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Abstract

In recent years, research on transforming
natural language into graph query language
(NL2GQL) has been increasing. Most existing
methods focus on single-turn transformation
from NL to GQL. In practical applications, user
interactions with graph databases are typically
multi-turn, dynamic, and context-dependent.
While single-turn methods can handle straight-
forward queries, more complex scenarios often
require users to iteratively adjust their queries,
investigate the connections between entities, or
request additional details across multiple dia-
logue turns. Research focused on single-turn
conversion fails to effectively address multi-
turn dialogues and complex context dependen-
cies. Additionally, the scarcity of high-quality
multi-turn NL2GQL datasets further hinders
the progress of this field. To address this
challenge, we propose an automated method
for constructing multi-turn NL2GQL datasets
based on Large Language Models (LLMs) ,
and apply this method to develop the MTGQL
dataset, which is constructed from a financial
market graph database and will be publicly re-
leased for future research. Moreover, we pro-
pose three types of baseline methods to assess
the effectiveness of multi-turn NL2GQL trans-
lation, thereby laying a solid foundation for
future research.

1 Introduction

As data complexity and interconnectedness grow
across various domains, graph data structures have
become essential for effectively representing and
analyzing relationships (Zhao et al., 2022a; Sui
et al., 2024). This increasing demand for efficient
data representation has driven the widespread adop-
tion of graph databases. Consequently, graph query
language (GQL) has emerged as a crucial tool for
interacting with these systems, playing a pivotal
role in tasks such as database management, infor-
mation retrieval, and data analysis (Lopes et al.,

2023; Wang et al., 2020; Pavlis, 2024), as shown
in Figure 1. However, translating natural language
(NL) queries into GQL presents a significant chal-
lenge, as it requires users to possess technical exper-
tise in database operations and a deep understand-
ing of specific query syntax and patterns. This com-
plexity creates a substantial barrier for individuals
without a technical background (Zhao et al., 2022b,
2023). To address this challenge, numerous auto-
matic NL2GQL methods have been proposed (Guo
et al., 2022; Zhou et al., 2024b; Liang et al., 2024a;
Tao et al., 2024; Tran et al., 2024), making graph
databases accessible to more audiences.

Recent advances in NL2GQL are primarily
derived from the Seq2Seq framework, such as
those demonstrated in (Guo et al., 2022) and
CoBGT (Tran et al., 2024). With the rise of
LLMs, performance has been further enhanced,
leading to the development of numerous LLM-
based methods (Zhou et al., 2024b; Liang et al.,
2024a; Tao et al., 2024; Liang et al., 2024b; Liu
et al., 2024). Alongside these methods, several
NL2GQL datasets have been developed, includ-
ing SpCQL (Guo et al., 2022), CySpider (Zhao
et al., 2023), Text2Cypher (Ozsoy et al., 2024),
R3-NL2GQL(Zhou et al., 2024b), TCMGQL,
EduGQL(Liu et al., 2024), and StockGQL (Liang
et al., 2024b). The proposed methods and datasets
mainly focus on single-turn queries.

While single-turn NL2GQL translation can han-
dle relatively simple queries, multi-turn interac-
tions introduce several complexities that require
advanced handling. First, the system must maintain
context across multiple historical queries, as each
new query builds upon the information provided
in previous ones. This necessitates robust con-
text management to accurately capture the user’s
evolving intent and ensure the generation of con-
sistent, relevant queries. Second, as users refine
or expand their queries during the interaction, the
system must dynamically adjust the context to ac-



System: CITIC Securities.

opening_price
: What is its opening price today?
System: ¥30.26
CITIC Securities
opening_price
: What about yesterday?
System: ¥36.25
CITIC Securities
opening_price
: How about ?
System: ¥20.00

opening_price

: Which stock in the securities industry has the highest opening price today?

Figure 1: An example of a multi-turn interaction between a
for each question. The color coding highlights the contextual dependencies,

the corresponding
such as opening price , CITIC Securities and

commodate these changes. Last but not least, cur-
rent datasets are primarily designed for single-turn
queries, resulting in limited data available for train-
ing and evaluating multi-turn systems. This con-
straint hampers the development of more sophisti-
cated, context-aware solutions.

To tackle the challenge posed by the scarcity
of multi-turn NL2GQL datasets, we propose a
dependency-aware multi-turn dataset construc-
tion framework, which performs collaborative op-
timization between LLMs, graph data, and dialogue
dependency in an iterative way. Our framework is
composed of four essential components: a Con-
text Manager, Question Generator, GQL Generator,
and GQL Optimizer. Here, context manager plays
as a central unit to integrate the information of di-
alogue history and graph data and send to other
constituents. Question generator, GQL generator,
and GQL optimizer are LLM-based constituents
to analysis the information from the context man-
ager and output the generated questions, GQLs,
and answers. They also interact with each other
for mutual checking and correction. Using this
framework, we have created the MTGQL dataset,
a Chinese multi-turn NL2GQL dataset based on a
financial market NebulaGraph database.

Our main contributions are as follows:

* A Standard Framework: We propose a
novel framework for constructing multi-turn
NL2GQL datasets. To the best of our knowl-

and a System, with the orange sections representing

edge, this is the first method specifically de-
signed for building such datasets.

* MTGQL Dataset: Leveraging our approach
with a Chinese financial market Nebula-
Graph database, we have created the MT-
GQL dataset—the first Chinese multi-turn
NL2GQL dataset.

* Benchmark Methods: We present three
types of baseline methods for the MTGQL
dataset, providing a solid foundation for fu-
ture research.

2 Related Work

2.1 NL2GQL

Early work in NL2GQL focused on template gen-
eration and heuristic rule-based systems. Recent
advancements in NL2GQL tasks have seen a shift
to deep learning-based approaches. Among the
pioneering studies, the work (Guo et al., 2022)
was the first to apply a Seq2Seq framework to
NL2GQL, introducing a copying mechanism along-
side the Seq2Seq model to enhance GQL gener-
ation. This approach paved the way for subse-
quent deep learning-based models in this space.
The CoBGT model (Tran et al., 2024) further
advanced this field by integrating key-value ex-
traction, relation-property prediction, and Cypher
query generation. This model combines BERT,



GraphSAGE, and Transformer architectures to ad-
dress the NL2GQL task.

The emergence of LLMs has further advanced
the research in NL2GQL. The paper (Tao et al.,
2024) presented a revision-based method for
NL2GQL, leveraging LL.Ms without fine-tuning,
further simplifying the process of adapting LLMs
for NL2GQL tasks. R®-NL2GQL (Zhou et al.,
2024b) integrates small and large foundation mod-
els for ranking, rewriting, and refining tasks, en-
hancing query quality by better understanding con-
text and relationships. The work in (Liang et al.,
2024a) proposed aligning LLMs with domain-
specific graph databases to enhance query accuracy
and domain relevance. It emphasizes the adapt-
ability of LLMs when tailored to specific graph
schemas, ensuring that generated queries are con-
textually appropriate. In another study, (Liang
et al., 2024b) proposed a three-agent system for
NL2GQL, comprising a Preprocessor for data han-
dling, a Generator for GQL creation, and a Refiner
that refines queries based on execution results. This
multi-agent approach provides a more structured
and efficient translation process, addressing both
query generation and validation. The method (Liu
et al., 2024) proposed using template-filling and
problem rewriting techniques with LLMs to pro-
vide contextual information, improving the model’s
comprehension of the complex relationships be-
tween NL, graph schemas, and database data.
These methods are all based on the single-turn
NL2GQL task'.

2.2 NL2GQL Dataset

The development of NL2GQL datasets has also
evolved alongside advances in model architectures.
Several datasets have been proposed in recent years,
each addressing different aspects of the NL2GQL
task. The SpCQL (Guo et al., 2022) dataset is
constructed by manually annotating 10,000 NL
queries with corresponding Cypher queries based
on a single Neo4j graph database. CySpider (Zhao
et al., 2023) dataset is constructed by developing
a SQL2Cypher algorithm that maps SQL queries
to Cypher clauses, which are then paired with the
original natural language queries to create a par-
allel corpus. Text2Cypher (Ozsoy et al., 2024)
combined, cleaned, and organized several publicly
available datasets into a total of 44,387 instances to
enable effective fine-tuning and evaluation. R3-

' A more detailed comparison with similar tasks is provided
in the Appendix 9.1.

NL2GQL (Zhou et al., 2024b) constructed the
dataset by manually creating NL-GQL pairs, using
foundation models to generate diverse interpreta-
tions, and refining them manually.

Recently, using LLMs to construct data has
become an effective solution to the problem of
data scarcity, especially for tasks in specific do-
mains (Ding et al., 2024; Long et al., 2024; Zhou
et al., 2024a). The TCMGQL and EduGQL (Liu
et al., 2024) datasets were constructed from real-
world databases, ensuring standardized types and
diversity. Over ten NL and GQL templates were
developed based on database schema information,
further enhanced by LLMs. The work (Liang et al.,
2024a) constructs datasets by first generating NL-
GQL pairs from a graph database, followed by a
two-step data augmentation process using Chat-
GPT to ensure diverse and comprehensive query
coverage. The generated pairs are then grounded
and verified. Building upon the work in (Liang
et al., 2024a), the work (Liang et al., 2024b) in-
troduced improvements by incorporating subgraph
extraction related to GQL and the colloquializa-
tion of named entities, while also constructing the
StockGQL dataset. Unlike these methods, we focus
on developing a multi-turn NL2GQL dataset.

3  Multi-turn NL2GQL Task Formulation

A graph database GG consists of a large number of
connected data (nodes and edges).

We first define single-turn NL2GQL as fol-
lows. Given a graph database G and a question
Q, the NL2GQL system is supposed to return an
executable GQL command that can be executed
against GG and produce an answer A:

GQL, = F(Q,G).

Here, F is a function that generates the graph query
language GQ L based on @), and G. In single-turn
NL2GQL, different question-answer pairs in the
dataset D = {(Q1, A1), (Q2, A2), ...} are indepen-
dent.

In comparison, the interdependent question-
answer pairs in multi-turn NL2GQL problem
form a complete dialogue, denoted as C' =
((Q1,A41),(Q2,A2), ..., (Qm, Ap)) and a set of di-
alogues forms a dataset D = {C4,Cy,...}. We
refer to each question-answer pair as one round of
the dialogue. In the multi-turn NL2GQL, at the
t-th round, given multiple rounds of historical in-
teraction between the user C, the objective is to
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Figure 2: Our framework consists of five synergistic components: the Context Manager, Question Generator, GQL
Generator, GQL Validator and Optimizer, and Dataset Filter. These components work collaboratively to handle
question generation, GQL generation, GQL validation and refinement, and dataset filtering. Steps 1, 2, and 3 are
iteratively executed for each data point to generate multi-turn data.

generate the GQL, denoted as G() Ly, correspond-
ing to the question Q;:

GQLt = F(Qtv Ct7 G)?

where Ct = {Ql, Al, ey Q(t—l): A(t—l)} includes
all relevant user inputs and system responses exe-
cuted against G via the GQLs.

4 A Dependency-aware Multi-turn
Dataset Construction Framework

4.1 Overview

To generate multi-turn NL2GQL dataset, we ad-
here to the following three criteria that are dis-
tinct from single-turn NL2GQL. (1) Each ques-
tion should be factually grounded via G to ensure
its corresponding answers can be successfully re-
trieved from the graph data with a GQL. (2) The
question-answer pairs in a dialogue should be inter-
dependent. Specifically, the question in the current
round could be linked to the dialogue history via
either questions or answers in the previous rounds.
(3) The types of the questions and dialogue de-
pendencies should present diversity to cover the
application of practical scenario.

As showed in Figure 2, the framework com-
prises five interconnected components: Context
Manager, Question Generator, GQL Generator,

GQL Validator and Optimizer, and Dataset Fil-
ter. The Context Manager functions as the central
unit, managing dialogue history, overseeing data
generation, selecting appropriate dialogue depen-
dency patterns, and filling in masked entities in
questions. First, The Question Generator produces
questions that are contextually coherent. Second ,
the GQL Generator, a fine-tuned LLM, transforms
natural language into GQL. Then, the GQL Op-
timizer ensures correctness by performing syntax
and semantic validation, correcting errors to ensure
valid and accurate queries. This iterative process
enables the generation of multi-turn data. Next, we
will detail the implementation and role of each core
component.

4.2 Context Manager

The Context Manager is the control components
of the system, Its functions include the following
aspects:

Updating the Dialogue History: The Context
Manager is responsible for maintaining the dia-
logue history, which includes C;, the set of entities
and relations, and the expansion pattern history. It
continuously updates the dialogue history to ensure
that all interactions are accurately tracked.
Fulfilling Masked Questions: Since the Ques-
tion Generator generates specific entity names for



Pattern Description

Example

P1: Attribute Follow-up

Generates follow-up questions about an entity’s at-
tributes based on the previous query.

Q1: What is the largest stock in the liquor industry?

Al: Moutai.
Q2: What is the registered capital?

P2: Temporal Shift queries related to historical data.

Introduces the time dimension to generate

Q1: What is the highest price of Moutai today?

Al:20.5
Q2: What was the closing price yesterday?

P3: Relation Extension . .
tionships.

Expands the dialogue by querying related rela-

Q1: What is the stock code for Tencent?

Al: HK0700
Q2: What is the industry data?

P4: Same-Type Entity tiple entities.

Used for comparative reasoning between mul-

Q1: What is the opening price of Baidu today?

Al: 150
Q2: What about Alibaba?

P5: Aggregation Calculation .
geres lations such as averages or sums.

Involves queries requiring aggregation calcu-

Q1: What is the opening price of Tengfei today?

Al: 417
Q3: What is the day-on-day growth?

P6: Conditional Filtering

Filters data based on specific conditions. Q1: Which funds have a management fee below 1%?

Al: Fund A, Fund B
Q2: Which ones have a size greater than 5 billion?

Table 1: Patterns for expanding subsequent questions.

certain questions but may not have access to the
available entities in the database, placeholders are
used. Therefore, another responsibility of the Con-
text Manager is to replace the placeholders with
actual entity names from the graph database.
Controlling the Generation Process: The Con-
text Manager oversees the entire data generation
process, controlling both the start and end. It is
also responsible for selecting question expansion
patterns based on the set of entities and relations
in the history. To ensure the generation of high-
quality questions, we have designed six fundamen-
tal expansion patterns, as shown in Table 1, and the
expansion pattern selection algorithm is detailed in
Appendix 9.2. We adjust the number of conversa-
tion rounds iteratively, keeping the total rounds per
data point between 5 and 8 to maintain appropriate
depth and complexity.

4.3 Question Generator

We use an LLM as the Question Generator, cate-
gorizing questions into initial and follow-up types.
The initial question is randomly generated based
on the schema of (G, while subsequent questions
follow the expansion patterns from the Context
Manager. These questions must inherit context,
promoting diversity, complexity, and a colloquial
tone.

To better guide the LLM in generating high-
quality questions, we have designed the prompt
format as shown in Appendix 9.3. It is important

to note that since the Question Generator is only
aware of the schema of GG and does not have access
to the specific entities stored within the database,
questions involving entities are generated as place-
holder templates. For example, What is the
opening price of [s] stock today? where
[s] represents a placeholder for the stock entity
name. Additionally,it also provides completed ver-
sions of the colloquial questions.

4.4 GQL Generator

The GQL Generator is responsible for generating
the corresponding GQL based on the schema of G
and the complete question provided by the Context
Manager. To enhance generation efficiency, we use
the full schema to construct the prompt for fine-
tuning the LLM, as outlined in Paper (Liang et al.,
2024a). With the fine-tuned LLM, the GQL Gener-
ator ensures accurate understanding and handling
of the graph database’s schema when generating
GQL.

4.5 GQL Validator and Optimizer

The GQL Validator and Optimizer play a crucial
role in ensuring that the GQL are both syntactically
and semantically correct. It has two main functions:
validating syntax and semantics, and optimizing
incorrect GQL.

Syntax Validation: This ensures that the gener-
ated GQL statements are syntactically correct and
executable in the graph database. The GQL is ex-



ecuted on the database, and if it runs successfully
with expected results, it is syntactically correct;
otherwise, it is flagged for optimization.
Semantic Validation: This ensures that the GQL
accurately reflects the original question’s intent.
We utilize the reverse generation validation method
introduced in paper (Liang et al., 2024a) to infer the
original question from the generated GQL. If the
vector embedding similarity between the inferred
and original question is low, it indicates that the
generated GQL requires further optimization.
GQL Optimization: Numerous studies have
shown that optimizing structured query state-
ments with syntax errors can enhance their accu-
racy (Pourreza et al., 2024; Maamari et al., 2024;
Zhou et al., 2024b). When syntax errors are de-
tected, the system combines the original ques-
tion, generated GQL, and error information into
a prompt for the LLM to correct. The modified
GQL is then re-validated for syntax. For semantic
optimization, if the GQL doesn’t align with the
original question’s intent, both the question and
GQL are input into the LLM for correction. The
corrected GQL undergoes semantic validation, and
this process repeats up to three times. If all attempts
fail, the system instructs the Context Manager to
regenerate the question.

4.6 Dataset Filter

After dataset generation, while the methods out-
lined above ensure the quality of each data point,
they cannot guarantee the absence of similarity and
redundancy. To address this, we apply two filtering
methods.
GQL-based Filtering: We replace entity names in
the GQL with placeholders and collect the masked
GQL into a set. By comparing sets across data
points, we calculate their similarity. If more than
three identical masked GQL are found, one is dis-
carded as redundant, effectively reducing dupli-
cates in the dataset.
Embedding -based Filtering: To prevent high
similarity between questions across data points, we
concatenate all questions from each entry, apply
vector embedding to obtain high-dimensional rep-
resentations, and calculate the similarity between
data points. Any pair with similarity exceeding a
preset threshold is discarded. This approach effec-
tively reduces duplicates and enhances the unique-
ness, quality, and diversity of the dataset.

We applied our approach to a Chinese financial
market NebulaGraph database to develop the M'T-

GQL dataset based on nGQL syntax.

S5 Data Analysis

5.1 Dataset Statistics

As shown in Table 2,the dataset includes 4500 dia-
logues: 3000 for training, 500 for development, and
1000 for testing. On average, each dialogue has 6.3
turns, indicating a balanced structure. It contains
21,600 GQL statements, with 14,100 in training,
2,600 in development, and 4,900 in testing. Each
data point includes 4.8 GQLs, reflecting a high
query density. These statistics offer valuable in-
sights into the dataset’s coverage and effectiveness
for training and evaluating models in multi-turn
dialogues and graph query tasks.

5.2 Human Evaluation

We evaluated the quality of the dataset by having
three domain experts rate 200 randomly selected
dialogues from the training, validation, and test sets
based on coherence, question diversity, coverage,
and semantic accuracy (on a 1-5 scale). The results,
as shown in Table 4, demonstrate the dataset’s ef-
fectiveness for training and evaluating dialogue
systems.

5.3 Comparison with Other Datasets

As shown in Table 3, the table compares several
NL2GQL datasets, with MTGQL standing out as
the only multi-turn dataset. Unlike other single-
turn datasets, MTGQL is specifically designed to
handle more complex, multi-turn queries, making it
particularly suitable for tasks that require multiple
interactions. Therefore, MTGQL will play a pivotal
role in advancing research in multi-turn NL2GQL.

6 Models and Experimental Setup

6.1 Benchmark Methods for Multi-turn
NL2GQL

We have set up three baseline methods to evaluate
the performance of different strategies. The specific
methods are as follows:

In-context learning with all schema method
(ICL-AS): This method provides a set of exam-
ples within the input prompt, which concatenates
all schema information and the question, guiding
the LLM to generate the corresponding GQL.
Related schema extraction method (RSE): Dur-
ing training, this method uses the related schema
and question as input, with the labeled GQL as



train dev test total
Number of Data Points 3000 500 1000 4500
Total Number of GQLs 18912 3121 6548 28581
Average Dialogue Turns per Data 6.30 6.25 6.54 6.35
Average entity per Data 4.72 5.26 4.97 4.84
Average relation per Data 5.19 5.33 5.14 5.19
Table 2: Basic Statistics of the Dataset.
Dataset Language Multi or Single Domain Syntax Number
SpCQL (Guo et al., 2022) Chinese Single Open-domain Cypher 10000
CySpider (Zhao et al., 2023) English Single Open-domain Cypher 4929
Text2Cypher (Ozsoy et al., 2024)  English Single Open-domain Cypher 44387
FinGQL (Liang et al., 2024a) Chinese Single Finance nGQL -
MediGQL (Liang et al., 2024a) Chinese Single Medicine Cypher -
R3-NL2GQL (Zhou et al., 2024b) %ﬁlgrifsslf Single Open-domain nGQL 5116
StockGQL (Liang et al., 2024b) Chinese Single Stock nGQL 6456
TCMGQL (Liu et al., 2024) Chinese Single Medicine Cypher -
EduGQL (Liu et al., 2024) Chinese Single Education Cypher -
MTGQL(Ours) Chinese Multi Stock nGQL 4500
Table 3: A summary of the main NL2GQL datasets. From this, we can conclude that MTGQL is the only multi-turn
dataset.
train dev test all-MiniLM-L6-v2 library, with vector dimensions
set to 384. All the number of demonstrations K
Coherence 432 4.18 4.27 are set as 4.
Question Diversity 4.06 4.01 4.10 Evaluation Metrics. The work in (Guo et al.,
Semantic Accuracy 476 455 4.79 2022) introduced Exact Match (EM) and Exact

Table 4: Basic Statistics of The Dataset.

output, while fine-tuning the LLM. In inference, it
guides the LLM to extract related schema.
Fine-tuning with with all schema method (FT-
AS): Approach concatenates all schema informa-
tion with the question as input while applying
LoRA for parameter-efficient fine-tuning of the
base LLM.

6.2 Experimental Setup

Implementation Details.  Our experiments
were conducted on an A800 GPU. We selected
Qwen2.5-14B-Instruct (Team, 2024), LLaMA-3.1-
8B-Instruct (Dubey et al., 2024), and GLM-4-9B-
Chat (GLM et al., 2024) as the LLM backbone
models. For sequence encoding, we utilized the

Explanation (EX) for single-turn tasks. For multi-
turn tasks, we propose Overall Exact Match (AEM)
and Overall Exact Explanation (AEX), where all
turns in a dialogue must be correct for the data
to be considered successful. The formulas are as

follows:

number of GQL
with correct logic form

~ total number of GQL

ey

number of data points
where all GQLs have
correct logical form

AEM =
total number of data points

2

number of GQL
__ with correct execution result (3 )

total number of GQL

number of data points
with all GQLs having
correct execution results

AEX =
total number of data points

“



Method Backbones EM(%) AEM(%) EX(%) AEX(%)
GLM-4-9B-Chat 32.03 7.80 30.01 7.10
ICL-AS Qwen2.5-14B-Instruct 34.779 9.40 35.49 9.20
) LLaMA-3.1-8B-Instruct ~ 29.99 7.20 30.88 6.70
ChatGPT-40 43.28 11.30 45.27 10.80
RES GLM-4-9B-Chat 81.92 38.60 80.96 37.90
Qwen2.5-14B-Instruct 82.59 40.50 81.98 39.80
LLaMA-3.1-8B-Instruct 80.96 35.40 80.93 35.30
FTAS GLM-4-9B-Chat 84.03 42.30 83.38 41.60
) LLaMA-3.1-8B-Instruct 85.51 45.80 84.51 43.70
Qwen2.5-14B-Instruct 86.99 48.80 85.87 44.30

Table 5: The comparison between the baseline methods is shown, with the bold numbers indicating the best results.

7 Results
7.1

Based on the results presented in Table 5, it is clear
that FT-AS outperforms the other methods across
all evaluation metrics, demonstrating its superior
effectiveness in the given context. Specifically, FI-
AS, particularly when paired with the Qwen2.5-
14B-Instruct backbone, achieves the highest scores
in both EM (86.99% ) and AEM (48.80%), as well
as EX (85.87%) and AEX (44.30%). In contrast,
the ICL-AS method shows relatively lower per-
formance, likely due to the lack of high-quality
GQL-related corpora during the pretraining phase
of its base models. Additionally, the compari-
son between different backbone models within the
same method reveals noticeable performance fluc-
tuations. This highlights the critical role of model
architecture and backbone selection in influencing
overall accuracy.

Main Results

7.2 Breakdown Results by Round

Round EM(%) EX(%)
R1 91.20 90.80
R2 89.60 88.80
R3 86.20 85.40
R4 84.80 84.10
R5+ 80.28 79.96

Table 6: The breakdown of results by round, where
R1-R4 represent rounds 1 to 4, and R5+ denotes round
5 and beyond.

Table 6 presents the results of the best baseline
method across different rounds, showing a clear

Round EM(%) EX(%)
P1 89.26 89.05
P2 84.44 83.98
P3 86.52 85.85
P4 91.77 90.93
P5 80.47 78.32
P6 82.61 82.29

Table 7: The breakdown of results by the question
expansion pattern.

decline in performance as rounds increase. This
decrease is likely due to the increasing complexity
of multi-turn interactions, which challenges the
model’s ability to maintain context and generate
consistent responses.

Table 7 shows performance across different ques-
tion expansion patterns, with notable variations.
These fluctuations indicate that the model is more
effective with simpler question expansions (like
P1 and P4), while more complex patterns (like P2
and P5) lead to lower accuracy, likely due to the
increased difficulty of generating precise answers.

8 Conclusion

In this paper, we introduce a dependency-aware
multi-turn dataset construction framework for
building multi-turn NL2GQL datasets. Using this
framework, we create MTGQL, the first multi-
turn NL2GQL dataset. Finally, we propose three
baseline methods based on this dataset, laying the
groundwork for future advancements in the field.



Limitations

Although we have developed a Chinese multi-turn
NL2GQL dataset, we have not yet completed the
translation into English due to the need to trans-
late much of the data in the graph database. Once
this task is finished, we will release the bilingual
(Chinese-English) dataset as open source.
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9 Appendix

9.1 Comparison with Similar Tasks

Text2SQL

While numerous highly effective Text2SQL
methods have been developed (Caferoglu and Ulu-
soy, 2024; Wang et al., 2023; Talaei et al., 2024),
the fundamental differences between GQL and
SQL present significant challenges for directly ap-
plying these methods to the NL2GQL task. Sev-
eral studies have examined the differences between
Text2SQL and NL2GQL (Guo et al., 2022; Liang
et al., 2024a; Zhou et al., 2024b), and we highlight
the key distinctions in the following areas:

* Differences in standard syntax: Unlike
SQL, which follows a standardized query lan-
guage, GQL lacks a unified standard. Dif-
ferent graph databases adopt distinct query
languages such as Cypher, nGQL, and Grem-
lin. This fragmentation complicates dataset
construction, model generalization, and the
development of consistent training paradigms.

* Differences in query types: GQL surpasses
the typical CRUD operations by offering ad-
vanced query types like sub-graph and path
queries that enable complex data traversal. Its
extensive keyword set further enhances its
flexibility, making it a powerful tool for a wide
range of data manipulation needs.

* Differences in translation difficulties:
NL2GQL involves understanding graph
structures, path reasoning, and pattern
matching, requiring high query flexibility,
which may lead to issues such as path
combination explosion. In contrast, Text-to-
SQL faces challenges like pattern matching,
table/column name mapping, and SQL syntax
parsing, but the overall query structure
remains relatively stable.

* Differences in language model capabilities:
Text-to-SQL benefits from a large corpus and
extensive datasets, while NL2GQL has far
fewer resources. Given that most widely used
pre-trained models, especially LLMs, rely on
pre-training followed by fine-tuning, this dis-
parity in resources directly impacts their per-
formance on these tasks.

In conclusion, due to the substantial differences
between the two, it is essential to develop special-
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ized approaches for NL2GQL rather than simply
adapting Text-to-SQL methods.

Multi-turn Dialogue

Multi-turn dialogue systems involve an iterative,
back-and-forth exchange between a user and a sys-
tem, where the conversation evolves over multiple
turns. These systems aim to refine user queries,
explore topics in more depth, and generate con-
textually appropriate responses based on previ-
ous interactions. Unlike single-turn dialogue sys-
tems, which address isolated queries, multi-turn
dialogues manage dynamic and context-sensitive
information flows (Yi et al., 2024).

Multi-turn NL2GQL is a specialized form of
Multi-turn Dialogue. Unlike other Multi-turn Dia-
logue systems, NL2GQL focuses on converting nat-
ural language into GQL based on a graph database.
This distinction makes Multi-turn NL2GQL ideal
for dynamic interactions with graph-based data,
where each query may involve traversing different
paths or nodes. The model must not only under-
stand the current query but also retain information
from previous interactions to generate accurate,
contextually relevant graph queries. This ability
to maintain coherence across multiple turns poses
challenges in handling complex graph traversals
and evolving contexts.

Multi-turn Knowledge Base Question Answer-
ing. A knowledge graph is a structured knowledge
base represented as a graph, designed to organize
vast amounts of real-world information in a flexible
and scalable manner. Its primary goal is to enable
machines to understand this information and per-
form reasoning and inference (Zhao et al., 2022b;
Pan et al., 2024). In contrast, a graph database pri-
marily focuses on efficient data storage and query
optimization, rather than on knowledge reasoning
and semantic understanding. As such, KBQA em-
phasizes knowledge-based reasoning and semantic
understanding to extract answers from structured
knowledge bases, while NL2GQL focuses on con-
structing effective graph queries.

A typical example of a problem that NL2GQL
can solve but KBQA cannot is as follows:

Problem: Find all users who participated in
at least two projects in 2023, and whose friends
include at least one person from the R&D depart-
ment.

NL2GQL Solution: The complex graph traver-
sal logic can be directly expressed using graph
query languages like Cypher Pseudo-code:
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MATCH (u:User)-[:PARTICIPATED_IN]->(
p:Project {year: 2023})
WITH u, COUNT(p) AS project_count
WHERE project_count >= 2
MATCH (u)-[:FRIEND_OF]->(f:User)-
[ :BELONGS_TO]->(:Dept {name: "R&D"})
RETURN u.name, COLLECT(f.name)

AS friends_in_rd

Why KBQA Struggles with This Problem:

* Multi-hop Relationship Traversal: This
problem requires reasoning across 4 hops:
User — Project — Count — Friend — Depart-
ment. Traditional KBQA systems typically
handle only single-hop or fixed-path queries
and are not equipped to flexibly manage dy-
namic path lengths (e.g., recursive traversal of
the "FRIEND_OF" relationship).

» Aggregation and Conditional Combination:
The task involves both an aggregation opera-
tion (e.g., COUNT(p) >= 2) and a conditional
filter (e.g., friends from the R&D department).
KBQA systems usually cannot combine ag-
gregation functions with multiple entity con-
ditions within the same query.

* Implicit Logical Dependencies: The con-
dition "at least one friend belongs to the
R&D department” necessitates an existence
check (EXISTS) rather than a simple attribute
match. KBQA typically returns explicitly
stored triples and cannot dynamically infer
such existence conditions.

Other NL2GQL-exclusive Capabilities include
the following question examples:

* Path Queries: Question: “Find the shortest
collaboration path from User A to User B,
where all nodes in the path are employees
who joined after 2020.”

Cypher Pseudo-code:

MATCH (a:User {name: "UserA"}),

(b:User {name: "UserB"}),

path = shortestPath((a)-

[ : COLLABORATES_WITHx]-(b))
WHERE ALL(node IN nodes(path)
WHERE node:Employee AND

node. join_date >= '2020-01-01"')
RETURN path



* Dynamic Pattern Reasoning: Question:
“Count the managers in all departments
who have more than 10 subordinates and

whose subordinates have participated in cross-

departmental projects.”

Cypher Pseudo-code:

MATCH (dept:Department)
<-[:MANAGES]-(manager :Manager)
WITH dept, manager, [(manager)-
[ :MANAGES]->(emp:Employee) | emp]
AS subordinates
WHERE size(subordinates) > 10
AND ANY(emp IN subordinates
WHERE EXISTS {
MATCH (emp)-[:PARTICIPATED_IN]
->(proj:Project)
WHERE proj.department
<> dept.name
1))
RETURN dept.name AS department,
manager.name AS manager,
size(subordinates) AS emp_count

* Temporal Graph Analysis: Question: “List
all stocks that experienced a drop of more than
5% in a single day after 5 consecutive days of
price increases.”

Cypher Pseudo-code:

MATCH (s:Stock)-[r:HAS_DAILY_DATA]
->(d:DailyData)
WITH s, d ORDER BY d.date ASC
WITH s, COLLECT(d) AS data
WHERE size(data) >= 6
AND ANY(i IN RANGE(O,
size(data)-6)

WHERE
REDUCE (isRising = true,
j IN [0..4] |

isRising AND
datal[i+j+1].close_price >
datal[i+j].close_price

)

AND (datali+5].close_price -
datal[i+6].close_price) /
data[i+5].close_price >= 0.05

RETURN s.name AS stock,
datal[i+5].date AS peak_date,
datal[i+6].date AS drop_date
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9.2 Question expansion patterns selection
algorithm.

In this section, we present our question expansion
pattern selection algorithm, a key innovation of
this work. As described in Section 4.2, the Context
Manager stores a set of entities and relations, along
with six expansion patterns.

As illustrated in Algorithm 1, our algorithm fol-
lows three main steps:

* Expansion Pattern Filtering: Based on the
set of entities, relations, and the schema of
G, we sequentially evaluate the conditions for
each of the six expansion patterns (P1-P6) us-
ing predefined rules. We filter out the patterns
that do not meet the necessary conditions.

* Expansion Pattern Selection: From the re-
maining expansion patterns, we select the
most appropriate one according to their as-
signed weights. Initially, each pattern is given
a weight of 1/6. If a pattern has already been
used, its weight is halved, and the reduced
weight is evenly distributed among the other
remaining patterns.

* Entity and Relation Selection: Once the ex-
pansion pattern is selected, we proceed to
choose the corresponding entities and rela-
tions. In the entity selection process, we
first identify the potential candidate entities
based on the chosen pattern. Then, we as-
sign weights to these entities. Initially, each
potential entity receives an equal weight of
1/IEl, where |El is the total number of can-
didate entities. If an entity has been refer-
enced in the previous step of the dialogue, its
weight increases by 1/4, indicating a higher
likelihood of its selection in the current step.
The increased weight is evenly redistributed
among the remaining entities to maintain bal-
ance. The relation selection follows a similar
approach.

9.3 Prompt for Question Generation

As shown in Figure 3, this prompt generates clear
and contextually relevant questions based on a
schema and dialogue history, following a question
expansion pattern. It guides the LLLM to generate
either an opening question or a follow-up ques-
tion, using entity placeholders according to the
expansion pattern. The output includes both a raw



Algorithm 1: Question Expansion Pattern Selection Algorithm

Input: Set of entities and relations { £/, R}, schema of G, set of expansion patterns
{P1, P2, P3, P4, P5, P6}

Output: Selected expansion pattern and corresponding entities and relations

Step 1: Expansion Pattern Filtering

2 for each expansion pattern P; in {P1, P2,..., P6} do

3 if Pattern P; meets the predefined conditions based on E, R, and G then

4 L Include P; in the set of valid patterns

—

else
L Remove P; from the set of valid patterns

w

Step 2: Expansion Pattern Selection
for each valid expansion pattern P; do
9 L Set initial weight of P; as w(P;) = &

o« 2

10 for each previously used expansion pattern P; do
1 L Halve its weight: w(FP;) = @

Redistribute the halved weight equally among other remaining patterns
13 Select the expansion pattern Piejected With the highest weight:

14 Pelected = arg maxp; ’lU(R)

15 Step 3: Entity and Relation Selection

16 Determine the potential candidate entities Fcapdidates based on Pyelected

17 for each candidate entity e € E qngidates 0

18 Set initial weight of entity e as w(e) = T

19 if e has been referenced in the previous dialogue step then

20 L Increase w(e) by %, indicating higher likelihood of selection

21 Redistribute the increased weight evenly among other remaining entities

22 Determine the potential relations Rcandidates based on Pyelected
23 for each relation v € Randidates A0
2 L Assign weight to r using a similar process as entity selection

25 return Selected expansion pattern Piejecroq, Selected entities, and selected relations

question with references and a fully disambiguated
version, free of placeholders and references, ensur-
ing both contextual relevance and structural clarity.
It is worth noting that since we are constructing a
Chinese dataset, the prompt is written in Chinese.
However, for ease of reading, we have translated it
into English.
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Instruction:

You are an expert in both language processing and NebulaGraph. Given the schema, question expansion
pattern, and dialogue history, generate a clear, relevant, and contextually appropriate question by following
the rules below:

1. Generate a question based on the schema and dialogue context, ensuring the question is contextually
relevant and continues the conversation logically.

2. Use placeholders for entities, such as: [s] for stock, [c] for chairman, [h] for stockholder, [t] for
trade, [p] for public offering fund, [f] for fund manager, [i] for industry, [d] for time, and [m] for
numbers.

3. If the dialogue history is empty, create an opening question. If there is existing dialogue, generate a
follow-up question that aligns with the provided question expansion pattern.

4. Generate the raw question in a conversational style, incorporating relevant references.

5. Generate the formal question based on the raw question. The formal question should be a disam-
biguated version of the raw question, clarified and free of placeholders or references.

Input:

1. Schema Information:

{SCHEMA}

2. Dialogue History:
{DIALOGUE_HISTORY }

3. Question Expansion Pattern:
{QUESTION_EXPANDING_PATTERN}

Output:
Provide the generated raw question after "Question" and the formal question after "Complete Question"
directly.

Question:

Complete Question:

Figure 3: The prompt for question generation.
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