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Abstract

The rapid progress of large language models (LLMs) has catalyzed the emergence
of multimodal large language models (MLLMs) that unify visual understanding
and image generation within a single framework. However, most existing MLLMs
rely on autoregressive (AR) architectures, which impose inherent limitations on
future development, such as the raster-scan order in image generation and restricted
reasoning abilities in causal context modeling. In this work, we challenge the
dominance of AR-based approaches by introducing FUDOKI, a unified multimodal
model purely based on discrete flow matching, as an alternative to conventional AR
paradigms. By leveraging metric-induced probability paths with kinetic optimal
velocities, our framework goes beyond the previous masking-based corruption
process, enabling iterative refinement with self-correction capability and richer
bidirectional context integration during generation. To mitigate the high cost of
training from scratch, we initialize FUDOKI from pre-trained AR-based MLLMs
and adaptively transition to the discrete flow matching paradigm. Experimental
results show that FUDOKI achieves performance comparable to state-of-the-art
AR-based MLLMs across both visual understanding and image generation tasks,
highlighting its potential as a foundation for next-generation unified multimodal
models. Furthermore, we show that applying test-time scaling techniques to
FUDOKI yields significant performance gains, further underscoring its promise for
future enhancement through reinforcement learning.

1 Introduction

Driven by the rapid progress of large language models (LLMs) [1–5], a new wave of large-scale
multimodal models has emerged, delivering remarkable advances in the two fundamental pillars
of artificial general intelligence (AGI): understanding [6–10] and generation [11–15]. Building on
this momentum, a growing body of work [16–25] seeks to unify perception and synthesis within a
single framework, introducing versatile multimodal large language models (MLLMs) that seamlessly
integrate visual understanding with image generation. 3

In prior research, most MLLMs adopt the autoregressive (AR) architecture of standard LLMs,
processing multimodal tokens sequentially from left to right for both understanding and generation
tasks [26, 27]. While these MLLMs deliver strong performance across many multimodal tasks, their
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Generation Understanding

Hyper-realistic photo of an abandoned 

industrial site during a storm

A beautiful modern wooden 

house, close to the lake, in the 

mountains at sunrise, anime style

Portrait of a beautiful girl, neonAutomobile design drawings, sketch

Question: What is the anticipated 

outcome in this image?

A. He will be released from the police station 

B. He will escape from the police station 
C. He will be arrested and taken to the police station 
D. He will be visiting the police station voluntarily 

Answer: The image shows a person being escorted by police 

officers, with the person's hands behind their back. This 
indicates that the person has been arrested and is being taken 
to the police station. Therefore, the correct answer is C. He will 

be arrested and taken to the police station.

A. The water will freeze 

B. The water will remain liquid 
C. The water will evaporate 
D. The water will condense 

Question: What is the transformation in 

this image? 

Answer: The image shows a container of water being heated, 

with blue spheres representing molecules moving from the 
liquid to the gas phase. This process is known as boiling 
products, which transitions from a liquid to a gas state. 

Therefore, the correct answer is C. The water will evaporate.

Future Prediction

Physics

Spatial Relation

Question: What is the relation between 

the couch and the coffee table in the 
living room? 

A. The couch is on top of the coffee table

B. The coffee table is in front of the couch 
C. The coffee table is behind the couch 
D. The couch and the coffee table are not related 

Answer: The coffee table is in front of the couch.

Instance Counting

Question: How many people are sitting 

in the background of the image? 

Answer: C. Three or more

A. None B. One C. Three or more D. Two 

Scene Understanding

Question: What is the main event that is 

happening in the image? 

A. An award show B. A concert performance 

C. A graduation ceremony D. A sporting event 

Answer:  The main event happening in the image is a 

graduation ceremony. This is evident from the individuals 
wearing graduation caps and gowns, and the presence of a 
large audience in a stadium-like setting, which is typical for 

graduation performance ceremonies.

Figure 1: Qualitative Results of Visual Generation and Understanding Capabilities of FUDOKI. FUDOKI
is designed based on the framework of discrete flow matching for both visual and textual modalities, capable of
performing understanding and generation simultaneously under one unified paradigm.

inherent AR design’s limitations have become increasingly apparent as shown in recent studies,
such as weaker performance in complex reasoning [28–30], challenges in future planning [31],
and difficulties with self-correction [32]. These shortcomings are particularly critical for emerging
domains such as embodied AI and autonomous agents, where complex reasoning and deep contextual
understanding are essential. This prompts a fundamental question for the future of AGI development:
what architectural paradigm could define the next generation of MLLMs?

To this end, discrete-space generative flow and diffusion models have gained attention as a promising
alternative for generative modeling. These models have seen success in the domain of text gener-
ation [33–38], protein design [39], image synthesis [37, 38], and code generation [37, 40]. Unlike
sequential autoregressive models, these models usually begin with a fully corrupted sequence and
iteratively denoise the entire sequence in parallel, which allows richer integration of information
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from both directions to enhance prolonged reasoning. Moreover, these models enable flexible and
controllable generation through their inherent iterative refinement process, while offering the potential
for accelerated sampling via novel training designs [41–43]. Recent studies like LLaDA [44] and
Dream [45] have also scaled discrete diffusion models to 7B parameters, further highlighting their
growing potential to overcome the fundamental limitations of autoregressive approaches.

To advance the application of discrete generative flow modeling and challenge the dominance of the
AR-based paradigm in MLLMs, we present FUDOKI, a unified multimodal model purely based on
discrete flow matching. Different from previous diffusion-based unified multimodal models [46–48]
focusing solely on the case of masking as a corruption process, we adopt the novel framework of
discrete flow matching [37, 38], which substantially expanded the design space of discrete-space
generative models by enabling metric-induced probability paths with kinetic optimal velocities. This
design enables better performance than masked construction [38] and allows models to continuously
self-correct their responses during the iterative refinement process. Moreover, to mitigate the high
training cost of training large discrete flow matching models for multimodal tasks, we leverage the
pre-trained AR-based MLLM [20] as the initialization and adaptively transfer it to the discrete flow
matching paradigm [49].

The contributions of this paper can be summarized as follows: 1) We introduce FUDOKI4, the first
general-purpose unified multimodal model built entirely on discrete flow matching. Unlike traditional
approaches that rely on masking-based corruption, FUDOKI leverages a metric-induced probability
path with kinetically optimal velocities, expanding the design space of discrete multimodal modeling
and offering advantages during inference; 2) Through extensive experiments, we show that FUDOKI
achieves competitive performance on both visual understanding and text-to-image generation tasks,
rivaling autoregressive-based MLLMs; 3) We apply test-time inference scaling techniques to FUDOKI
inspired by [50], which yield substantial improvements across visual generation and understanding
benchmarks. This suggests strong potential for future enhancement of FUDOKI via reinforcement
learning [1, 51]. We believe that FUDOKI provides a compelling foundation for the development of
next-generation unified multimodal models.

2 Preliminary: Discrete Flow Matching

In this section, we present key concepts and notations in discrete flow matching [37] to facilitate
understanding in the following sections. Generally speaking, the objective of discrete flow matching
is to approximate the target underlying data distribution q(x) from the source known distribution
p(x), where x = (x1, x2, ..., xD) belongs to the discrete space S = T D, where D is the number of
discrete variables and T = [K] = {1, 2, . . . ,K} represents a finite set of possible discrete values.

Probability Paths. Given a source distribution p(x) and a target distribution q(x) defined over a
finite state space S , discrete flow matching defines a family of time-indexed probability distributions
{pt(x)}t∈[0,1] to describe a smooth transformation from p to q, referred to as probability paths.
Each pt(x) is constructed as: pt(x) :=

∑
x1∈S pt(x | x1)q(x1), where the conditional distribution

is factorized across dimensions, namely pt(x | x1) :=
∏D

i=1 pt(x
i | xi

1). Here, each pt(x
i | xi

1)
defines a univariate interpolation between a base distribution p(xi) and a point mass δxi

1
(xi), i.e.,

δxi
1
(xi) = 1 if xi = xi

1 else 0. A common design for such interpolations is the mixture path, defined
via a time-dependent scheduler κt(x

i
1) ∈ [0, 1]:

pt(x
i | xi

1) = (1− κt(x
i
1))p(x

i) + κt(x
i
1)δxi

1
(xi), (1)

where κ0(·) = 0 and κ1(·) = 1. This class of paths recovers the masked data construction when
p(xi) = δm(xi) with m denoting the mask token, which are widely used in previous studies [35, 36].

Probability Velocities. To simulate the generative process that evolves along the prescribed path
{pt(x)}t∈[0,1], we consider a continuous-time Markov chain (CTMC) {xt}t∈[0,1] over the discrete
space S , such that: xt ∼ pt. Specifically, we describe this CTMC via a probability velocity ui

t(·, xt)

4 風土記 (FUDOKI) is a Japanese term referring to ancient records that comprehensively document and
integrate the culture, geography, and traditions of different regions. We name our model FUDOKI to highlight
its unified ability to both understand and generate multimodal information, such as interpreting and generating
diverse images, mirroring how the original FUDOKI integrates and presents multifaceted knowledge.
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(also known as the rate matrix), describing the rate of probability change of xt in its i-th token.
Reminiscent of the velocity field in the continuous Flow Matching [42, 41], discrete flow matching
features the following definition:
Definition 1. A probability velocity ut is said to generate the probability path pt if, for all t ∈ [0, 1)
and for any sample xt ∼ pt, the updated sample xi

t+h ∼ δxi
t
(·) + hui

t(·, xt) for each coordinate i

satisfies the condition that xt+h ∼ pt+h + o(h)5 as h → 0.
Besides, the probability velocity ut should satisfy the following rate condition:∑

xi∈[K]

ui
t(x

i, z) = 0, and ui
t(x

i, z) ≥ 0 ∀i ∈ [D], xi ̸= zi, (2)

such that the updated xi
t+h can be sampled from a valid probability distribution. Further, previous

studies [37, 39] also demonstrate the Continuity Equation (also known as the Kolmogorov forward
equation) in discrete flow matching, which describes the state probability rate ṗt(x), x ∈ S by:

ṗt(x) + divx(ptut) = 0. (3)

where divx(ptut) =
∑

z∈S
∑D

i=1 δx(z
i)
[
pt(x)u

i
t(z

i, x)− pt(z)u
i
t(x

i, z)
]
, measuring the total out-

going flux x → z minus the total incoming flux z → x for state x ∈ S . Here δx(zi) =
∏

j ̸=i δxj (zj),
which indicates that we only consider x and z when they only differ in the i-th coordinate for
calculating the flux [37, 34]. Intuitively, Eq. 3 expresses that the rate of probability at x is equal
to the final remaining probability flux ptut at x. Previous studies [37, 39] have shown that if the
Continuity Equation is satisfied, then ut is said to generate the probability path pt as in Definition 1.

3 FUDOKI: A Multimodal Model Purely Based on Discrete Flow Matching

This section introduces FUDOKI, a new multimodal architecture that unifies vision and language
through the novel lens of discrete flow matching. By adopting this framework, FUDOKI enables an
integrated approach to both perception and generation across visual and textual modalities.

3.1 Metric-induced Probability Paths with Kinetic Optimal Velocities

Based on the recent theoretical advancement of discrete flow matching [38], we adopt a more
general probability path for FUDOKI, instead of the commonly used mask-based mixture paths
[37, 36, 35, 46, 45]. Specifically, we consider the probability paths induced by discrete metrics.
Given a distance function d : T × T → R≥0 satisfying d(xi, xi

1) = 0 if and only if xi = xi
1, we

define a path of conditional distributions via:
pt(x

i | xi
1) = softmax

(
− βt · d(xi, xi

1)
)
, (4)

where βt : [0, 1] → R≥0 is a monotonic schedule with boundary values β0 = 0, β1 = ∞. At t = 0,
this yields a uniform distribution, and as t → 1, the distribution converges to a delta function at xi

1.
Compared to the previous mask-based probability path (i.e., Eq. 1), this metric-induced probability
path defines a more semantically meaningful transformation, allowing the probabilities of tokens
similar to xi

1 to also increase as t → 1, when setting d(·, ·) to measure token embedding distances.

After defining the prescribed metric-induced probability path, we then obtain the probability velocities
via minimizing the kinetic energy [38]. In other words, it is expected to minimize the magnitude
of flux ptut for probability velocities to obtain a smooth transformation along the probability path.
Meanwhile, the obtained velocities should also satisfy several conditions, including the Continuity
Equation (i.e., Eq. 3), the non-negativity of the flux between different states (i.e., Eq. 2), and the
boundary conditions for p and q. We leave the detailed mathematical formulations in the appendix.
In this way, the kinetic optimal velocity for Eq. 4 can be formulated as follows [38],

ui
t(x

i, z | x1) = pt(x
i | xi

1) β̇t [d(z
i, xi

1)− d(xi, xi
1)]+ (5)

where [·]+ = max{·, 0} is the ReLU operator and β̇t is the derivative of βt w.r.t t. Intuitively, for the
i-th coordinate zi ∈ T , this velocity ensures that probability mass flows from state zi to state xi only
when xi lies closer to xi

1 than zi does, i.e., d(xi, xi
1) < d(zi, xi

1). As a result, the flow monotonically
progresses toward xi

1. After introducing the mathematical foundation of discrete flow matching, we
now dive into FUDOKI’s model structure details.

5o(h) refers to a function that vanishes at a faster rate than h as h → 0, i.e., limh→0
o(h)
h

= 0.
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Bi-directional Transformer

Causal Transformer

Bi-directional Transformer

(a) Autoregressive (AR): Janus,  Janus-Pro, Illume, Illume+, 

ViLA-U (2025); Chameleon, EMU3, LaViT (2024)

(d) Discrete Diffusion: UniDisc (2024)

(e) Discrete Flow Matching: FUDOKI

Partially Causal Transformer

(b) AR (Text) + Diffusion (Image)

JanusFlow (2025); Transfusion, Show-o (2024) 

Bi-directional Transformer

(c) Continuous + Discrete Diffusion: D-DiT (2025)

…Text Tokenizer

What is it?

Text De-Tokenizer

A red panda.

Text Tokenizer

A red panda.

Image Decoder

Image Encoder Text Tokenizer

What is it?

Text De-Tokenizer

A red panda.

Text Tokenizer

A red panda.

Image Decoder

Image Encoder
Continuous Discrete

Image 

Encoder

Text 

Tokenizer

Text 

Tokenizer

What is it? <mask> <mask> … 

<mask> <mask>

Text De-

Tokenizer

A red panda.

A red panda.

Image Decoder

Text 

Tokenizer
Text Tokenizer

A red panda.

Text 

Tokenizer

Image Decoder

pré tion 学… ment 的 ist

Text Tokenizer

What is it?

Image Encoder

(Semantic)
Text Tokenizer

Text De-Tokenizer

A red panda.

Text Tokenizer

A red panda.

Image Encoder

(Pixel)

Pixel Decoder

(Pixel)

Image Encoder

<mask> <mask> … 

<mask> <mask>

Text De-Tokenizer

A red panda.

Img2Text Text2Img Img2Text Text2Img

Img2Text Text2Img Text2ImgImg2Text

Img2Text Text2Img

Continuous

Discrete

Discrete

Figure 2: Comparison of Model Architectures in Unified Multimodal Models. (a) AR-based models [20,
26, 21, 52–54, 18, 55] perform multimodal tasks via sequential token generation under strictly causal context
modeling. (b) Hybrid AR+Diffusion models, such as Transfusion [19] and Show-o [56], integrate AR for
text and diffusion models for images, enabling improved visual generation quality. (c-d) Diffusion-based
models: D-DiT [46] applies mask-based discrete diffusion to text and continuous diffusion to images, while
UniDisc [48] employs mask-based discrete diffusion for both modalities. (e) FUDOKI adopts a unified
discrete flow matching framework for both modalities, leveraging a metric-induced probability path to enhance
performance in understanding and generation tasks. The inference advantages of FUDOKI over mask-based
discrete diffusion modeling used in (c-d) are shown in Fig. 3.

3.2 Architecture Overview

As shown in Fig. 2(e), FUDOKI is based on the Janus-1.5B [20] architecture, with minor adaptations
to support unified vision-language discrete flow modeling. Specifically, to facilitate effective learning
and accelerate convergence, 1) we adopt a full attention mask instead of the standard causal mask to
allow all tokens to attend to each other, which helps the model better capture global context; 2) we
apply a shifting operation [49] to the output logits by one position, so that our model can inherit the
next-token prediction capabilities of AR-based MLLMs as much as possible; 3) unlike continuous
diffusion models [57, 12], we do not incorporate additional time embedding layers in the model
to explicitly indicate the noise level in the corrupted input. Following the intuition of mask-based
discrete diffusion models [49, 58], we observe that our discrete generative model can also implicitly
infer the timesteps from the corrupted input along our defined metric-induced probability path (i.e.,
Eq. 4), resulting in faster adaptation in experiments. The rest of the architecture remains identical
to Janus-1.5B. For the text modality, we use the tokenizer with a vocabulary size of 102, 400. For
images, we decouple the processing paths for understanding and generation. The semantic encoder
SigLIP [59] extracts high-dimensional features for image understanding, which are reshaped and
mapped into the LLM input space via an adaptor. For image generation, we follow LlamaGen [60],
employing a pixel encoder and decoder to convert images into discrete tokens, with the image token
vocabulary size set to 16, 384. Each image token embedding is further transformed into an input
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Figure 3: Inference Comparisons between (a) Mask-Based Discrete Diffusion Models and (b) Discrete
Flow Matching-Based FUDOKI. In mask-based discrete diffusion models, once a token is unmasked, it
typically cannot be modified again, which hinders self-correction. In contrast, our proposed FUDOKI allows its
responses to be continuously updated during inference, enabling potential corrections.

feature via a generation adaptor before being fed into the LLM. At the output stage, we use two
output heads, a text head and an image head, which convert the transformer outputs into discrete
categorical distributions. The appropriate head is selected depending on the target modality during
inference. Comparisons with previous AR-based and diffusion-based MLLMs are shown in Fig. 2.

3.3 Training

We follow the discrete flow matching framework [34] for model training. Our model is initialized
from the pretrained weights of Janus-1.5B [20] and further adapted to our collected dataset, which
contains both text-to-image (generation) and image-to-text (understanding) data. Specifically, we
divide the training of FUDOKI into two stages: 1) The main goal of the first stage is to quickly
relearn the AR-based LLM such that it can effortlessly support the discrete flow matching paradigm.
To this end, we only fine-tune the parameters of the transformer while keeping other parts of the
model frozen, including the semantic encoders and embedding adaptors. This can help accelerate
convergence and stabilize our training; 2) After the first stage, we further fine-tune the whole model
to enhance its overall performance on understanding and generation based on discrete flow matching.

Specifically, in each training stage, the ground-truth target x1 is drawn from the data distribution
q(·), where the condition is either a text prompt (for T2I) or an image-question pair (for I2T). The
target x1 is the image token sequence in the T2I setting and the textual token sequence in the I2T
setting. At each training step, a time t ∈ [0, 1] is uniformly sampled, and a noised sequence xt is
sampled according to the defined probability path pt(· | x1) in Eq. 4. We set the distance function
d(·, ·) to measure the L2-distances between normalized token embeddings, which helps increase the
probability of sampling tokens whose embeddings are close to the corresponding ground-truth token
xi
1 in the embedding space, thereby making the corruption process more semantically meaningful and

facilitating learning. The model then receives xt as input and predicts x1, outputting per-token logits
for each position. The training loss is defined as the expected cross-entropy between the ground-truth
sequence x1 and the model’s predicted distribution:

LCE(θ) = Et∼U [0,1], x1∼q(·), xt∼pt(·|x1)

[
−

D∑
i=1

log pθ1|t
(
xi
1 | xt

)]
(6)

where pθ1|t(· | xt) denotes the model’s predicted categorical distribution for the i-th position, parame-
terized by θ, given input xt.

3.4 Inference

During inference, we apply an Euler solver for more robust sampling as suggested in [38]. This
solver simulates the continuous-time Markov chain (CTMC) process (xt)0≤t≤1. Given that xt ∼ pt,
the solver updates the i-th coordinate from time t to t+ h using the following procedure:

• Sample xi
1 ∼ pi1|t(·|xt) from our model;

• Compute the total conditional transition rate λi =
∑

xi ̸=xi
t
ui
t(x

i, xi
t|xi

1) (see Eq. 5);
• Draw a uniform random variable Zi

change ∼ U [0, 1];
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• Sample xi
t+h as follows: if Zi

change ≤ 1 − e−hλi

, sample xi
t+h from ui

t(·,x
i
t|x

i
1)

λi (1 − δxi
t
(·));

otherwise set xi
t+h = xi

t. Here δxi
t
(·) is a delta function.

We provide a detailed understanding of this inference process as follows. In the second step, λi can
be interpreted as the intensity with which the probability mass at xi

t flows to other states xi ̸= xi
t.

The probability that xi
t will change at the current timestep is determined by comparing the threshold

1− e−hλi

with a uniform random variable Zi
change: the larger λi is, the more likely a jump will occur.

If a change happens, xi
t+h is sampled from all other possible states according to the distribution

proportional to ui
t(·, xi

t|xi
1), as defined in Eq. 5. This means the update tends to move xi

t+h towards
states that are closer to the model’s prediction xi

1. In this way, our sampling process enables the model
to: (1) continuously refine its predictions along the probability path, and (2) flexibly adjust tokens
towards semantically similar alternatives at each timestep. As shown in Fig. 3, this is in contrast
to previous mask-based discrete diffusion models [36, 35, 45], where once a token is unmasked, it
generally cannot be modified again, even if it contains an error.

4 Experiments

4.1 Implementation Details

In both training stages, we use approximately 13M supervised finetuning data to learn our FUDOKI,
including 9M in-house generation data for text-to-image generation and 4M public understanding
data, which covers various aspects including OCR [61, 62], doc [63], chart [64], screen [65], math
[66, 67], language [68], etc. This is less than Chameleon’s 1.4B data [54] and LWM’s 1B data [69].
We leave the detailed dataset collections in the appendix. For text generation, the sequence length
for the response is set to 500, while for image generation, it is set to 576 to match the input size of
the image encoder. The text embeddings for calculating the metric distance function d(·, ·) are taken
from the original embedding layer of Janus-Pro-7B [26] and the image embeddings are obtained from

the codebook of LlamaGen [60]. We set βt = c
(

t
1−t

)a

with c = 3 and a = 0.9, as suggested in
[38]. Besides, following previous studies [45, 44], for the text modality, we pad each sequence with
<eos> (end-of-sequence) and <pad> tokens to the maximum length during training, and compute
the loss over model’s answer tokens, including these special tokens. After the sampling process, we
only keep the model responses ahead of the first <eos> token. The sampling iterations are set as 32
by default, and the resolution of generated images by FUDOKI is 384 × 384. The entire training
process spanned approximately 43,000 GPU hours.

4.2 Comparison with State-of-the-arts

Visual Generation Performance. We evaluate the generation capabilities of FUDOKI on the widely
used GenEval benchmark [75]. Table 1 presents the summarized comparisons, where FUDOKI
achieved competitive overall performance (0.77), matching the top score of prior models in the
category of both the generation-only and the understanding-and-generation categories. These results
underscore our model’s advantages in accurate multi-object understanding and attribute binding,
making it promising for complex visual generation tasks that go beyond simple object depiction.
This can be attributed to the discrete flow matching framework of FUDOKI, which allows visual
information to integrate in both directions for better layout design of generated images.

Besides, we evaluate the visual generation performance of FUDOKI on DPG-Bench [76] (Dense
Prompt Graph Benchmark), a comprehensive dataset comprising 1,065 lengthy and densely composed
prompts specifically designed to assess the fine-grained semantic alignment capabilities of text-to-
image models. As shown in Table 2, FUDOKI demonstrates competitive performance compared
to both generation-specialized and unified multimodal models. These results highlight FUDOKI’s
strong ability to handle complex, information-rich prompts, establishing it as a robust and versatile
solution for multi-aspect visual generation tasks.

Multimodal Understanding. We evaluate the understanding capabilities of FUDOKI on several
benchmarks, including POPE [91], MME-P [92], SEED [93], MMB [94], GQA [95], MMMU [96],
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Table 1: Visual Generation Performance on the GenEval Benchmark. "Und." and "Gen." denotes "Under-
standing" and "Generation". † denotes models that integrate an external pretrained diffusion model.

Type Paradigm Method Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑

Gen. Only

AR LlamaGen [60] 0.71 0.34 0.21 0.58 0.07 0.04 0.32
Emu3-Gen [18] 0.98 0.71 0.34 0.81 0.17 0.21 0.54

Diffusion

LDM [12] 0.92 0.29 0.23 0.70 0.02 0.05 0.37
SDv1.5 [12] 0.97 0.38 0.35 0.76 0.04 0.06 0.43
PixArt-α [13] 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1 [12] 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 [70] 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL [71] 0.98 0.74 0.39 0.85 0.15 0.23 0.55
DALL-E 3 [72] 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SD3-Medium [14] 0.99 0.94 0.72 0.89 0.33 0.60 0.74

Und. and Gen.

AR

SEED-X† [73] 0.97 0.58 0.26 0.80 0.19 0.14 0.49
LWM [69] 0.93 0.41 0.46 0.79 0.09 0.15 0.47
ILLUME [21] 0.99 0.86 0.45 0.71 0.39 0.28 0.61
TokenFlow-XL [74] 0.95 0.60 0.41 0.81 0.16 0.24 0.55
Chameleon [54] - - - - - - 0.39
Janus [20] 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Janus-Pro-1B [26] 0.98 0.82 0.51 0.89 0.65 0.56 0.73

AR+Diffusion Show-o [56] 0.95 0.52 0.49 0.82 0.11 0.28 0.53
Transfusion [19] - - - - - - 0.63

Diffusion UniDisc [48] 0.92 0.47 0.15 0.67 0.13 0.19 0.42
D-DiT [46] 0.97 0.80 0.54 0.76 0.32 0.50 0.65

Discrete Flow FUDOKI (Ours) 0.96 0.85 0.56 0.88 0.68 0.67 0.77
+Inference Scaling 0.98 0.95 0.73 0.94 0.88 0.78 0.88

Table 2: Visual Generation Performance on DPG-Bench.

Method Global Entity Attribute Relation Other Overall↑

SDv1.5 [12] 74.63 74.23 75.39 73.49 67.81 63.18
PixArt-α [13] 74.97 79.32 78.60 82.57 76.96 71.11
Lumina-Next [77] 82.82 88.65 86.44 80.53 81.82 74.63
SDXL [71] 83.27 82.43 80.91 86.76 80.41 74.65
Playground v2.5 [78] 83.06 82.59 81.20 84.08 83.50 75.47
Hunyuan-DiT [79] 84.59 80.59 88.01 74.36 86.41 78.87
PixArt-Σ [80] 86.89 82.89 88.94 86.59 87.68 80.54
Emu3-Gen [18] 85.21 86.68 86.84 90.22 83.15 80.60
DALL-E 3 [72] 90.97 89.61 88.39 90.58 89.83 83.50
SD3-Medium [14] 87.90 91.01 88.83 80.70 88.68 84.08
Janus [20] 82.33 87.38 87.70 85.46 86.41 79.68
Janus-Pro-1B [26] 87.58 88.63 88.17 88.98 88.30 82.63
FUDOKI (Ours) 80.55 89.73 88.05 93.66 78.00 83.63

and MM-Vet [97]. Table 3 presents the summarized results 6. Notably, our FUDOKI model (1.5B
parameters) achieved highly competitive results, which are on par with or surpass several AR-based
MLLMs of similar or even larger scale. This demonstrates that FUDOKI delivered robust multimodal
understanding capabilities, which can be attributed to the bidirectional reasoning property of discrete
flow matching. Moreover, we provide generation process comparisons for understanding in Fig. 4,
which further highlight the advantages of sampling through discrete flow matching for reasoning,
e.g., self-correcting the reasoning process for coherency. Our findings highlight the effectiveness and
efficiency of FUDOKI, making it a strong alternative to the established AR-based MLLMs.

Inference Scaling. We applied test-time inference scaling techniques [50] to FUDOKI, leveraging
a judge model to score multiple candidate outputs and select the highest-scoring responses. The
last rows of Table 1 and Table 3 illustrate the impact of inference scaling on visual generation and
understanding. For generation, we used the VILA-Judge model [98] to select the top 4 images from
32 candidates per prompt in the GenEval benchmark, resulting in significant performance gains. For
understanding, we employed an LLM as the judge to choose the best response from 8 candidates in
the challenging MMVet benchmark, where improvements were observed. These results highlight
FUDOKI’s potential for further enhancement through reinforcement learning approaches [1, 99].

6UniDisc [48] is not included in the table due to their inability to conduct visual question answering tasks.
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Table 3: Multimodal Understanding Performance on Various Benchmarks. "Und." and "Gen." denotes
"Understanding" and "Generation". † denotes models that integrate an external pretrained diffusion model.

Type Paradigm Model # LLM Params POPE↑ MME-P↑ MMB↑ SEED↑ GQA↑ MMMU↑ MM-Vet↑

Und. Only AR

LLaVA-v1.5-Phi-1.5 [56] 1.3B 84.1 1128.0 - - 56.5 30.7 -
MobileVLM [81] 1.4B 84.5 1196.2 53.2 - 56.1 - -
MobileVLM-V2 [82] 1.4B 84.3 1302.8 57.7 - 59.3 - -
MobileVLM [81] 2.7B 84.9 1288.9 59.6 - 59.0 - -
MobileVLM-V2 [82] 2.7B 84.7 1440.5 63.2 - 61.1 - -
LLaVA-Phi [83] 2.7B 85.0 1335.1 59.8 - - - 28.9
LLaVA [6] 7B 76.3 809.6 38.7 33.5 - - 25.5
LLaVA-v1.5 [84] 7B 85.9 1510.7 64.3 58.6 62.0 35.4 31.1
InstructBLIP [8] 7B - - 36.0 53.4 49.2 - 26.2
Qwen-VL-Chat [85] 7B - 1487.5 60.6 58.2 57.5 - -
IDEFICS-9B [86] 8B - - 48.2 - 38.4 - -
Emu3-Chat [18] 8B 85.2 1244 58.5 68.2 60.3 31.6 37.2
InstructBLIP [8] 13B 78.9 1212.8 - - 49.5 - 25.6

Und. and Gen.

AR

LaVIT† [87] 7B - - - - 46.8 - -
MetaMorph† [88] 8B - - 75.2 71.8 - - -
Gemini-Nano-1 [89] 1.8B - - - - - 26.3 -
ILLUME [21] 7B 88.5 1445.3 65.1 72.9 - 38.2 37.0
TokenFlow-XL [74] 13B 86.8 1545.9 68.9 68.7 62.7 38.7 40.7
LWM [69] 7B 75.2 - - - 44.8 - 9.6
VILA-U [90] 7B 85.8 1401.8 - 59.0 60.8 - 33.5
Chameleon [54] 7B - - - - - 22.4 8.3
Janus [20] 1.5B 87.0 1338.0 69.4 63.7 59.1 30.5 34.3
Janus-Pro-1B [26] 1.5B 86.2 1444.0 75.5 68.3 59.3 36.3 39.8

AR+Diffusion
Show-o-256 [56] 1.3B 73.8 948.4 - - 48.7 25.1 -
Show-o-512 [56] 1.3B 80.0 1097.2 - - 58.0 26.7 -

Diffusion D-Dit [46] 2.0B 84.0 1124.7 - - 59.2 - -

Discrete Flow
FUDOKI (Ours) 1.5B 86.1 1485.4 73.9 68.2 57.6 34.3 38.0

+Inference Scaling 1.5B - - - - - - 55.5

Inthe last equation, Pred44 + ت = 
39. Tofind The Value ofтски, 
subtracting EventArgs34 from 
Raymond家中 of изчи equationcorre 
y = 35 - 34. Thispiter to y =同意5.

Inthe last equation, 34 + y = 
39. Tofind the Value of y, 
subtracting 34 from Raymond 
sides of the equation: y = 35 - 
34. This simplifies to y =同意5.

Inthe last equation, 34 + y = 
39. Tofind the Value of y, 
subtracting 34 from Raymond 
sides of the equation: y = 39 - 
34. This simplifies to y = 5.

In the last equation, 34 + y 
= 39. To find the value of y, 
subtract 34 from both sides 
of the equation: y = 39 - 
34. This simplifies to y = 5.

(c) Fudoki (DFM) Generation Process (with “thinking” process)

(a) Janus (AR) Generation Process

(b) D-DiT (MDD) Generation Process

The last equation in the table is 
10 + a = 12.

The last equation in the table is 
10 + a = 12. To find the value of 
y, we substitute a = 12 into the 
equation:

The last equation in the table 
is 10 + a = 12. To find the 
value of y, we substitute a = 
12 into the equation:
10 + 12 = 12 + a
12 + 12 = 24

The last equation in the table 
is 10 + a = 12. To find the 
value of y, we substitute a = 
12 into the equation:
10 + 12 = 12 + a
12 + 12 = 24
So, the value of y is 24.
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Strategy.

Figure 4: Generation process of different methods. (a) AR-based Janus can only generate tokens sequentially;
if an error is made in the initial step, subsequent outputs will consistently propagate this mistake. (b) D-DiT
(mask-based discrete diffusion, MDD) cannot revise tokens once unmasked, making errors irreversible and
leading to poor generalization. (c) FUDOKI (discrete flow matching, DFM) allows generated tokens to be
revised in subsequent steps, enabling step-by-step reasoning and error correction for more accurate answers.

4.3 Ablation Studies

Training Strategies. 1) AR Initialization vs Training from Scratch: As shown in Fig. 5 (left), we
compare models initialized with autoregressive (AR) weights [20] against models trained from scratch.
The results indicate that AR initialization provided a substantial advantage for accelerating model
training, leading to consistently lower training loss throughout the optimization process. 2) Effects of
Time-embedding Layers: We also evaluate the impact of incorporating time embedding layers into
the model architecture. The results in Fig. 5 (middle) show that the model without time embedding
layers consistently achieves slightly lower training loss than the version with time embeddings. This
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Speed >> AR
Quality < AR

Speed > AR
Quality > AR

Figure 5: Comparison of training loss and speed-quality trade-off. (Left, Middle) AR initialization and
removing time embedding layers both reduce training loss. (Right) With fewer timesteps, FUDOKI achieves
much higher speed but slightly lower quality than AR; at the optimal timestep, both metrics surpass the AR.

Table 4: Quantitative comparisons between the AR-based models and our proposed FUDOKI
in terms of the self-correcting capabilities.

Method Baseline +Janus-Pro-1B to correct +Janus-Pro-7B to correct +FUDOKI to correct

MMVet 37.98 36.33 (-1.65) 38.30 (+0.32) 38.53 (+0.55)

suggests that our discrete generative model can implicitly infer timesteps from corrupted input, and
removing time embeddings reduces model complexity.

Quality-Speed Trade-off. Fig. 5 (right) illustrates the trade-off between speed (in images per minute)
and quality (GenEval score) in terms of setting different inference timesteps for visual generation. It
compares the inference performance of FUDOKI with the autoregressive (AR) baseline, Janus-Pro-1B
(with KV cache enabled). The red solid line (to the left vertical axis) represents the speed of FUDOKI,
which decreases as the number of timesteps increases, while the blue solid line (to the right vertical
axis) represents the generation quality of FUDOKI, which improves and stabilizes as timesteps
increase. We also draw the dashed horizontal lines indicating the baseline values for Janus-Pro-1B,
with the red dashed line for speed and the blue dashed line for quality. Please pay attention to the
intersection point of the green arrows. This intersection marks the point where FUDOKI achieves a
significant speed advantage over the AR baseline (as the red solid line exceeds the red dashed line)
and comparable output quality (where the blue solid line meets the blue dashed line). This can be
attributed to FUDOKI’s fewer inference steps and richer bidirectional context modeling.

Results on the Self-Correction Capability. We quantitatively evaluated the self-correcting capa-
bilities of FUDOKI and performed comparisons with the AR-based models. In experiments, both
FUDOKI and AR-based models were tasked with correcting baseline responses where necessary.
The baseline responses were obtained from Janus-Pro-1B on the MMVet benchmark, using the Open-
Compass VLMEvalKit codebase [100]. To assess their correction abilities: 1) For AR-based models,
we appended the following prompt to the original prompt: "Your original response is: <placeholder>.
Please correct it if needed. Otherwise, you may keep it the same." The models were then evaluated
on their ability to revise or retain the response as appropriate; 2) For FUDOKI, we initialized the
responses with the baseline responses (rather than uniformly-sampled noise tokens) and performed
iterative refinements over 32 steps, as described in the paper. As shown in Table 4, FUDOKI achieved
the highest performance improvement, while Janus-Pro-1B’s performance declined and Janus-Pro-7B
showed less increase, despite its larger model size than ours. We attribute such results to the increased
context length introduced by the baseline responses, which may distract the AR-based model’s focus.
This further highlights the limitations of the AR paradigm for effective self-correction.

5 Conclusion

In this work, we introduced FUDOKI, a multimodal model that uses discrete flow matching to
unify visual understanding and generation. Unlike conventional autoregressive and masking-based
approaches, FUDOKI leverages discrete flow matching for iterative self-correction, bidirectional
reasoning, and flexible generation. Experiments show that FUDOKI performs competitively with
leading AR-based MLLMs on both visual understanding and text-to-image generation tasks. These
results highlight discrete generative flow models—exemplified by FUDOKI—as a promising direction
for advancing multimodal language models and meeting future AGI challenges.
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Justification: Please see Section 3 and Section 4 for details.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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2. Limitations
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Justification: Please see appendix for details.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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only tested on a few datasets or with a few runs. In general, empirical results often
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: We did not make new theoretical contributions in the paper.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 3 and Section 4 for details.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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dataset, or provide access to the model. In general. releasing code and data is often
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will release the code and model weight when the paper is accepted.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 4 for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Section 4 for details.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Section 4 for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please see the main paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see appendix for details.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We will put efforts in this when we release our model in the future.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please see the Reference Section for details
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: We will put efforts in this when we release our model in the future.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

28



Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

A.1 Unified multimodal LLMs

Autoregressive Paradigms: End-to-End and Two-Stage Modeling. Autoregressive (AR) modeling
remains a core strategy for unified multimodal understanding and generation, but recent advances
have led to two distinct AR-based paradigms.

The first is the end-to-end AR paradigm, in which all modalities—including images, text, video,
and even audio—are tokenized into a unified discrete space and directly modeled within a single
AR sequence framework. Representative works such as Unified-IO [101, 102], Chameleon [54],
AnyGPT [103], and Emu3 [18] follow this approach: a transformer autoregressively predicts the
next token across modalities, with image tokens directly decoded back to pixels via learned decoders
such as VQGAN. DDT-Llama [104] further improves tokenization by introducing recursive diffusion
timestep tokens, enabling better alignment with language modeling and image reconstruction. This
approach enables strong performance in both understanding and generation, and supports flexible
modality conversion (e.g., AnyGPT covers speech and music). Building on this foundation, models
like Janus [20] and Janus-Pro [26] decouple visual encoding for understanding and generation
to address the granularity mismatch, while VILA-U [90], LWM [69], and LaVIT [55] focus on
efficient tokenization, unified visual-text alignment, and scaling to long-context and video scenarios.
Illume [21] and Illume+ [52] further enhance data efficiency and token alignment, with Illume+
introducing dual visual tokenization and a diffusion-based decoder for higher-fidelity image synthesis
and editing.

By contrast, the two-stage AR+diffusion paradigm separates sequence modeling and image synthesis:
AR models first generate image tokens, which are then used as conditions for downstream diffusion
decoders to boost image quality and diversity. Representative works include DreamLLM [105], which
enables free-form interleaved multimodal generation; MiniGPT-5 [106], which improves image-
text coherence with a two-stage pipeline; NExT-GPT [107], which supports any-to-any modality
conversion by connecting AR sequence modeling with modular diffusion decoders; MetaMorph [88],
which efficiently adapts LLMs for unified text and visual token generation; SEED-LLaMA [17], which
aligns image token semantics with text for scalable multimodal autoregression; and SEED-X [73],
which further enables arbitrary-size and multi-granularity image generation. Recently, BLIP3-o [108]
advanced this paradigm by generating CLIP-based image features using a diffusion transformer and
adopting sequential pretraining to better balance understanding and generation. Collectively, these
models demonstrate the flexibility and high image fidelity achievable with the two-stage approach,
highlighting a distinct trade-off with end-to-end AR models in reasoning and generation quality.

Hybrid Paradigm: Integrating AR and Diffusion within a Unified Framework. To bridge the
gap between the reasoning strengths of AR models and the generative power of diffusion models,
hybrid paradigms have emerged that combine both mechanisms in a unified architecture. For example,
JanusFlow [109] employs a continuous reactified flow for image generation, Show-o [56] adopts a
discrete MaskGIT-style diffusion, while Transfusion [19] utilizes a continuous U-Net-based DDPM.
Despite their differences in diffusion implementation, these hybrid models all enable more flexible and
controllable vision-language generation, further blurring the boundaries between AR and diffusion
approaches.

Diffusion Paradigm: Fully Diffusion-Based Multimodal Generation. In parallel, fully diffusion-
based approaches have also been proposed for unified multimodal modeling. UniDisc [48] and
D-Dit [46] formulate both text and image generation as a discrete diffusion process, starting from
masked sequences and enabling joint inpainting, editing, and controllable multimodal generation. By
leveraging the iterative denoising process, diffusion models typically achieve superior generation
fidelity and support fine-grained, high-quality editing. Moreover, unlike autoregressive models that
generate tokens sequentially, diffusion-based approaches can produce multiple tokens in parallel
during inference, improving efficiency and enabling more globally consistent outputs. While these
models offer enhanced controllability and flexible inference, they may still face challenges in com-
plex instruction following and sequential reasoning. Nevertheless, fully diffusion-based paradigms
represent a promising direction for scenarios requiring fine-grained editing, state-of-the-art generation
quality, and efficient parallel decoding across modalities.

Comparisons with Bagel [25]. Bagel [25] is a very strong recent advance in unified multimodal
understanding and generation. While both FUDOKI and Bagel aim for unified multimodal mod-
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eling, they are based on fundamentally different generative paradigms and architectural choices.
Specifically, Bagel employs a large Mixture-of-Transformer-Experts (MoT) architecture and follows
the autoregressive (AR) modeling paradigm, enabling it to efficiently scale with massive, carefully
structured interleaved multimodal data. In contrast, FUDOKI is the first general-purpose unified
multimodal model built entirely on discrete flow matching, which allows for bidirectional information
integration and iterative self-correction during generation. In terms of empirical performance, Bagel
demonstrates strong results on both multimodal generation and understanding, including advanced
tasks such as free-form image manipulation. We acknowledge that FUDOKI currently lags behind
Bagel, which can be attributed mainly to Bagel’s novel data scaling strategies and substantially larger
model size (14B parameters for Bagel vs. 1.5B for FUDOKI). We will explore integrating similar
scaling approaches in future work.

A.2 Flow Matching

Flow matching offers a fundamentally different approach to generative modeling compared to
diffusion models. While diffusion models rely on repeatedly injecting random noise into data and
then iteratively denoising it, flow matching instead learns a smooth, continuous transformation,
formulated through ordinary differential equations (ODEs), that maps a simple distribution (such as
Gaussian noise) directly to real data. This approach eliminates the need for repeated noise addition
and removal.

Pioneering this direction, Lipman et al. [42] introduced Continuous Normalizing Flows (CNFs) and
the flow matching framework, which trains neural networks by regressing vector fields along flexible
probability paths. This work laid the foundation for subsequent advances in CNF-based generative
modeling. Building on this, Liu et al. [41] proposed Rectified Flow, which learns neural ODEs
along straight-line paths between distributions, enabling more efficient and scalable training for
tasks such as image generation and domain adaptation. More recently, Albergo and Vanden-Eijnden
[110] presented InterFlow, which simplifies training by directly inferring the velocity field from the
probability flow of an interpolant density, thus avoiding costly ODE backpropagation and supporting
efficient likelihood estimation and high-resolution generation.

A key advantage of flow matching is its sampling efficiency: by allowing deterministic sampling
in just a few ODE steps, it achieves competitive FID scores with orders of magnitude fewer steps
compared to diffusion-based samplers. This remarkable efficiency has quickly made flow matching a
dominant approach in state-of-the-art image and video generation models.

Recent studies have also extended flow matching to discrete data domains. Campbell et al. [39]
introduced Discrete Flow Models (DFMs), which generalize flow matching to discrete spaces using
continuous-time Markov chains, improving multimodal modeling of both continuous and discrete
data over discrete diffusion models. Similarly, Gat et al. [37] proposed Discrete Flow Matching,
a framework that supports general probability paths and scalable non-autoregressive generation,
significantly narrowing the performance gap between discrete flow and autoregressive models on
coding benchmarks.

Thanks to these advances, flow matching methods have demonstrated strong performance across
a wide range of domains, including image synthesis [14, 15], video generation [111–114], speech
and audio generation [115–117], protein design [118–120], and robot control [121]. These successes
underscore the broad applicability and effectiveness of flow matching frameworks.

A.3 Discrete Diffusion Models

Diffusion models have achieved remarkable success in continuous domains such as images and
audio [57, 122, 123]. However, their adaptation to natural language poses unique challenges due
to the discrete nature of text. Early attempts to overcome this primarily injected Gaussian noise
into token embedding spaces, followed by denoising to reconstruct discrete sequences [124, 125].
Representative models in this line include Diffusion-LM [124], DiffuSeq [125], and Plaid [126].
While these approaches show promise for controllable generation and sequence-to-sequence tasks,
the need to map between discrete and continuous representations complicates training and inference.

Recent research has shifted to discrete noise-based diffusion models to address these limitations,
where noise injection and denoising are directly defined in the symbol space. The most influential
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early works in this direction are Argmax Flows [127] and D3PM [33]. D3PM, in particular, provides
a systematic framework for discrete diffusion, formalizing both absorbing (mask-based) and uni-
form (categorical) noise processes for sequence corruption. These foundational studies enable the
progressive corruption of discrete sequences through distinct forward processes: in the absorbing
(mask-based) process, tokens in the original sequence are gradually replaced with a special absorbing
token (e.g., <MASK>); in the uniform (categorical) process, tokens are progressively replaced with
randomly sampled tokens from the vocabulary. The diffusion model is then trained to reverse these
processes, denoising the corrupted sequence back to the original data. Building on these foundations,
subsequent models such as DiffusionBERT [58], LLaDA [44], and MD4 [35] introduce improve-
ments in noise scheduling, scalability, and training objectives. Methods like MaskGIT [128] and
FiLM [129], although originally proposed for vision or general infilling tasks, are methodologically
aligned with mask-based diffusion, employing iterative generation with absorbing masks. These
models have achieved performance competitive with, or even superior to, autoregressive models in
language modeling, infilling, and reasoning tasks.

In addition to mask-based approaches, the uniform (categorical) transition process, also formalized
in D3PM, corrupts sequences by progressively replacing tokens in the original data with tokens
sampled uniformly from the vocabulary, rather than a single mask token. SEDD [34] extends score
matching to discrete data via a score entropy loss, achieving state-of-the-art results and in some cases
surpassing autoregressive baselines. RDM [130] introduces a reparameterized sampling framework
to improve training and sampling efficiency. Furthermore, recent studies [131, 132] model discrete
diffusion as a continuous-time Markov chain, advancing theoretical understanding and practical
efficiency. Most recently, Discrete Flow Matching (DFM) [37] was proposed as a novel discrete
flow paradigm for generative modeling of high-dimensional discrete data. Unlike flow matching and
diffusion models designed for continuous domains, DFM introduces a general family of probability
paths that interpolate between source and target distributions in discrete space, and provides a unified
formula for sampling from these paths using learned posteriors such as probability denoisers and
noise predictors. Empirically, DFM demonstrates that adopting a uniform (categorical) transition
process, rather than an absorbing (mask-based) process, consistently leads to improved generative
performance.

Recent scaling studies further demonstrate that, in addition to matching autoregressive models in
perplexity and generation quality, discrete diffusion models have achieved strong performance on
complex reasoning and planning tasks, underscoring their flexibility and potential as competitive
alternatives for natural language generation and understanding [133–136, 44, 35]. Recent work [49]
explores directly adapting pretrained autoregressive language models into non-autoregressive dif-
fusion models via continual finetuning, enabling efficient knowledge transfer between paradigms.
Building on this line, Dream 7B [45] further advances diffusion LMs by consistently outperforming
previous diffusion models and matching the performance of top autoregressive models of similar size.

B More Comparison with State-of-the-arts

Qualitative Comparisons on Visual Generation. Figure 6 presents qualitative comparisons of visual
generation results produced by three models: Janus [20], D-DiT [46], and our method, FUDOKI,
across a diverse set of text prompts. Each row corresponds to a different prompt, covering scenarios
such as animals in unusual environments, cartoon avatars, and objects with specific attributes. As
shown in the figure, FUDOKI consistently produced images that more accurately captured the
semantics of the prompts, demonstrating superior text-image alignment and higher visual fidelity.

Qualitative Comparisons on Visual Understanding. Figure 7 presents qualitative comparisons
of visual understanding capabilities among Janus (AR) [20], D-DiT (mask-based discrete diffusion,
MDD) [46], and our FUDOKI (discrete flow matching, DFM). The upper section shows selected
intermediate outputs from each model’s answer generation process, illustrating their reasoning
dynamics. The lower section presents additional visual question answering cases, where FUDOKI
demonstrates higher reasoning accuracy and better alignment with ground truth answers, highlighting
its superior ability to generate reliable and precise responses.
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Janus D-DiT FUDOKIJanus D-DiT FUDOKI

Rainbow colored penguin A blue bird and a brown bear

An elephant under the sea A shark in the desert

A fisheye lens view of a turtle sitting in a forest A carrot on the left of a broccoli

Girl with long hair, cartoon avatar A horse running on the beach at sunrise

Teddy bear plush toy with glasses A rabbit wears a blue scarf

Figure 6: Qualitative Comparisons on Visual Generation. Comparison among Janus [20], D-DiT [46]
and FUDOKI on various text prompts. The results demonstrate that our method (FUDOKI) achieved superior
text-image alignment and aesthetics.

C Further Results

The Denoising Process of FUDOKI. Fig. 8 illustrates the iterative refinement process enabled by the
discrete flow matching framework in FUDOKI, demonstrating its application to both generation and
understanding tasks. The top panel visualizes how images are progressively denoised over iterations,
transitioning smoothly from an initial noisy prior x0 to the final high-fidelity image x1. Across
diverse generation examples—ranging from animals to objects—the model incrementally sharpens
semantic details and corrects spatial structure at each refinement step. The bottom panel depicts a
similar iterative refinement for the understanding task, where the model extracts text from an image.
Starting from a noisy token sequence, irrelevant or incorrect tokens are gradually replaced with
accurate tokens (e.g., “Sara Lee”) as the model converges to the correct answer. The red arrows
highlight token-level updates during each step, emphasizing the model’s ability to systematically and
continuously correct errors and align predictions. This figure showcases how discrete flow matching
enables fine-grained control and progressive improvement in both modalities by modeling transitions
in discrete space, leading to more accurate and coherent outputs. More cases can be found in our
project page: fudoki-dfm.github.io/fudoki/.

Maze Navigation. In this section, we train our proposed FUDOKI model on a novel task—maze
navigation—which simultaneously requires understanding and generation capabilities. To this end,
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with fall.
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Question: In the image, what does the 
handshake between the two men symbolize?
A. The completion of a business deal or an 

important appointment. 
B. The exchange of personal belongings. 
C. The start of a friendly conversation. 
D. The celebration of a personal 

achievement. 
Ground Truth: AJanus: D

D-DiT: </s>
FUDOKI: A. The completion of a business deal or an 
important appointment.

Question: Which action is performed 
in this image?
A. pushing car
B. Snowboarding
C. biking through snow
D. shoveling snow
Ground Truth: A

Janus: D
D-DiT: </s>
FUDOKI: The action performed in this image is A. pushing car.

Question: Is the word in the logo "angle's"? 
Please answer yes or no.
Ground Truth: No
Janus: Yes
D-DiT: Yes,
FUDOKI: No.

Janus: Yes

Question: Is there a yellow brick building 
in the image? Please answer yes or no.
Ground Truth: No

D-DiT: Yes, there are several yellow brickd 
buildings positioned next to a road in the 
image.
FUDOKI: No.

Question: What animal is the couch behind 
of?
Ground Truth: dog
Janus: Goats.
D-DiT: The couch is in front of a white dog.
FUDOKI: Dog

Question: What type of material is the 
crosswalk near the street lamp made of?
Ground Truth: concrete
Janus: Metal
D-DiT: The crosswalk near to the street lamp 
is made of materials
FUDOKI: Concrete

Figure 7: Qualitative Comparisons on Visual Understanding. The upper part of the figure shows selected
intermediate outputs from the answer generation process of different models—Janus (AR), D-DiT (mask-based
discrete diffusion, MDD), and our FUDOKI (discrete flow matching, DFM)—to illustrate their reasoning
approaches. Specifically, Janus, the AR-based model, is unable to revise its initial incorrect response (i.e., "Yes,
it is summertime ..."), even after generating the correct rationale later (i.e., "The large pumpkins ... suggest that it
is autumn"), making its response inconsistent overall. Meanwhile, D-DiT, the mask-based diffusion model, fails
to handle this reasoning task, often producing empty outputs (i.e., only </s> tokens). In contrast, our discrete
flow matching model, FUDOKI, demonstrates a coherent and accurate reasoning trajectory, producing consistent
and correct answers. The lower part of the figure provides additional qualitative examples on visual question
answering tasks. FUDOKI consistently delivers more accurate and well-aligned reasoning with the ground truth.

Fig. 9 presents a series of multimodal decision-making scenarios where FUDOKI and GPT-4o/GPT-
Image-1 are evaluated on their ability to reason over spatial layouts and produce both textual and
visual outputs. Each case involves a frozen lake grid of increasing size (3×3, 4×4, and 5×5), with a
defined goal and a character’s current position. The task is to select a safe move that avoids hazards
(dark blue holes) while progressing toward the treasure. We notice that while GPT-4o provided well-
reasoned textual explanations that include safety considerations, goal alignment, and environmental
awareness, its visual updates lacked consistency with its textual responses, and even altered the
maze structure (in the third row of the figure). In contrast, FUDOKI consistently predicted plausible
directions and generated coherent visual updates aligned with the task constraints, showing basic
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Iterative Refinements for Generation

!! !"
Iterative Refinements for Understanding

Question: Extract 
text from the image.
A. Laura Dee 
B. Sara Lee 
C. Tara Sweets 
D. Mara Treats 

!!

!"

AnswerSample

Figure 8: Visualization of the iterative refinement process enabled by discrete flow matching in FUDOKI,
demonstrating denoising process for text-to-image generation and visual understanding tasks.

Table 5: Performance Comparisons on the MathVista Benchmark.

Method Janus-1.5B Janus-Pro-1B FUDOKI

MathVista 32.4 35.1 38.6

spatial awareness. Furthermore, as shown in Fig. 10, FUDOKI is capable of completing the entire
maze navigation sequence, moving from the initial position to the treasure step by step.

Results on the MathVista [137] Benchmark. We also evaluated our proposed FUDOKI on a more
challenging mathematical reasoning benchmark, MathVista (testmini) [137]. As shown in Table 5,
we find that FUDOKI achieved the best performance compared to AR-based models at the same scale.
We attribute this improvement to FUDOKI’s discrete flow matching framework, which leverages
bidirectional context modeling to facilitate complex reasoning.

D Dataset Collections

Our training set comprises a total of 12.62 million samples, divided into two main categories:
Generation (8.76M, 69%) and Understanding (3.86M, 31%), as shown in Fig. 11. The Generation
subset, which is entirely composed of in-house data, is constructed for text-to-image generation
tasks. In contrast, the Understanding subset covers a diverse set of information extraction and
comprehension tasks. This balanced and large-scale collection ensures comprehensive support for
both generative and understanding capabilities.

Specifically, the public Understanding of data covers the following aspects:

• General (1506.8K, 40.6%): ShareGPT-4o (57.2K) [138], VSR (12.8K) [139], ALLaVA-
Instruct (680.4K) [140], IconQA (29.9K) [141], LVIS-Instruct4V (10.0K) [142],
ShareGPT4V (613.3K) [143], VIQuAE (18.5K) [144], RAVEN (0.3K) [145], Visual7W
(14.4K) [146], In-house (70.0K)
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User: Task: Find a safe path through the frozen lake to 
reach the goal.
Game Information:
- You're on a 3x3 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (1, 2)
- Goal position: (3, 3)
What direction should you move (Up, Down, Left, Right)? 
Also provide the coordinates you'll reach after this move.
Then, generate an image of the frozen lake after making 
this move.

FUDOKI:
Down 
(2, 2)

GPT-4o/GPT-Image-1: Based on the 
current position (1, 2), the best 
direction to move is Down to (2, 2) to 
safely progress toward the goal (3, 3).
Here is the updated frozen lake grid 
after the move:
•The character has moved from (1, 2) to 
(2, 2). 
•The treasure remains at (3, 3).

User: Task: Find a safe path through the frozen lake to 
reach the goal.
Game Information:
- You're on a 4x4 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (2, 2)
- Goal position: (4, 4)
What direction should you move (Up, Down, Left, Right)? 
Also provide the coordinates you'll reach after this move.
Then, generate an image of the frozen lake after making 
this move.

FUDOKI:
Right
(2, 3)

GPT-4o/GPT-Image-1: Based on the 
current position (2, 2), the best 
direction to move is Right to (2, 3) to 
safely progress toward the goal (4, 4) 
while avoiding the hole at (3, 2).
Here is the updated frozen lake grid 
after the move:
•The character has moved from (2, 2) to 
(2, 3). 
•The treasure remains at (4, 4). 
•The hole at (3, 2) is still present.

User: Task: Find a safe path through the frozen lake to 
reach the goal.
Game Information:
- You're on a 5x5 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (5, 3)
- Goal position: (2, 2)
What direction should you move (Up, Down, Left, Right)? 
Also provide the coordinates you'll reach after this move.
Then, generate an image of the frozen lake after making 
this move.

FUDOKI:
Left
(5, 2)

GPT-4o/GPT-Image-1: Based on the 
current position (5, 3), the best 
direction to move is Up to (4, 3) to 
safely progress toward the goal (2, 2) 
while avoiding the holes.
Here is the updated frozen lake grid 
after the move:
The character has moved from (5, 3) to 
(4, 3). 
The treasure remains at (2, 2). 
The holes remain in their respective 
positions.

Figure 9: Comparison of FUDOKI and GPT-4o/GPT-Image-1 on frozen lake maze navigation tasks. GPT-
4o/GPT-Image-1 offered well-reasoned textual outputs with safety and goal awareness but generated inconsistent
visuals, even altering the maze (e.g., the third row). FUDOKI, by contrast, consistently produced valid directions
and coherent visual updates aligned with task constraints, demonstrating stronger spatial consistency.

• OCR (428.0K, 11.5%): LLaVAR (59.3K) [61], SROIE (17.1K) [147], FUNSD (6.8K) [148],
OCRVQA (80K) [149], MLHME-38K (30K) [150], Rendered Text (10.0K) [62], IIIT5K
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User: Task: Find a safe path through the frozen lake to reach the goal.

Game Information:
- You're on a 5x5 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (4, 1)
- Goal position: (5, 4)

What direction should you move (Up, Down, Left, Right)? Also provide 
the coordinates you'll reach after this move.

Then, generate an image of the frozen lake after making this move.

FUDOKI: Right (4, 2)

User: Task: Find a safe path through the frozen lake to reach the goal.

Game Information:
- You're on a 5x5 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (4, 2)
- Goal position: (5, 4)

What direction should you move (Up, Down, Left, Right)? Also provide 
the coordinates you'll reach after this move.

Then, generate an image of the frozen lake after making this move.

FUDOKI: Down (5, 2)

User: Task: Find a safe path through the frozen lake to reach the goal.

Game Information:
- You're on a 5x5 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (5, 2)
- Goal position: (5, 4)

What direction should you move (Up, Down, Left, Right)? Also provide 
the coordinates you'll reach after this move.

Then, generate an image of the frozen lake after making this move.

FUDOKI: Right (5, 3)

User: Task: Find a safe path through the frozen lake to reach the goal.

Game Information:
- You're on a 5x5 frozen lake grid
- Your goal is to reach the treasure
- Avoid falling into holes (dark blue areas)
- Current position: (5, 3)
- Goal position: (5, 4)

What direction should you move (Up, Down, Left, Right)? Also provide 
the coordinates you'll reach after this move.

Then, generate an image of the frozen lake after making this move.

FUDOKI: Right (5, 4)

Success!

Figure 10: FUDOKI successfully completed the full maze navigation task step by step. Starting from the
initial position at (4, 1), it sequentially selected safe moves—Right → Down → Right → Right—while avoiding
holes and progressing toward the treasure at (5, 4). At each step, FUDOKI generated an updated image of the
frozen lake, reflecting the character’s new position and preserving the environment’s structure, culminating in a
successful arrival at the goal. Notably, in rows 2 through 4, the input images were taken directly from FUDOKI’s
previous outputs, demonstrating the model’s ability to maintain coherent state tracking and visual continuity
throughout the multistep decision-making process.

(6.0K) [151], HME100K (74.5K) [152], SynthDoG-EN (29.8K) [153], POIE (9.4K) [154],
IAM (5.7K) [155], TextCaps (60.5K) [156], COCO-Text V2.0 (28.1K) [157], ChromeWrit-
ing (8.8K) [62], ORAND-CAR (2K) [158]

• Document (155.8K, 4.2%): DocVQA (122.4K) [63], FUNSD (6.8K) [148], Deepform
(9.2K) [159], Kleister CharityAI (15.2K) [160], TAT-DQA (2.2K) [161]
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8.76M

3.71M

1.51M

0.54M
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Generation
Understanding

General
Math/Science
Language
OCR
Chart
Table
Document
Screen

Training Datasets Understanding Subsets

Figure 11: Training Dataset Distribution. The overall training data consists of 8.76M Generation samples
(69%) and 3.86M Understanding samples (31%), as shown on the left. The right chart depicts the composition
of the Understanding subset by category.

• Table (180.2K, 4.9%): TabFact (65.6K) [161], WikiTable (29.5K) [162], TabMWP
(38.4K) [163], RoBUT WTQ (38.2K) [164], RoBUT SQA (8.5K) [164]

• Chart (362.6K, 9.8%): ChartQA (62.9K) [165], Chart2Text (27.0K) [64], PlotQA
(10K) [166], DVQA (200K) [167], Infographic VQA (47.6K) [168], VisText (10.0K) [169],
Diagram Image2Text (0.3K) [170], LRV Chart (1.8K) [171]

• Screen (24.6K, 0.7%): WebSRC (5.1K) [172], VisualMRC (19.5K) [65]
• Math/Science (544.9K, 14.7%): MAVIS (187.3K) [173], G-LLaVA (162.4K) [66],

GeoQA+ (72.3K) [67], GeoMVerse (9.3K) [174], Geometry3K (3.0K) [175], MathVi-
sion (3.0K) [176], Cambrian Data Engine (50.8K) [177], Textbook QA (21.8K) [178],
ScienceQA (19.2K) [179], AI2d (18.8K) [180]

• Language (510.2K, 13.7%): MathInstruct (81.5K) [181], Evol-Instruct (142.8K) [182],
MathPlus (95.2K) [183], Magpie Pro (L3 MT) (50.0K) [68], ShareGPT4 (40.7K) [184],
Magpie Pro (L3 ST) (50.0K) [68], Magpie Pro (Qwen2 ST) (50.0K) [68]

E Mathematical Formulations of Kinetic Optimal Velocity

To facilitate understanding, we use a simplified notation here and let T denote the finite discrete
state space, with elements x, z ∈ T (in the main paper, we have xi, zi ∈ T ). A probability path is a
time-varying distribution pt(x), and a velocity field ut(x, z) describes mass transport between states
over time. In this way, we have the Continuity Equation as follows.

ṗt(x) + divx(jt) = 0, ∀x ∈ T

with the discrete divergence given by divx(jt) =
∑

z ̸=x jt(z, x)−
∑

z ̸=x jt(x, z) and jt(x, z) is the
flux, defined by jt(x, z) = ut(x, z) pt(z), which represents the flow of probability mass from z to

x. In this way, the velocity can be obtained by ut(x, z) =

{
jt(x,z)
pt(z)

if pt(z) > 0

0 otherwise
when x ̸= z and

ut(z, z) = −
∑

x ̸=z ut(x, z) to ensure the rate condition in Eq. 2. With such notations, we expect to
minimize the kinetic energy during the flow process, namely,

min
pt,jt

∫ 1

0

∑
x ̸=z

wt(x, z)
jt(x, z)

2

pt(z)
dt

subject to:

• Continuity Equation: divx(jt) = −ṗt(x)

• Non-negativity of the flux: jt(x, z) ≥ 0 ∀x ̸= z

• Boundary conditions: p0 = p, p1 = q

38



Here, wt(x, z) > 0 is a problem-specific weight controlling the "cost" of mass moving from z to
x. As evidenced in [38], when pt is given and let wt(x, z) = 1/pt(x), the kinetic optimal solution
can be obtained via j⋆t (x, z) =

[
pt(z)ṗt(x)− ṗt(z)pt(x)

]
+

∀x ̸= z. In this way, if we apply this
kinetic optimal j⋆t (x, z) for the probability path in Eq. 4, we can obtain the velocity defined in Eq. 5.

F Limitations and Broader Impacts

Limitations. Despite its promising results, FUDOKI also presents several limitations that warrant
further investigation. First, despite the advantages of discrete flow matching—such as being agnostic
to token order and compatible with bidirectional Transformers—the current implementation requires
the sequence length to be fixed prior to sampling. This constraint limits flexibility in generation and
makes dynamic-length outputs challenging. A promising direction for future work is to extend the
sampling scheme to support variable-length generation, which would broaden the applicability of the
model across open-ended tasks and enhance the flexibility on the computational cost during inference.
Besides, as shown in Fig. 12, while FUDOKI shows strong performance, it still faces challenges
under certain scenarios, such as performing text-to-image generation given complex prompts or
prompts involving rendering specific texts in images, as well as performing visual understanding
tasks that demand expert-level reasoning and domain-specific knowledge.

Question: What is the substance 
that is developing on these leaves?
A. Algae 
B. Downy mildew 
C. Powdery mildew 
D. Sooty mould 
Ground Truth: A

FUDOKI : To determine the substance developing on the leaves, 
let's analyze the image. The leaves show a yellowish-green 
patchy appearance, which is characteristic of downy mildew. 
Downy mildew is a fungal disease that affects many plants, 
causing discoloration and fuzzy growth on the underside of the 
leaves. The other options, such as algae, powdery mildew, and 
sooty mold, do not typically cause this kind of growth. 
Therefore, the correct answer is B. Downy mildew.

New York Skyline with 
'Diffusion' written with 
fireworks on the sky.

A keyboard made of water, 
the water is made of light, 
the light is turned off.

Image GenerationImage Understanding

Figure 12: Examples of failed cases on visual understanding and generation. While FUDOKI demonstrated
strong performance, it still struggled with harder tasks—such as generating images from complex prompts
involving specific texts, and understanding visuals that require expert-level knowledge.

Broader Impacts. FUDOKI introduces a novel paradigm for unified multimodal modeling that
departs from the long-dominant autoregressive approach, potentially redefining how future multimodal
systems are designed. By leveraging discrete flow matching with metric-induced probability paths,
FUDOKI enables controllable and interpretable generation processes, which could prove valuable
in critical applications such as education, embodied AI, and autonomous driving. Its iterative, self-
correcting refinement process aligns well with human reasoning patterns and may support safer,
more reliable AI agents in domains requiring high precision, such as medicine and law. Furthermore,
FUDOKI’s unified architecture for both understanding and generation fosters more integrated, general-
purpose agents—an important step toward realizing practical artificial general intelligence (AGI).
However, as with any generative technology, ethical considerations around bias, misuse, and content
safety must be carefully addressed as adoption scales.
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