
KOBE: Cloud-native Open Benchmarking
Engine for Federated Query Processors

Charalampos Kostopoulos, Giannis Mouchakis, Antonis Troumpoukis,
Nefeli Prokopaki-Kostopoulou, Angelos Charalambidis[0000−0001−7437−410X],

and Stasinos Konstantopoulos[0000−0002−2586−1726]

Institute and Informatics and Telecommunications,
NCSR “Demokritos”, Greece

{b.kostopoulos,gmouchakis,antru,nefelipk,acharal,konstant}@iit.demokritos.gr

Abstract. In the SPARQL query processing community, as well as in
the wider databases community, benchmark reproducibility is based on
releasing datasets and query workloads. However, this paradigm breaks
down for federated query processors, as these systems do not manage
the data they serve to their clients but provide a data-integration ab-
straction over the actual query processors that are in direct contact with
the data. As a consequence, benchmark results can be greatly affected
by the performance and characteristics of the underlying data services.
This is further aggravated when one considers benchmarking in more
realistic conditions, where internet latency and throughput between the
federator and the federated data sources is also a key factor. In this
paper we present KOBE, a benchmarking system that leverages modern
containerization and Cloud computing technologies in order to reproduce
collections of data sources. In KOBE, data sources are formally described
in more detail than what is conventionally provided, covering not only
the data served but also the specific software that serves it and its config-
uration as well as the characteristics of the network that connects them.
KOBE provides a specification formalism and a command-line interface
that completely hides from the user the mechanics of provisioning and
orchestrating the benchmarking process on Kubernetes-based infrastruc-
tures; and of simulating network latency. Finally, KOBE automates the
process of collecting and comprehending logs, and extracting and visu-
alizing evaluation metrics from these logs.

Keywords: Benchmarking, federated query processing, Cloud-native

1 Introduction

Data federation and distributed querying are key technologies for the efficient
and scalable consuming of data in the decentralized and dynamic environment
of the Semantic Web. Several federation systems have been proposed [10,4,2],
each with their own characteristics, strengths, and limitations. Naturally, con-
sistent and reproducible benchmarking is a key enabler of the relevant research,



as it allows these characteristics, strengths, and limitations to be studied and
understood.

There are several benchmarks that aim to achieve this, but, similarly to
the wider databases community, to release a benchmark amounts to releasing
datasets, query workloads, and, at most, a benchmark-specific evaluation engine
for executing the query load [5,9,8]. Research articles using these benchmarks
need to specify what software has been used to implement the SPARQL end-
points, how it has been configured and distributed among hardware nodes, and
the characteristics of these nodes and of the network that connects them to
the federation system. Reproducing an experiment from such a description is a
challenging and tedious task. Based on our own experience with federated query
processing research we have been looking for ways to minimize the effort re-
quired and the uncertainty involved in replicating experimental setups from the
federated querying literature. Our first step in that direction was to complement
a benchmark we previously proposed [11] with Docker images of the populated
triple store installations and of the federation systems used for that work.

In this paper we present KOBE,1 an open-source2 benchmarking engine that
reads benchmark definitions and handles the distributed deployment of the data
sources and the actual execution of the experiment. This includes instantiating a
data source from dataset files, configuring and initializing the federation engine,
connecting them into a virtual network with controlled characteristics, executing
the experiment, and collecting the evaluation results. The main objective of
KOBE is to provide a generic and controlled benchmarking framework where
any combination of datasets, query loads, querying scenarios, and federation
engines can be tested. To meet this goal, KOBE leverages modern Cloud-native
technologies for the containerization and orchestration of different components.

In this paper we will first introduce the core concepts of a federated query
processing experiment and the requirements for consistently and reproducibly
carrying out such experiments (Section 2) and then present KOBE, its system
components and how experiments are provisioned and orchestrated (Section 3).
We then discuss how logs are collected and evaluation metrics visualized (Sec-
tion 4), and how users can extend the library of benchmarks and federation
engines to prepare their own experiments (Section 5). We close with a compari-
son to related systems (Section 6), conclusions and future work (Section 7).

2 Benchmarking Concepts and Requirements

We start by discussing the requirements for a benchmarking experiment of a
federated query processor. First, we briefly introduce the main concepts of a
federated query processing experiment:

Data source: An endpoint that processes queries. A data source is characterized
by a dataset label, with data sources characterized by the same dataset
serving the exact same data.

1 Previously demonstrated in ISWC 2020, with extended abstract proceedings [6].
2 See https://github.com/semagrow/kobe

https://github.com/semagrow/kobe


Benchmark: A collection of data sources, the latency and throughput of these
data sources, and a list of query strings. Benchmarks are defined indepen-
dently of the federator that is being benchmarked.

Federator: A federated query processor that provides a single endpoint to achieve
uniform and integrated access to the data sources.

Experiment run: A specific experiment, where (a) a specific federator has been
configured to be able to connect to the data sources foreseen by the bench-
mark; and (b) the query load foreseen by the benchmark has been applied
to the federator.

Experiment: The repetition of multiple runs of the same benchmark. An exper-
iment is stateful, in the sense that the federator and data source instances
are not terminated and maintain their caches and, in general, their state
between runs.

Having these elements in place allows for the following tests, commonly used
to evaluate query processing systems in general and federated query processing
systems in particular:

– Comparing the first run for a query against subsequent runs; to understand
the effect of caching.

– Observing if performance degrades for large numbers of runs by comparison
to smaller numbers of runs; to understand if there are memory leaks and
other instabilities.

– Observing if performance degrades for large numbers of experiments exe-
cuted concurrently; to perform stress-testing.

– Comparing the performance of the same federation engine, on the same
datasets, over different data sources; to understand the effect of current
load, implicit response size limits, allocated memory, and other specifics of
the query processing engines that implement the data sources.

– Comparing the performance of different federation engines on the same ex-
periment; to evaluate federation engines.

Based on the above, we will now proceed to define the requirements for a
benchmarking system that supports automating the benchmarking process.

2.1 Data Source Provisioning

In order to reliably reproduce evaluation results, there are several parameters
of the data source implementation that need to be controlled as they affect
evaluation metrics. These include the software used to implement the SPARQL
endpoint and its configuration, the memory, processing power, disk speed of the
server where it executes, the quality of the network connection between the data
server and the federation engine, etc.

Replicating a specific software stack and its configuration can be captured
by virtualization and containerization technologies, so we require that a bench-
marking engine use recipes (such as a Dockerfile for Docker containers) that
prepare each endpoint’s execution environment.



The characteristics of the computing infrastructure where the data service
executes and of the network connection between the data service and the federa-
tion engine can be naturally aggregated as the latency and throughput at which
the federation engine receives data from it. So, one requirement from bench-
marking engines is that latency and throughput can be throttled to a maximum,
although other conditions might make a data service even less responsive than
these maxima: e.g., a data source might be processing an extremely demanding
query or might be serving many clients in a stress test scenario.

Based on this observation, we require that benchmarking engines allow the
experiment description to include the latency and throughput between the data
sources and the federation. And, in fact, that these parameters are specific to
each data source. Technically, this requires that the architecture foresees a con-
figurable proxy between the federator and each data source, so that each exper-
iment can set this parameter to simulate the real behaviour of SPARQL query
processors.

Naturally, this is in addition to the obvious requirement to control the data
served and the way that data is distributed between data services.

2.2 Sequential and Concurrent Application of Query Workload

The benchmarking engine should automate the process of applying a query load
to the federation engine. The queries that make up the query load should be
applied either sequentially to evaluate performance on different queries or con-
currently to stress-test the system.

Technically, a benchmarking system should include an orchestrator that can
read such operational parameters from the experiment definition and apply them
when serving as a client application for the federation engine.

2.3 Logs Collection and Analysis

One important requirement of a benchmarking system is that the experimenter
can have easy access on several statistics and key performance indicators of each
conducted experiment. An effective presentation of such indicators can offer to
the experimenter the ability to compare the performance of different setups of
the same benchmark (e.g., different federators or data sources) and to draw
conclusions for a specific setup by examining time measurements for each phase
of the query processing and several other metrics.

Metrics that are important for the experimenter to analyze the effectiveness
of a federator in a specific benchmark, include the following:

– The number of returned results can be used to validate the correctness of the
query processing by verifying that the federator returns the expected number
of results. Naturally, this validation is incomplete as the results might have
the correct cardinality and still be different from the correct ones. However,
many errors can be very efficiently caught by simply comparing cardinalities
before proceeding to the detailed comparison.



– The total time to receive the complete result set indicates how the engine
performs overall from the perspective of the client. This is the most common
key indicator that most benchmarks consider.

– Although different federated query processing architectures have been pro-
posed, there is some convergence on source selection, query planning , and
query execution as beeing the main query processing phases. Regardless of
whether these phases execute sequentially or are adaptive and their execu-
tion is interwined, the breakdown of the query processing time into phases
provides the experimenter with insights regarding the efficiency of the fed-
eration engine and how it can be improved.

– The number of sources accessed during processing a specific query can be
used to evaluate the effectiveness of source selection in terms of excluding
redundant sources from the execution plan.

The aforementioned key performance indicators can be computed by differ-
ent pieces of software during an experiment execution. For instance, the first
two metrics of the above list should be computed by the evaluator (i.e., the soft-
ware that poses the queries to the federator), while the last two metrics can be
computed only by the federation engine itself. In order for these metrics to be
available to the experimenter, the benchmarking system must collect and pro-
cess the log lines emitted by the federation engine and the other components.
This will produce an additional requirement on the compatible format of the log
lines of the systems under test.

3 The KOBE System

The KOBE Benchmarking Engine (KOBE) is a system that aims to provide an
extensible platform to facilitate benchmarking on federated query processing. It
was designed with the following objectives in mind:

1. to ease the deployment of complex benchmarking experiments by automating
the tedious tasks of initialization and execution;

2. to allow for benchmark and experiment specifications to be reproduced in
different environments and be able to produce comparable and reliable re-
sults;

3. to provide to the experimenter the reporting that is identified by the require-
ments in Section 2.

In the following sections we will present the architecture and components of
KOBE and its key features.

3.1 Deployment Automation

One of the major tasks that KOBE undertakes is the deployment, distribution
and resource allocation of the various systems (i.e., the database systems, the fed-
erator and others) that participate on a specific experiment. In order to achieve



this task, KOBE employs Cloud-native technologies to facilitate the deployment
on cloud infrastructures. Each system is deployed in an isolated environment
with user-defined computational resources and network bandwidth. In particu-
lar, KOBE leverages containerization technologies to support the deployment of
systems with different environments and installation requirements. An immedi-
ate consequence of employing those technologies is that KOBE is open and can
be extended with arbitrary federators and database systems.

KOBE consists of three main subsystems that control three aspects of the
benchmarking process:

– The deployment subsystem that is responsible for deploying and initializing
the components required by an experiment. This subsystem handles the
allocation of computational resources for each component.

– The networking subsystem that is responsible for connecting the different
components of an experiment and imposes the throughput and latency lim-
itations described by the benchmark.

– The logging subsystem that manages the logs produced by the several compo-
nents (i.e, the data sources, federators and evaluators) and produces mean-
ingful diagrams and graphs about the benchmarking process.

KOBE relies on Kubernetes3 to allocate cluster resources for the benchmark
execution. It deploys ephemeral containers with the individual components of a
benchmarking experiment. The orchestration of that deployment and the com-
munication with the underlying Kubernetes cluster is performed by the KOBE
operator. The KOBE operator runs as a daemon and continuously monitors the
progress of each running experiment in the cluster. This controller is also respon-
sible for the interpretation of the experiment specifications (see Subsection 3.2)
to complete deployment commands of the components of the experiment.

The network subsystem is controlled by Istio4, a Cloud-native controller that
tightly integrates with Kubernetes to provide a service mesh layer. The KOBE
operator utilizes the functionality of Istio to setup the network connections be-
tween the data sources and the federating engine. The quality of those network
connections can be controlled by the KOBE operator to provide the simulated
behavior specified by the specific experiment. It is worth noting that those net-
work links are established in the service mesh layer of the cluster and as a result
one can have multiple experiments with different networking topologies running
at the same time in the cluster.

The logging subsystem of KOBE is implemented as an EFK stack, a popu-
lar solution for a centralized, cluster-level logging environment in a Kubernetes
cluster. EFK stack consists of (a) Elasticsearch5, an object store where all logs
are stored in a structured form, used for log searching, (b) Fluentd6, a data col-
lector which gathers logs from all containers in the cluster and feeds them into

3 cf. https://kubernetes.io
4 cf. https://istio.io
5 cf. https://www.elastic.co/elasticsearch
6 cf. https://www.fluentd.org

https://kubernetes.io
https://istio.io
https://www.elastic.co/elasticsearch
https://www.fluentd.org


Fig. 1. Information flow through a KOBE deployment: The user edits configuration
files and uses kobectl (the KOBE command-line client) to deploy and execute the
benchmarking experiments, at a level that abstracts away from Kubernetes specifics.
Experimental results are automatically collected and visualized using the EFK stack.

Elasticsearch, and (c) Kibana7, a web UI for Elasticsearch, used for log visual-
ization. Since the metrics of our interest are produced from the federator and
the evaluator, and, as we will see in Section 4, these logs are of a specific form,
Fluentd is configured to parse and to keep only the logs of these containers using
a set of regular expression patterns for each type of KOBE-specific logs.

Figure 1 illustrates the relationships between the individual components and
the information flow through this architecture. In a typical workflow, the user
uses kobectl (the KOBE command-line client) to send commands to the KOBE
operator. The operator, itself deployed as a container in the Kubernetes cluster,
communicates with the Kubernetes API and with Istio in order to deploy the
corresponding containers and establish the network between them. Moreover, a
Fluentd logging agent is attached to each related container in order to collect the
respective log output. The user also uses kobectl to provide a query load to the
evaluator. The query evaluator is also deployed as a containerized application
and is responsible for applying the query load to the federator and for measuring
the latter’s response.

During the execution of the experiment, Fluentd collects the log output from
the evaluator, and parses it to extract evaluation metrics which are stored in
Elasticsearch. If the federation engine is KOBE-aware, then it also produces log
lines following the syntax understood by Fluentd so that fine-grained metrics
about the different stages of the overall query processing are also computed and

7 cf. https://www.elastic.co/kibana

https://www.elastic.co/kibana


stored in Elasticsearch. The user connects to Kibana to see visualizations of
these metrics, where we have prepared a variety of panels specifically relevant
to benchmarking federated query processors.

3.2 Benchmark and Experiment Specifications

An important aspect of benchmarking is the ability to reproduce the experi-
mental results of a benchmark. KOBE tackles this important issue by defining
declarative specifications of the benchmarks and the experiments. Those descrip-
tions can be serialized in a human-readable format (we use YAML as the markup
language) and shared and distributed as artifacts.

These specifications are grouped around the various components of an ex-
periment including the benchmark, the evaluator, the data source systems, the
data federator and the network topology. Typically, those specifications are par-
titioned in a series of files; each file includes informations about different elements
of the experiment. For example, one specification describes a specific federator
and a different specification includes information about the set of datasets and
querysets.

The main idea of this organization is that each specification can be provided
by a different role. For example, the federator (resp. dataset server) specification
should be provided by the implementor of the federator (resp. dataset server).
These specifications include, for example, details about the correct initialization
of a federation engine. Moreover, the benchmark specification should be provided
by the benchmark designer and the more specific details such as the computa-
tional resources and the network topology by the experimenter. The relevant
pages of the online KOBE manual8 give details about these parameters.

It is worth noting that the specifications are declarative in the sense that they
describe the desired outcome rather than the actual steps one needs to follow to
reproduce the experiment. The KOBE operator interprets these specifications as
the necessary interactions with Kubernetes and Istio to deploy an experiment.

3.3 Experiment Orchestration

The KOBE operator is continuously monitoring for new experiment specifica-
tions that are submitted to KOBE by the user via a command-line client appli-
cation. Upon a new experiment submission, the KOBE operator compiles new
deployments for the data sources. The data sources consists of a list of dataset
files, that is the serializable content of the dataset, and specifications about the
database system that will serve this dataset. The deployment of a data source
is performed in two phases: in the first phase the data files are downloaded
and imported into the database system and in the second phase the system is
configured and started for serving.

When all data sources are ready for serving, the federating engine is started.
Similarly, the federating engine is deployed in two phases. In the first phase,

8 https://semagrow.github.io/kobe/references/api

https://semagrow.github.io/kobe/references/api


the federation of the specific instances of data sources is established. This in-
cludes the specific initialization process that a federation engine might need. For
example, some engines need the generation of a set of metadata that depend
on the specific datasets that they federate. The second phase start the actual
federation service. After that, the network connections are established and the
network quality characteristics are configured.

In that stage the experiment is ready to proceed with querying the federation.
This is accomplished by an evaluator component that reads the query set from
the benchmark specification and starts sending the queries to the endpoint of
the federator. The evaluator is just another container that is deployed in the
cluster. During the query evaluation, potential logs that are produced by the
federation engine and the evaluator are collected and visualized to the user. The
experiment completes when the evaluator finished with all the queries.

4 Collecting and Analysing Evaluation Metrics

In Section 2.3 we stipulated that benchmarking engines should include a mech-
anism that collects and analyzes the logs from multiple containers in order to
compute evaluation metrics, and to present them to the experimenter in an
intuitive way.

4.1 Collecting the Evaluation Metrics

In KOBE, the following benchmarking metrics are treated: the duration of the
query processing phases (source selection, planning, and execution); the number
of sources accessed during a query evaluation from the federator; the total time
to receive the complete result set of a query; and the number of the returned
results of a query. We assume that the federator and the evaluator calculate
these metrics and produce a corresponding log message for each metric.

Notice, though, that many executions of several experiments can result in
multiple query evaluations. As a result, many log messages that contain the same
metric can appear. In order to differentiate between these query evaluations and
to collect all logs that refer to the same query that belongs to a specific run of
an experiment, each log message should also provide the following information:

Experiment name: This information is used to identify in which experiment
the given query evaluation belongs.

Start time of the experiment: Since one experiment can be executed several
times, this information is used to link to the given query evaluation with a
specific experiment execution.

Query name: Each query has a unique identification name in an experiment.
This information is used to refer to the name of the query in the experiment.

Run: Each experiment has several runs, meaning that the evaluation of a query
happens multiple times in a specific experiment execution. This information
identifies in which run of the experiment the given query evaluation belongs.



An important problem that arises is that this information is only available
to the evaluator and cannot be accessed by the federator directly. Any heuristic
workarounds that try to connect the evaluator log to the federator log using,
for instance, the query strings would not work, as query strings are not unique.
Especially in stress-testing scenarios, the exact same query string might be si-
multaneously executed multiple times, so that a combination of query strings
and timestamps would not be guaranteed to work either. To work around this
problem, the KOBE evaluator uses SPARQL comments to pass the query ex-
periment id to the federator, and the latter includes those in its logs. Then,
the federator can retrieve this information by parsing this comment. This ap-
proach has the advantage that even if a federation engine has not been modified
to produce log lines that provide this information, the query string is still in
a valid, standard syntax and the comment is ignored. The fine-grained time to
complete each step in the typical federated query processing pipeline cannot be
retrieved, but the experiment can proceed with the end-to-end query processing
measurements provided by the evaluator.

4.2 Visualizing the Evaluation Metrics

In this subsection, we describe the visualization component of KOBE. In partic-
ular, we present the three available dashboards. For every dashboard we provide
some screenshots of the graphs produced for some experiment runs.

Details of a specific experiment execution The dashboard of Figure 2
focuses on a specific experiment execution. It comprises:

1. Time of each phase of the query processing for each query of the experiment.
2. Total time to receive the complete result set for each query of the experiment.
3. Number of sources accessed for each query of the experiment.
4. Number of returned results for each query of the experiment.

The first and the third visualizations are obtained from the logs of the feder-
ator engine, if available. The second and the fourth visualizations are obtained
from the logs of the evaluator, so they are available even for federators that do
not provide KOBE-specific logs. The values in each visualization can be also
exported in a CSV file for further processing.

As an example, we consider an experiment execution for the life-science (ls)
query set of the FedBench benchmark for a development version of the Semagrow
federation engine. This visualization can help us, for instance, to observe that
the query execution phase of the federation engine dominates the overall query
processing time in all queries of the benchmark except ls4.

Comparisons of experiment runs The dashboards depicted in Figure 3 and
Figure 4 can be used to draw comparisons between several runs in order to
directly compare different configurations of a benchmark. The dashboard of Fig-
ure 3 can be used for comparing several experiment executions. It consists of
two visualizations:



Fig. 2. Details of a specific experiment execution

1. Total time to receive the complete result set for each experiment execution.
2. Number of returned results for each specified experiment execution.

These visualizations are obtained from the logs of the evaluator. Each bar refers
to a single query of the experiments presented. The dashboard of Figure 4 dis-
plays the same metrics. The main difference is that it focuses on a specific query
and compare all runs of this query for several experiment executions. Contrary
to the visualizations of the other two dashboards, each bar refers to a single
experiment run, and all runs are grouped according to the experiment execution
they belong to.

Continuing the previous example, we consider three experiment executions
that refer to for the life-science queryset of FedBench; one for the FedX federator
and two for the Semagrow federator. In Figure 3 we can observe that all execu-
tions return the same number of results for each query, and that the processing
times are similar, with the exception of the ls6 query for the FedX experiment.
Moreover, we can observe that all runs return same number of results, and that
the processing times for each run are similar; therefore any caching used by the
federators does not play any significant role in speeding up this query.

5 KOBE Extensibility

It is apparent that a well-designed and well-executed benchmarking experiment
needs contributions from different actors. For example, a benchmark designer



Fig. 3. Comparison of three experiment executions

Fig. 4. Comparison of all runs of the ls3 query for three experiment executions

may provide a benchmark that is designed to compare a particular aspect of dif-
ferent federators. On the other hand, the specifications of each federator should
ideally be provided by their respective implementors.

KOBE provides various extensibility opportunities and by design welcomes
contributions from the community. In particular, KOBE can be extended with
respect to the database systems, federators, query evaluators and benchmarks
that comprise an experiment.

We currently provide specifications for two database systems, namely for
Virtuoso9 and Strabon10 and for two federators, FedX [10] and Semagrow [2].
These systems have very different requirements in terms of deployment, pro-
viding strong evidence that extending the list of supported RDF stores will be
straightforwrd.

We also provide a range of benchmark and experiment specifications for exist-
ing federated SPARQL benchmarks. Currently, the benchmarks that are already
bundled with KOBE include the most widely used LUBM [5] and FedBench [9]
benchmark. Moreover, we also include big RDF data benchmarks BigRDFBench

9 cf. https://virtuoso.openlinksw.com
10 cf. http://strabon.di.uoa.gr

https://virtuoso.openlinksw.com
http://strabon.di.uoa.gr


[8] and OPFBench [11] and geospatial benchmarks GeoFedBench [12] and Geo-
graphica [3].

In the following, we briefly discuss the process of defining these specifications
and give links to the more detailed walk-throughs provided in the online KOBE
documentation.

5.1 Benchmarks and Experiments

Benchmarks are defined independently of the federator and comprise a set of
datasets and a list of queries. Datasets are described in terms of the data and
the system that should serve them. Data can be provided as a data dump to be
imported in the database systems. For example, RDF data can be redistributed
in the N-Triples format. Each dataset is characterized by its name and is pa-
rameterized by the URL where the data dump can be accessed. Queries of the
benchmark are typically described as strings and annotated with the query lan-
guage in which they are expressed; supporting heterogeneous benchmarks where
not all data is served by SPARQL endpoints. A benchmark specification can
also include network parameters, such as a fixed delay, or a percentage on which
delay will be introduced as part of fault injection. The online KOBE manual
provides walk-throughs for defining a new benchmark11 and for tuning network
parameters.12

An experiment that evaluates the performance of a federator over a given
benchmark is defined using a strategy for applying the query load to the federator
and the number of runs for each query of the experiment. The experimenter
specifies an experiment by providing a new unique name for the experiment,
the unique name of the benchmark and the federator specification. Moreover, an
experiment includes a specific query evaluator, and the number of runs of the
experiment. The query evaluator applies the query load to the federator. The
one currently bundled with KOBE performs sequential querying, meaning that
the queries of the benchmark are evaluated in a sequential manner. The online
KOBE manual provides walk-throughs for defining a new experiment13 and for
extending KOBE with a new evaluator.14 Furthermore, the manual also provides
a walk-through for defining and visualizing new metrics.15

5.2 Dataset Servers and Federators

Dataset servers can be also integrated in KOBE. The dataset server specification
contains a set of initialization scripts and a Docker image for the actual dataset
server. The initialization scripts are also wrapped on isolated Docker containers
and are used for properly initializing the database system. Typically, it includes

11 https://semagrow.github.io/kobe/use/create_benchmark
12 https://semagrow.github.io/kobe/use/tune_network
13 https://semagrow.github.io/kobe/use/create_experiment
14 https://semagrow.github.io/kobe/extend/add_evaluator
15 https://semagrow.github.io/kobe/extend/add_metrics

https://semagrow.github.io/kobe/use/create_benchmark
https://semagrow.github.io/kobe/use/tune_network
https://semagrow.github.io/kobe/use/create_experiment
https://semagrow.github.io/kobe/extend/add_evaluator
https://semagrow.github.io/kobe/extend/add_metrics


the import of the data dump and indexing of the database. The dataset server
specification may also include other parameters for network connectivity such as
the port and the path to the listening SPARQL endpoint. A walk-through for
adding a new dataset server is provided in the online KOBE manual.16

Federators can also be added to the KOBE system by providing the ap-
propriate specification. That specification resembles the specification of a or-
dinary dataset server. The main difference is on the initialization phase of a
federator. Typically, the initialization of a federator may involve the creation of
histograms from the underlying datasets. Thus, in KOBE, the federator initial-
ization is performed in two steps: the first step extracts needed information from
each dataset and the second step consolidates that information and properly ini-
tializes the federator. As in the dataset server, the initialization processes are
provided as containerized Docker images by the implementor of the federator. A
walk-through for adding a federator is provided in the online KOBE manual.17

Federator implementors should also consider a tighter integration in order
to benefit from the detailed log collection features for reporting measurements
that can only be extracted by collecting information internal to the federator
(Section 4). Therefore, a log line from a federator should be enhanced to include
the evaluation metrics and the query parameters discussed in Section 2.3. More
details about how a federator should be extended to provide detailed logs are
given in the online KOBE manual.18 This tighter integration is not a require-
ment, in the sense that the overall end-to-end time to evaluate the query and
the number of returned results are provided without modifying the source code
of the federation engine (as we have done in the case of FedX).

6 Comparison to Related Systems

To the best of our knowledge, the only benchmark orchestrator that directly
targets federated query processors is the orchestrator distributed with the Fed-
Bench suite [9]. As also stated in the introduction, it is in fact the limitations
of the FedBench orchestrator that originally motivated the work described here.
Specifically, FedBench does not support the user with either container-based
deployment or collecting federator logs to compute detailed metrics.

HOBBIT [7], on the other hand, is a Docker-based system aiming at bench-
marking the complete lifecycle of Linked Data generation and consumption. Al-
though HOBBIT tooling can support with collecting logs and visualizing metrics,
HOBBIT as a whole is not directly comparable to KOBE. In the HOBBIT archi-
tecture, the benchmarked system is perceived as an opaque container that the
system tasks and measures. KOBE exploits the premise that the benchmarked
system comprises multiple containers one of which (the federator) is tasked and

16 https://semagrow.github.io/kobe/extend/add_dataset_server
17 https://semagrow.github.io/kobe/extend/add_federator
18 Specifically, see the first step of the walk-through for adding a new federator. See

also details about collecting logs to compute evaluation metrics https://semagrow.
github.io/kobe/extend/support_metrics

https://semagrow.github.io/kobe/extend/add_dataset_server
https://semagrow.github.io/kobe/extend/add_federator
https://semagrow.github.io/kobe/extend/support_metrics
https://semagrow.github.io/kobe/extend/support_metrics


that this one container communicates with the rest (the data sources). By ex-
ploiting these premises, KOBE goes further than HOBBIT could have gone to
automate the deployment of the modules of an experiment and the control of
their connectivity. In other words, KOBE aims at the federated query processing
niche and trades off generality of purpose for increased support for its particular
purpose.

A similar conclusion is also reached when comparing KOBE with scientific
workflow orchestrators. Although (unlike HOBBIT and like KOBE) scientific
workflow orchestrators are designed to orchestrate complex systems of contain-
ers, they focus on the results of the processing rather on benchmarking the
processors. As such, they lack features such as controlling network latency.

Finally, another unique KOBE feature is the mechanism described in Sec-
tion 4.1 for separating the logs of the different runs of an experiment. This
especially useful in stress-testing scenarios where the same query is executed
multiple times, so that the query string alone would not be sufficient to separate
log lines of the different runs.

7 Conclusions

We have presented the architecture and implementation of the KOBE open
benchmarking engine for federation systems. KOBE is both open-source soft-
ware and an open architecture, leveraging containerization to allow the future
inclusion of any federation engine. KOBE also uses Elasticsearch as a log server
and Kibana as the visualization layer for presenting evaluation metrics extracted
from these logs, again emphasizing openness by supporting user-defined inges-
tion patterns to allow flexibility in how evaluation metrics are to be extracted
from each federator’s log format. Deployment depends on Kubernetes, which is
ubiquitous among the currently prevalent Cloud infrastructures. These features
allow experiment publishers the flexibility needed for sharing federated query
processing experiments that can be consistently reproduced with minimal effort
by the experiment consumers.

Although originally developed for our own experiments, we feel that the
federated querying community can extract great value from the abstractions
it offers, as it allows releasing a benchmark as a complete, fully configured,
automatically deployable testing environment.

As a next step, we are planning to expand the library of federators bundled
with the KOBE distribution, and especially with systems that will verify that
KOBE operates at the appropriate level of abstraction away from the specifics
of particular federators. For instance, adding Triple Pattern Fragments [13] will
verify that adaptive source selection and planning can operate within the KOBE
framework.

Another interesting future extension would be support for the detailed eval-
uation of systems that stream results before the complete result set has been
obtained. This requires adding support for calculating the relevant metrics, such
as the diefficiency metric [1].



Acknowledgments

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 825258. Please see
http://earthanalytics.eu for more details.

References

1. Acosta, Maribel, M.E.V., Sure-Vetter, Y.: Diefficiency metrics: Measuring the con-
tinuous efficiency of query processing approaches. In: Proceedings of the 16th In-
ternational Semantic Web Conference (ISWC 2017). Springer (2017)

2. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing
federated SPARQL queries. In: Proceedings of the 11th International Conference on
Semantic Systems (SEMANTiCS 2015), Vienna, Austria, September 2015 (2015)

3. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: A benchmark for geospa-
tial RDF stores. In: Proceedings of the 12th International Semantic Web Confer-
ence (ISWC 2013). Sydney, Australia, 21-25 October 2013 (2013)

4. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: Proceedings of the 2nd International Workshop on Consuming
Linked Data (COLD 2011), Bonn, Germany, October 2011. CEUR, vol. 782 (2011)

5. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
Web Semantics 3(2) (Jul 2005). https://doi.org/10.1016/j.websem.2005.06.005

6. Kostopoulos, C., Mouchakis, G., Prokopaki-Kostopoulou, N., Troumpoukis, A.,
Charalambidis, A., Konstantopoulos, S.: KOBE: Cloud-native open benchmarking
engine for federated query processors. Posters & Demos Session, ISWC 2020 (2020)

7. Ngonga Ngomo, A.C., Röder, M.: HOBBIT: Holistic benchmarking for big linked
data. In: Processings of the ESWC 2016 EU Networking Session (2016)

8. Saleem, M., Hasnain, A., Ngonga Ngomo, A.C.: BigRDFBench: A billion triples
benchmark for SPARQL endpoint federation

9. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
A benchmark suite for federated semantic data query processing. In: Proceedings
ISWC 2011, Bonn, Germany, October 2011. LNCS, vol. 7031. Springer (2011).

10. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A federation
layer for distributed query processing on Linked Open Data. In: Proceedings ESWC
2011, Heraklion, Crete, Greece, 2011. LNCS, vol. 6644. Springer (2011)

11. Troumpoukis, A., Charalambidis, A., Mouchakis, G., Konstantopoulos, S., Siebes,
R., de Boer, V., Soiland-Reyes, S., Digles, D.: Developing a benchmark suite for
Semantic Web data from existing workflows. In: Proceedings of the Benchmarking
Linked Data Workshop (BLINK), (ISWC 2016), Kobe, Japan, October 2016 (2016)

12. Troumpoukis, A., Konstantopoulos, S., Mouchakis, G., Prokopaki-Kostopoulou,
N., Paris, C., et al.: GeoFedBench: A benchmark for federated GeoSPARQL query
processors. In: Proceedings Posters & Demos Session of ISWC 2020 (2020)

13. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-
cost knowledge graph interface for the web. J Web Semantics 37–38 (2016)

http://earthanalytics.eu
https://doi.org/10.1016/j.websem.2005.06.005

	KOBE: Cloud-native Open Benchmarking Engine for Federated Query Processors

