 0.52 0.53 0.88 0.66
MASNET-ReLU 0.98 0.98 0.99 0.97
MASNET-Hat 0.94 0.93 0.97 0.95

Table 5: Acc in text datasets with 1:1 ratio

Gaussian noise is added to S without changing y(S, T ).
We now compare the variants of MASNET: MAS-
NET-ReLU and MASNET-Hat against several base-
lines, DeepSets [21], Set Transformers [30], FlexSub-
Net [32], Neural SFE [33], for inexact set containment
on the datasets: MSWEB, MSNBC, Amazon-Feeding,
Amazon-Bedding. Gaussian noise with 0.01 std was
used to generate noisy pairs. The class ratio of subsets to non-subsets was taken to be 1:1. Here,
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set embeddings have dim m = 50, and set elements have dim d = 768. The results in table 5 show:
(1) MASNET-ReLU and MASNET-Hat have similar acc., with MASNET-ReLU being marginally
better (2) Both are generally better than baselines.

Set containment on point clouds We use ModelNet40 [34], a dataset of 3D CAD models across
|S| → 128 256 512
DeepSets 0.52 0.51 0.50
SetTransformer 0.62 0.51 0.50
FlexSubNet 0.84 0.75 0.60
Neural SFE 0.52 0.51 0.50
MASNET-ReLU 0.98 0.94 0.72
MASNET-Hat 0.87 0.81 0.65

Table 6: Performance on Point cloud for dif-
ferent values of |S| with 1:1 class ratio.

40 categories. For each object in category C1, we sample
1024 points to form T . For true subsets, we sub-sample
S ⊆ T and for non-subsets, S is sampled from a different
category C2. Small white noise(std=0.005) is added to S
for the task of inexact containment. We use a pointcloud
encoder(such as pointnet) followed by a set-to-vector em-
bedding model to produce m = 50 dimensional embed-
dings, and each point in the dataset is a 3D coordinate with
d = 3 dimensions. The class ratio of subsets to non-subsets was taken to be 1:1. Results are in table 6.
We observe that: (1) MASNET-ReLU and MASNET-Hat are generally better than baselines, with
MASNET-ReLU being slightly better. (2) The accuracy of MASNET decreases as |S| decreases,
with the separability becoming hard for monotone models.

5.2 Monotone Set function approximation Model MAE
DeepSets 0.01024 ± 0.00030
SetTransformer 0.01026 ± 0.00033
MASNET-ReLU 0.01023 ± 0.00107
MASNET-Hat 0.00959 ± 0.00016

Table 7: Monotone function approximation

In this experiment, we examine if a scalar variant of MAS-
NET can approximate a monotone function F ∗, by getting
trained from set, value pairs in the form of {(S, F ∗(S))}.
Once trained, we measure |MAS(S)− F ∗(S)| for each
S and average over them to compute MAE. We compare MASNET against baselines: DeepSets,
SetTransformer. We trained using MSE loss, and report test MAE results in Table 7 where we see: (1)
MASNET-Hat is best performing, followed by MASNET-ReLU (2) Both are better than baselines.

6 Conclusion and Future Work
In this work, we study the design of set functions that are useful in set containment through Monotone
and Separating (MAS) properties. We derive bounds on the embedding dimensions required for
MAS functions and show their nonexistence in infinite domains. To address this, we introduce a
relaxed model, MASNET, which satisfies a weak MAS property and is provably stable. Experiments
demonstrate that MASNET outperforms standard models on set containment tasks by leveraging
monotonicity as an inductive bias. It would be interesting to check if our method can be used for
applications in graphs, e.g., subgraph matching. Another potential direction is to consider other
possible relaxations of separability.

7 Limitations
Our work provides a theoretical analysis of monotonicity and separability for set functions in
the context of set containment, and introduces neural models that outperform standard set-based
architectures such as DeepSets and Set Transformers on set containment tasks. Our work has the
following limitations, addressing which are interesting directions for future work:

• After proving the impossibility of constructing MAS functions over infinite ground sets,
we proposed parametric set functions defined with respect to a probability measure over
the parameter space. We provided probabilistic guarantees: for non-subsets S, T , if their
asymmetric distance ∆(S, T ) is large, then a randomly sampled function from the parameter
space will separate them with high probability. However, these guarantees hold only in the
randomized setting—analogous to guarantees for neural networks at random initialization—
and do not extend to models after training via gradient-based optimization.

• Our universality result, which shows that MAS functions composed with monotone vector-to-
vector mappings can approximate all monotone set-to-vector functions, was only established
for finite ground sets. Extending this result to infinite ground sets remains an open problem.

• We currently do not generalize our analysis to the subgraph isomorphism problem, which is
a natural and strictly harder extension of the set-containment task.
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APPENDIX

A More discussions on related work
This work lies at the intersection of representation learning for sets and multisets, monotone and
submodular set functions, and theoretical limits of learning under constraints on some partial order.
Below we review related literature across several communities, such as machine learning, optimiza-
tion, theoretical computer science, fuzzy measures, and physics. We highlight how these threads
connect to our problem setting.

Multiset to vector functions, and permutation invariant functions (including symmetric and anti-
symmetric polynomials) have been used in a bunch of real life modelling tasks. Anti symmetric
polynomials in the context of quantum many-body physics was used in [1]. For point cloud datasets,
such set-to-vector embeddings are widely used such as in [2]. In the context of search and retrieval,
set-containment was directly used in [4]. On a somewhat related aspect, [5] deals with monotone
ranking functions on a vector of This is specifically a monotone function from multisets to reals if the
vector P denotes the weight/frequency of each object in the set. Moreover, since this is a vector-to-real
monotone function, composing a set-to-vector monotone function with a monotonic ranking function
preserves monotonicity. These are relevant to the recent usage of set containment in the context of
information retrieval. Another related usage is in vector search [6], where relevance based retrieval is
done after converting objects into high-dimensional embeddings.

More specifically monotone (multi)set to vector functions have been of interest in the form of theory
of capacities [7] which is a probability measure based on monotonicity. In fuzzy set theory, where
partial membership is allowed, any set-to-vector monotone function is equivalent to a vector-to-
vector monotone function. Measures and integrals on such structures have been explored in the
form of Choquet integrals [8, 9] etc. In the context of game theory and economics, monotone
and submodular functions are used to model diminishing marginal utilities and in combinatorial
auctions, such as in [11, 12, 13]. In learning theory, understanding PAC learning and hardness of
vector-to-vector monotone functions have always received a lot of interest. And using the membership
vector of multisets, this id bassically equivalent to learning multiset-to-vector monotone functions.
Some works such as [16] uses set contaionment and monotone set functions as a tool in the proof.
Specifically, they perform a reduction of neural network training to the set splitting problem to prove
the hardness result.This is the task of partitioning a set S = S1 ∪ S2 such that for a collection of
subsets C = {Ci : Ci ⊆ S,∀i} we must have Ci ̸⊆ S1 and Ci ̸⊆ S2, ∀i. This is basically preventing
set containment for a subset family. More direct applications include [15] which discusses the
challenges of learning vector to vector monotonic functions or [14] that discusses learning monotone
valuation functions. Works like [18, 17] deal with learning monotone boolean functions to any
constant accuracy, under the uniform distribution in polynomial time. Since any boolean vector is
basically one-hot encoding of a set on a fixed size vocabulary, this paper essentially describes learning
monotone set functions. Works on monotone learning such as [19] describe learning processes in
which expected performance consistently improves as the amount of training data increases. Thus,
a trained model is a monotone set function from the training dataset to reals, where the output is a
valuation metric.

So far, we have discussed works that have used multiset to vector embeddings and analyzed them.
We have taken special care to discuss works that have involved the structure of monotonicity and
applied it to various domains. However, to the best of our knowledge, there has been no previous
work that specifically deals with partial order preserving set-to-vector maps. One related work is [20]
which have studied order dimension of a partially ordered structure. Now, note that partial order
preserving sets are injective as discussed before, and injectivity is in fact a weaker condition that
the MAS property. Here, we discuss a number of works on injective functions on multisets. The
paper [22] shows that moments of neural networks do define injective multiset functions, provided
that an analytic non-polynomial activation is used. They also state and prove a finite witness theorem,
which is of independent interest. There are a series of works such as [25, 26, 27] that design bi-
Lipschitz(hence, injective) embeddings on sets and graphs. On the other hand, works like [23, 24]
investigate the impact of latent dimension on the expressive power of set functions such as DeepSets.
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B Proofs of the technical results
B.1 Proofs of existential results on MAS functions

Theorem 1 (Dimension of MAS Function). For a finite ground set V of size n, there exists a MAS
function F : P<∞(V ) → Rn. In addition, any MAS function must have a dimension of at least n. In
other words, m⋆(V,∞) = n.

Proof. The construction of a monotone embedding with n = |V | simply uses one-hot encoding.
Namely, we identify V with [n]. For every S ∈ P<∞(V ), we define

F (S) =
∑
s∈S

es ∈ Rn (10)

where es ∈ Rn is the vector with es[s] = 1 and es[j] = 0 for all j ̸= s. We now show it
satisfies all conditions: Be S ⊆ T , then by definition, ∀v ∈ V, cS(v) ≤ cT (v), then F (S) =∑

s∈S es ≤
∑

t∈T et = F (T ) thus F (S) ≤ F (T ). On the other hand, if F (S) ≤ F (T ) then
∀v ∈ V, cS(v) ≤ cT (v), and thus S ⊆ T .

For the second direction, assume there exists MAS F : V → Rm for m ≤ n − 1. For every
output dimension i ∈ [m], there is a "maximal singleton element" v∗i ∈ V such that F ({v∗i })[i] ≥
F ({v})[i],∀v ∈ V . The value of the set function over the union of such v∗i -s across i ∈ [m] will
dominate any singleton that is disjoint from this collection, thanks to the monotonicity of F . As
m < |V |, then T :=

⋃m
i=1 {v∗i } does not cover V . Thus, we can select an element disjoint from this

collection named s ∈ V , which gives disjoint sets S = {s}, T with F (S) ≤ F (T ), which contradicts
separability.

Theorem 2 (Upper Bound on m⋆(V, k)). Let k < n be natural numbers, and let V be a ground set
with |V | = n. Then there exists a MAS function F : P≤k(V ) → Rm with embedding dimension
m = (k + 2)k+2 log(n).

Proof. For convenience of notation, in this proof we will assume without loss of generality that
V = [n]. As discussed in the main text, the function Fa1,...,am

will be weakly monotone for any choice
of non-negative vectors. Our goal is to show that there exists a set of parameters a1, . . . , am ∈ [0, 1]n,
such that the obtained Fa1,...,am

is a monotone embedding, which means that, if S ̸⊆ T , then there
exists some j such that hj(S) > hj(T ), or in other words ⟨f(S), aj⟩ > ⟨f(T ), aj⟩. We note that
to prove this, it is sufficient to consider pairs (S, T ) which we will call extreme pairs. This means
that S consists of a single element x ∈ V , and T consists of k elements in V but does not contain x
(but repetitions are allowed). Indeed, if the claim is true for such pairs, and S, T ∈ P≤k(V ) such
that S ̸⊂ T , then there exists an element x which is in S more times than it’s in T . First, remove all
copies of x from T , and we know that at least one copy of x will be in S, note that the difference
between the function values remains the same. Then, we will ’replace’ S with a smaller set S̃ = {x},
and T̃ from adding more elements to T from V \ {x} to obtain a new set T̃ of maximal cardinality k.
We then will have that (S̃, T̃ ) is an extreme pair, and so for some j we will have that hj(S̃) > hj(T̃ ).
Therefore, using the weak monotonicity of the function hj , we will have

hj(S) ≥ hj(S̃) > hj(T̃ ) ≥ hj(T ).

Given an extreme pair (S, T ) we consider the set of all ’bad’ a, namely
BS,T := {a ∈ [0, 1]n, ⟨f(S), a⟩ > ⟨f(T ), a⟩}

Our first goal will be to bound the Lebesgue measure of this set. Recall that S is a singleton S = {s},
and T does not contain this singleton. Accordingly,

BS,T = {a ∈ [0, 1]n| as ≤
∑
t∈T

at}

We will compute the probability of the complement of this set, namely vectors a such that as >∑
t∈T at. First denote by

ES,T = {a ∈ [0, 1]n|∀t ∈ T, at <
as
k
}

15



Note, that
ES,T ⊆ {a ∈ [0, 1]n| as >

∑
t∈T

at}

So let’s compute the measure of ES,T :

Leb(ES,T ) = Leb({a ∈ [0, 1]n|∀t ∈ T, at ≤
as
k
}) =

∫ 1

0

(
as
k
)kdas =

1

kk · (k + 1)
≥ 1

(k + 1)k+1

So,

Leb(BS,T ) ≤ 1− Leb(ES,T ) ≤ 1− 1

(k + 1)k+1

Now, consider the set
Bm

S,T = {a1, . . . , am ∈ BS,T },
Then we have

Leb(Bm
S,T ) ≤

(
1− 1

(k + 1)k+1

)m

The vectors a1, . . . , am will not define a monotone embedding, if there exists an extreme pair S, T
which is in Bm

S,T . The probability of this happening can be bounded by a union bound. There are
n ·
(
n−1
k

)
extreme pairs, and for simplicity we will replace this number with a larger but simpler

expression nk+2 > n ·
(
n−1
k

)
. The union bound will then give us

Leb{a1, . . . , am do not define a monotone embedding } ≤ nk+2

(
1− 1

(k + 1)k+1

)m

It is sufficient to show that this expression is smaller than 1, for our m, which, by taking a logarithm,
is equivalent to requiring that

(k + 2) ln (n) +m ln

(
1− 1

(k + 1)k+1

)
< 0

Using Taylor’s expansion it can be shown that ln(1 − x) < −x for x ∈ (0, 1), and as a result it is
sufficient to choose m so that

(k + 2) ln (n)− m

(k + 1)k+1
< 0

or equivalently
m > (k + 1)k+1 · (k + 2) · ln(n).

For convenience we slightly enlarge this lower bound to obtain m ≥ (k + 2)k+2 ln(n)

Theorem 3 (Lower bounds on m⋆(V, k)). Let k ≥ 2 and n be natural numbers, and let V be a
ground set with |V | = n. Then the smallest possible dimension m⋆(V, k) of a MAS function satisfied
m⋆(V, k) ≥ log2(log3 n). Moreover, if k ≤ n−1

2 then m⋆(V, k) ≥ 2k

Proof. The proof is partially inspired by the proof in [20].

Lower bound on k: We want to show the lower bound of m⋆(V, k) ≥ min (2k, n− 2). As in
the proof of Theorem 1, we select a "maximal singleton element" v∗i ∈ V for every dimension
i ∈ {1, 2, · · · ,m⋆(V, k)}. Thus we must have:

for each i ∈ [m⋆(V, k)] : F ({v∗i })[i] ≥ F ({v})[i],∀v ∈ V

Now, if m⋆(V, k) ≤ |V | − 2, we can find two elements {u1, u2} disjoint from the collection
V :=

⋃m⋆(V,k)
i=1 {v∗i }. Without loss of generality, we can assume that F ({u1})[i] ≥ F ({u2})[i] for

most indices in [m⋆(V, k)]. We can then construct a set T containing u1 and all the v∗i for all indices
i for which F ({u1})[i] < F ({u2})[i], thus we define:

T := {u1} ∪
{
v∗j : F ({u1})[j] < F ({u2})[j]

}
We then have that:

F ({u2})[i] ≤ max{F ({u1})[i], F ({v∗i })[i]} ≤ F (T )[i],∀i ∈ [m⋆(V, k)]

where the last inequality uses the monotonicity of F . This implies that F (S) ≤ F (T ) However, S
is not a subset of T . It follows that k ≤ |T | − 1 ≤ m⋆(V, k)/2, as otherwise separability of F in
P≤k(V ) is violated. Hence, we get that: m⋆(V, k) ≥ 2k
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Lower bound on n: For this proof, we will use the Erdös-Szekeres theorem, which in particular
states, for a natural N ≥ 2, that a sequence of real numbers with ≥ N2 elements has a subsequence
of cardinality N which is monotone (either monotonously increasing or monotonously decreasing).
Assume we have F : P≤k(V ) → Rm a monotone embedding, where V = [n]. Assume by way of
contradiction that:

log2(log3 n) > m or equivalently n > 32
m

Consider the first coordinate and look at the sequence
F ({1})[1], . . . , F ({n})[1]

This is a real-valued sequence, and so there is a monotone subsequence a1 < a2 < . . . , < aℓ of the
original sequence 1, . . . , n, with ℓ =

√
32m = 32

m−1

, such that:
F (a1)[1] ≤ F (a2)[1] ≤ . . . ≤ F (aℓ)[1] or F (a1)[1] ≥ F (a2)[1] ≥ . . . ≥ F (aℓ)[1]

Next, we consider the second coordinate of this subsequence, namely F (a1)[2], . . . , F (aℓ)[2] and
obtain a new subsequence {aj} such that both the sequences: {F (aj)[1]} and {F (aj)[2]} are ordered
monotonically, and the size of the subsequence is the square root of the previous one, namely 32

m−2

.
After doing this m times, we have a subsequence of size 3. Namely, we have three distinct elements
u, v, w ∈ V such that for all i = 1, . . . ,m,

either F ({u})[i] ≤ F ({v})[i] ≤ F ({w})[i] or F ({u})[i] ≥ F ({v})[i] ≥ F ({w})[i]

It follows that for all i, we have:
F ({v})[i] ≤ max (F ({u})[i], F ({w})[i]) ≤ F ({u,w})[i]

Thus, F ({v}) ≤ F ({u,w}), which is a contradiction since {v} is not contained in {u,w}.

A refined lower bound: Now, we may extend the above proof idea to generalize the lower bound
on m⋆(V, k), which is useful specially when |V | >> k. In such cases, the following gives a tighter
lower bound on m⋆(V, k) which is quadratic in k.

Lemma 15. For all ℓ ∈ [k], we have m⋆(V, k) ≥ min
(
|V | − ℓ, ℓk + 2ℓ− ℓ2

)
. More specifically, if

ℓ = k+2
2 , then m⋆(V, k) ≥ min

{
|V | − k+2

2 ,
(
k+2
2

)2}
Proof. Consider any ℓ ∈ [k]. Like in the proof just before, we consider a "maximal singleton element"
v∗i ∈ V for every dimension i ∈ {1, 2, · · · ,m⋆(V, k)} and obtain the collection V :=

⋃m⋆(V,k)
i=1 {v∗i }.

Let us assume m⋆(V, k) ≤ |V | − ℓ. Thus, we can produce the collection U := {u1, u2, · · · , uℓ}
disjoint from V , i.e V ∩ U = ∅. For each uq ∈ U , let mq be the number of co-ordinates j ∈
[m⋆(V, k)] such that F ({uq})[j] > F ({ur})[j],∀r ∈ [ℓ] \ {q}. Clearly,

∑
q∈[ℓ] mq ≤ m⋆(V, k),

thus, ∃ℓ0 ∈ [ℓ]\ such that mℓ0 ≤ m⋆(V,k)
ℓ . Like before, we consider the sets S = {uℓ0}. We

construct T as follows: we select U \ {uℓ0} and take union with all
{
v∗j
}

for each dimension j

in which F ({uℓ0})[j] > F ({ur}),∀r ∈ [ℓ] \ {ℓ0}. Since
{
v∗j
}

is the maximal singleton for the
dimension j, it follows that F ({uℓ0})[j] ≤ F (

{
v∗j
}
)[j]. Hence, if we define:

T = (U \ {uℓ0})
⋃{

v∗j : F ({uℓ0})[j] > F ({ur}),∀r ∈ [ℓ] \ {ℓ0}
}

By the choice of ℓ0, we have that
∣∣{v∗j : F ({uℓ0})[j] > F ({ur}),∀r ∈ [ℓ] \ {ℓ0}

}∣∣ ≤ m⋆(V,k)
ℓ Now,

we must have that, ∀j ∈ [m⋆(V, k)],∃t ∈ T such that F ({t})[j] ≥ F ({uℓ0})[j]. By monotonicity
of F , we thus have that F ({uℓ0})[j] ≤ F (T )[j],∀j ∈ [m⋆(V, k)] which implies F (S) ≤ F (T ).
But by design, S ∩ T = ∅, which contradicts separability of F . Thus, we must have that, |T | > k,
i.e |T | − 1 ≥ k. But as stated before, |T | ≤ m⋆(V,k)

ℓ + ℓ − 1. Combining these two, we get that:
m⋆(V,k)

ℓ ≥ k + 2− ℓ, which implies m⋆(V, k) ≥ kℓ+ 2ℓ− ℓ2, thus proving our result.

Now, we already have a sufficient upper bound on m⋆(V, k) from Theorem 2 that’s O
(
kk+2 log(n)

)
.

Now, when n >> k we have that O
(
kk+2 log(n)

)
< n − O(k), in which case we may apply

ℓ = k+2
2 in the above lemma. And since we already know that O

(
kk+2 log(n)

)
< n − O(k), we

thus get that m⋆(V, k) < n−O(k). Thus, in this case the above lemma gives us m⋆(V, k) ≥
(
k+2
2

)2
,

which is a tigher quadratic lower bound in k.
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When k = 1 In the degenerate case where only a single set element is allowed, k = 1, it is
possible to construct a MAS function even for the uncountable ground set V = [−1, 1] by defining
F : P≤1([−1, 1]) → R2 via

F (S) = (−1,−1) if S = ∅ and F (S) = (−x, x) if S = {x}, (11)
Separable embeddings (even non monotone) don’t exist: Now, as discussed in the main text, we
give a justification here on why we choose to relax separability and not monotonicity in the definition
of wekaly MAS embeddings. Here, we show that, with the added assumptions of injectivity and
continuity, even non-monotone set-t-vector embeddings do not exist in any dimension for uncountable
ground sets.

Theorem 16. There does not exist a continuous injective separable set function taking values in Rm

for any m when the ground set V is an open subset of Rd

Proof. We restrict ourselves to P=n(V ), i.e, only subsets of size n. Since F is continuous and
permutation-invariant, according to Theorem-7 of [21], f({x1, · · · , xn}) = ρ(

∑n
i=1 ϕ(xi)), where

ρ, ϕ are continuous and bijective(given in condition). Now, consider the space S ⊂ [0, 1]n,S =
{(x1, · · · , xn) : x1 < x2 < x3 < · · · < xn; 0 < xi < 1,∀i ∈ [n]}. Note that S is open in [0, 1]n

(to see this, let ϵ = mini∈[n−1](xi+1 − xi). The ball of radius ϵ
2 is contained in the domain). Since

F : S → Rn is an injective, continuous map. Thus, by Invariance of Domain Theorem([35]), F (S)
is open in Rn as well. Note that each element of S uniquely corresponds to an element of P=n(V ).
Thus, F (P=n(V )) is open in Rn. Now, consider any set A = {a1, · · · , an}. Since F is an open
map, we have that ∃δ > 0 such that B(F (A), δ) ⊆ F (P=n(V )). Thus, ∃B ∈ P=n(V ) such that
F (B)i = F (A)i +

δ
2n ,∀i ∈ [n]. But then, F (B) > F (A) implies A ⊂ B but |A| = |B| = n by

construction. This gives a contradiction.

B.2 Proofs of results on on weakly MAS functions

Proposition 6. If the deep set model in (2) is implemented with a vector-to-vector monotonously
increasing function M2 and a non-negative activation σ, then F (•; (A, b)) is monotone for every
(A, b). If in addition σ is monotone (increasing or decreasing), then there exists S ̸⊆ T with
F (S; (A, b)) ≤ F (T ; (A, b)) for all A, b.

Proof. Let x < y and consider the two sets:

S = {x+ y

2
}, T = {x, y}

And we claim that for all A, b, although S ̸⊆ T , F (S, (A, b)) ≤ F (T, (A, b)). Note that as x <
x+y
2 < y, then it must have been that

Ax+ b ≤ A · x+ y

2
+ b ≤ Ay + b

Or

Ay + b ≤ A · x+ y

2
+ b ≤ Ax+ b

Then, by (weakly) monotonicity of the activation σ and of M2, it must be that

σ(A · x+ y

2
+ b) ≤ σ(A · x+ b)

Or that

σ(A · x+ y

2
+ b) ≤ σ(A · y + b)

In any case, it’s true that

σ(A · x+ y

2
) ≤ σ(A · x+ b) + σ(A · y + b)

Then, by monotonicity of M2,

F (S, (A, b)) = M2 · (σ(A · x+ y

2
+ b)) ≤ M2 · (σ(A · x+ b) + σ(A · y + b)) = F (T, (A, b))

Thus,
F (S, (A, b)) ≤ F (T, (A, b))
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Proposition 17. Let V = Rd and let F : P<∞(V ) → RD be a Set Transformer defined by
F (S;WQ,WK ,WV ) := SumPool(Attn(S)). Then F is not a point-wise monotone function.

Proof. We need to cone up with a class of tuple of parameters (WQ,WK ,WV ) such that the function
S 7→ F (S;WQ,WK ,WV ) is not monotone. Choose WQ = WK = W such that W is full-rank.
Choose any non-zero WV . Now, choose some vector x1 such that WV x1 is non-zero. By swapping
x1 with −x1 if necessary, we can choose some index j such that for v1 = WV x1, the j-th index
is negative, i.e.v1[j] < 0. By assumption we also have that q1 = k1 is a non-zero vector, and thus
has a positive norm. Now let S be the singleton set S = {x1}, which is a subset of T = {x1,0d}
where 0d is the d−dimensional all-zero vector. Note that, F (S;WQ,WK ,WV ) = v1. And since
q2,k2,v2 are all zero, we have: F (T ;WQ,WK ,WV ) = (α1,1 + α1,2)v1. Note that, α1,1

α1,1+α1,2
=

e∥q1∥2

e∥q1∥2+1
+ 1

2 > 1. Hence, it follows that F (T ;WQ,WK ,WV )[j] < F (S;WQ,WK ,WV )[j] and
thus, the non-monotonicity follows

Proposition 8. If M2 is strictly monotone increasing, and σ is a hat activation function, then
F (S, (a, b)) = M2(

∑
x∈S σ(a⊤x+ b)) is weakly MAS function.

Proof. It’s clear the function is a set function. Be S ⊆ T , as σ is positive, then for any a, b,∑
x∈S

σ(aTx+ b) ≤
∑
x∈S

σ(aTx+ b) +
∑

x∈T\S

σ(aTx+ b) =
∑
x∈T

σ(aTx+ b)

So
F (S, (a, b)) ≤ F (T, (a, b))

Denote by [s1, s2] the support of σ,and choose some point in it such that s ∈ [s1, s2] : σ(s) > 0.
Now, be S ̸⊆ T , then there exists z ∈ V : CS(z) > CT (z). Now, remove z from both sets CT (z)
times. This subtracts from both function values the same amount. Now, we have that z ∈ S, z ̸∈ T .
Denote by ϵ = mint∈T |z−t|>0

2 . Choose

a =
s2 − s1

ϵ
, b = −(a · z − s)

We claim that ∀t ∈ T, σ(a · t+ b) = 0. Assume it’s not zero, thus s1 < a · t+ b < s2. Thus

s1 <
s2 − s1

ϵ
· t− a · z + s < s2

Thus,

s1 − s <
s2 − s1

ϵ
· t− s2 − s1

ϵ
· z < s2 − s

Thus,
s1 − s

s2 − s1
· ϵ < t− z < ϵ · s2 − s

s2 − s1
But,

| s1 − s

s2 − s1
| ≤ 1

| s2 − s

s2 − s1
| ≤ 1

Thus,
−ϵ ≤ t− z ≤ ϵ

A contradiction to the definition of ϵ. Thus, F (T, (a, b)) = M2(0). But
σ(a · z + b) = σ(a · z − a · z + s1) = σ(s1) > 0

Thus
F (S, (a, b)) = M2(

∑
x∈S

σ(a⊤x+ b)) ≥ M2(σ(s1)) > M2(0) = F (T, (a, b))

And we are done.

Proposition 18. Given V ⊆ Rd, we consider affine transformations A2 : Rd → R3,A1 : R3 → R.
Thus, here A2(t) := A2t+ b2 and A1(z) = a⊤1 z+ b1, where A2 ∈ R3×d, b2 ∈ R3, a1 ∈ R3, b1 ∈ R
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are the respective parameters. Then, the set functions of the form
F : P<∞(V ) → R, F (S;A1,A2) = M2

(∑
x∈S ReLU ◦ A1 ◦ ReLU ◦ A2(x)

)
(3)

are weakly MAS functions.

Proof. Consider the function TRI as in the third plot of Fig. 2. We know that TRI belongs to the
class of Hat functions. From 9 we know that, for any S ̸⊆ T ∈ P<∞(V ), ∃a ∈ Rd and b ∈ R such
that

∑
x∈S TRI(a⊤x+ b) >

∑
y∈T TRI(a⊤y + b). Now, consider the following parameters:

A = [a,a,a]
⊤ ∈ R3×d, b = [b+ 1, b− 1, b]⊤ ∈ R3

a1 = [1, 1,−2]⊤ ∈ R3, and b1 = 0
(12)

Then, for the above values of parameters, we have:

ReLU ◦ A2(x) =
[
ReLU

(
(a⊤x+ b) + 1

)
,ReLU

(
(a⊤x+ b)− 1

)
,ReLU

(
a⊤x+ b

)]
Thus, we have:

a⊤
1 (ReLU ◦ A2(x)) + b1

= ReLU
(
(a⊤x+ b) + 1

)
+ReLU

(
(a⊤x+ b)− 1

)
− 2ReLU

(
a⊤x+ b

)
= TRI

(
a⊤x+ b

)
Thus we have, ReLU ◦ A1 ◦ReLU ◦ A2(x) = ReLU ◦TRI

(
a⊤x+ b

)
= TRI

(
a⊤x+ b

)
. Hence,

F (S) =
∑

x∈S TRI
(
a⊤x+ b

)
>
∑

y∈S TRI
(
a⊤y + b

)
= F (T ) and weak separability is proved.

Since M2 is monotone increasing and ReLU is non-negative, it follows that F is monotone as well,
hence weakly MAS.

B.3 Hölder separability of MAS functions

Theorem 12 (F is lower Hölder). Let V ⊂ Rd be a compact set, and σ a Hat activation function
which is piecewise continuously differentiable supported in some interval [γ1, γ2], and satisfying

the condition: limt→γ+
1

dσ

dt
> 0. Let M2 : R → R be a lower Lipschitz function. Consider the

function F (S; (a, b, c)) = M2

(∑
x∈S σ

(
a⊤x+b

c

))
, where the multisets S come from P≤k(V ), and

a ∼ Unif(Sd−1), b ∼ Unif([−1, 1]), c ∼ Unif((0, 2]). Then, F (•, (a, b, c)) is Monotone Hölder
separable with exponent λ = 2.

Proof. We consider V ⊂ Rd to be a compact set with maximum norm of 1. Also, we note that, if
σ(x) is a Hat function with support in [γ1, γ2], then σ( x−γ1

γ2−γ1
) is a Hat function with support in (0, 1).

For this proof, we thus consider σ to have support in [0, 1]. For support in general [γ1, γ2] and a
general norm bound of V , the distributions on b, c needs to be scaled and shifted to get same Lower
Hölder results with the Hölder constants scaled appropriately. *. We recall the definition of ∆(S, T )
from equation 4. Let S = {x1, · · · , xM} and let T = {y1, · · · , yN}, where S, T ⊂ V . Clearly by
the definition of ∆(S, T ), it is sufficient to consider |S| ≤ |T |, i.e M ≤ N ≤ k.

Using the definition of EMD gives us the following equivalent definition of ∆(S, T ): If ΩM,N :=

{τ : [M ] → [N ], τ is injective} , then ∆(S, T ) = minτ∈ΩM,N

∑M
i=1∥xi − yτ(i)∥2. Let τ∗ be the

optimal coupling between [M ] and [N ], i.e τ∗ = argminτ∈ΩM,N

∑M
i=1∥xi − yτ(i)∥2, which means

∆(S, T ) :=
∑M

i=1∥xi − yτ∗(i)∥2. Now, ∀i ∈ [M ], we define ∆i := ∥xi − yτ∗(i)∥2. For any
x ∈ Rd, r > 0, let B(x, r) denote the Euclidean ball centered at x with radius r. We define
Ωi :=

{
ℓ ∈ [M ] : yτ∗(ℓ) ∈ B(xi,∆i)

}
,∀i ∈ [M ]. With these notations, we make the following

observation:

Claim-1: Consider any r ∈ (0, k). Then, ∃i0 ∈ [M ] such that
∑

ℓ∈Ωi0
∆ℓ ≤ ∆i0r and

∆i0 ≥ rk

kk+1∆(S, T )

*If supx∈V ∥x∥ ≤ B, and supp(σ) ⊆ [γ1, γ2] then distributions of b, c should be shifted by γ1 and linearly
scaled by δ := B

γ2−γ1
and to be: b ∼ Unif(−γ1 − δ,−γ1 + δ) and c ∼ Unif(0, 2δ) respectively
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Proof. For the sake of contradiction, we assume otherwise, i.e ∀i ∈ [M ], we have: either ∆i ≤
rk

kk+1∆(S, T ) or
∑

ℓ∈Ωi
∆ℓ ≥ ∆ir. WLOG, assume the following order on ∆i’s: ∆1 ≥ ∆2 ≥ · · · ≥

∆M . We build the following directed graph G on [M ]. Start with the node v0 = 1 and add we add
one node to G at a time. At step t, we select vt := argmaxu∈Ωvt−1

∆u and add the edge (vt−1, vt)

to G along with the new node vt.

Note that, by definition of ∆(S, T ) we have that: ∆(S, T ) =
∑M

i=1 ∆i. This, implies that: ∆v0 ≥
∆(S,T )

M , as we take argmax over entire [M ] .Thus, ∆1 ≥ ∆(S, T )/M ≥ ∆(S, T )/k. Thus, by
the contradictory assumption, we must have:

∑
u∈Ωv0

∆u ≥ ∆1r. Since v1 = argmaxu∈Ωv0
∆u,

it thus follows that: ∆v1 ≥ r
k∆1 ≥ r

k2∆(S, T ). Following the similar argument, we thus have,
∆v2 ≥ r

k )∆v1 and so on. Thus, ∀t ∈ N we must have:
∑

u∈Ωvt
∆u ≥ ∆vtr. Thus, for vt+1, defined

by: argmaxu∈Ωvt
∆u, we must have: ∆vt+1 ≥ r

k∆vt . Since this holds for every t ∈ N and since

r > 0 by hypothesis, we must have: ∆vt ≥ r
k∆vt−1

≥
(
r
k

)2
∆vt−1

≥ · · · ≥
(
r
k

)t
∆v0 .

As we work with finite M,N either G is a DAG and this process terminates; or G has a cycle. In
former case, at termination step tt we cannot add any more nodes, thus Ωtt = ∅. Since all nodes
are unique in this case, we must have tt ≤ k. So, ∆tt ≥

(
r
k

)tt
∆v0 ≥ 1

k

(
r
k

)tt
∆(S, T ). Since

r
k ∈ (0, 1) by hypothesis and since tt ≤ k, we thus have: ∆tt ≥ 1

k

(
r
k

)k
∆(S, T ), and hence done

with this case.

For the second case, consider the smallest cycle in G. Let this cycle of length p be C =
{vβ → vβ+1 → · · · → vβ+p−1 → vβ} for some β ≥ 0. Then, we have: β + i + 1 ∈ Ωβ+i,∀i ∈
{0, · · · p− 1}, where addition of indices is modulo p. Thus we have: ∥xvβ+i − yτ∗(vβ+i+1)∥2 <
∥xvβ+i − yτ∗(vβ+i)∥2,∀i ∈ {0, · · · , p− 1}. Taking sum, we have the following: ∥xvβ −
yτ∗(vβ+1)∥2+∥xvβ+1−yτ∗(vβ+2)∥2+ · · ·+∥xvβ+p−1−yτ∗(vβ)∥2 <

∑p−1
j=0∥xvβ+j −yτ∗(vβ+j)∥2.

Hence, switching from the coupling i 7→ τ∗(i) to i 7→ τ∗(i + 1) for i ∈ {vβ , · · · , vβ+p−2} and
from vβ + p− 1 7→ τ∗(vβ + p− 1) to vβ + p− 1 7→ τ∗(vβ) strictly reduces the value of the sum∑M

i=1∥xi − yτ∗(i)∥2, but we started with the optimal coupling τ∗. This gives the reqd. contradic-
tion.

We also make the following observation regarding this "optimal coupling" τ∗:

Observation-2: For any given i ∈ [M ], if yj ∈ T ∩ Ωi for some j ∈ [N ], then ∃ℓ ∈ [M ] such that
j = τ∗(ℓ)

Proof. The proof follows from the following observation: if yj ∈ Ωi for any i ∈ [M ], then we must
have: ∥xi − yj∥2 ≤ ∆i = ∥xi − yτ(i)∥2. Thus, if yj was "free", i.e if ̸ ∃ℓ ∈ [M ] : j = τ∗(ℓ), then
we can switch from i 7→ τ∗(i) to i 7→ j, and this would reduce the sum

∑M
i=1∥xi − yτ∗(i)∥2, but τ∗

was the optimal coupling. This gives a contradiction

Now, as per the starting discussion, we consider supp(σ) = [0, 1], and the proof for general support
of [γ1, γ2] requires the scaling and shifting as mentioned before.

By assumption we have, limt→0+ σ′(t) > 0. We define κ1 :=
limt→0+ σ′(t)

2 . Since σ is piecewise
continuously differentiable as per assumption, we must have σ′(t) ≥ κ1,∀t ∈ (0, ω) for some
ω ∈ (0, 1) by the continuity of σ′. Note that, by Lagrange’s Mean Value Theorem, we have that:

∀x, y ∈ (0, ω),
|σ(x)− σ(y)|

|x− y|
= σ′(z), where z ∈ (x, y)

=⇒ ∀x, y ∈ (0, ω), |σ(x)− σ(y)| ≥ κ1 |x− y| , since z ∈ (0, ω)

=⇒ lim
y→0+

|σ(x)− σ(y)| ≥ κ1 |x| , as σ is cts.

=⇒ σ(x) ≥ κ1x, ∀x ∈ (0, ω), as σ ≥ 0

Also, σ is upper Lipschitz with constant κ2 > 0 per definition of Hat fn. Now, consider the i0 coming
from the Claim as proved above. We define ω′ := min( ω

1−ω , 1). Let P ∈ N be such that κ1

P < 1
2
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and κ1

κ2P
< k and ω′ > 2

P . Note that, such a P ∈ N exists, since taking P → ∞ satisfies all the 3
conditions.

Now, for a given a ∈ Sd−1, consider the sets Sa =
{
a⊤x : x ∈ S

}
, Ta =

{
a⊤y : y ∈ T

}
. Note that,

since we have ∥xi∥, ∥yj∥ ≤ 1,∀i ∈ [M ], j ∈ [N ] as per earlier assumption, we get Sa, Ta ⊆ (−1, 1).
For given a ∈ Sd−1, we define the "optimal coupling" between the real-valued sets Sa, Ta as:
τ∗a := argminτ∈ΩM,N

∑M
i=1

∣∣a⊤xi − a⊤yτ(i)
∣∣. Based on this, we define ∆a

i :=
∣∣a⊤xi − a⊤yτ∗

a (i)

∣∣
and Ωa

i =
{
ℓ ∈ [M ] : yτ∗

a (ℓ)
∈ B(a⊤xi,∆

a
i )
}

. We have: ∆(Sa, Ta) :=
∑M

i=1 ∆
a
i . Let i0 ∈ [M ]

be the index that comes from applying the claim to the sets Sa, Ta. Now, we define the regions
Ba := (a⊤xi0 − ω′∆a

i0
, a⊤xi0 − ∆a

i0

P ) and for a given pair (a ∈ Sd−1, b ∈ R), we consider

Ca,b := (
a⊤xi0

−b

ω , a⊤xi0 +∆a
i0
− b). Thus, we have:

(
a⊤xi0 +∆a

i0 − b
)
−
(
a⊤xi0 − b

ω

)
=
(1− ω)(b− a⊤xi0) + ω∆a

i0

ω

=
1− ω

ω

(
(b− a⊤xi0) +

ω

1− ω
∆a

i0

)
≥1− ω

ω

(
b− (a⊤xi0 − ω′∆a

i0)
)
> 0,∀b > a⊤xi0 − ω′∆a

i0

The above analysis shows that Ca,b ̸= ∅,∀b ∈ Ba, so the intervals are well defined. Now, if b ∈ Ba

and y < a⊤xi0 −∆a
i0

then we have: y − b < a⊤xi0 −∆a
i0
− a⊤xi0 + ω′∆a

i0
= (ω′ − 1)∆a

i0
≤ 0

by definition of ω′. On the other hand, if b ∈ Ba and c ∈ Ca,b, for given any y > a⊤xi0 + ∆a
i0

we have: y−b
c ≥ a⊤xi0

−b+∆a
i0

a⊤xi0
−b+∆a

i0

= 1. Combining these, we get that if
∣∣y − a⊤xi0

∣∣ ≥ ∆a
i0

, then
y−b
c ̸∈ (0, 1),∀b ∈ Ba, c ∈ Ca,b. Thus, conditioning on a given a ∈ Sd−1, we can write the

conditional expectation taken over b, c as follows:

Eb,c

∑
x∈S

σ

(
a⊤x− b

c

)
−
∑
y∈T

σ

(
a⊤y − b

c

)
+

≥Eb,c

∑
x∈S

σ

(
a⊤x− b

c

)
−
∑
y∈T

σ

(
a⊤y − b

c

)1{b∈Ba,c∈Ca,b}


+

, using non-negative RV

≥1

4

∫ a⊤xi0

b=a⊤xi0
−ω′∆a

i0

∫ a⊤xi0+∆a
i0

−b

c=
a⊤xi0

−b

ω

[
σ
(a⊤xi0 − b

c

)
−

∑
ℓ∈Ωa

i0

∣∣∣∣σ(a⊤yτ∗
a (ℓ)

− b

c

)
− σ

(a⊤xℓ − b

c

)∣∣∣∣]
+

dcdb

≥1

4

∫ a⊤xi0

b=a⊤xi0−ω′∆a
i0

∫ a⊤xi0
+∆a

i0
−b

c=
a⊤xi0

−b

ω

[
κ1

a⊤xi0 − b

c
− κ2

κ1

Pκ2

∆a
i0

c

]
+

dcdb, from Lipschitz cts. σ

=
κ1

4

∫ a⊤xi0

b=a⊤xi0
−ω′∆a

i0

[
a⊤xi0 − b−

∆a
i0

P

]
+

∫ a⊤xi0+∆a
i0

−b

c=
a⊤xi0

−b

ω

dc

c
db, as ReLU(rx) = rReLU(x)

=
κ1

4

∫ a⊤xi0−
∆a

i0
P

b=a⊤xi0
−ω′∆a

i0

(
a⊤xi0 − b−

∆a
i0

P

)
ln

(
ω(a⊤xi0 +∆a

i0
− b)

a⊤xi0 − b

)
db

=
κ1

4

∫ ω′∆a
i0

z=
∆a

i0
P

(
z −

∆a
i0

P

)
ln

(
ω(z +∆a

i0
)

z

)
dz, putting z := a⊤xi0 − b
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≥κ1

4

∫ ω′∆a
i0

2

z=
∆a

i0
P

(
z −

∆a
i0

P

)
ln

(
ω

(
1 +

∆a
i0

z

))
dz.using non-negativity of integrand

≥κ1

4
ln

(
ω

(
1 +

2

ω′

))∫ ω′∆a
i0

2

z=
∆a

i0
P

(
z −

∆a
i0

P

)
dz

≥κ1

8
ln (2− ω)

(
ω′

2
− 1

P

)2

(∆a
i0)

2, using ω′ ≤ ω

1− ω

≥C · 1
k

(
κ1

κ2P

)k

(∆a(S, T ))2, where C > 0 as ω ∈ (0, 1) and P ≥ 2

ω′ by earlier choice

Thus, we have shown that: Eb,c

[[
F (S)−F (T )

]
+

∣∣a] ≥ C ′·(∆a(S, T ))2. By law of total expectation,

we have:

Ea,b,c

[
F (S)− F (T )

]
+

= EaEb,c

[[
F (S)− F (T )

]
+

∣∣a]
≥C ′Ea

(
∆a(S, T )

)2 ≥ C ′ (Ea∆
a(S, T ))

2
, by Jensen’s ineq.

Thus, to show Lower Hölder separability with exponent λ = 2, it remains to show that,
Ea∼Unif(Sd−1)∆

a(S, T ) ≥ c1 ·∆(S, T ), where c1 > 0 is a constant. Now, we make the following
observation:

Observation-3: Suppose we’re given given ℓ ∈ N and ℓ many non-zero vectors u1, u2, · · · , uℓ ∈ Rd.
If a ∼ Sd−1, then ∃δ(ℓ) > 0 such that: P

{∣∣a⊤ui

∣∣ ≥ δ(ℓ)∥ui∥,∀i ∈ [ℓ]
}
≥ 1

2

Proof. Firstly, we note that, for a fixed i ∈ [ℓ],
∣∣a⊤ui

∣∣ is a continuous non-negative real-valued
random variable. Thus, ∃ti ∈ R+ such that P

{∣∣a⊤ui

∣∣ ≥ ti
}
≥ 1

2 . Now, Choosing δi :=
ti

∥ui∥ > 0

gives us: P
{∣∣a⊤ui

∣∣ ≥ δi∥ui∥
}
≥ 1

2 ,∀i ∈ [ℓ]. Since δi > 0,∀i ∈ [ℓ] and ℓ is finite, we thus have:
δ := mini∈ℓ δi > 0. For this particular choice of δ, we have that P

{∣∣a⊤ui

∣∣ ≥ δ∥ui∥
}
≥ 1

2 ,∀i ∈ [ℓ],
and the observation is proved.

. Now, consider all ℓ0 :=
(
N
M

)
M ! vectors (xi − yτ(i)) ∈ Rd, where τ runs over all injective

functions from [M ] → [N ]. For this particular choice of ℓ0, we get from the last observation
that, ∃δ(N,M) > 0 such that P

{∣∣a⊤ (xi − yτ(i)
)∣∣ ≥ δ(N,M)∥xi − yτ(i)∥

}
≥ 1

2 , for all possible
injective τ : [M ] → [N ], we call this set of a ∈ Sd−1 to be A ⊆ Sd−1. Now, given a fixed a ∈ Sd−1,
we have a particular τa : [M ] → [N ] that gives ∆a(S, T ) =

∑M
i=2

∣∣a⊤ (xi − yτa(i)
)∣∣. Also, let

τ∗ : [M ] → [N ] be the "optimal coupling" such that ∆(S, T ) =
∑M

i=1∥xi − yτ∗(i)∥. Now, we can
write:

Ea∼Unif(Sd−1)∆
a(S, T )

=Ea∼Unif(Sd−1)

[
M∑
i=1

∣∣a⊤(xi − yτa(i))
∣∣]

≥Ea∼Unif(Sd−1)

[
M∑
i=1

∣∣a⊤(xi − yτa(i))
∣∣ ∣∣∣∣a ∈ A

]
Pa {a ∈ A}

≥δ(N,M)

2
Ea

[
M∑
i=1

∥xi − yτa(i)∥2

]

≥δ(N,M)

2
Ea

[
M∑
i=1

∥xi − yτ∗(i)∥2

]
, as τ∗ is optimal coupling

=
δ(N,M)

2

(
M∑
i=1

∥xi − yτ∗(i)∥2

)
=

δ(N,M)

2
∆(S, T )
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Hence, F is Hölder separable with constant C′δ(N,M)
2 and exponent λ = 2.

Theorem 13 (Probability bounds on separation). Let V ⊆ Rd and σ be as in Theorem 12, and let
A ∈ Rm×d, b ∈ Rm, c ∈ Rm whose m columns (respectively entries) are drawn independently from
the distribution on aj , bj , cj described in Theorem 12, and consider the function

F (S;A, b, c) =
∑

x∈S σ
(
c−1 ⊙ (Ax+ b)

)
. (6)

Then there exists C > 0, so that for all S ̸⊆ T , P (F (S) ≤ F (T )) ≤
(
1− C∆2(S, T )

)m
.

Proof. Denote by f the scalar-valued set function for a co-ordinate of F ; we proved it’s a lower
Holder function. Let S ̸⊆ T , then by lower continuity we know that,

Ew∼µ(·)∥[f(S;w)− f(T ;w)]+∥1 ≥ C ·∆(S, T )2, for all S, T ∈ P≤k(V ) (13)
We know that

c ·∆(S, T )2 ≤ Ew∼µ(·)∥[f(S;w)− f(T ;w)]+∥1
≤P(f(S;w) ≥ f(T ;w)) · sup

w∈W
|f(S;w) ≥ f(T ;w)|

Now, note that as f is a bounded function, denote by M the supremum of f over all sets S and
weights w ∈ W. Thus by the triangle equality,

c ·∆(S, T )2 ≤ 2M · P(f(S;w) ≥ f(T ;w))

Thus, we obtain that
c ·∆(S, T )2

2 ·M
≤ P(f(S;w) ≥ f(T ;w))

Thus, the complement satisfies:

P(f(S;w) < f(T ;w)) ≤ 1− c ·∆(S, T )2

2 ·M
Now, taking m independeing copies of f , namely F , we have that

P(∀i ∈ [m], F (S;w)i < F (T ;w)i) ≤ (1− c ·∆(S, T )2

2 ·M
)m

Denoting by C := c
2M yield the desired:

P(F (S;w) < F (T ;w)) ≤ (1− C ·∆(S, T )2)m

Lower Hölder separability of ReLU networks So far, we have only given results about Lower
Hölder separability of MAS functions with Hat activations. However, as seen in Proposition 10, we
have seen that a two layer linear network with ReLU activation is weakly MAS, and as observed
from the proof technique, such a 2 layer ReLU net can "simulate" a hat activation. In our arguments,
we have shown Lower Hölder separability of Hat Activation based parametric set functions by finding
a separating parameter point w ∈ W for a given pair of sets (S, T ), and constructing an open set
of non-zero measure, W ′ ⊆ W around w. We lower bounded the expectation of the non-negative
Random variable in the definition of Lower Hölder separability(in Equation (5)) by restricting the
expectation only to W ′ and showing that it is proportional to ∆(S, T )λ. One can extend this exact
same idea to construct the open set of parameters for the two later ReLU networks from the separable
parameter point that we get from proof of Proposition 10.

Also, as obtained from Proposition 6, we see that one layer ReLU networks are not even weakly
MAS. But a key key step in that proof uses that one can find 3 collinear elements in the ground set V
and construct sets with them to obtain the necessary counter-example. Thus, a natural question is
to ask: whether shallow 1-layer networks with ReLU activation are also weakly MAS with some
additional assumptions on the domain. We show in the following result that, with the additional
assumption of V being a hypersphere, we may guarantee Lower Hölder separability for even shallow
ReLU networks.

Theorem 19. Given a ground set V ⊆ Sd−1. We define F : P≤k(V ) → R as F (S) =∑
x∈S ReLU

(
a⊤x+ b

)
, where a ∼ Unif(Sd−1) and b ∼ Unif(−1, 1). Then, for any S, T ∈

P<∞(V ), we have: Ea,b [F (S)− F (T )]+ ≥ C(k)∆(S, T )(d+3)2k for some constant C(k) > 0
depending only on k.
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Proof. Let S = {x1, · · · , xM} and T = {y1, · · · , yN}, where M ≤ N ≤ k. And according to the
definition of ∆(S, T ) from Equation (4) we can equivalently write ∆(S, T ) = minπ∈SN

∑M
i=1∥xi −

yπ(i)∥2. Let π∗ be the optimal solution of the above problem, then we can define the map τ :
[M ] → [N ] as follows: τ(i) = π∗(i),∀i ∈ [M ]. Essentially, xi and yτ(i) are coupled in the optimal
alignment. Now, for any given i ∈ [M ], let ∆i := ∥xi − yτ(i)∥2. Then, consider the open Euclidean
ball B(xi,∆i). Then if j ∈ [N ] such that yj ∈ B(xi,∆i) then, j = τ(ℓ) for some ℓ ∈ [M ].
Otherwise switching from i 7→ τ(i) to i 7→ j reduces the cost, which violates optimal alignment. Let
Ωi :=

{
ℓ ∈ [M ] : yτ(ℓ) ∈ B(xi,∆i)

}
. Here, we make the following claim:

Claim 20. ∃α ∈ [M ] such that
∑

j∈Ωi
∥yj − xτ−1(j)∥2 ≤ ∆2

α

16 and ∆α ≥ 16∆2k (S,T )

(16k)2k

Proof. Suppose not. WLOG, assume the following order ∆1 ≥ ∆2 ≥ · · · ≥ ∆M . We build
the following directed graph G on [M ]. Start with the node v0 = 1 and add one node at a time.
At step t, we select vt := argmaxv∈Ωvt−1

∆v and add the edge (vt−1, vt). By the assumption,
∆vt

16k ≥ (
∆vt−1

16k )2 ≥ · · · ≥ (
∆v0

(16k) )
2k . Since we work with finite M , either G is a DAG and this process

terminates or G has a cycle. In former case at termination step T we cannot add any more nodes, thus

ΩT = ∅, and T ≤ k. So, ∆T ≥ 16k
k

∆2T (S,T )

(16k)2T
≥ 16∆2k (S,T )

(16k)2k
and we’re done. Otherwise, consider

the smallest cycle in G. Let this cycle of length p be C = {vβ → vβ+1 → · · · → vβ+p−1 → vβ}.
Then, we have ∥xvβ+i − yτ(vβ+i+1)∥2 < ∥xvβ+i − yτ(vβ+i)∥2,∀i ∈ {0, · · · , p− 1} and addition of
sub-indices is modulo p. Thus, we have the following: ∥xvβ − yτ(vβ+1)∥2 + ∥xvβ+1 − yτ(vβ+2)∥2 +
· · · + ∥xvβ+p−1 − yτ(vβ)∥2 <

∑p−1
j=0∥xvβ+i − yτ(vβ+j)∥2. Hence, switching from the coupling

i 7→ τ(i) to i 7→ τ(i + 1) for i ∈ {vβ , · · · , vβ+p−2} and to vβ + p − 1 7→ vβ strictly reduces the
cost, but we started with the optimal coupling. This gives a contradiction.

Consider α as in the above claim. Then we define the region: A :=
{
a ∈ Sd−1 : ∥a− xα∥ < ∆α

4

}
.

Then, ∀a ∈ A, ∥a − xα∥2 < ∥a − yτ(α)∥2. Thus, a⊤xα > a⊤yτ(α). Also, consider the region

Ba :=
{
b ∈ R : −1 +

∆2
α

16 +
∆2

α

64 + ∥a−x∥2

2 ≤ b ≤ −1 +
∆2

α

8

}
. For any given a ∈ A, we have:

∥a−x∥2

2 ≤ ∆2
α

32 , thus −1 +
∆2

α

16 +
∆2

α

64 + ∥a−x∥2

2 ≤ −1 + 7
64∆

2
α ≤ −1 +

∆2
α

8 , so Ba ̸= ∅. Also note
that, ∀a ∈ A, b ∈ Ba, we have:

[F (S)− F (T )]+ ≥

ReLU (a⊤xα + b
)
−

∑
β∈Ωα

ReLU
(
a⊤yτ(β)

)
− ReLU

(
a⊤xβ

)
+

≥

ReLU (a⊤xα + b
)
−
∑
β∈Ωα

∣∣ReLU (a⊤yτ(β))− ReLU
(
a⊤xβ

)∣∣
+

≥

ReLU (a⊤xα + b
)
−
∑
β∈Ωα

∣∣a⊤(x− y)
∣∣

+

≥

ReLU (a⊤xα + b
)
−
∑
β∈Ωα

∥xβ − yτ(β)∥


+

≥
[
a⊤xα + b− ∆2

α

16

]
+

=

[
1 + b− ∥a− x∥2

2
− ∆2

α

16

]
+

≥ ∆2
α

64

Thus, we have:
Ea,b [F (S)− F (T )]+ ≥ Ea,b

[
(F (S)− F (T ))1{a∈A,b∈Ba}

]
+

≥ ∆2
α

64
P {a ∈ A, b ∈ Ba}

=
∆2

α

64Sd−1

∫
a∈Sd−1:a1≥1−∆2

α
32

1

2

(
3

64
∆2

α − (a1 − 1)

)
da
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≥ ∆4
α

213Sd−1

∫
a∈Sd−1:a1≥1−∆2

α
32

da

=
∆4

α

213

∫ 1

1−∆2
α

32

(1− x2)
d−3
2 dx ≥ ∆6

α

218

(
∆2

α

32

) d−3
2
(
2− ∆2

α

32

) d−3
2

≥ ∆d+3
α

223

Now, using the bounds from 20, we get that, ∆α ≥ C(k)∆2k(S, T ). Thus we have that,
E [F (S)− F (T )]+ ≥ C1(k)∆(S, T )(d+3)2k , and done

Upper Lipschitz property of weakly MAS functions We now show that, the MAS functions
obtained by applying one layer neural network with Hat activation for each element of the set,
followed by sum aggregation are also Upper Lipschitz continuous in expectation with respect to the
augmented Wasserstein distance, following the framework of Davidson and Dym [28]. This shows
stability of such MAS embeddings. We say that a parametric set function F : P≤k(V )×W → Rm

is Upper Lipschitz in expectation if ∃C > 0 such that:
Ew∈W∥F (S;w)− F (T ;w)∥1 ≤ C ·W(k)(S, T ), ∀S, T ∈ P≤k(V ) (14)

Where W(k)(., ∗) is the augmented-Wasserstein metric for sets in P≤k(V ), where a padding z is
added for k − |S| times to any multiset S of size less than k. We work with a compact ground set V ,
and we pick a padding z that has a positive distance from V . For the following proofs, we work with
V ⊆ Rd which is norm bounded by 1, and we choose the padding element z ∈ Rd such that ∥z∥ ≥ 3.
For a general V whose norm is bounded by B, we can scale the padding z by B. With this, we
show that, real valued functions F : P≤k(V ) → R given by F (S) =

∑
x∈S σ

(
a⊤x−b

c

)
are Upper

Lipschitz w.r.t Wk. Now, if we take independent parameteric copies across m output dimensions and
if M2 is a vector-to-vector Lipschitz function, then functions of the form M2 ◦ F , where F has the
form in Equation (6) are Upper Lipschitz as well. This we state in the following theorem:
Theorem 21 (F is upper Lipschitz). Let σ belongs to the class of Hat activations, and V ⊂ Rd

be a compact ground set such that supv∈V ∥v∥ ≤ 1. We consider F : P≤k(V ) → R, F (S) =∑
x∈S σ

(
a⊤x−b

c

)
, with the distributions a ∼ Unif(Sd−1), b ∼ Unif(−1, 1), c ∼ Unif(0, 2). Then

∃ a constant C > 0, such that for any S, T ∈ P≤k(V ):

Ea,b,c |F (S)− F (T )| ≤ C ·W(k)(S, T )

Proof. Consider S = {x1, · · · , xM}, T = {y1, · · · , yN}. Since |F (S)− F (T )| is symmetric in
S, T , we consider WLOG that M ≤ N . As in previous sections, we use τ to denote an injective
function from [M ] → [N ], and we use ΩN,M to denote the set of all injective functions from
[M ] → [N ]. Thus, we can write the augmented Wasserstein distance on P≤k(V ) with padding z as:

W(k)(S, T ) = arg min
τ∈ΩN,M


M∑
i=1

∥xi − yτ(i)∥+
∑

j ̸=τ(i)

∥yj − z∥


Let τ∗ be the argmin of the above expression that gives the Wk(S, T ) Now, we can write:

Ea,b,c |F (S)− F (T )| = Ea,b,c

∣∣∣∣ M∑
i=1

σ
(a⊤xi − b

c

)
− σ

(a⊤yτ∗(i) − b

c

)
−

∑
j ̸=τ∗(i)

σ
(a⊤yj − b

c

)∣∣∣∣
≤

M∑
i=1

Ea,b,c

∣∣∣∣∣σ
(
a⊤xi − b

c

)
− σ

(
a⊤yτ∗(i) − b

c

)∣∣∣∣∣+ ∑
j ̸=τ∗(i)

Ea,b,c

∣∣∣∣σ(a⊤yj − b

c

)∣∣∣∣
We now separately analyze coupled and un-coupled terms: i.e terms of the form E

∣∣∣∣σ(a⊤yj−b
c

)∣∣∣∣ and

E
∣∣∣∣σ(a⊤xi−b

c ) − σ(
a⊤yτ∗(i)−b

c )

∣∣∣∣ in the following analysis. For the proof that follows, we consider

supp(σ) ⊆ [0, 1]. For support in [γ1, γ2], the proof follows similarly by sifting the distributions of
b, c by γ1 and scaling by γ2 − γ1.
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Computing E
∣∣∣σ (a⊤yj−b

c

)∣∣∣:
Note that, σ(a

⊤yj−b
c ) = 0,∀b ≥ a⊤yj . Also, for a given b ∈ (−1, a⊤yj) we have that:

∀c ∈ (0, a⊤yj − b),
a⊤yj − b

c
≥ 1 =⇒ σ

(
a⊤yj − b

c

)
= 0

Thus, conditioned on a given a ∈ Sd−1, we can write the conditional expectation over b, c as follows:

Eb,c

{
σ
(a⊤yj − b

c

)∣∣∣∣a}
=
1

4

∫ a⊤yj

b=−1

∫ 2

c=a⊤yj−b

∣∣∣∣σ(a⊤yj − b

c

)
− σ(0)

∣∣∣∣dcdb, using σ(0) = 0

≤κ2

4

∫ a⊤yj

b=−1

∫ 2

c=a⊤yj−b

(
a⊤yj − b

c

)
dcdb, as σ is a Hat activation, it’s Lipschitz

=
κ2

4

∫ a⊤yj

b=−1

(a⊤yj − b) ln

(
2

a⊤yj − b

)
db =

κ2

4

∫ 0

a⊤yj+1

z ln

(
2

z

)
(− dz), z := a⊤yj − b

=
κ2

4

∫ a⊤yj+1

0

z ln

(
2

z

)
dz =

κ2

4
· a

⊤yj + 1

2

(
a⊤yj + 1

2
+
(
a⊤yj + 1

)
ln

(
2

a⊤yj + 1

))
≤κ2

4
· (a⊤yj + a⊤a) =

κ2

4

∣∣a⊤(yj + a)
∣∣ ≤ κ2

4
∥yj + a∥ ≤ κ2

4
∥yj − z∥

Now, taking an expectation over a ∼ Unif(Sd−1), the inequality is preserved and we get that, for
"isolated " yj’s, Eσ

(
a⊤−b

c

)
≤ κ2

4 ∥yj − z∥

Thus for "isolated" elements from the larger set that get coupled with the padded element z
while computing augmented-W(k), we have shown that they are upper bounded by their diatcne
from the padding z. Hence, it remains to show a similar Lipschitz upper bound for the elements
x1, · · ·xm ∈ S1 which have a corresponding yi(1), · · · , yi(m) ∈ S2 in the optimal coupling

Computing E
∣∣∣∣σ(a⊤xi−b

c )− σ(
a⊤yτ∗(i)−b

c )

∣∣∣∣:
Now, we have, for any i ∈ [M ], and a given a ∈ Sd−1 the conditional expectation Eb,c

∣∣∣∣σ(a⊤xi−b
c )−

σ(
a⊤yτ∗(i)−b

c )

∣∣∣∣ is symmetric in xi and yτ∗(i). Thus, WLOG we can assume that, a⊤xi ≥ a⊤yτ∗(i).

Note that we then have:∣∣∣∣σ(a⊤xi − b

c
)− σ(

a⊤yτ∗(i) − b

c
)

∣∣∣∣
=



∣∣∣∣σ(a⊤xi−b
c )

∣∣∣∣,∀b ∈ (a⊤yτ∗(i), a
⊤xi),∀c ∈ (a⊤xi − b, 2)∣∣∣∣σ(a⊤xi−b

c )− σ(
a⊤yτ∗(i)−b

c )

∣∣∣∣,∀b ∈ (−1, a⊤yτ∗(i)),∀c ∈ (a⊤yτ∗(i) − b, 2)

0, otherwise

Hence, conditioned on a specific a ∈ Sd−1, we can write the conditional expectation over b, c as:

Eb,c

∣∣∣∣σ(a⊤xi − b

c
)− σ(

a⊤yτ∗(i) − b

c
)

∣∣∣∣ = ∫ a⊤xi

b=a⊤yτ∗(i)

∫ 2

c=a⊤xi−b

σ

(
a⊤xi − b

c

)
dcdb

+

∫ a⊤yτ∗(i)

b=−1

∫ 2

c=a⊤yτ∗(i)−b

∣∣∣∣σ(a⊤xi − b

c
)− σ(

a⊤yτ∗(i) − b

c
)

∣∣∣∣ dcdb
≤κ2

4

∫ a⊤xi

b=a⊤yτ∗(i)

(a⊤xi − b) ln

(
2

a⊤xi − b

)
db
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+
κ2

4

∣∣a⊤(xi − yτ∗(i))
∣∣ ∫ a⊤yτ∗(i)

b=−1

ln

(
2

a⊤yτ∗(i) − b

)
db

≤κ2

4

(∫ a⊤(xi−yτ∗(i))

0

z ln

(
2

z

)
dz +

∣∣a⊤(xi − yτ∗(i))
∣∣ ∫ a⊤yτ∗(i)+1

0

ln

(
2

z

)
dz

)
≤κ2

4

(∣∣a⊤(xi − yτ∗(i))
∣∣+ 2

∣∣a⊤(xi − yτ∗(i))
∣∣) < κ2

∣∣a⊤(xi − yτ∗(i))
∣∣

≤κ2∥xi − yτ∗(i)∥, by Cauchy Schwarz

Thus taking one more expectation over a ∼ Sd−1, and summing over all i ∈ [M ], we get:

Ea,b,c

M∑
i=1

∣∣∣∣σ(a⊤xi − b

c
)− σ(

a⊤yτ∗(i) − b

c
)

∣∣∣∣ ≤ κ2

M∑
i=1

∥xi − yτ∗(i)∥

Thus, combining our computations for "isolated" yj’s and "coupled" (xi, yτ∗(i))’s we get that:

Ea,b,c|F (S)− F (T )| ≤ κ2

4

∑
j ̸=τ∗(i)

∥yj − z∥+ κ2

M∑
i=1

∥xi − yτ∗(i)∥ ≤ κ2W(k)(S, T )

And our proof of F being upper Lipschitz is complete.

B.4 Universal approximators with MAS functions

Theorem 14 (Universality). Let V be a finite ground state, and let F : P≤k(V ) → Rm be a MAS
function. Then for every multiset-to-vector monotone function f : P≤k(V ) → Rs, there exists a
vector-to-vector monotone function M : Rm → Rs such that F (S) = M ◦ f(S).

Proof. A MAS function is in particular invertible, and therefore we can write f(S) = f ◦F−1◦F (S).
On the image of F we can define the function M = f ◦ F−1 which is a vector-to-vector functions,
and it is monotone on the image of F , because if v = F (S), u = F (T ) for some sets S, T , and if
v ≤ u, then by separability S ⊆ T , and therefore

M(v) = f ◦ F−1(v) = f(S) ≤ f(T ) = f ◦ F−1(u) = M(u)

Finally, we need to show that M can be extended to a montone function on all of Rm. we accomplish
this by defining

M(v) = max{M(u)| u ≤ v, u ∈ Image(F )}.

C Details about our model
C.1 Architecture details:

In all 4 of MASNET models, we use an elementwise neural network NNθ : Rd → Rm, where
the ground set V ⊆ Rd and the output in in Rm. We follow that with a sum aggregation, followed
by a monotone vector-to-vector neural netwrok M2,ϕ : Rm → Rm. For the embedding Neural
Network, we use a 1 hidden layer NN with ReLU activation in the hidden layers and ReLU or Hat
activation in the output, depending on whether we’re using MASNET-ReLU or Hat activation based
MASNET. To make M2,ϕ monotone, we use non-negative weights by taking the absolute value of
parameters before applying the linear transformation, and use all monotonic activations like ReLU in
the intermediate layers. Now, as discussed before, we give details of our model MASNET-INT.

C.2 MASNET-INT

In this appendix we design universal approximators for the class of Hat functions to learn σ. We
parametrize For that, we derive equivalent conditions on the derivatives of σ (per embedding dimen-
sion) and use the techniques of learning functions by modelling the derivatives using neural networks
and then using a numerical integration as in Wehenkel and Louppe [36].

Lemma 22. If σ : R → R≥0 belongs to the hat activation class , then σ′ satisfies the following
conditions for some positive constants c, C > 0 and α ∈ R, β > 0, γ ∈ (0, 1):
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1. supp (σ′) ⊆ [α, α+ β]

2.
∫ α+β

α
σ′(x) dx = 0

3. σ′(x) ≤ C,∀x ∈ R
4. σ′(x) ≥ c,∀x ∈ (α, α+ γ · β)

The above 4 conditions, along with σ(α) = 0 are the necessary-sufficienet conditions that character-
izes the hat activation class.

Proof. We first prove that, if σ belongs to the hat activation class as defined in 8, then conditions
1-4 are satisfied. Note that, if σ is a Hat activation, then σ has compact support in some [α, α+ β]
by deifnition, and it’s piecewise continuously differentiable. Thus, outside [α, α + β], we have
σ ≡ 0 =⇒ σ′ ≡ 0. Hence, supp(σ′) ⊆ [α, α+ β]. We also have that, 0 = σ(α) = σ(α+ β) =⇒
σ(α + β) − σ(α) = 0 =⇒

∫ α+β

α
σ′(t) dt = 0. Finally, σ being Lipschitz is equivalent to

|σ′(t)| ≤ C for some C > 0 and by continuity of σ′ in (α, α + β) we must have that 2c :=
limt→α+ σ′(t) > 0 =⇒ σ′(t) ≥ c,∀t ∈ (α, α+ γ · β) for some γ ∈ (0, 1). Thus, conditions 1-4
are implied by σ belonging to the Hat activation class.

Moreover, if conditions 1-4 are satisfied, and σ(α) = 0, then condition-2 implies σ(α+β) = 0. This,
along with condition-1 implies that σ(t) = 0,∀t ̸∈ [α, α+ β]. Condition-4 immediately implies that
σ(α + γ · β) ≥ c · γβ > 0, thus σ ̸≡ 0. On the other hand, we get that σ′ ≤ C implies by LMVT
that, |σ(x)− σ(y)| ≤ C · |x− y|. Hence, σ belongs to the class of Hat activations following the
definition from 8.

Neural Parmetrization of MASNET-INT: Consider h1
θ(.), h

2
ϕ(.) to be non-negative + bounded and

bounded fully connected Neural Networks respectively of one hidden layer each. Also consider the
trainable support parameters to be α ∈ Rm,β ∈ Rm

+ ,γ ∈ (0, 1)m where m is the output dimension
and α,β,γ are the support parameters, aggregated for all output dimensions. Now, we define an
integral based model of parametric hat functions. Let Θ = (θ, ϕ, α, β,m) be the parameter space.

σΘ(x) =

∫ x

α

h1
θ(z)1{α≤z≤α+γβ} dz −

∫ α+γβ

α
h1
θ(z)dz∫ α+β

α+γβ
h2
ϕ(z)dz

(∫ x

α+γβ

h2
ϕ(z)1{α+γβ≤z≤α+β}dz

)
(15)

In the above formulation, in addition to the support parameters we also learn the function itself rather
than performing a linear interpolation, this makes the above class a universal approximator of hat
functions.

Lemma 23 (Universal Hat approximator). The family σΘ defined in Equation (15) is an universal
approximator of the class of Hat functions having support in [α, α + β] with σ′(t) > 0,∀t ∈
(α, α+ γβ)

Proof. We show that the given parametric model is an universal approximator of Hat functions using
their equivalent formulation in Lemma 22. Let σ1 be σ restricted to the interval [α, α+γβ] and σ2 be
σ bestricted to the interval [α+ γβ, α+ β]. Using Theorem-1 from Lu et al. [37], we can get ReLU
neural network h1

θ : R → R and h2
ϕ : R → R of width 5 each such that approximates the derivatives

of the restricted functions σ′
1 and σ′

2. Thus, the following hold for any ϵ > 0 and any constant c ∈ R:∫ α+γβ

α

∣∣σ′
1(z)− h1

θ(z)
∣∣ dz ≤ ϵ and

∫ α+β

α+γβ

∣∣σ′
2(t) + c · h2

ϕ(t)
∣∣ dt ≤ ϵ (16)

We now observe that, if x ∈ (−∞, α), both the indicator functions: 1{α≤z≤α+γβ} and
1{α+γβ≤z≤α+β} as in the integrands of Equation (15) evaluate to 0, thus σΘ exactly coincides
with σ. On the other hand, if x ∈ (α+ β,∞) then we would have the first integral of 15 evaluate to∫ α+γβ

α
h1
θ(z) dz (due to presence of the indicator 1{α≤z≤α+γβ} and the second expression evaluates

to −
[ ∫ α+γβ

α
h1
θ(z)dz∫ α+β

α+γβ
h2
ϕ(z)dz

](∫ α+β

α+γβ
h2
ϕ(z)dz

)
= −

∫ α+γβ

α
h1
θ(z)dz. Thus, both the expressions sum to 0

and σΘ coincides with σ for x ∈ (α+ β,∞) as well.

Now we shall show that, for any x ∈ (α, α+ β) we must also have |σΘ(x)− σ(x)| ≤ ϵ, implying
convergence in sup norm. We consider the following cases:
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• Case-I: When x ∈ (α, α+ γβ), we have that:
|σ(x)− σΘ(x)|

=

∣∣∣∣∫ x

α

σ′
1(z) dz −

∫ x

α

h1
θ(z) dz

∣∣∣∣
≤
∫ x

α

∣∣σ′
1(z)− h1

θ(z)
∣∣ dz, by traingle ineq.

≤
∫ α+βγ

α

∣∣σ′
1(z)− h1

θ(z)
∣∣ dz, by non-negativity of integrand

≤ϵ, by Equation (16)
• Case-II: When x ∈ (α+ γβ, α+ β) we have:

|σ(x)− σΘ(x)|

=

∣∣∣∣∣
∫ x

α

σ′(z) dz −
∫ α+γβ

α

h1
θ(z) dz −

∫ x

α+γβ

h2
ϕ(z) dz

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ α+γβ

α

(
σ′
1(z)− h1

θ(z)
)
dz +

∫ x

α+γβ

σ′
2(z) +

∫ α+γβ

α
h1
θ(z)dz∫ α+β

α+γβ
h2
ϕ(z)dz

h2
ϕ(z)

 dz

∣∣∣∣∣∣
≤
∫ α+γβ

α

∣∣σ′
1(z)− h1

θ(z)
∣∣ dz + ∫ x

α+γβ

∣∣∣∣∣∣σ′
2(z) +

∫ α+γβ

α
h1
θ(z)dz∫ α+β

α+γβ
h2
ϕ(z) dz

h2
ϕ(z)

∣∣∣∣∣∣ dz, tri. ineq.

≤ϵ+

∫ α+β

α+γβ

∣∣∣∣∣∣σ′
2(z) +

∫ α+γβ

α
h1
θ(z)dz∫ α+β

α+γβ
h2
ϕ(z) dz

h2
ϕ(z)

∣∣∣∣∣∣ dz, by 16 on 1st term & tri. ineq. on 2nd

≤2ϵ

where last inequality is obtained c =
∫ α+γβ
α

h1
θ(z)dz∫ α+β

α+γβ
h2
ϕ(z) dz

in the universal approximator for σ′
2 in

Equation (16). Thus, just we see that, for any ϵ > 0 and α ∈ R, β > 0, γ ∈ (0, 1) we can
find a universal approximator for the Hat function class

Parametrizing α, β, γ We have provided an universal approximator for the Hat function class
given α, β, γ but we’d also want to have α, β, γ as learnable parameters. This is valid for both
MASNET-Hat and MASNET-INT, as in both cases we seek to learn the support parameters. Now,
there is no constraint on α, so we can directly initialize α ∈ R3m and learn it through gradient
descent. However, we have a constraint on β that β > 0. For this, we first initialize β0 ∈ Rm and
we obtain β ∈ Rm by appling co-ordinatewise positive transformation on β0. This we do in two
ways, depending on which works better on a given task: (I) by simply taking β0 7→ |β0|, where the
absolute value is taken pointwise. (II)by taking the pointwise transformation β0 7→ ELU (β0; υ)+υ,
where ELU (·; υ) is the Exponential Linear Unit with hyperparameter υ > 0. Note that, the ELU

function is given by: ELU (x; υ) =

{
x, if x > 0

υ (ex − 1) , if x ≤ 0
. For parametrizing γ ∈ (0, 1), we

similarly initialize γ0 ∈ Rm and then apply a pointwise transfprmation that takes each co-ordinate to
(0, 1). We use tempered sigmoid function: γ0 7→ Sigmoid (τ · γ0) where τ > 0 is a hyperparameter

Designing soft indicator functions: In the integrands for MASNET-INT, we have some indicator

functions of the form 1{a≤·≤b}(x) =

{
1, if x ∈ [a, b]

0, o.w
. We want these indicator functions to have

non zero gradients as we intend to learn the "support parameters" a, b of such indicator function. If
we chose binary indicators, then that is not differentiable everywhere and have gradient 0 in most
places, making it difficult to learn a, b. Thus, we design a "soft" indicator function with the help of
tempered sigmoid with hyperparameter τS as follows:

1{a≤·≤b}(x) = Sigmoid (τS · (x− a)) · Sigmoid (τS · (b− x))

30



C.3 Making MASNET Mini Batch Consistent

There has been a chain of works to make set-based neural models to be mini batch consistent in [38,
39] which have applications in large scale machine learning. The goal of these Mini Batch Consistent
(MBC) works is to design a set function F , which, if applied on any subsets from partitions of a set S
and pooled through an activation g, should return F (S). Thus, at a high level, MBC functions analyse
and design functions for the following batch consistency condition: g(F (S1), · · · , F (Sn)) = F (S).
MBC methods achieve this by imposing certain restrictions on attention-based set architectures.
Similar to this, our work also puts restrictions on the inner embedding transformation and the
outer vector-to-vector transformations. It is thus a natural question to ask, if MASNET can be
made minibatch consistent. Since set containment is the major theme of our work, with potential
applications in retrieval and recommendation systems, processing huge sets at once can be a key
bottleneck, and it would be nice to make MASNET process over mini-batches and then design some
aggregation mechanism to make the aggregated embedding equal to the embedding of the entire set.

If we consider a partition of a given set S =
⋃k

i=1 Si, where Si’s are all dis-
joint, then MASNET(Si) ≤ MASNET(S), by monotonicity. But, we can try to
find an appropriate pooling mechanism over the subset embeddings to make the aggre-
gated embedding same as that of the entire set. For example, if the outer transfor-
mation Mθ2 , as in Equation (7) was invertible, and then we may define a particular
permutation-invariant pooling function g such that, g(X1, · · · , Xk) = Mθ2

(∑k
i=1 M

−1
θ2

(Xi)
)

,

then we’d have: g (MASNET(S1), · · · , MASNET(Sk)) = Mθ2

(
M−1

θ2
(MASNET(Si))

)
=

Mθ2

(∑k
i=1

∑
x∈Si

σ ◦Mθ1(x)
)
= Mθ2

(∑
x∈S σ ◦Mθ1(x)

)
= MASNET(S). his is irrespective

of how we partition S into S1, · · ·Sk. And this would enable us to process the subsets independently
and aggregate them accordingly.

For our purposes, we have needed the outer transformation Mθ2 to be a vector-to-vector monotone
function in Equation (7). But that doesn’t guarantee injectivity or invertibility. Thus, we need to
restrict the choice of Mθ2 to be monotone and invertible for MASNET to be MBC consistent. One
possible choice is to use ideas from relevant works like [40, 36] to design monotone and invertible
neural networks, and analyse the expressibility properties of the resulting set model. This forms an
interesting direction for future work.

D Additional details about experiments and more experiments
D.1 Hardware details:

All experiments were performed in a compute server, running the OS of GNU Linux Version 12,
equipped with a 16 core Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz CPU architecture and
equipped with a cluster of 6 NVIDIA RTX A6000 GPUs with a memory of 49GB each.

D.2 Dataset details and more experiments

We now give an account of preparation details of each dataset and accounts on more experiments on
each.

Synthetic datasets and related experiments:

We begin with a controlled synthetic setting where we generate pairs (S, T ) such that kS < kT .

Each pair is labeled either positive or negative. For positive examples, we first sample kT vectors
in Rd from N (0, Id), which form the set T . A subset of size kS is then uniformly sampled from T
to obtain S. For negative examples, we again sample T as above, but then independently draw kS
vectors from Rd to form S .

To simulate a real world scenerio of information loss, we inject gaussian noise into the vectors of S
to get S′ but keep the boolean label unchanged.

On this, we provide two more plots: Figs. 8 and 9 that compares the accuracies of MASNET vs
baselines, by varying the gap between target set size |T | and query set size |S|. Note that the more
this gap is, the more it becomes challenging to separate two non-subsets. In all cases, the embedding
MLP Mθ1 from Equation (7) is comprising of ≥ 2 layers.

Text-based datasets and related experiments:
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Figure 8: Acc vs |T | for all models ≥ 2 layer
MLP

Figure 9: Acc vs |S| for all models ≥ 2 layer
MLP

We evaluate our models on three text based real-world datasets: MSWEB, MSNBC, and the Amazon
Baby Registry datasets, all of which reflect naturally occurring set containment structures coming out
of user behavior in websites and recommendation engines.

MSWEB and MSNBC: These datasets consist of user activity logs from www.microsoft.com and
www.msnbc.com, respectively. Each user session is treated as a bag of page identifiers, which are
embedded into 768-dimensional vectors using a pre-trained BERT model. We construct query-target
pairs (S, T ) by sampling S from a session V , and letting T = V \ S. A pair is labeled 1 if S ⊆ T ,
and 0 otherwise. To simulate noisy real-world conditions, Gaussian noise is added to each element in
S while preserving the label. The positive-to-negative ratio was taken to be 0.1, which is the number
of labels 1 to labels 0 in the entire dataset.

Amazon Baby Registry: This dataset contains subsets of products selected by customers, each
tagged by category (e.g., “toys” or “feeding”). Product descriptions are embedded using BERT. We
filter out sets of size < 2 or > 30, and for each valid subset S, we generate T ⊇ S of size 30 by
sampling additional items from the same category. For negative samples, T is sampled randomly and
verified to satisfy S ̸⊆ T .

Model Bedding Feeding MSWEB MSNBC
DeepSets 0.91 0.90 0.93 0.97
SetTransformer 0.91 0.90 0.94 0.96
FlexSubNet 0.90 0.91 0.94 0.94
Neural SFE 0.91 0.91 0.91 0.93
MASNET-ReLU 0.95 0.93 0.97 0.97
MASNET-Hat 0.91 0.92 0.95 0.97

Table 10: Set containment in text datasets with 90:10 ratio

Noise is added to S in both cases. This
models scenarios such as predicting
whether a set of displayed products
T includes a customer’s interest S.
On these datasets, we provide three
sets of additional experiments. In the
first table, we perform the same set-
containment task as done in the main text, but with a different negative-to-positive ratio of 90 : 10.

Note that, due to the inductive bias of monotonicity, all the positive examples are correctly classified
by design is case of MASNET. Thus, it only has to learn to identify the to separate the negative
examples. Thus, if the test set has a higher proportion of negative examples, then it throws a model a
toughter task to learn. This is shown in the following Table 10. Other than the modified class ratio,
we provide two additional tables: in the first one, we compare shallow(1 layer) vs deep (≥ 2 layers)
embedding MLP Mθ1 in MASNET, which is shown in Table 11. White noise of std 0.1 added for
inexact set containment.

Model bedding feeding MSWEB MSNBC

Shallow-ReLU 0.69 0.36 0.92 0.93
Shallow-MASNET-TRI 0.83 0.76 0.94 0.95
Shallow-MASNET-Hat 0.89 0.77 0.97 0.96
Shallow-MASNET-INT 0.90 0.91 0.92 0.95
(Deep)MASNET-ReLU 0.95 0.93 0.97 0.97
Deep-MASNET-TRI 0.92 0.93 0.98 0.96
Deep-MASNET-Hat 0.91 0.92 0.95 0.97
Deep-MASNET-INT 0.93 0.92 0.96 0.97

Table 11: Comparison of shallow vs. deep variants of MAS-
NET across datasets.

Ablation studies on text datasets:
From the definition of MASNET
in Equation (7), we see that, the for-
mulation os quite similar to Deepsets,
which is of the form F (S) =
M2

(∑
x∈S ReLU(a⊤M1(x) + b)

)
.

As shown earlier, using ReLU in the
last layer of an elementwise function
with a universally approximating M1

is an instance of MASNET.
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But it is different from DeepSets in a
key points, namely: • For set contain-
ment tasks, we don’t have an outer M2, which DeepSets have; for universal approximation tasks,
we use a monotonially increasing M2 that we enforce by taking positive weights and increasing
activation functions. Also, for Hat function based MASNET models, • we use a re-parametrization
in which we perform a division based scaling. We now show the effect of the outer monotonic M2 on
DeepSets and division based re-parametrization on MASNET-Hat in the ablation study in table 12.
White noise of std 0.1 added for inexact containment.

Model bedding feeding MSWEB MSNBC

DeepSets 0.91 0.90 0.93 0.97
DeepSets, monotone M2 0.90 0.91 0.94 0.93
MASNET-ReLU 0.95 0.93 0.97 0.97
MASNET-Hat 0.91 0.92 0.95 0.97
MASNET-Hat (No division) 0.87 0.92 0.92 0.94

Table 12: Ablation study

Pointcloud datasets and related ex-
periments

ModelNet40 [34] is a benchmark
dataset of 12,311 CAD models across
40 object categories, with each object
represented as a 3D point cloud. We
frame our task as checking if a given
pointcloud S is a segmenet of a target
pointcloud T .

|S| → 128 256 512
DeepSets 0.90 0.90 0.91
SetTransformer 0.90 0.91 0.91
FlexSubNet 0.84 0.88 0.92
Neural SFE 0.89 0.89 0.90
MASNET-ReLU 0.91 0.93 0.98
MASNET-Hat 0.87 0.91 0.94

Table 13: Performance on Point cloud for
different values of |S|, for 90:10 class ratio

Firstly, we choose an object from an object category C1,
and randomly sample 1024 points from that object to get
the target point cloud T . To obtain a positive sample (i.e
true subset) from T , we first sample a random center point
from T , and then extract S using a hybrid approach: select-
ing the nearest point to the center, a few local neighbors
via k-NN, and the rest via importance-weighted sampling
(inverse-distance from center with noise). This makes sure
that we’re selecting a true local region from the point cloud, which is in-line with the actual task
of detecting whether a given segment of an object is contained in a target object. For a negative
sample(non-subset), we sample S from an object of a different category C2.

|S| → 128 256 512
DeepSets 0.89 0.90 0.90
SetTransformer 0.90 0.91 0.91
MASNET-ReLU 0.87 0.91 0.93
MASNET-Hat 0.85 0.91 0.89
MASNET-TRI 0.83 0.93 0.87
MASNET-INT 0.87 0.90 0.92

Table 14: Point cloud with DGCNN for dif-
ferent values of |S|.

We first give the accuracy table for PointNet encoder, but
with the modified negative-to-positive class ratio of 90:10
to make the task harder for MASNET, which correctly
classifies the actual subsets by the induictive bias of mono-
tonicity. The numbers with the modified class-ratio are
given in the following table of Tab Table 13:

We also give the accuracy numbers for DGCNN encoder,
in Table 14

Details on Linear assignment problem In this problem, we are given a positive matrix M ∈
Rn×m, n ≤ m, where Mi,j represents the salary that a ’worker’ will be paid to do a ’job’ j. The
goal of the task is to maximize the average salary obtained by all workers. This is done by finding
the optimal assignment π ∈ Sn,m which maps a worker i ∈ [n] to a ’job’ π(i) ∈ [m], where by
construction each worker can be mapped to at most one job, so π(i) ∈ {0, 1}. This gives us the
following maximization problem:

F (M) = 1
n maxπ∈Sn,m

∑n
i=1 Mi,π(i).

Thinking of the matrix M as a set of m columns M = [M1, . . . ,Mm], we see that the function F is
permutation invariant and monotone. Accordingly, our goal will be to evaluate our MASNET model
and baselines.
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