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Abstract. Accurate and reliable detection of anatomical landmarks in
intrapartum ultrasound is a critical component of quantitative and ob-
jective assessment of fetal head descent, which plays an essential role in
guiding clinical decision-making during labor. However, manual anno-
tation of ultrasound images is time-consuming, requires expert knowl-
edge, and suffers from inter-observer variability. Moreover, the scarcity
of fully annotated datasets poses additional challenges for training high-
performance deep learning models in this domain. To address these chal-
lenges, we propose a three-stage framework that effectively leverages both
fully labeled and partially labeled data to improve landmark detection
performance. In Stage 1, a TransUNet model is pre-trained on a large-
scale video-derived segmentation dataset and iteratively fine-tuned on
point-annotated images using an error-weighted loss strategy. Stage 2 in-
corporates high-confidence pseudo-labeled data generated by the refined
model, with post-processing applied to ensure label quality. Stage 3 fuses
predictions from three independently trained TransUNet models via av-
eraging to enhance stability and robustness. Experimental results on the
IUGC 2025 Landmark Detection Challenge test set demonstrate that our
method achieves an Average Point Distance of 13.28 pixels and an AOP
MAE of 3.87 degrees, demonstrating the effectiveness of semi-supervised
learning and model ensembling for intrapartum ultrasound landmark de-
tection.
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1 Introduction

Intrapartum ultrasound is an important imaging tool for real-time assessment
of labor progression, offering more objective and reproducible information than
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traditional clinical examinations. Key anatomical landmarks—such as the fetal
head and pubic symphysis—are essential for deriving clinically relevant measure-
ments like the angle of progression (AoP) and head—perineum distance, which
guide decisions on labor management.

Manual annotation of these landmarks requires expert knowledge, is time-
consuming, and suffers from inter- and intra-observer variability, limiting large-
scale clinical adoption. Fully automated landmark localization has thus become a
pressing research goal. Traditional image processing methods (e.g., active shape
models, Hough transforms) struggle with the noisy, low-contrast, and variable
appearance of intrapartum ultrasound.

Deep learning methods, particularly convolutional neural networks (CNNs)
and Transformer-based models, have shown strong performance in medical im-
age analysis. U-Net [10] is a widely adopted encoder—decoder architecture with
skip connections that effectively fuses multi-scale features for precise pixel-level
predictions. TransUNet [8] extends U-Net by incorporating Vision Transformers
into the encoder, combining CNN-based local feature extraction with global con-
text modeling—an advantage in ultrasound landmark detection, where relevant
structures may be distant or partially occluded.

Despite these advances, several challenges remain in applying deep learning
models to intrapartum ultrasound. Ultrasound images are inherently noisy and
exhibit poor contrast, making it difficult to distinguish anatomical boundaries.
Furthermore, the scarcity of large annotated datasets limits the effectiveness
of supervised learning frameworks. Therefore, there is a growing demand for
data-efficient and architecture-robust solutions that can achieve high localiza-
tion accuracy while accommodating the unique characteristics of intrapartum
ultrasound.

In this study, we propose a fully automated three-stage framework for fetal
landmark localization and AoP estimation from intrapartum ultrasound images.
Our method leverages a progressive pseudo-labeling strategy to exploit unlabeled
data and improve robustness. Specifically, we first pretrain a TransUNet-based
segmentation model using manually labeled video keyframes and then refine it
with pseudo labels from point-supervised images (Stage 1). Next, we perform
progressive pseudo labeling with confidence-based filtering to incrementally in-
corporate high-quality unlabeled samples into training (Stage 2). Finally, we
apply a weighted ensemble strategy, where each model independently predicts
the segmentation mask and three anatomical landmarks, and their outputs are
averaged to compute the AoP (Stage 3). Our contributions are summarized as
follows:

— We propose a fully automatic framework for fetal head progression assess-
ment in intrapartum ultrasound, which jointly performs anatomical land-
mark localization and AoP estimation.

— We design a three-stage pseudo-labeling strategy to leverage both labeled
and unlabeled data, enhancing the effectiveness of training.
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— We integrate a simple yet robust geometry-based module for AoP measure-
ment based on three key landmarks, ensuring interpretability and clinical
relevance.

In this work, we aim to support the technical implementation of the WHO
Labour Care Guide and promote safer, more standardized labor monitoring prac-
tices via automated ultrasound analysis.

2 Method

As illustrated in Figure 1, our approach consists of three main components: 1)
pretraining and label refinement; 2) progressive pseudo labeling with confidence
filtering; and 3) model ensembling and final AoP estimation.
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Fig. 1. Overview of the proposed framework.

2.1 Stage 1: Pretraining and Label Refinement

The first stage of our framework, illustrated in Figure 2, consists of a pretrain-
ing phase followed by iterative label refinement. We leverage the video dataset
provided by the MICCAI IUGC 2024: Intrapartum Ultrasound Grand Chal-

lenge [2,12,13,4,10]. Specifically, we extract 2,562 key frames with corresponding
segmentation masks from the videos as a pretraining dataset. A TransUNet
model [8] is pre-trained on this dataset to learn robust anatomical represen-

tations. The pre-trained model is then used to generate masks for 300 images
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Fig. 2. Illustration of stage 1: pe-training and label refinement.

with point-based annotations (i.e., three annotated keypoints but no segmenta-
tion masks). To ensure the quality of these predictions, we apply a three-step
post-processing pipeline:

— Hole-filling: Connected component analysis is used to fill holes within the
segmented regions.

— Denoising: Only the largest connected component is retained, and small
isolated regions are removed.

— Border Processing: Boundary-connected components are corrected to en-
sure the integrity of the segmentation mask.

Following post-processing, we compute the anatomical keypoints from each
predicted mask (detailed in Stage 3), and measure the Euclidean distance be-
tween each predicted keypoint and its corresponding annotated location. These
distances are then used to assign sample-specific loss weights during fine-tuning,
where samples with larger prediction errors contribute less to the overall loss.
Specifically, for the i-th sample, the loss weight w; is defined as:

1g .
wi:exp<_/\'3Z|pi,j_pi’j|2> (1)
Jj=1

where p; ; and p; ; denote the predicted and annotated coordinates of the j-th
keypoint for the i-th sample, and X is a scaling factor controlling the sensitivity
to prediction error. This re-weighted fine-tuning process is iterated for three
rounds, gradually refining the model using both the initial pseudo-labels and
the spatial alignment between predicted and annotated landmarks. The final
output of Stage 1 is a refined TransUNet model with improved segmentation
quality tailored to point-supervised images.
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Fig. 3. Illustration of stage 2: progressive pseudo labeling with confidence filtering.

2.2 Stage 2: Progressive Pseudo Labeling with Confidence Filtering

In the second stage, we implement a progressive pseudo labeling strategy to
exploit the unlabeled dataset more effectively. As illustrated in Figure 3, all
unlabeled images are evenly split into three subsets. The fine-tuned model from
Stage 1 is then used to generate segmentation masks for the first subset.

To ensure the quality of the pseudo labels, we apply a filtering process to
remove unreliable masks based on the following criteria:

— Incomplete segmentation: Masks that contain only one or zero connected
regions are discarded.

— Abnormal size: Masks whose area significantly deviates from the mean
area of all labeled masks are discarded. Specifically, we discard masks whose
area is either larger than 1.5x the mean or smaller than 0.5x the mean.

— Low shape quality: Masks with a fetal head mask shape factor less than
0.8 are removed. The shape factor is defined as:

Shape Factor = dm x Area

_ 2
(Perimeter)? @)

After filtering, the remaining high-quality pseudo-labeled samples from the
first subset are combined with two fully labeled datasets: the manually labeled
video keyframes and the corrected masks from Stage 1. To balance the contri-
bution of different data sources, we apply different loss weights during training.

Specifically, the total loss is computed as:
Etotal = Lvideo + ‘Cstagel + 0.5 x Epseudo (3>

where Lyideo refers to the loss from the manually labeled video keyframes, Lgtage1
denotes the loss from the corrected pseudo labels generated in Stage 1, and
Lpseudo Tepresents the loss from the newly generated pseudo-labeled data in this
stage.

The model trained on this combined dataset is then used to generate masks
for the second subset of unlabeled data, followed by the same filtering and re-
training process. This process is repeated once more to handle the third subset,
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forming a three-step progressive refinement framework that incrementally im-
proves pseudo-label quality and model performance.
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Fig. 4. Tllustration of stage 3: model ensembling and final AoP estimation.

2.3 Stage 3: Model Ensembling and Final AoP Estimation

In the final stage, we adopt a model ensembling strategy to enhance segmentation
robustness and measurement consistency. As shown in Figure 4, we employ an
ensemble of three models: (1) the fine-tuned model from Stage 1, and (2)(3) two
models trained respectively on the first and third subsets in Stage 2. Each model
independently generates segmentation masks for the test set.

The predicted masks are first refined using the same post-processing pipeline
introduced in Stage 1, which includes hole filling, denoising, and boundary correc-
tion. Based on the refined binary masks, we extract three anatomical keypoints
required for computing the Angle of Progression (AoP): two points on the pubic
symphysis contour (PS1 and PS2), and one tangential point on the fetal head
contour (FH1). The extraction procedures are described below as pseudocode
(Algorithm 1).

Each model predicts a set of coordinates for the three keypoints: PS1, PS2,
and FH1. To reduce prediction variance, we adopt a coordinate-wise averaging
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strategy across the three models:

3
1
Keypoint t;,,,; = 3 Z Keypoint,,, (4)

m=1

where Keypoint,,, represents the coordinates predicted by the m-th model. This
straightforward fusion improves robustness and ensures stable keypoint localiza-
tion results.

Algorithm 1 Extraction of PS1, PS2, and FH1
Require: Binary mask M, of pubic symphysis (label 1), binary mask My, of fetal
head (label 2)
Ensure: Coordinates (PS1,, PS1,), (PS2,,PS2,), (FH1,, FH1,)
: Cps + FindLargestContour(Mp,)
P,s < ExtractContourPoints(Cps)
(pa,py) < FindFurthestPointPair(Pps)
if po.z > pp.x then
PS1 < pa, PS2 + py
else
PS1 4 py, PS2 ¢ pa
end if
Cyh + ExtractContourPoints(Myp )
: FH1 « argmingecy, Angle(PAS‘l?J, NormalVector(p))
. if FH1 is not valid then
FH1 « FindRightmostPoint(Cyy,)
: end if
: return PS1,PS2, FH1

== = =
B W e O 9

3 Experiments

3.1 Dataset Description

Our experiments are conducted on the benchmark dataset provided by the
Landmark Detection Challenge for Intrapartum Ultrasound Measure-
ment (IUGC 2025) [6,10,12,13,4,17,11,14,15,7,9,2,3,1,5] , which focuses on
automatic landmark detection in fetal ultrasound images to assist clinical as-
sessment of labor progression. The dataset is divided into the following subsets:

— Training Set: 31,421 ultrasound images in total, among which 300 im-
ages are manually annotated with three anatomical landmarks for super-
vised learning. The remaining unlabeled images are used for semi-supervised
learning.

— Validation Set: 100 annotated images used to validate model performance
during training.

— Test Set: 501 hidden images used for final evaluation by the challenge or-
ganizers.
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In addition, we utilize an external dataset from the MICCAI TUGC 2024:
Intrapartum Ultrasound Grand Challenge to improve the robustness of
our segmentation model through pretraining. This dataset consists of:

— Standard Plane Videos: 288 videos composed entirely of standard planes,
from which 24,434 frames are extracted, including 2,906 frames with segmen-
tation masks.

— Non-standard Plane Videos: 168 videos consisting of non-standard planes,
contributing 31,450 additional frames without segmentation labels.

This external video dataset serves as the foundation for initial model pre-
training and label refinement in Stage 1 of our framework.

3.2 Experimental Setup

All experiments are conducted on two NVIDIA GeForce RTX 4090 GPUs. The
network is trained in three stages: (1) 200 epochs of pretraining, (2) 100 epochs
of fine-tuning on labeled data, and (3) 300 epochs of pseudo-label-based training.

We adopt stochastic gradient descent (SGD) with an initial learning rate of
0.07, which is decayed during training. The batch size is set to 16 throughout
all stages. The input images are resized to 512 x 512, and the following data
augmentation strategies are employed:

— Random Horizontal Flip: Applied with 50% probability.

— Random Rotation: Random rotation within £10° using bilinear interpo-
lation.

— Color Jittering: Brightness and contrast adjusted within a variation range
of 0.1.

The base segmentation loss is a weighted combination of cross-entropy loss
and Dice loss, defined as:

ﬁseg =0.5-Lcg+0.5 Lpice (5)

To account for different data sources, we apply stage-specific loss scaling
factors A to balance contributions from labeled and pseudo-labeled samples.
The detailed formulation can be found in the Method section.

3.3 Experimental Results

Table 1 presents the quantitative evaluation results for all models across different
evaluation metrics. We report the overall Mean Squared Error (MSE), Mean
Absolute Error (MAE), average distance error of three keypoints (PS1, PS2,
and Tangency), as well as the MSE and MAE of the AoP angle.

As shown in Table 1, the fine-tuned model significantly outperforms the pre-
trained model, with the average keypoint distance reduced from 17.37 px to
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Table 1. Quantitative evaluation results on the validation set.

Average Point  PS1 PS2 Tangency AOP AOP

Models MSE MAE
Distance  Distance Distance Distance MSE MAE
Pre-trained Model 417.60 10.96 17.37 10.89 14.60 26.60 213.26 8.16
Fine-tuned Model 260.55 8.68 13.80 9.10 8.99 23.32  152.36 5.98
Model with Pseudo-labels 247.50 8.23 13.04 8.04 8.63 22.45 124.75 5.31
Ensemble Model 225.51 7.99 12.67 7.7 8.56 21.67 128.00 5.30

13.80 px. Incorporating pseudo-labeled data further boosts performance, espe-
cially in the AoP angle estimation, where the MSE decreases from 152.36 to
124.75. The ensemble model achieves the best overall performance, reducing the
average keypoint error to 12.67 px and the AoP MAE to 5.30, demonstrating that
model fusion effectively mitigates prediction variance and enhances robustness.

Figure 5 visualizes representative segmentation results and predicted key-
points for different models. As shown, the pseudo-label model produces more
accurate and stable keypoint locations, closely aligning with the ground truth
and yielding smoother AoP angle estimation.

Pubic Symphysis . Fetal Head

Origin
Image

Predictions of
the pre-
trained model

Predictions of
the pretrained
model

Predictions with
the pseudo-
labeling model

Fig. 5. Visualization results of segmentation and keypoints.
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4 Conclusion

In this work, we proposed a three-stage framework for accurate landmark detec-
tion in intrapartum ultrasound images. Starting from a pre-trained TransUNet
model, we refined labels through an iterative error-weighted fine-tuning strategy
and further leveraged pseudo-labeled data to enhance generalization. Experimen-
tal results on the IUGC 2025 dataset demonstrate consistent performance gains
at each stage. The proposed approach effectively bridges the gap between limited
high-quality annotations and abundant unlabeled data, offering a practical and
scalable solution for clinical labor progress assessment.
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