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Abstract001

In recent years, research on transforming002
natural language into graph query language003
(NL2GQL) has been increasing. Most existing004
methods focus on single-turn transformation005
from NL to GQL. In practical applications, user006
interactions with graph databases are typically007
multi-turn, dynamic, and context-dependent.008
While single-turn methods can handle straight-009
forward queries, more complex scenarios often010
require users to iteratively adjust their queries,011
investigate the connections between entities, or012
request additional details across multiple dia-013
logue turns. Research focused on single-turn014
conversion fails to effectively address multi-015
turn dialogues and complex context dependen-016
cies. Additionally, the scarcity of high-quality017
multi-turn NL2GQL datasets further hinders018
the progress of this field. To address this019
challenge, we propose an automated method020
for constructing multi-turn NL2GQL datasets021
based on Large Language Models (LLMs) ,022
and apply this method to develop the MTGQL023
dataset, which is constructed from a financial024
market graph database and will be publicly re-025
leased for future research. Moreover, we pro-026
pose three types of baseline methods to assess027
the effectiveness of multi-turn NL2GQL trans-028
lation, thereby laying a solid foundation for029
future research.030

1 Introduction031

As data complexity and interconnectedness grow032

across various domains, graph data structures have033

become essential for effectively representing and034

analyzing relationships (Zhao et al., 2022a; Sui035

et al., 2024). This increasing demand for efficient036

data representation has driven the widespread adop-037

tion of graph databases. Consequently, graph query038

language (GQL) has emerged as a crucial tool for039

interacting with these systems, playing a pivotal040

role in tasks such as database management, infor-041

mation retrieval, and data analysis (Lopes et al.,042

2023; Wang et al., 2020; Pavliš, 2024), as shown 043

in Figure 1. However, translating natural language 044

(NL) queries into GQL presents a significant chal- 045

lenge, as it requires users to possess technical exper- 046

tise in database operations and a deep understand- 047

ing of specific query syntax and patterns. This com- 048

plexity creates a substantial barrier for individuals 049

without a technical background (Zhao et al., 2022b, 050

2023). To address this challenge, numerous auto- 051

matic NL2GQL methods have been proposed (Guo 052

et al., 2022; Zhou et al., 2024b; Liang et al., 2024a; 053

Tao et al., 2024; Tran et al., 2024), making graph 054

databases accessible to more audiences. 055

Recent advances in NL2GQL are primarily 056

derived from the Seq2Seq framework, such as 057

those demonstrated in (Guo et al., 2022) and 058

CoBGT (Tran et al., 2024). With the rise of 059

LLMs, performance has been further enhanced, 060

leading to the development of numerous LLM- 061

based methods (Zhou et al., 2024b; Liang et al., 062

2024a; Tao et al., 2024; Liang et al., 2024b; Liu 063

et al., 2024). Alongside these methods, several 064

NL2GQL datasets have been developed, includ- 065

ing SpCQL (Guo et al., 2022), CySpider (Zhao 066

et al., 2023), Text2Cypher (Ozsoy et al., 2024), 067

R3-NL2GQL(Zhou et al., 2024b), TCMGQL, 068

EduGQL(Liu et al., 2024), and StockGQL (Liang 069

et al., 2024b). The proposed methods and datasets 070

mainly focus on single-turn queries. 071

While single-turn NL2GQL translation can han- 072

dle relatively simple queries, multi-turn interac- 073

tions introduce several complexities that require 074

advanced handling. First, the system must maintain 075

context across multiple historical queries, as each 076

new query builds upon the information provided 077

in previous ones. This necessitates robust con- 078

text management to accurately capture the user’s 079

evolving intent and ensure the generation of con- 080

sistent, relevant queries. Second, as users refine 081

or expand their queries during the interaction, the 082

system must dynamically adjust the context to ac- 083
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User: Which stock in the securities industry has the highest opening price today?
System: CITIC Securities.
match (s:stock)-[:belong_to]->(i:industry) WHERE i.name = ’securities’ return s.name order by
s.opening_price desc limit 1
User: What is its opening price today?
System: ¥30.26
match (s:stock {name: ’CITIC Securities’})-[:has_data]->(d:stock_data {date: ’2025-01-08’})
return d.opening_price
User: What about yesterday?
System: ¥36.25
match (s:stock {name: ’CITIC Securities’})-[:has_data]->(d:stock_data {date: ’2025-01-07’})
return d.opening_price
User: How about Guotai Junan Securities?
System: ¥20.00
match (s:stock {name: ’ Guotai Junan Securities’})-[:has_data]->(d:stock_data {date: ’2025-01-
07’}) return d.opening_price

Figure 1: An example of a multi-turn interaction between a User and a System, with the orange sections representing
the corresponding Cypher-based GQL for each question. The color coding highlights the contextual dependencies,
such as opening price , CITIC Securities and Guotai Junan Securities.

commodate these changes. Last but not least, cur-084

rent datasets are primarily designed for single-turn085

queries, resulting in limited data available for train-086

ing and evaluating multi-turn systems. This con-087

straint hampers the development of more sophisti-088

cated, context-aware solutions.089

To tackle the challenge posed by the scarcity090

of multi-turn NL2GQL datasets, we propose a091

dependency-aware multi-turn dataset construc-092

tion framework, which performs collaborative op-093

timization between LLMs, graph data, and dialogue094

dependency in an iterative way. Our framework is095

composed of four essential components: a Con-096

text Manager, Question Generator, GQL Generator,097

and GQL Optimizer. Here, context manager plays098

as a central unit to integrate the information of di-099

alogue history and graph data and send to other100

constituents. Question generator, GQL generator,101

and GQL optimizer are LLM-based constituents102

to analysis the information from the context man-103

ager and output the generated questions, GQLs,104

and answers. They also interact with each other105

for mutual checking and correction. Using this106

framework, we have created the MTGQL dataset,107

a Chinese multi-turn NL2GQL dataset based on a108

financial market NebulaGraph database.109

Our main contributions are as follows:110

• A Standard Framework: We propose a111

novel framework for constructing multi-turn112

NL2GQL datasets. To the best of our knowl-113

edge, this is the first method specifically de- 114

signed for building such datasets. 115

• MTGQL Dataset: Leveraging our approach 116

with a Chinese financial market Nebula- 117

Graph database, we have created the MT- 118

GQL dataset—the first Chinese multi-turn 119

NL2GQL dataset. 120

• Benchmark Methods: We present three 121

types of baseline methods for the MTGQL 122

dataset, providing a solid foundation for fu- 123

ture research. 124

2 Related Work 125

2.1 NL2GQL 126

Early work in NL2GQL focused on template gen- 127

eration and heuristic rule-based systems. Recent 128

advancements in NL2GQL tasks have seen a shift 129

to deep learning-based approaches. Among the 130

pioneering studies, the work (Guo et al., 2022) 131

was the first to apply a Seq2Seq framework to 132

NL2GQL, introducing a copying mechanism along- 133

side the Seq2Seq model to enhance GQL gener- 134

ation. This approach paved the way for subse- 135

quent deep learning-based models in this space. 136

The CoBGT model (Tran et al., 2024) further 137

advanced this field by integrating key-value ex- 138

traction, relation-property prediction, and Cypher 139

query generation. This model combines BERT, 140
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GraphSAGE, and Transformer architectures to ad-141

dress the NL2GQL task.142

The emergence of LLMs has further advanced143

the research in NL2GQL. The paper (Tao et al.,144

2024) presented a revision-based method for145

NL2GQL, leveraging LLMs without fine-tuning,146

further simplifying the process of adapting LLMs147

for NL2GQL tasks. R3-NL2GQL (Zhou et al.,148

2024b) integrates small and large foundation mod-149

els for ranking, rewriting, and refining tasks, en-150

hancing query quality by better understanding con-151

text and relationships. The work in (Liang et al.,152

2024a) proposed aligning LLMs with domain-153

specific graph databases to enhance query accuracy154

and domain relevance. It emphasizes the adapt-155

ability of LLMs when tailored to specific graph156

schemas, ensuring that generated queries are con-157

textually appropriate. In another study, (Liang158

et al., 2024b) proposed a three-agent system for159

NL2GQL, comprising a Preprocessor for data han-160

dling, a Generator for GQL creation, and a Refiner161

that refines queries based on execution results. This162

multi-agent approach provides a more structured163

and efficient translation process, addressing both164

query generation and validation. The method (Liu165

et al., 2024) proposed using template-filling and166

problem rewriting techniques with LLMs to pro-167

vide contextual information, improving the model’s168

comprehension of the complex relationships be-169

tween NL, graph schemas, and database data.170

These methods are all based on the single-turn171

NL2GQL task1.172

2.2 NL2GQL Dataset173

The development of NL2GQL datasets has also174

evolved alongside advances in model architectures.175

Several datasets have been proposed in recent years,176

each addressing different aspects of the NL2GQL177

task. The SpCQL (Guo et al., 2022) dataset is178

constructed by manually annotating 10,000 NL179

queries with corresponding Cypher queries based180

on a single Neo4j graph database. CySpider (Zhao181

et al., 2023) dataset is constructed by developing182

a SQL2Cypher algorithm that maps SQL queries183

to Cypher clauses, which are then paired with the184

original natural language queries to create a par-185

allel corpus. Text2Cypher (Ozsoy et al., 2024)186

combined, cleaned, and organized several publicly187

available datasets into a total of 44,387 instances to188

enable effective fine-tuning and evaluation. R3-189

1A more detailed comparison with similar tasks is provided
in the Appendix 9.1.

NL2GQL (Zhou et al., 2024b) constructed the 190

dataset by manually creating NL-GQL pairs, using 191

foundation models to generate diverse interpreta- 192

tions, and refining them manually. 193

Recently, using LLMs to construct data has 194

become an effective solution to the problem of 195

data scarcity, especially for tasks in specific do- 196

mains (Ding et al., 2024; Long et al., 2024; Zhou 197

et al., 2024a). The TCMGQL and EduGQL (Liu 198

et al., 2024) datasets were constructed from real- 199

world databases, ensuring standardized types and 200

diversity. Over ten NL and GQL templates were 201

developed based on database schema information, 202

further enhanced by LLMs. The work (Liang et al., 203

2024a) constructs datasets by first generating NL- 204

GQL pairs from a graph database, followed by a 205

two-step data augmentation process using Chat- 206

GPT to ensure diverse and comprehensive query 207

coverage. The generated pairs are then grounded 208

and verified. Building upon the work in (Liang 209

et al., 2024a), the work (Liang et al., 2024b) in- 210

troduced improvements by incorporating subgraph 211

extraction related to GQL and the colloquializa- 212

tion of named entities, while also constructing the 213

StockGQL dataset. Unlike these methods, we focus 214

on developing a multi-turn NL2GQL dataset. 215

3 Multi-turn NL2GQL Task Formulation 216

A graph database G consists of a large number of 217

connected data (nodes and edges). 218

We first define single-turn NL2GQL as fol- 219

lows. Given a graph database G and a question 220

Q, the NL2GQL system is supposed to return an 221

executable GQL command that can be executed 222

against G and produce an answer A: 223

GQLt = F(Q,G). 224

Here, F is a function that generates the graph query 225

language GQL based on Q, and G. In single-turn 226

NL2GQL, different question-answer pairs in the 227

dataset D = {(Q1, A1), (Q2, A2), ...} are indepen- 228

dent. 229

In comparison, the interdependent question- 230

answer pairs in multi-turn NL2GQL problem 231

form a complete dialogue, denoted as C = 232

((Q1, A1), (Q2, A2), ..., (Qm, Am)) and a set of di- 233

alogues forms a dataset D = {C1, C2, ...}. We 234

refer to each question-answer pair as one round of 235

the dialogue. In the multi-turn NL2GQL, at the 236

t-th round, given multiple rounds of historical in- 237

teraction between the user Ct, the objective is to 238
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Figure 2: Our framework consists of five synergistic components: the Context Manager, Question Generator, GQL
Generator, GQL Validator and Optimizer, and Dataset Filter. These components work collaboratively to handle
question generation, GQL generation, GQL validation and refinement, and dataset filtering. Steps 1, 2, and 3 are
iteratively executed for each data point to generate multi-turn data.

generate the GQL, denoted as GQLt, correspond-239

ing to the question Qt:240

GQLt = F(Qt, Ct, G),241

where Ct = {Q1, A1, ..., Q(t−1), A(t−1)} includes242

all relevant user inputs and system responses exe-243

cuted against G via the GQLs.244

4 A Dependency-aware Multi-turn245

Dataset Construction Framework246

4.1 Overview247

To generate multi-turn NL2GQL dataset, we ad-248

here to the following three criteria that are dis-249

tinct from single-turn NL2GQL. (1) Each ques-250

tion should be factually grounded via G to ensure251

its corresponding answers can be successfully re-252

trieved from the graph data with a GQL. (2) The253

question-answer pairs in a dialogue should be inter-254

dependent. Specifically, the question in the current255

round could be linked to the dialogue history via256

either questions or answers in the previous rounds.257

(3) The types of the questions and dialogue de-258

pendencies should present diversity to cover the259

application of practical scenario.260

As showed in Figure 2, the framework com-261

prises five interconnected components: Context262

Manager, Question Generator, GQL Generator,263

GQL Validator and Optimizer, and Dataset Fil- 264

ter. The Context Manager functions as the central 265

unit, managing dialogue history, overseeing data 266

generation, selecting appropriate dialogue depen- 267

dency patterns, and filling in masked entities in 268

questions. First, The Question Generator produces 269

questions that are contextually coherent. Second , 270

the GQL Generator, a fine-tuned LLM, transforms 271

natural language into GQL. Then, the GQL Op- 272

timizer ensures correctness by performing syntax 273

and semantic validation, correcting errors to ensure 274

valid and accurate queries. This iterative process 275

enables the generation of multi-turn data. Next, we 276

will detail the implementation and role of each core 277

component. 278

4.2 Context Manager 279

The Context Manager is the control components 280

of the system, Its functions include the following 281

aspects: 282

Updating the Dialogue History: The Context 283

Manager is responsible for maintaining the dia- 284

logue history, which includes Ct, the set of entities 285

and relations, and the expansion pattern history. It 286

continuously updates the dialogue history to ensure 287

that all interactions are accurately tracked. 288

Fulfilling Masked Questions: Since the Ques- 289

tion Generator generates specific entity names for 290
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Pattern Description Example

P1: Attribute Follow-up Generates follow-up questions about an entity’s at-
tributes based on the previous query. Q1: What is the largest stock in the liquor industry?

A1: Moutai.
Q2: What is the registered capital?

P2: Temporal Shift Introduces the time dimension to generate
queries related to historical data. Q1: What is the highest price of Moutai today?

A1: 20.5
Q2: What was the closing price yesterday?

P3: Relation Extension Expands the dialogue by querying related rela-
tionships. Q1: What is the stock code for Tencent?

A1: HK0700
Q2: What is the industry data?

P4: Same-Type Entity Used for comparative reasoning between mul-
tiple entities. Q1: What is the opening price of Baidu today?

A1: 150
Q2: What about Alibaba?

P5: Aggregation Calculation Involves queries requiring aggregation calcu-
lations such as averages or sums. Q1: What is the opening price of Tengfei today?

A1: 417
Q3: What is the day-on-day growth?

P6: Conditional Filtering Filters data based on specific conditions. Q1: Which funds have a management fee below 1%?
A1: Fund A, Fund B
Q2: Which ones have a size greater than 5 billion?

Table 1: Patterns for expanding subsequent questions.

certain questions but may not have access to the291

available entities in the database, placeholders are292

used. Therefore, another responsibility of the Con-293

text Manager is to replace the placeholders with294

actual entity names from the graph database.295

Controlling the Generation Process: The Con-296

text Manager oversees the entire data generation297

process, controlling both the start and end. It is298

also responsible for selecting question expansion299

patterns based on the set of entities and relations300

in the history. To ensure the generation of high-301

quality questions, we have designed six fundamen-302

tal expansion patterns, as shown in Table 1, and the303

expansion pattern selection algorithm is detailed in304

Appendix 9.2. We adjust the number of conversa-305

tion rounds iteratively, keeping the total rounds per306

data point between 5 and 8 to maintain appropriate307

depth and complexity.308

4.3 Question Generator309

We use an LLM as the Question Generator, cate-310

gorizing questions into initial and follow-up types.311

The initial question is randomly generated based312

on the schema of G, while subsequent questions313

follow the expansion patterns from the Context314

Manager. These questions must inherit context,315

promoting diversity, complexity, and a colloquial316

tone.317

To better guide the LLM in generating high-318

quality questions, we have designed the prompt319

format as shown in Appendix 9.3. It is important320

to note that since the Question Generator is only 321

aware of the schema of G and does not have access 322

to the specific entities stored within the database, 323

questions involving entities are generated as place- 324

holder templates. For example, What is the 325

opening price of [s] stock today? where 326

[s] represents a placeholder for the stock entity 327

name. Additionally,it also provides completed ver- 328

sions of the colloquial questions. 329

4.4 GQL Generator 330

The GQL Generator is responsible for generating 331

the corresponding GQL based on the schema of G 332

and the complete question provided by the Context 333

Manager. To enhance generation efficiency, we use 334

the full schema to construct the prompt for fine- 335

tuning the LLM, as outlined in Paper (Liang et al., 336

2024a). With the fine-tuned LLM, the GQL Gener- 337

ator ensures accurate understanding and handling 338

of the graph database’s schema when generating 339

GQL. 340

4.5 GQL Validator and Optimizer 341

The GQL Validator and Optimizer play a crucial 342

role in ensuring that the GQL are both syntactically 343

and semantically correct. It has two main functions: 344

validating syntax and semantics, and optimizing 345

incorrect GQL. 346

Syntax Validation: This ensures that the gener- 347

ated GQL statements are syntactically correct and 348

executable in the graph database. The GQL is ex- 349
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ecuted on the database, and if it runs successfully350

with expected results, it is syntactically correct;351

otherwise, it is flagged for optimization.352

Semantic Validation: This ensures that the GQL353

accurately reflects the original question’s intent.354

We utilize the reverse generation validation method355

introduced in paper (Liang et al., 2024a) to infer the356

original question from the generated GQL. If the357

vector embedding similarity between the inferred358

and original question is low, it indicates that the359

generated GQL requires further optimization.360

GQL Optimization: Numerous studies have361

shown that optimizing structured query state-362

ments with syntax errors can enhance their accu-363

racy (Pourreza et al., 2024; Maamari et al., 2024;364

Zhou et al., 2024b). When syntax errors are de-365

tected, the system combines the original ques-366

tion, generated GQL, and error information into367

a prompt for the LLM to correct. The modified368

GQL is then re-validated for syntax. For semantic369

optimization, if the GQL doesn’t align with the370

original question’s intent, both the question and371

GQL are input into the LLM for correction. The372

corrected GQL undergoes semantic validation, and373

this process repeats up to three times. If all attempts374

fail, the system instructs the Context Manager to375

regenerate the question.376

4.6 Dataset Filter377

After dataset generation, while the methods out-378

lined above ensure the quality of each data point,379

they cannot guarantee the absence of similarity and380

redundancy. To address this, we apply two filtering381

methods.382

GQL-based Filtering: We replace entity names in383

the GQL with placeholders and collect the masked384

GQL into a set. By comparing sets across data385

points, we calculate their similarity. If more than386

three identical masked GQL are found, one is dis-387

carded as redundant, effectively reducing dupli-388

cates in the dataset.389

Embedding -based Filtering: To prevent high390

similarity between questions across data points, we391

concatenate all questions from each entry, apply392

vector embedding to obtain high-dimensional rep-393

resentations, and calculate the similarity between394

data points. Any pair with similarity exceeding a395

preset threshold is discarded. This approach effec-396

tively reduces duplicates and enhances the unique-397

ness, quality, and diversity of the dataset.398

We applied our approach to a Chinese financial399

market NebulaGraph database to develop the MT-400

GQL dataset based on nGQL syntax. 401

5 Data Analysis 402

5.1 Dataset Statistics 403

As shown in Table 2,the dataset includes 4500 dia- 404

logues: 3000 for training, 500 for development, and 405

1000 for testing. On average, each dialogue has 6.3 406

turns, indicating a balanced structure. It contains 407

21,600 GQL statements, with 14,100 in training, 408

2,600 in development, and 4,900 in testing. Each 409

data point includes 4.8 GQLs, reflecting a high 410

query density. These statistics offer valuable in- 411

sights into the dataset’s coverage and effectiveness 412

for training and evaluating models in multi-turn 413

dialogues and graph query tasks. 414

5.2 Human Evaluation 415

We evaluated the quality of the dataset by having 416

three domain experts rate 200 randomly selected 417

dialogues from the training, validation, and test sets 418

based on coherence, question diversity, coverage, 419

and semantic accuracy (on a 1-5 scale). The results, 420

as shown in Table 4, demonstrate the dataset’s ef- 421

fectiveness for training and evaluating dialogue 422

systems. 423

5.3 Comparison with Other Datasets 424

As shown in Table 3, the table compares several 425

NL2GQL datasets, with MTGQL standing out as 426

the only multi-turn dataset. Unlike other single- 427

turn datasets, MTGQL is specifically designed to 428

handle more complex, multi-turn queries, making it 429

particularly suitable for tasks that require multiple 430

interactions. Therefore, MTGQL will play a pivotal 431

role in advancing research in multi-turn NL2GQL. 432

433

6 Models and Experimental Setup 434

6.1 Benchmark Methods for Multi-turn 435

NL2GQL 436

We have set up three baseline methods to evaluate 437

the performance of different strategies. The specific 438

methods are as follows: 439

In-context learning with all schema method 440

(ICL-AS): This method provides a set of exam- 441

ples within the input prompt, which concatenates 442

all schema information and the question, guiding 443

the LLM to generate the corresponding GQL. 444

Related schema extraction method (RSE): Dur- 445

ing training, this method uses the related schema 446

and question as input, with the labeled GQL as 447
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train dev test total

Number of Data Points 3000 500 1000 4500

Total Number of GQLs 18912 3121 6548 28581

Average Dialogue Turns per Data 6.30 6.25 6.54 6.35

Average entity per Data 4.72 5.26 4.97 4.84

Average relation per Data 5.19 5.33 5.14 5.19

Table 2: Basic Statistics of the Dataset.

Dataset Language Multi or Single Domain Syntax Number

SpCQL (Guo et al., 2022) Chinese Single Open-domain Cypher 10000

CySpider (Zhao et al., 2023) English Single Open-domain Cypher 4929

Text2Cypher (Ozsoy et al., 2024) English Single Open-domain Cypher 44387

FinGQL (Liang et al., 2024a) Chinese Single Finance nGQL -

MediGQL (Liang et al., 2024a) Chinese Single Medicine Cypher -

R3-NL2GQL (Zhou et al., 2024b) Chinese
English Single Open-domain nGQL 5116

StockGQL (Liang et al., 2024b) Chinese Single Stock nGQL 6456

TCMGQL (Liu et al., 2024) Chinese Single Medicine Cypher -

EduGQL (Liu et al., 2024) Chinese Single Education Cypher -

MTGQL(Ours) Chinese Multi Stock nGQL 4500

Table 3: A summary of the main NL2GQL datasets. From this, we can conclude that MTGQL is the only multi-turn
dataset.

train dev test

Coherence 4.32 4.18 4.27

Question Diversity 4.06 4.01 4.10

Semantic Accuracy 4.76 4.55 4.79

Table 4: Basic Statistics of The Dataset.

output, while fine-tuning the LLM. In inference, it448

guides the LLM to extract related schema.449

Fine-tuning with with all schema method (FT-450

AS): Approach concatenates all schema informa-451

tion with the question as input while applying452

LoRA for parameter-efficient fine-tuning of the453

base LLM.454

6.2 Experimental Setup455

Implementation Details. Our experiments456

were conducted on an A800 GPU. We selected457

Qwen2.5-14B-Instruct (Team, 2024), LLaMA-3.1-458

8B-Instruct (Dubey et al., 2024), and GLM-4-9B-459

Chat (GLM et al., 2024) as the LLM backbone460

models. For sequence encoding, we utilized the461

all-MiniLM-L6-v2 library, with vector dimensions 462

set to 384. All the number of demonstrations K 463

are set as 4. 464

Evaluation Metrics. The work in (Guo et al., 465

2022) introduced Exact Match (EM) and Exact 466

Explanation (EX) for single-turn tasks. For multi- 467

turn tasks, we propose Overall Exact Match (AEM) 468

and Overall Exact Explanation (AEX), where all 469

turns in a dialogue must be correct for the data 470

to be considered successful. The formulas are as 471

follows: 472

EM =

number of GQL
with correct logic form

total number of GQL
(1) 473

AEM =

number of data points
where all GQLs have
correct logical form

total number of data points
(2) 474

EX =
number of GQL

with correct execution result
total number of GQL

(3) 475

AEX =

number of data points
with all GQLs having

correct execution results
total number of data points

(4) 476
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Method Backbones EM(%) AEM(%) EX(%) AEX(%)

ICL-AS

GLM-4-9B-Chat 32.03 7.80 30.01 7.10
Qwen2.5-14B-Instruct 34.79 9.40 35.49 9.20
LLaMA-3.1-8B-Instruct 29.99 7.20 30.88 6.70
ChatGPT-4o 43.28 11.30 45.27 10.80

RES GLM-4-9B-Chat 81.92 38.60 80.96 37.90
Qwen2.5-14B-Instruct 82.59 40.50 81.98 39.80
LLaMA-3.1-8B-Instruct 80.96 35.40 80.93 35.30

FT-AS GLM-4-9B-Chat 84.03 42.30 83.38 41.60
LLaMA-3.1-8B-Instruct 85.51 45.80 84.51 43.70
Qwen2.5-14B-Instruct 86.99 48.80 85.87 44.30

Table 5: The comparison between the baseline methods is shown, with the bold numbers indicating the best results.

7 Results477

7.1 Main Results478

Based on the results presented in Table 5, it is clear479

that FT-AS outperforms the other methods across480

all evaluation metrics, demonstrating its superior481

effectiveness in the given context. Specifically, FT-482

AS, particularly when paired with the Qwen2.5-483

14B-Instruct backbone, achieves the highest scores484

in both EM (86.99%) and AEM (48.80%), as well485

as EX (85.87%) and AEX (44.30%). In contrast,486

the ICL-AS method shows relatively lower per-487

formance, likely due to the lack of high-quality488

GQL-related corpora during the pretraining phase489

of its base models. Additionally, the compari-490

son between different backbone models within the491

same method reveals noticeable performance fluc-492

tuations. This highlights the critical role of model493

architecture and backbone selection in influencing494

overall accuracy.495

7.2 Breakdown Results by Round496

Round EM(%) EX(%)
R1 91.20 90.80
R2 89.60 88.80
R3 86.20 85.40
R4 84.80 84.10
R5+ 80.28 79.96

Table 6: The breakdown of results by round, where
R1-R4 represent rounds 1 to 4, and R5+ denotes round
5 and beyond.

Table 6 presents the results of the best baseline497

method across different rounds, showing a clear498

Round EM(%) EX(%)
P1 89.26 89.05
P2 84.44 83.98
P3 86.52 85.85
P4 91.77 90.93
P5 80.47 78.32
P6 82.61 82.29

Table 7: The breakdown of results by the question
expansion pattern.

decline in performance as rounds increase. This 499

decrease is likely due to the increasing complexity 500

of multi-turn interactions, which challenges the 501

model’s ability to maintain context and generate 502

consistent responses. 503

Table 7 shows performance across different ques- 504

tion expansion patterns, with notable variations. 505

These fluctuations indicate that the model is more 506

effective with simpler question expansions (like 507

P1 and P4), while more complex patterns (like P2 508

and P5) lead to lower accuracy, likely due to the 509

increased difficulty of generating precise answers. 510

8 Conclusion 511

In this paper, we introduce a dependency-aware 512

multi-turn dataset construction framework for 513

building multi-turn NL2GQL datasets. Using this 514

framework, we create MTGQL, the first multi- 515

turn NL2GQL dataset. Finally, we propose three 516

baseline methods based on this dataset, laying the 517

groundwork for future advancements in the field. 518

8



Limitations519

Although we have developed a Chinese multi-turn520

NL2GQL dataset, we have not yet completed the521

translation into English due to the need to trans-522

late much of the data in the graph database. Once523

this task is finished, we will release the bilingual524

(Chinese-English) dataset as open source.525
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9 Appendix 680

9.1 Comparison with Similar Tasks 681

Text2SQL 682

While numerous highly effective Text2SQL 683

methods have been developed (Caferoğlu and Ulu- 684

soy, 2024; Wang et al., 2023; Talaei et al., 2024), 685

the fundamental differences between GQL and 686

SQL present significant challenges for directly ap- 687

plying these methods to the NL2GQL task. Sev- 688

eral studies have examined the differences between 689

Text2SQL and NL2GQL (Guo et al., 2022; Liang 690

et al., 2024a; Zhou et al., 2024b), and we highlight 691

the key distinctions in the following areas: 692

• Differences in standard syntax: Unlike 693

SQL, which follows a standardized query lan- 694

guage, GQL lacks a unified standard. Dif- 695

ferent graph databases adopt distinct query 696

languages such as Cypher, nGQL, and Grem- 697

lin. This fragmentation complicates dataset 698

construction, model generalization, and the 699

development of consistent training paradigms. 700

• Differences in query types: GQL surpasses 701

the typical CRUD operations by offering ad- 702

vanced query types like sub-graph and path 703

queries that enable complex data traversal. Its 704

extensive keyword set further enhances its 705

flexibility, making it a powerful tool for a wide 706

range of data manipulation needs. 707

• Differences in translation difficulties: 708

NL2GQL involves understanding graph 709

structures, path reasoning, and pattern 710

matching, requiring high query flexibility, 711

which may lead to issues such as path 712

combination explosion. In contrast, Text-to- 713

SQL faces challenges like pattern matching, 714

table/column name mapping, and SQL syntax 715

parsing, but the overall query structure 716

remains relatively stable. 717

• Differences in language model capabilities: 718

Text-to-SQL benefits from a large corpus and 719

extensive datasets, while NL2GQL has far 720

fewer resources. Given that most widely used 721

pre-trained models, especially LLMs, rely on 722

pre-training followed by fine-tuning, this dis- 723

parity in resources directly impacts their per- 724

formance on these tasks. 725

In conclusion, due to the substantial differences 726

between the two, it is essential to develop special- 727
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ized approaches for NL2GQL rather than simply728

adapting Text-to-SQL methods.729

Multi-turn Dialogue730

Multi-turn dialogue systems involve an iterative,731

back-and-forth exchange between a user and a sys-732

tem, where the conversation evolves over multiple733

turns. These systems aim to refine user queries,734

explore topics in more depth, and generate con-735

textually appropriate responses based on previ-736

ous interactions. Unlike single-turn dialogue sys-737

tems, which address isolated queries, multi-turn738

dialogues manage dynamic and context-sensitive739

information flows (Yi et al., 2024).740

Multi-turn NL2GQL is a specialized form of741

Multi-turn Dialogue. Unlike other Multi-turn Dia-742

logue systems, NL2GQL focuses on converting nat-743

ural language into GQL based on a graph database.744

This distinction makes Multi-turn NL2GQL ideal745

for dynamic interactions with graph-based data,746

where each query may involve traversing different747

paths or nodes. The model must not only under-748

stand the current query but also retain information749

from previous interactions to generate accurate,750

contextually relevant graph queries. This ability751

to maintain coherence across multiple turns poses752

challenges in handling complex graph traversals753

and evolving contexts.754

Multi-turn Knowledge Base Question Answer-755

ing. A knowledge graph is a structured knowledge756

base represented as a graph, designed to organize757

vast amounts of real-world information in a flexible758

and scalable manner. Its primary goal is to enable759

machines to understand this information and per-760

form reasoning and inference (Zhao et al., 2022b;761

Pan et al., 2024). In contrast, a graph database pri-762

marily focuses on efficient data storage and query763

optimization, rather than on knowledge reasoning764

and semantic understanding. As such, KBQA em-765

phasizes knowledge-based reasoning and semantic766

understanding to extract answers from structured767

knowledge bases, while NL2GQL focuses on con-768

structing effective graph queries.769

A typical example of a problem that NL2GQL770

can solve but KBQA cannot is as follows:771

Problem: Find all users who participated in772

at least two projects in 2023, and whose friends773

include at least one person from the R&D depart-774

ment.775

NL2GQL Solution: The complex graph traver-776

sal logic can be directly expressed using graph777

query languages like Cypher Pseudo-code:778

MATCH (u:User)-[:PARTICIPATED_IN]->( 779

p:Project {year: 2023}) 780

WITH u, COUNT(p) AS project_count 781

WHERE project_count >= 2 782

MATCH (u)-[:FRIEND_OF]->(f:User)- 783

[:BELONGS_TO]->(:Dept {name: "R&D"}) 784

RETURN u.name, COLLECT(f.name) 785

AS friends_in_rd 786

Why KBQA Struggles with This Problem: 787

• Multi-hop Relationship Traversal: This 788

problem requires reasoning across 4 hops: 789

User → Project → Count → Friend → Depart- 790

ment. Traditional KBQA systems typically 791

handle only single-hop or fixed-path queries 792

and are not equipped to flexibly manage dy- 793

namic path lengths (e.g., recursive traversal of 794

the "FRIEND_OF" relationship). 795

• Aggregation and Conditional Combination: 796

The task involves both an aggregation opera- 797

tion (e.g., COUNT(p) >= 2) and a conditional 798

filter (e.g., friends from the R&D department). 799

KBQA systems usually cannot combine ag- 800

gregation functions with multiple entity con- 801

ditions within the same query. 802

• Implicit Logical Dependencies: The con- 803

dition "at least one friend belongs to the 804

R&D department" necessitates an existence 805

check (EXISTS) rather than a simple attribute 806

match. KBQA typically returns explicitly 807

stored triples and cannot dynamically infer 808

such existence conditions. 809

Other NL2GQL-exclusive Capabilities include 810

the following question examples: 811

• Path Queries: Question: “Find the shortest 812

collaboration path from User A to User B, 813

where all nodes in the path are employees 814

who joined after 2020.” 815

Cypher Pseudo-code: 816

MATCH (a:User {name: "UserA"}), 817

(b:User {name: "UserB"}), 818

path = shortestPath((a)- 819

[:COLLABORATES_WITH*]-(b)) 820

WHERE ALL(node IN nodes(path) 821

WHERE node:Employee AND 822

node.join_date >= '2020-01-01') 823

RETURN path 824
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• Dynamic Pattern Reasoning: Question:825

“Count the managers in all departments826

who have more than 10 subordinates and827

whose subordinates have participated in cross-828

departmental projects.”829

Cypher Pseudo-code:830

MATCH (dept:Department)831

<-[:MANAGES]-(manager:Manager)832

WITH dept, manager, [(manager)-833

[:MANAGES]->(emp:Employee) | emp]834

AS subordinates835

WHERE size(subordinates) > 10836

AND ANY(emp IN subordinates837

WHERE EXISTS {838

MATCH (emp)-[:PARTICIPATED_IN]839

->(proj:Project)840

WHERE proj.department841

<> dept.name842

})843

RETURN dept.name AS department,844

manager.name AS manager,845

size(subordinates) AS emp_count846

• Temporal Graph Analysis: Question: “List847

all stocks that experienced a drop of more than848

5% in a single day after 5 consecutive days of849

price increases.”850

Cypher Pseudo-code:851

MATCH (s:Stock)-[r:HAS_DAILY_DATA]852

->(d:DailyData)853

WITH s, d ORDER BY d.date ASC854

WITH s, COLLECT(d) AS data855

WHERE size(data) >= 6856

AND ANY(i IN RANGE(0,857

size(data)-6)858

WHERE859

REDUCE(isRising = true,860

j IN [0..4] |861

isRising AND862

data[i+j+1].close_price >863

data[i+j].close_price864

)865

AND (data[i+5].close_price -866

data[i+6].close_price) /867

data[i+5].close_price >= 0.05868

RETURN s.name AS stock,869

data[i+5].date AS peak_date,870

data[i+6].date AS drop_date871

9.2 Question expansion patterns selection 872

algorithm. 873

In this section, we present our question expansion 874

pattern selection algorithm, a key innovation of 875

this work. As described in Section 4.2, the Context 876

Manager stores a set of entities and relations, along 877

with six expansion patterns. 878

As illustrated in Algorithm 1, our algorithm fol- 879

lows three main steps: 880

• Expansion Pattern Filtering: Based on the 881

set of entities, relations, and the schema of 882

G, we sequentially evaluate the conditions for 883

each of the six expansion patterns (P1-P6) us- 884

ing predefined rules. We filter out the patterns 885

that do not meet the necessary conditions. 886

• Expansion Pattern Selection: From the re- 887

maining expansion patterns, we select the 888

most appropriate one according to their as- 889

signed weights. Initially, each pattern is given 890

a weight of 1/6. If a pattern has already been 891

used, its weight is halved, and the reduced 892

weight is evenly distributed among the other 893

remaining patterns. 894

• Entity and Relation Selection: Once the ex- 895

pansion pattern is selected, we proceed to 896

choose the corresponding entities and rela- 897

tions. In the entity selection process, we 898

first identify the potential candidate entities 899

based on the chosen pattern. Then, we as- 900

sign weights to these entities. Initially, each 901

potential entity receives an equal weight of 902

1/|E|, where |E| is the total number of can- 903

didate entities. If an entity has been refer- 904

enced in the previous step of the dialogue, its 905

weight increases by 1/4, indicating a higher 906

likelihood of its selection in the current step. 907

The increased weight is evenly redistributed 908

among the remaining entities to maintain bal- 909

ance. The relation selection follows a similar 910

approach. 911

9.3 Prompt for Question Generation 912

As shown in Figure 3, this prompt generates clear 913

and contextually relevant questions based on a 914

schema and dialogue history, following a question 915

expansion pattern. It guides the LLM to generate 916

either an opening question or a follow-up ques- 917

tion, using entity placeholders according to the 918

expansion pattern. The output includes both a raw 919

12



Algorithm 1: Question Expansion Pattern Selection Algorithm
Input: Set of entities and relations {E,R}, schema of G, set of expansion patterns

{P1, P2, P3, P4, P5, P6}
Output: Selected expansion pattern and corresponding entities and relations

1 Step 1: Expansion Pattern Filtering
2 for each expansion pattern Pi in {P1, P2, . . . , P6} do
3 if Pattern Pi meets the predefined conditions based on E, R, and G then
4 Include Pi in the set of valid patterns

5 else
6 Remove Pi from the set of valid patterns

7 Step 2: Expansion Pattern Selection
8 for each valid expansion pattern Pi do
9 Set initial weight of Pi as w(Pi) =

1
6

10 for each previously used expansion pattern Pi do
11 Halve its weight: w(Pi) =

w(Pi)
2

12 Redistribute the halved weight equally among other remaining patterns

13 Select the expansion pattern Pselected with the highest weight:
14 Pselected = argmaxPi w(Pi)
15 Step 3: Entity and Relation Selection
16 Determine the potential candidate entities Ecandidates based on Pselected
17 for each candidate entity e ∈ Ecandidates do
18 Set initial weight of entity e as w(e) = 1

|Ecandidates|
19 if e has been referenced in the previous dialogue step then
20 Increase w(e) by 1

4 , indicating higher likelihood of selection

21 Redistribute the increased weight evenly among other remaining entities

22 Determine the potential relations Rcandidates based on Pselected
23 for each relation r ∈ Rcandidates do
24 Assign weight to r using a similar process as entity selection

25 return Selected expansion pattern Pselected, selected entities, and selected relations

question with references and a fully disambiguated920

version, free of placeholders and references, ensur-921

ing both contextual relevance and structural clarity.922

It is worth noting that since we are constructing a923

Chinese dataset, the prompt is written in Chinese.924

However, for ease of reading, we have translated it925

into English.926
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Instruction:
You are an expert in both language processing and NebulaGraph. Given the schema, question expansion
pattern, and dialogue history, generate a clear, relevant, and contextually appropriate question by following
the rules below:

1. Generate a question based on the schema and dialogue context, ensuring the question is contextually
relevant and continues the conversation logically.

2. Use placeholders for entities, such as: [s] for stock, [c] for chairman, [h] for stockholder, [t] for
trade, [p] for public offering fund, [f] for fund manager, [i] for industry, [d] for time, and [m] for
numbers.

3. If the dialogue history is empty, create an opening question. If there is existing dialogue, generate a
follow-up question that aligns with the provided question expansion pattern.

4. Generate the raw question in a conversational style, incorporating relevant references.

5. Generate the formal question based on the raw question. The formal question should be a disam-
biguated version of the raw question, clarified and free of placeholders or references.

Input:
1. Schema Information:
{SCHEMA}
2. Dialogue History:
{DIALOGUE_HISTORY}
3. Question Expansion Pattern:
{QUESTION_EXPANDING_PATTERN}

Output:
Provide the generated raw question after "Question" and the formal question after "Complete Question"
directly.

Question:

Complete Question:

Figure 3: The prompt for question generation.
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