
Lifelong Robot Learning with Human Assisted Language Planners

Meenal Parakh∗,α,γ , Alisha Fong∗,α,γ , Anthony Simeonovα,γ , Tao Chenα,γ , Abhishek Guptaα,β,γ , Pulkit Agrawalα,γ
αImprobable AI Lab βUniversity of Washington γMassachusetts Institute of Technology

∗Authors contributed equally

Abstract— Large Language Models (LLMs) have been shown
to act like planners that can decompose high-level instructions
into a sequence of executable instructions. However, current
LLM-based planners are only able to operate with a fixed set of
skills. We overcome this critical limitation and present a method
for using LLM-based planners to query new skills and teach
robots these skills in a data and time-efficient manner for rigid
object manipulation. Our system can re-use newly acquired
skills for future tasks, demonstrating the potential of open world
and lifelong learning. We evaluate the proposed framework
on multiple tasks in simulation and the real world. Videos
are available at: https://sites.google.com/mit.edu/
halp-robot-learning

I. INTRODUCTION

A dream shared by many roboticists is to instruct robots
using simple language commands such as “clean up the
sink.” Large language models (LLMs) can support this
dream by decomposing an abstract task into a sequence of
executable actions or “skills” [15]. Several LLM-based works
use a fixed set of skills (i.e., skill library) for planning [1,
14]. However, the available skills may not suffice in certain
task scenarios. For instance, given the task, “clean up the
sink”, an LLM may plan a sequence of picks and places
that move all the dishes to a dishrack. Suppose one cup
contains water which must be emptied before the robot puts
it away. Without access to an “empty cup” skill, the system is
fundamentally incapable of achieving this task variation. On
detecting failure, LLM planners may attempt to expand their
abilities – the system could request a new skill for “pouring”
if it detects water in the cup. However, unless the robot can
also execute new skills, the problem remains unsolved.

Based on the tasks and scenarios the robot encounters,
the planner must have the capacity to request and acquire
new skills. Further, such skill acquisition ought to be quick
– a system that requires days, weeks, or months to acquire
the new skill is of little utility. Concurrent to our work, the
ability of an LLM-based planner to acquire new skills has
been demonstrated in the virtual domain of Minecraft [35].
However, in virtual domains, new skills can be simply
represented as code that can execute high-level and abstract
actions. In contrast, learning a new skill for a robot also
involves finding low-level actions that can affect the physical
world. To the best of our knowledge, the ability to add skills
to a skill library in a time and data-efficient manner and
utilize them for future tasks, especially in the context of
LLM-based planners, has not been demonstrated.

Existing LLM-based robotic systems struggle with online
skill acquisition because common mechanisms for learning

skills (e.g., end-to-end behavior cloning or reinforcement
learning) typically require a large amount of data and/or
training time. Some methods are able to acquire new skills
in a more data-efficient manner in limited scenarios such as
in-plane manipulation (e.g., TransporterNets [38]), but these
skills are insufficient for 6-DoF actions (e.g., “grasp the mug
from the side”, “hang the mug on a rack” or “stack a book
in a bookshelf”). Another body of work such as in few-
shot imitation learning can efficiently solve new instances
from a task family but requires large amounts of pre-training
data [10, 26] which is seldom available for new skills. We
first present a method that allows LLMs to request new skills
to complete the given task. Second, we propose to use Neural
Descriptor Fields (NDFs) [30] to realize these new skills.
We choose NDFs as they require only 5-10 demonstrations
to perform rigid body manipulation in the full space of 3D
translations and rotations.

Our system works by prompting an LLM with a textual
scene description obtained by a perception system, a library
of skills expressed as Python functions, and a natural lan-
guage task specification. With this information, the LLM
plans and produces a sequence of skills (in the form of
code) that achieves the task. Along with the skills in the skill
library, we also provide the LLM with a special function for
requesting a new skill to be added to the library. When the
LLM plans call this learn skill function, it returns a new
skill name and a docstring description of the skill. However,
such a skill is abstract and is not mapped to actions. NDFs
allow the user to quickly realize this new skill by providing a
few demonstrations, after which the skill is added to the skill
library so that it can be re-used on future tasks. In summary,
this work demonstrates a proof-of-concept implementation of
an LM-powered robotic planning agent that can interactively
grow its skill library based on the needs of the task. We
show an instance of such a system using NDFs and perform
experiments that highlight the abilities of our system.

II. RELATED WORK

a) LLMs as Zero-Shot Planners: Prior work that uses
large language models (LLMs) as planners include SayCan
[1], InnerMonologue [14], NLMap-SayCan [4] and Socratic
Models [37]. These methods make significant contributions:
[1] and [37] using LLMs as planners; [14] emphasizes
the importance of feedback; and [4] improves upon [1]
by introducing the ability of open-vocabulary detection for
grounding using CLIP and ViLD features [27] [13]. The
planners in these methods either generate the plan in textual

https://sites.google.com/mit.edu/halp-robot-learning
https://sites.google.com/mit.edu/halp-robot-learning

format or choose the next step based on a given set of actions
described through text. Another set of methods [21] [34]
[32] [22] using LLM as planners chose to output the plans
directly using a Python or symbolic API, given the function
documentation and sufficiently expressive function names.

b) End-to-End Language Conditioned Manipulation:
Another class of methods processes inputs from different
modalities such as visual, textual, and sound, and train an
LLM to use these inputs to output robot actions end-to-
end (e.g., CLIPort [28], Interactive Language [23], RT1 [2],
PerAct [29] and VIMA [17]). Another end-to-end approach
is Palm-e [9] that generates textual steps as output, and are
assumed to map to a small set of low level policies. One
main advantage these offer is more faithful LLM grounding,
in contrast to modular approaches that only list the objects
in the scene and sometimes fail due to partial scene de-
scriptions. However, they each suffer from requiring a large
amount of data for training or fine-tuning. Such large data
requirements also make it difficult to achieve generalization.
Finally, many of these works are limited to performing 3-
DoF (top-down) manipulation actions.

c) Low-Level Robot Primitives.: The modular ap-
proaches [1] [14] [4] [37] [21] [34] use a predefined set of
primitive skills, often hardcoded or learned from behavior
cloning. These low-level primitives can also be learned
through methods such as [16], [11], [6], [38]. While these
skills can be composed to perform a wide range of actions,
many times a required skill cannot be composed from the
primitive set and adding a new primitive may require careful
engineering, or large number of demonstrations. Thus, we
employ [30] to incorporate new skills at runtime using only
a few demonstrations, with the only drawback of limiting the
skills to known object categories.

III. METHOD

In the spirit of prior work on performing long-horizon
tasks wherein a high-level planning algorithm chains together
different low-level skills [12, 20, 24, 37], our system has ex-
plicit modules for perception, planning, and control (Fig. 1).
The modularity of our system allows us to take advantage of
state-of-the-art (SOTA) models like SAM [18] for segmenta-
tion and GPT-4 [25] for planning skill sequences. At a high
level, our perception module describes the scene from RGB
and depth observations, generating a language-based scene
description containing information about the objects in the
scene and the spatial relationship between them. Given the
scene description and a library of skills, the planning module
plans a sequence of steps to solve the task based on the
scene description and task requirements. The skill sequence
corresponds to a set of executable behaviors on the robot.

In contrast to previous work that uses LLMs in robotics,
our planning module can request to learn a new skill when
it determines that the existing skills are insufficient, and a
data-efficient skill learning method can be used to extend
the skill library with this new executable behavior. With
an expanded skill library, the planner can utilize both the
original primitive skills and the newly learned skills when

completing subsequent tasks. Thus, our approach endows the
system with a form of continual learning. In the following
subsections, we describe each module in detail.

A. Perception

The perception module (Fig. 2a) processes RGBD images
to obtain and store information about the scene objects. First,
the module identifies objects using an open-vocabulary object
detector [39]. We also perform segmentation to obtain object
masks using SAM [18] and combine them with the depth
images to obtain object point clouds. In addition to object
labels and segmentation masks, the planner may require
additional information about the spatial arrangement of the
scene. For example, if a robot needs to empty a mug, it first
needs to know whether there is an object in the mug, and
only execute the skill of emptying it if there is. We gen-
erate spatially-grounded scene descriptions automatically by
computing positional relationships between objects using the
object point clouds. A scene description that is not spatially
grounded only describes the objects present in the scene,
without specifying the spatial relationship between them.
Lastly, to enable open-vocabulary language commands that
target specific object instances, we extract CLIP embeddings
of each segmented object in the scene. In this way, given a
scene with multiple mugs, if the task is to “pick up the red
mug,” we are able to identify the object that corresponds
to the description of a “red mug” (additional examples
in Appendix). Overall, our perception components output
segmented object point clouds with associated detection
labels, inter-object relations, and CLIP embeddings.

a) Spatially-grounded Textual Scene Description: To
inform the planner about the environment state, we format
the perception outputs into a language-based scene descrip-
tion with information about the scene objects and their inter-
object relations. This involves constructing a string with
the names of the objects along with the relations that hold
between them. The description is akin to a textual description
of “scene graph”. Please see Appendix for further details.
Note that the particular method of describing the scene is
not critical to our work and in the future vision-language
models capable of describing objects and the relationship
between them can replace this system.

B. Planning and Control

Given the language command and the textual scene de-
scription from the perception system, GPT-4 is used to plan a
sequence of the steps to be executed. The inputs and outputs
of the LLM are structured as follows:

a) Skill Definitions via Code API: One way to design
a planner is to output a plan in natural language. However,
a more machine-friendly alternative is to have the planner
output programming code [21, 32]. Having an LLM planner
directly produce code avoids the need to map a textual plan
to a robot-executable plan. In addition, communicating with
LLM in a programming language allows a human to give
prompts in the form of comments, docstrings, and usage
examples, which helps the planner understand how each skill

• Point cloud
• Spatial info
• CLIP feature

Scene description
(objects + spatial info)

Planning 1.mug_id = find('mug')
2.pick(mug_id);
3....

"A table has the following
objects: a mug, a mango... The

cup contains the banana."

Task command
(Language)

Perception

SAM
CLIP

Detic

Control

Skill Learner

Skill Library

...

If a skill is missing

Fig. 1: Our system consists of three modules: perception, planning, and control. The perception module processes RGB-D images and outputs a textual
scene description that identifies objects and their spatial relationships. The planning module uses GPT-4 to plan a sequence of steps based on the available
skills and the task command. We added a learn skill(skill name) function to the planner so that it can plan to learn a new skill if such learning
is necessary for completing the task. Finally, the control module executes the planned steps using the available skills or starts learning a new skill.

Fig. 2: (a) From RGBD images, our perception module obtains information
about the objects and their relations, creates an object information dictionary,
and generates a scene description (detection, object pairs corresponding to
given object relations, and the template is in black). (b) An example showing
the interaction between the robot, the user, and the planner.

operates. To take advantage of these benefits, we define each
skill as a Python function that takes input arguments such as
object identifiers and environment locations. We provide the
planner with a description and set of input/output examples
for each function. The code API is initialized with a skill
library S0 containing five primary functions: find, pick,
get place position, place, and learn skill:
• find(object label=None,
visual description=None,
location description=None): searches with
the perception system for an object based on category,

visual property, or location. Returns an object-id.
• pick(object id): uses Contact-GraspNet [33] to find

a 6-DoF grasp for the object point cloud associated with
the object id and executes the grasp.

• get place position(object id,
reference id, relation): for the object
given by object id, returns the (x, y, z) location
determined by the text description relation relative to
reference id .

• place(object id, place position): places the
object at the (x, y, z) value given in place position.

• learn skill(skill name): returns a new executable
skill function and a docstring describing the skill behavior.

The above API functions also output a signal indicating
whether or not the function executes properly (i.e., to catch
and correct runtime errors due to syntax mistakes). If new
skills are learned (discussed in Sec. III-C), the library is
updated Si = Si−1 ∪ {πi} where πi denotes the new skill.

b) Full Planner Input/Output and Skill Execution: The
planner is prompted to produce the plan in two steps. First,
given the scene and task description, the planner generates
a sequence of steps described in natural language. Next, the
planner is provided with the code API of skills as discussed
above and tasked to write code for executing the task using
the given skills. For example, if the first step in the plan is
to “find” a mug with the find function, the planner may
output object id = find("mug"). Since our system
uses a LLM planner, the human user can interact with the
planner at either stage of the planning to further refine the
plan or correct mistakes. An example of the interaction
between the user, planner, and robot is shown in Fig. 2. We
qualitatively observe this two-step process helps the model
generate higher-quality plans, as compared to producing the
full plan directly. The two-step breakdown potentially helps
in the same way “chain-of-thought” prompting has helped
LLM find better responses [36].

The code returned by the LLM is executed using the exec
construct in Python. For skills involving robot actions, the
skill function calls a combination of inverse kinematics (IK),
motion planning, and trajectory following using a joint-level
PD controller.

C. Learning New Skills and Expanding the Skill Library
a) Requesting New Abilities with learn skill func-

tion: The code API for the learn skill, contains a
docstring detailing the role of the function and also in-
cludes a few examples of the desired output of using the
learn skill function. The reason for providing examples
is to exploit the in-context learning ability of LLMs –
these examples help the LLM figure out how to use the
learn skill function. More details are in the Appendix.
The learn skill(skill name) returns the handle to a
new executable skill function along with a docstring that
describes the behavior of the function. The function is param-
eterized by either one or two object ids - one for spec-
ifying which object skill name acts upon, and another
for specifying a reference object for relational skills (e.g.,
pick(bottle id) vs. insert(peg id, hole id)).
The exact parameterization is decided by the LLM. When
learn skill is called, the returned function is added to
the skill library so that the new skill can be reused in the
future.

b) Data- and time-efficient skill grounding with NDFs:
Our framework is agnostic to the specific method used to
ground newly learned skills into actions. It can be end-
to-end learning with reinforcement learning, or behavior
cloning from demonstrations. In this work, we choose to use
NDFs [30] to learn new skills because it allows efficiently
learning a skill from just a few (≤10) demonstrations. NDFs
also facilitate a degree of category-level generalization across
novel object instances, as well as generalization to novel
object poses due to built-in rotation equivariance. More
information on NDFs can be found in [30, 31].

c) Learning from Feedback: If we specify a task the
system cannot solve using the available skills (such as “pick
up the mug by the handle”, when the available “pick” skill
grasps the mug from the rim), we would expect the LLM to
directly request a new skill with learn skill. While this
occurs the majority of the time (see Experiments Section),
the planner sometimes directly attempts the task using a skill
that does not satisfy the task requirements. In these cases, if
a user provides the outcome of a task attempt (e.g., “the
mug was grasped by the rim”), the planner can use this
information to register its usage of an incorrect skill and
subsequently call learn skill to expand its abilities. The
system can then attempt the task with the newly learned skill.

This highlights the need for feedback mechanisms that, in
addition to detecting runtime errors, also inform the planner
about the state of the environment after skill execution. To
achieve this, we allow a human operator to manually but
optionally provide feedback before and after code execution.
We allow the human to provide feedback after the execution
of every step in the code. The combination of outcome
feedback from the user and the execution feedback from the
skill functions enables the system to detect failures, replan
and if necessary expand its skillset using learn skill.

d) Continual Learning: Learning new skills allows one
to execute a task that was previously not possible. However,
the full potential of learning new skills is realized when we

allow the system to continually acquire and re-use skills to
solve future tasks. This creates a system with ever-expanding
capabilities. There are many ways this can be achieved – our
implementation involves simply adding a new skill function
expressed as a code API to the skill library, and using the
updated library for future tasks.

IV. EXPERIMENTS

a) Environment Design and Setup: We design our
experiments to achieve three goals: (1) Show a proof-of-
concept implementation of LLM-based task planning and
execution with interactive skill learning in the real world,
(2) Evaluate the abilities of current LLMs to appropriately
request and re-use new skills based on the needs of different
manipulation tasks, and (3) Compare the performance of the
system when different components (such as object relations)
are included vs. removed.

In the real world, we tested our system on the Franka
Panda robot with a Robotiq 2F-140 parallel jaw gripper. We
used four calibrated RealSense cameras to obtain RGB-D
images and point clouds. We also evaluated the LLM planner
in isolation with a set of manually crafted tasks, scene
descriptions, and success criteria. To perform additional sys-
tem ablations, we evaluate our approach in simulation using
PyBullet [7] and the AIRobot library [5]. Our environment
includes a tabletop-mounted Panda with the default gripper,
and synthetic cameras for obtaining RGB-D images and seg-
mentation masks. We use a combination of ShapeNet [3] and
manually-generated objects for experiments in simulation.

A. Real-world tasks requiring learn skill

We first showcase the benefits of incorporating
learn skill. The system is deployed to perform
three tasks in the real world: (1) grasping a mug by a
specific part, such as the handle, (2) placing a bottle in a
container that must fit on a small shelf, and (3) emptying
a mug from a “sink”. Each task can be completed in
multiple ways, some of which do not fulfill the full set of
task requirements. Our reference point for comparison is
the overall system with no feedback mechanism and no
learn skill capability. This version directly attempts
each task using the base set of primitive skills. Below, we
discuss the differences between this baseline and the full
version of our system. The full set of planner inputs/outputs
for these tasks can be found in the Appendix.

1) Learning and requesting new pick and pick-place skills:
Task 1: Grasp mug by handle Our warm-up task that
highlights how learning new skills can benefit our system is
to perform grasping by a specific part. In this case, we ask
the system to “grasp the mug by the handle” (see Fig. 3A).
Without learn skill, the planner directly calls pick on
the mug. This triggers a grasp detector [33] to output a set of
grasps on the corresponding mug point cloud. Since most of
these grasps are along the rim of the mug, the robot executes
a grasp along the rim of the mug, and the task finishes.

If an incorrect skill is used, the human can prompt the
system with feedback. By telling the system “the mug was

Fig. 3: High-level plan and images for three tasks requiring a new skill: (A) Grasp mug by the handle, (B) Place bottle in container
on its side, and (C) Empty the sink. The gray comments represent execution feedback while the green text is human feedback. When
learn skill is not available, the robot fails to complete the tasks. However, by learning new skills, the planner expands its abilities
and satisfies each task requirement.

picked up by the rim”, the planner puts the mug back down
and requests to learn a new pick mug by handle skill.
We teach this as a side-grasp at the handle using NDFs
with five demonstrations. After collecting the demos, we
add pick mug by handle to the skill library. Finally, the
LLM directly calls pick mug by handle and finishes the
task successfully.

Task 2: Place bottle in flat tray Our next task is to place
a bottle in a container that must eventually fit in a small shelf.
Here, we prompt the system to “place the bottle sideways in
the container” (see Fig. 3B). When the pipeline runs using
the base set of skills, the robot uses the only available “place”
skill, which places the bottle upright in the tray.

Instead, when we provide the feedback “the bottle was
placed upright in the tray”, the LLM calls learn skill
to acquire a place bottle sideways in tray skill.
This is implemented via NDFs as a side grasp on the bottle
along with a reorientation and placement inside of the tray.
Once this new skill has been added, the robot is able to
successfully complete the task.

2) Continual learning by re-using previously-learned
skills: Task 3: Empty mug from sink Finally, we prompt
the system with the abstract objective of emptying a “sink”
by removing a mug from the container and placing it on the
table (see Fig. 3C). This task implicitly requires emptying
the mug before placing it. We test the LLM’s ability to
satisfy this requirement by placing an additional small object
(banana) inside the mug (ensuring the object is at least visible
by the cameras, but difficult to pick up directly). The baseline
system directly calls a combination of pick on the mug and
place to put the mug down on the table.

However, with access to learn skill and the dynamic
skill library, the planner reuses pick mug by handle
learned in Task 1 and immediately requests to learn
tilt mug so it can first move any objects in the mug to
the trash container. We again use NDFs to teach tilt mug,
which reorients the mug above the tray. After emptying,
the system plans to place the mug back into the sink. The
user tells the system “the sink is not empty, put the mug to

the right of the sink”. Finally, the LLM re-plans with this
feedback and achieves the final placement on the table.

B. LLM-only skill learning evaluation

In this section, we examine the isolated ability of the
LLM-planner to utilize the learn skill function and to
appropriately re-use and/or not re-use newly-learned skills
on subsequent runs. This enables further analysis of GPT-
4’s ability to interpret manipulation scenarios represented
via textual scene descriptions and correctly use the available
skills provided in the code API. For each task in the
following subsections, we provide a manually-constructed
scene description (that does not correspond to any particular
real-world scene) along with a task prompt and the skill
API. We ask the planner to output code that completes the
task using the API functions. The code output is manually
evaluated as correct/incorrect by a human.

Requesting new skills when needed First, we study
the ability to either (i) properly call learn skill or (ii)
properly not call learn skill, for a variety of tasks where
either the base skill set is (ii) or is not (i) insufficient for
the task, respectively. We report the fraction of attempts that
correctly use or ignore learn skill in a scenario where
human feedback is not provided. The results are shown in
the top two sections of Table I. The 91% success rate for
using learn skill without feedback indicates GPT-4 can
be used for requesting an expanded skill set in a purely
feed-forward fashion. Similarly, the LLM usually does not
call learn skill when it is not needed (87% success).
However, some performance gap remains in both settings.

Re-using new skills with varying level-of-detail skill
descriptions Next, we focus on the ability to properly re-use
the previously-learned skills on subsequent runs, when they
can either be applied or when they specifically should not
be applied (e.g., in scenarios where they are inappropriate
or infeasible). We consider varying levels of detail in the
description that accompanies the newly-learned skill as it
is added to the code API. For instance, we can provide
minimal information and only add the name of the new skill,
or we can modify the return values of learn skill so
that the LLM writes its own docstring/function description
to accompany the new skill when we add it to the API.
The results are shown in the last two rows of Table I. The
success rates indicate that the language model correctly uses
the newly-learned skills with higher frequency when the skill
descriptions also include docstrings. This makes intuitive
sense, as it provides extra context for both the ability and
applicability of the newly learned skill, which the LLM can
attend to when generating the output code for executing the
task (mimicking the chain-of-thought and “let’s think step-
by-step” improvements observed in prior work [19, 36]).

Despite the performance increase when describing newly-
added skills in more detail, the LLM only achieves mod-
erate overall performance (75% success rate). We ob-
serve this is due to a combination of sometimes using
new skills when they should not be used (e.g., calling a
side pick bottle skill even when the scene description

Eval Metric Variation Success Rate

Correct use of learn skill – 0.91
Correctly did not use learn skill – 0.87

Correct re-use of new skill Name only 0.50
(varying skill description) Name + docstring 0.75

TABLE I: Success rates for evaluations LLM-only
learn skill evaluation.

says “the bottle cannot be reached from the side”) and re-
learning the same skill multiple times (while occasionally
calling it a very similar name) rather than directly utilizing
the function that is already available in the API. We deem
this as a somewhat negative result which points to poten-
tial gaps in such a method of LLM-based task planning.
Namely, directly outputting a sequence of high-level skills
(or exhaustively scoring them with a language model) does
not allow more information about the operation of high-level
skills (such as scenarios when they are or are not applicable)
to be provided or utilized during planning/reasoning.

V. LIMITATIONS

While our system takes advantage of SOTA components,
they sometimes fail and trigger compounding inaccuracies
in the downstream pipeline. For example, the LLM heavily
depends on an accurate description of the scene, which
can sometimes contain erroneous detections and incorrect
object relations. We also leverage human feedback to obtain
environment descriptions that inform task success and skill
acquisition. Humans can provide accurate descriptions that
inform when to learn new skills, but repeated user interaction
makes the system less autonomous and slower to execute
tasks. Leveraging learned success detectors would make
the system more autonomous and self-sufficient. Similarly,
human verification is typically needed to confirm the overall
success or failure of a task, making it difficult to run system
evaluation experiments at scale and limiting our evaluations
primarily to qualitative demonstrations.

VI. CONCLUSION

This paper presents a modular system for achieving high-
level tasks specified via natural language. Our framework
can actively request and learn new manipulation capabilities,
leading to an ever-expanding set of available skills to use
during planning. We show how an LLM planner can use
this ability to adapt its skill set to the demands of real-
life task scenarios via both feed-forward reasoning and en-
vironmental feedback. In conjunction with perceptual scene
representations obtained from off-the-shelf components and a
data-efficient method for learning 6-DoF manipulation skills,
we provide an example of a complete system. Our results
demonstrate how this combination of full-stack modularity,
spatially-grounded scene description, and online learning
enables a qualitatively improved ability to perform manip-
ulation tasks specified at a high level.

VII. ACKNOWLEDGEMENT

We thank the members of Improbable AI for their feed-
back on the project. This work is supported by Sony, Amazon
Robotics Research Award, and MIT-IBM Watson AI Lab.
Anthony Simeonov is supported in part by an NSF Graduate
Research Fellowship.

A. Author Contributions

Meenal Parakh Co-led the project, developed the core
LLM-planning framework and full-stack system, set up and
ran experiments in simulation and the real world, and drafted
the paper.
Alisha Fong Co-led the project, integrated NDF-based skill
learning into the LLM-planning framework, set up and
conducted experiments in the real world and simulation,
helped evaluate the LLM in isolation, and drafted the paper.
Anthony Simeonov helped integrate NDF-based skills into
the framework, supported real robot experiments and LLM-
only evaluation, and helped revise the paper.
Tao Chen engaged in brainstorming and discussion about
system implementation and experiment design, mentored
Meenal Parakh, and helped draft the paper.
Abhishek Gupta was involved with technical discussions,
advised Meenal Parakh, and helped with project brainstorm-
ing in the early phases.
Pulkit Agrawal advised the project and facilitated technical
discussions throughout, helped refine the project focus on
interactive skill learning with LLMs, and revised the paper.

REFERENCES

[1] Michael Ahn et al. “Do As I Can and Not As I Say:
Grounding Language in Robotic Affordances”. In: arXiv preprint
arXiv:2204.01691. 2022.

[2] Anthony Brohan et al. “Rt-1: Robotics transformer for real-world
control at scale”. In: arXiv preprint arXiv:2212.06817 (2022).

[3] Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model
Repository. Tech. rep. arXiv:1512.03012 [cs.GR]. Stanford Univer-
sity — Princeton University — Toyota Technological Institute at
Chicago, 2015.

[4] Boyuan Chen et al. “Open-vocabulary queryable scene representa-
tions for real world planning”. In: 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2023.

[5] Tao Chen, Anthony Simeonov, and Pulkit Agrawal. AIRobot.
https://github.com/Improbable-AI/airobot. 2019.

[6] Cheng Chi et al. “Diffusion Policy: Visuomotor Policy Learning via
Action Diffusion”. In: Proceedings of Robotics: Science and Systems
(RSS). 2023.

[7] Erwin Coumans and Yunfei Bai. “Pybullet, a python module for
physics simulation for games, robotics and machine learning”. In:
(2016).

[8] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: ArXiv abs/1810.04805
(2019).

[9] Danny Driess et al. “PaLM-E: An Embodied Multimodal Language
Model”. In: arXiv preprint arXiv:2303.03378. 2023.

[10] Yan Duan et al. “One-shot imitation learning”. In: Advances in
neural information processing systems 30 (2017).

[11] Pete Florence et al. “Implicit behavioral cloning”. In: Conference
on Robot Learning. PMLR. 2022.

[12] Caelan Reed Garrett et al. “Integrated task and motion planning”.
In: Annual review of control, robotics, and autonomous systems 4
(2021).

[13] Xiuye Gu et al. “Open-vocabulary Object Detection via Vision and
Language Knowledge Distillation”. In: International Conference on
Learning Representations. 2021.

[14] Wenlong Huang et al. “Inner Monologue: Embodied Reasoning
through Planning with Language Models”. In: Conference on Robot
Learning. PMLR. 2023.

[15] Wenlong Huang et al. “Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents”. In: Inter-
national Conference on Machine Learning. PMLR. 2022.

[16] Eric Jang et al. “BC-Z: Zero-Shot Task Generalization with Robotic
Imitation Learning”. In: 5th Annual Conference on Robot Learning.
2021.

[17] Yunfan Jiang et al. “VIMA: General Robot Manipulation with
Multimodal Prompts”. In: arXiv preprint arXiv: Arxiv-2210.03094
(2022).

[18] Alexander Kirillov et al. “Segment anything”. In: arXiv preprint
arXiv:2304.02643 (2023).

[19] Takeshi Kojima et al. “Large language models are zero-shot rea-
soners”. In: Advances in neural information processing systems 35
(2022).

[20] John Leonard et al. “Team MIT urban challenge technical report”.
In: (2007).

[21] Jacky Liang et al. “Code as policies: Language model programs
for embodied control”. In: 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2023.

[22] Kevin Lin et al. “Text2Motion: From Natural Language Instructions
to Feasible Plans”. In: arXiv preprint arXiv:2303.12153 (2023).

[23] Corey Lynch et al. Interactive Language: Talking to Robots in Real
Time. 2022. arXiv: 2210.06407 [cs.RO].

[24] Michael Montemerlo et al. “Junior: The stanford entry in the urban
challenge”. In: Journal of field Robotics 25.9 (2008).

[25] R OpenAI. “GPT-4 technical report”. In: arXiv (2023).
[26] Deepak Pathak* et al. “Zero Shot Visual Imitation”. In: International

Conference on Learned Representations (2018 (*equal contribu-
tion)).

[27] Alec Radford et al. Learning Transferable Visual Models From Nat-
ural Language Supervision. 2021. arXiv: 2103.00020 [cs.CV].

[28] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “CLIPort: What
and Where Pathways for Robotic Manipulation”. In: Proceedings of
the 5th Conference on Robot Learning (CoRL). 2021.

[29] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. “Perceiver-Actor:
A Multi-Task Transformer for Robotic Manipulation”. In: Proceed-
ings of The 6th Conference on Robot Learning. Ed. by Karen Liu,
Dana Kulic, and Jeff Ichnowski. Vol. 205. Proceedings of Machine
Learning Research. PMLR, 2023, pp. 785–799.

[30] Anthony Simeonov et al. “Neural descriptor fields: Se (3)-
equivariant object representations for manipulation”. In: 2022 In-
ternational Conference on Robotics and Automation (ICRA). IEEE.
2022.

[31] Anthony Simeonov et al. “Se (3)-equivariant relational rearrange-
ment with neural descriptor fields”. In: Conference on Robot Learn-
ing. PMLR. 2023.

[32] Ishika Singh et al. “Progprompt: Generating situated robot task
plans using large language models”. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2023.

[33] Martin Sundermeyer et al. “Contact-graspnet: Efficient 6-dof grasp
generation in cluttered scenes”. In: 2021 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2021.

[34] Sai Vemprala et al. ChatGPT for Robotics: Design Principles and
Model Abilities. Tech. rep. MSR-TR-2023-8. Microsoft, 2023.

[35] Guanzhi Wang et al. “Voyager: An Open-Ended Embodied Agent
with Large Language Models”. In: arXiv preprint arXiv: Arxiv-
2305.16291 (2023).

[36] Jason Wei et al. “Chain-of-thought prompting elicits reasoning
in large language models”. In: Advances in Neural Information
Processing Systems 35 (2022).

[37] Andy Zeng et al. Socratic Models: Composing Zero-Shot Multimodal
Reasoning with Language. 2022. arXiv: 2204.00598 [cs.CV].

[38] Andy Zeng et al. “Transporter Networks: Rearranging the Visual
World for Robotic Manipulation”. In: Conference on Robot Learning
(CoRL) (2020).

[39] Xingyi Zhou et al. Detecting Twenty-thousand Classes using Image-
level Supervision. 2022. arXiv: 2201.02605 [cs.CV].

https://github.com/Improbable-AI/airobot

APPENDIX
A1. ADDITIONAL EXPERIMENTS

A. Benefiting from spatially-grounded scene description

The next set of tasks we consider evaluates the benefit of providing a spatially-grounded scene description. We also consider
basic tasks of picking objects and placing them in a described position, and the stacking task that involves a sequence of
three pick-place actions. The main results are shown in Table II, where each row in the tasks column represent a set of
tasks involving different object categories (for example, mugs, bowls, bottles) and receptacles (for example, containers, and
baskets). Each task in a row is performed for ≥ 10 runs with varying object instances, and success or failure is assigned to
each run, which is then used to find the success rate.

The first task category in scene description requires grasping a target object that lies beneath a second object. Without a
relational scene description, the planner directly picks the target object. On the other hand, if the planner is informed that
the second object is above the target, it calls pick and place on the second object before fetching the target object.

The second example showing the advantage of our scene description involves detecting task progress to minimize the
number of actions that are used. For instance, to “put all objects of a specified category into a basket”, the generated plan
completed the task in fewer steps if the planner knows some objects are already in the tray.

The final category of tasks calls for satisfying relational constraints with an indirectly specified reference object. One
example is “place the apple in a tray without mugs”. When provided with the scene description, the planner detects the tray
without any mugs and uses it as the placing target. In contrast, without the scene description, the system fails to place in
the correct tray.

Fig. A1: Example plan for “box over a mug” task, with and without spatially-grounded scene description information in
the input. If the scene description lacks spatial information, the planner fails to communicate that the box must be removed
before picking up the mug.

Tasks Success
Basic Tasks Pick object 91%

Place object-1 to the left of object-2 80%
Place object into receptacle 76%
Stack three bowls 70%

Scene Description Fetch object-1 (when object-2 lies over it) 79%
Place all objects into the receptacle (partial progress) 75%
Place object-1 into receptacle that has no object-2 75%

TABLE II: Success rates for evaluations in simulation.

A2. TUNABLE SYSTEM PARAMETERS

Parameter Value Description

Detection thd. 0.3 Object detection threshold in Detic
Mask Erosion 10 The number of pixels removed from the mask’s boundary to lessen the impact

of high depth noise near object’s edges.
PCD Merging thd. 0.03 To find correspondence between objects in images from different views. If the

change in std deviation for two object point clouds in the two images is less
than the threshold, they are merged to represent one object.

Overlap thd. 20 In the top down projection of two objects convex hull intersection contains
atleast the threshold points, then the objects belong to either the “above” case
or the “contained” case.

Contained thd. 0.1 If the percentage of an object’s points that lie inside the convex hull of another
object is less than this threshold, then the object is said to be “contained-in”
in the other object.

Grasp thd. 0.8 Grasps (generated from [33]) with predicted success value higher than the
threshold are considered.

Place description thd. 0.6 The threshold for location-description option in find primitive. Uses
BERT [8] for the finding the score.

Visual description
thd.

0.3 The threshold for visual-description option in find primitive. Uses
CLIP [27] for the finding the score.

Object label thd. 0.3 The threshold for object-label option in find primitive. Uses BERT [8]
for the finding the score.

A3. OPEN VOCABULARY OBJECT DETECTION

The primitive function find performs the task of detecting any object in the scene, either through (a) an object label that
comes from the scene description, (b) a visual description that describes an object’s visual properties (identifiable through
CLIP features), and (c) based on the object’s location in the environment with respect to another object, as described through
the scene description. Examples for different ways in which a call to find can be made is shown in Figure A2

Fig. A2: Examples for find primitive in the API. Numbers in green pass the threshold and the object is found. Number
in red are below threshold and no object is found. The green highlighted are true positives, while the red highlighted is an
example of a false positive.

A4. GENERATING SCENE DESCRIPTION

Generating scene description involves the following main steps: finding object relations between pair of objects, generating
an object scene graph and defining relations over the edges and finally filling in the information in a template. These steps
from (a) to (h) are shown in Figure A3a. First, multiple RGBD images are obtained the camera sensors followed by detection
(b) and segmentation (c) in those images. For each image, we obtain an object instance’s partial point cloud which are merged
with the partial point clouds from other camera images (d). Now each object’s point cloud is compared with another object’s;
if they overlap and the convex hull of one covers some part of the object, then one is identified as containing the other
object. Similar heuristic is used for identifying when an object lies above other object (e). Using these relations, objects are
grouped together: a tray containing an apple will be treated as one vertex (f). Now all the grouped vertices are connected
with one of their nearest vertex, and assigned one of the directional relations (left, right, front, down)(f). Next we traverse
through the object graph and convert each edge, or relation into a sentence. While traversing the graph, on each grouped
object node, the description of what objects are contained, or lies above within the node is also added to the description.
Finally, we list all objects (and sum all objects of belonging to same category) and add the sentence to the beginning of the
description, thus producing the final description (h). A few examples are shown in Figure A3b.

(a) Generating scene description involves steps (a) to
(h): finding object point clouds, then finding spatial re-
lations between pair of objects, followed by generating
an object scene graph and defining relations over the
edges and finally filling in the information in a template.

(b) Scene Description Examples: on the left are the
example scene images, in which the user is standing
on the right side of the image; at the center are the
scene descriptions; and at the right side shows the
object graphs that were traversed to produce the scene
description.

A5. PICK AND PLACE PRIMITIVES

Pick and Place primitives are main skills that the library has by default, prior to new skills being added. The pick function
takes in an object id and access the object’s point cloud, runs Contact Graspnet [33] which is then executed. Some example
objects we use for real world experiments are shown in Figure A4a and some of the computed grasps are on those objects
are shown in Figure A4b.

(a) Example real objects (b) Real World Grasp Examples. From left to right, showcasing the grasp for a book, a milk
carton, a cube, a ball, a toy and a spool of thread.

The place function takes in the object id to be placed, and the place position. The place position usually comes from
another function called get-place-position which takes in the object id of the object to be placed, the object id
of a reference object and a description of how the object has to be placed with respect to the reference. This description
provided as an argument to get-place-position function is matched using BERT embeddings, with a predefined set
of descriptions of place positions with respect to the reference object. These predefined descriptions are same as the relations
defined between objects in scene description (Section A4). Figure A5 shows some of the example place positions and their
descriptions with respect to the object in blue.

Fig. A5: Placement possibilities for an example scene. The description in get-place-position function argument is
matched with these possibilities of the location descriptions.

A6. PYTHON API

The Python code API provided in the input prompt to the language planner is seen here:
start_task()

must be called at the start of any task. It starts the robot.

end_task()
must be called when a task completes. It stops the robot.

get_all_object_ids()
returns a list of all integer object ids present in the scene;
Returns:

ids: list(int)

get_container_id(object_id)
gives the id of the object that contains ‘object_id‘
Arguments:

object_id: int
id of the object that is contained in some container

Returns:
container_id: int or None

the id of the container that contains ‘object_id‘
None is returned when the object_id is not contained in
any container.

get_objects_contained_and_over(object_id)
gives the ids of all the objects that lie inside or over ‘object_id‘
Arguments:

object_id: int
id of an object that contains something or over which lie
other objects

Returns:
ids: list(int)

the ids of all the objects that lie either inside or over
the ‘object_id‘ an empty list is returned when nothing lies
over or inside.

find(object_label=None, visual_description=None, place_description=None,
object_ids=None)
Finds an object in the scene given atleast one of object_label,
visual description or place description.
Arguments:

object_label: str
The name with which the object has been referred to earlier
For example, "the second tray", "the third bowl" etc
By default, this argument is None

visual_description: str
object with some visual description of what it is.
For example, "the red mug", "the blue tray", "the checkered box"
By default, this argument is None

place_description: str
a string that describes where the object is located.
For example, to find a bowl that is on the right of the
tray, the function call will be
‘find("bowl that lies to the right of the tray")‘,
or to get the mug that is contained in the second bowl,
the call would be
‘find("mug that is inside the second bowl") and so on.
By default, this argument is None

object_ids: list(int)
A list of ‘int‘ object ids in which the object should
be found, when specified.
By default when this argument is None, all the objects
are considered for
finding the best matching

Atleast one of the first three arguments must be specified.
Typically, the use of the first and
the second argument is enough but third can be used whenver needed.

Returns: int
object_id, an integer representing the object that best

matched with the description

get_location(object_id)
gives the location of the object ‘object_id‘
Arguments:

object_id: int
Id of the object

Returns:
position: 3D array

the location of the object

pick(object_id)
Picks up an object that ‘object_id‘ represents. A ‘place‘ needs
to occur before another call to pick, i.e. two picks cannot
occur one after the other
Arguments:

object_id: int
Id of the object to pick

Returns: None

get_place_position(object_id, reference_object_id, place_description)
Finds the position to place the object ‘object_id‘ at a location
described by ‘place_description‘ with respect to the
‘reference_object_id‘.
Arguments:

object_id: int
Id of the object to place

reference_object_id: int
id of the object relevant for placing the object_id

place_description: str
a string that describes where with respect to the
reference_object_id the object_id should be placed.

Returns: 3D array
the [x, y, z] value for the place location is returned.

For example,
to place a mug to the left of a bowl, the following function
call should be used

get_place_position(mug_id, bowl_id, "to the left")
to place a mug into a bowl:

get_place_position(mug_id, bowl_id, "inside")
to place a mug above a box:

get_place_position(mug_id, box_id, "above")

place(object_id, position)
Moves to the position and places the object ‘object_id‘, at the location
given by ‘position‘ with the same orientation the object is currently in.
The robot will open the gripper and drop the item at the position.
Arguments:

object_id: int
Id of the object to place

position: 3D array
the place location

Returns: None

learn_skill(skill_name)
Adds a new category-level skill to the current list of skills.
Arguments:

skill_name: str
a short name for the skill to learn, must be a string that can
represent a function name (only alphabets and underscore can be used).
highly-recommended that the object labels are included in the skill name.

Returns:
skill_function: method

a function that takes as input an object_id and
performs the skill on the object represented by the object_id
another relevant object_id can be passed optionally. In particular,
the returned function takes in arguments: object_id_1 and object_id_2:
object_id_1: int

Id of the object to act upon
object_id_2: int (optional)

Id of the object to place/interact relative to if relevant
skill_docstring: str

a string that describes how to use the new skill in words, including relevant

inputs and outputs,
along with any information on appropriate situations to use the skill,
and misleading/confusing scenarios where it might make sense to use
the skill but where a different skill should actually be used.
This docstring should be printed out in the console so that the user can
copy it and paste it into the skill API for use
on subsequent runs (since the docstring will provide helpful context for
how to appropriately use the skill in the future).

For example:
Example 1:
drawer_id = 2
open_drawer, open_drawer_doc = learn_skill("open_drawer")
print(open_drawer_doc)
[Out:]

Grasps the handle of the drawer and executes a linear motion
in the direction away from the drawer, so that the drawer opens.
Arguments:

object_id: int
ID of the drawer to open

Returns: None
opens the drawer represented by drawer_id
open_drawer(drawer_id)

Example 2:
stick_id = 3
ball_id = 4
hit_ball_with_stick, hit_ball_with_stick_doc = learn_skill("hit_ball_with_stick")
print(hit_ball_with_stick_doc)
[Out:]

Hits a ball with a stick that is currently held in the gripper.
Hitting is performed by moving the stick to an offset position away
from the ball (depending on the current position of the ball obtained
by the ball point cloud and the size of the stick, obtained
by the stick point cloud) and then executing a fast gripper +
wrist motion to move the stick and hit the ball. Can only be executed
after executing some kind of "pick" for the stick, so that the stick
is in the grasp.
Args:

object_id_1: int
ID of the stick to use for hitting

object_id_2: int
ID of the ball that should be hit with the stick

Returns: None
hits the ball represented by ball_id with the stick represented by stick_id
hit_ball_with_stick(stick_id, ball_id)

A7. EXPERIMENTS

A. Learning a new skill

Additional planner outputs for the “Empty the sink out” tasks in the previously described scene are provided in Figure
A6 to demonstrate the alternative nonsensical plans when the LM has to conform to the static skill API.

Fig. A6: Alternate suggestions from the LM to remove a banana from a mug, when learning a new skill is not an option.

Fig. A7: Planner outputs for additional tasks using baseline compared to our system.

With learning capabilities, it generates programs that accomplish the more difficult tasks by acquiring new policies to
execute a handle grasp and a sideways reorientation placement seen in Figure A7.

B. Scene Description Ablations

Plans for experiments in the scene description category are also shown in Figure A8a and Figure A8b.

(a) Planner output for tasks in scene description category
with indirect reference to an object.

(b) Planner output for scene description category involving detecting
task progress.

A8. LIMITATIONS

Scene Descriptions The complexity of the textual description is an ongoing research problem, and it is difficult to capture
every visual feature needed to plan optimally. Camera sensor noise, clutter, and failure to consolidate multiple views of the
same object instance are all factors that may cause perception to fail. The perception module may misidentify some objects,
while noise or clutter can cause spatial relationship heuristics to fail, thus generating inaccurate scene description that results
in incorrect plans.

Function Usage Errors Functions that take in open-vocabulary text as parameters are often used incorrect or insufficiently
by the LM. The system may then misidentify placements or objects due to incorrect correspondence of the language
embeddings. In addition, occasionally the planner will request a new skill with some assumption about its parameters that
are unknown until usage. Therefore the user may misinterpret the request and teach it the wrong skill. Finally the planner
may request an entire sequence of actions as a new skill which goes against the purpose of the function. An improved API
with better function descriptions and more examples may resolve the issue.

Skill Primitives Failure While executing pick and place primitives, the generated robotic arm motion plans may be
infeasible due to joint limits, or failure in inverse kinematics. This lowers the success rate of the primitive skill functions.
Another failure case in placements is when an object has to be placed inside another object, but due to noise in execution
the object topples out of the container, thus failing the task.

Feedback Automation Our generated textual scene description and execution feedback aims to mitigate the amount of
user feedback needed to form a closed-loop system. We fallback on user feedback to describe object states of actions that
go beyond successful control execution, which is difficult to automate (see III-C.0.c). To build a self-sufficient embodied
agent, a more sophisticated verification pipeline with automatic environment and object state feedback is required. Some
systems use multimodal inputs similar to [9] as feedback.

GPT-3.5 vs GPT-4 The code generation capabilities of GPT-4 far exceeds that of GPT-3.5, but we have a limited number
of messages we are able to send, so it is difficult to collect a large amount of experiment data for that reason.

A9. TASKS FOR LLM-ONLY LEARN SKILL AND SKILL RE-USE EVALUATION

In the subsections below, we include a brief description of each task used to evaluate the LLM on its own in its ability to
request new skills, avoid requesting unnecessary skills, and perform tasks with an expanded skill library after a newly-learned
skill is added. Each of these tasks was manually curated by hand and did not reflect any real-world environment, nor were
the plans meant to be executable on the robot. For brevity, we include the full prompt (including the manually designed
scene description) of one of the tasks for each section, and only include a concise description of the task to be solved for
the rest.

a) Ask for a new skill when needed –: We considered the tasks listed below for evaluating how frequently GPT-4
correctly requests a new skill to be learned using the learn skill function:
• mix the ingredients (a bowl and a spoon, bowl is filled)
A table has the following objects: a bowl and a spoon.
At the right of all the objects on the table lies the bowl.
The bowl is filled. To the left of the bowl lies the spoon.
If you are commanding a robot, tell me in words the steps
to mix the ingredients?

• empty the mug (mug contains water)
• hang the mug on the mug rack
• place the mug upside down
• bottle in the container horizontally
• put the bowl on its side on the drying rack
• scrub the bowl
• open the drawer
• slide the tray into the oven
• push the button
• turn on the light

b) Don’t ask for a new skill when not needed –: Contrasting the above scenario, the tasks listed below are used to
evaluated how frequently the planner ignores the learn skill function and directly attempts to complete the task with
the base set of primitive skills that are available. The tasks are constructed such that they can be achieved using the base
set of skills:
• build a block tower in rainbow color order
A table has the following objects: a red block, blue block,

and green block. At the right of all the objects on the table
lies the blue block. To the left of the blue block lies the red
block. To the left of the second bowl lies the green block.
If you are commanding a robot, tell me in words the steps to
build a block tower in rainbow color order?

• stack the bowls
• put the dishes away
• get me a cup I can pour water into
• empty the bowl
• put the dishes in the sink

c) When new skills have been added, how often the agent succeeds at a new task which may or may not require
the new skill –: Besides evaluating the LLM’s ability to correctly use the base skill set and request new abilities with
learn skill, we also evaluated the planner’s success when prompted with new tasks after newly-learned skills have
been added to the API. These tasks have been constructed to sometimes require the use of the newly-learned skill and other
times specifically require not using the newly learned skill. The tasks we use for this evaluation are listed below:

After learning and adding pick mug by handle to API:
• pick up the mug (handle of the mug is broken)
A table has the following objects: a mug. At the right of all the
objects on the table lies the mug. The handle of the mug is broken.
If you are commanding a robot, tell me in the words the steps to
pick up the mug?

• empty the mug
• pick up the mug (box is blocking access to the handle)
• bring the cup of coffee to the living room
• pick up the mug (handle of the mug is covered with a dirty, sticky substance)
• fill the mug with water
After learning and adding side pick bottle to API:
• fetch the bottle and put it on the table (bottle is on a bottom shelf, cannot be approached from the top)
A table has the following objects: a bottle. At the right of all
the objects on the table lies the bottle. Due to the position on
the table and the low height of the table, the bottle cannot be
reached from the side (but could be reached from above). If you
are commanding a robot, tell me in the words the steps to fetch
the bottle?

• fetch the bottle (bottle cannot be reached from the side, but could be reached from above)
• fetch the bottle and put it on the table (bottle inside a box, box is sideways, top of the box is open)
• fetch the bottle and put it on the table (bottle is on a bottom shelf)
After learning and adding place book horizontally and place book vertically to API:
• put away the book (bookshelf with single book, book doesn’t fit vertically)
A table has the following objects: a book and a bookshelf. At the
right of all the objects on the table lies the bookshelf. Next to
the bookshelf lies the book. The book doesn’t fit in the shelf
vertically. If you are commanding a robot, tell me in the words the
steps to put away the book?

• put away the book (bookshelf with single book, bookshelf contains many vertically aligned books, with space for one
more)

• put away the book (bookshelf with single book, book LxWxH and bookshelf LxWxH dimensions provided)
• put away all of the books (bookshelf and 10 books total, only three can fit when horizontal)

	Introduction
	Related Work

	Method
	Perception
	Planning and Control
	Learning New Skills and Expanding the Skill Library

	Experiments
	Real-world tasks requiring learn_skill
	Learning and requesting new pick and pick-place skills
	Continual learning by re-using previously-learned skills

	LLM-only skill learning evaluation

	Limitations
	Conclusion
	Acknowledgement
	Author Contributions
	Additional Experiments
	Benefiting from spatially-grounded scene description

	Tunable System Parameters

	Open Vocabulary Object Detection
	Generating Scene Description
	Pick and Place Primitives
	Python API

	Experiments
	Learning a new skill
	Scene Description Ablations
	Limitations

	Tasks for LLM-only learn_skill and skill re-use evaluation

