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Abstract

It has become increasingly challenging to understand and evaluate LLM capabilities
as these models exhibit a broader range of behaviors. We respond to this challenge
by taking inspiration from another field which has developed ideas, practices,
and paradigms for probing the behavior of complex intelligent systems: animal
cognition. We present five core principles from animal cognition, and explain how
they provide invaluable guidance for understanding LLM abilities and behavior.
We ground these principles in an empirical case study, and show how they can
provide a richer contextual picture of one particular reasoning capability: transitive
inference.
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1 Motivation

Evaluating the capacities of large language models (LLMs) presents a unique challenge. LLMs can
converse in a sustained and often coherent manner and demonstrate some capabilities in domains such
as Theory of Mind [12, 19], and analogical reasoning [22]. Nonetheless, LLMs fail on seemingly
simple tasks, often in unpredictable ways. As such, it can be difficult to determine whether LLMs’
successes reflect true emergent cognitive capacities or whether their performance stems from shallower
solutions, such as recapitulation of patterns in training data. Furthermore, existing LLM evaluation
methods often report only a single numerical performance metric, limiting the inferences we can
draw about the full extent and limits of a model’s abilities.

2 Principles

How, then, can we more robustly and thoroughly evaluate the strengths and weaknesses of LLMs
to better inform science and policy about model safety and utility? Here, we turn to another field
which has substantial experience probing other “black box” intelligences – animal cognition. Animal
cognition researchers do not have the luxury of simply asking their subjects whether they understand
a particular concept. Instead, they develop rigorous experimental paradigms that tease out cognitive
capacities while eliminating as many alternate explanations as possible. This allows for a rich,
mechanistic, and functional understanding of cognitive capacities. Animal cognition researchers
also have to adapt experimental paradigms to test understanding of the same abstract concept in
various different animals. Over decades, they have developed adaptable and robust experimental
paradigms which can be adapted to probe LLMs’ abilities from various angles, characterizing where
they succeed and precisely how they fail. Taking inspiration from a wide range of such studies
and model organisms, we present five “core principles” that offer useful lessons to improve LLM
evaluation:

1. Design control conditions with an adversarial attitude (P1) [10, 2, 9, 16]
2. Establish robustness to variations in stimuli (P2) [3, 7, 8]
3. Delve into failure types, moving beyond a success/failure dichotomy (P3) [13, 11, 18, 21]
4. Clarify differences between mechanism and behavior (P4) [17, 14, 1]
5. Meet the organism (or, more broadly, intelligent system) where it is, while noting systemic

limitations (P5) [10, 24, 4]

These principles provide broad guidance that can help our machine learning research community
effectively study the behavioral properties of LLMs and other foundation models. In addition to
identifying these principles, we demonstrate their value in an empirical case study. We select a
cognitive capability probed widely and thoroughly across animal literature: Transitive Inference (TI),
or the ability to extrapolate ordinal relationships between items that have not been directly compared.
Not only is TI well-studied across the animal kingdom from wasps [20] to rats [15] to humans [5]; it
is the kind of domain-general reasoning capacity that is fundamental to other capacities that would be
desirable for LLMs to exhibit, such as numerosity and causality. [23]

Figure 1: One task structure for probing TI in our series of TI tasks adapted to LLM’s modalities.
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3 Methods

What does probing Transitive Inference in an LLM look like? Of course, it’s possible to simply
query a model directly to define or demonstrate TI (and they will generally do so quite persuasively).
However, such a glib explanation may mask a deeper misunderstanding of the concept. To investigate
this question, we adopt a series of classic TI paradigms from the animal cognition literature that were
tailored specifically for GPT-4o 1. We note which of our core principles (P1-P5) are used in each set
of experiments.

3.1 "greater" and "bigger" operators

One way to probe TI ability in an intelligent system that converses in natural language is to simply
use language to ask the LLM which element is "greater" or "bigger." Figure 1 shows this type of task
structure. Varying the "greater" and "bigger" operators serves as a simple adversarial control (P1); if
transitive inference were being used, performance should be insensitive to this variation.

3.2 Symbolic Distance Effect

When presented with TI tasks, humans, pigeons, and macaque monkeys are more accurate when mak-
ing comparisons between abstract elements at a greater distance (i.e., those having more intervening
terms between them). This is known as the Symbolic Distance Effect [6]. We report experimental
results of measuring for an analogous symbolic distance effect in the LLM’s responses 3. Having
demonstrated the expected behavior with the operator "greater", we probe it for the operator "bigger",
testing for robustness to variations in stimuli (P2). We then analyze the specific pattern of failures
(P3) as a function of variation in stimulus.

3.3 Trial Structure

Our experiments on the symbolic-distance effect demonstrate the characteristic brittleness of LLMs
to minor prompt variations; this was revealed through analyzing the pattern of failures (P3). While
these findings indicate a lack of robustness in TI ability, we turn to our fifth principle (P5) and attempt
to "meet the organism where it is" by going beyond a simple claim about brittleness to minor prompt
variation. Instead, we try to find a setting where a system with transitive inference capabilities should
exhibit the expected behavior (without noise from complex prompts or minor prompt variation). We
turn to a simpler trial structure that is frequently used in animal cognition studies. This structure
minimizes word use and instead focuses on a deep look at the underlying behavior.

This new control condition closely resembles the trial-based learning version of the task presented to
animal subjects. This condition required the language model to integrate ordinal information over
a sequence of interactions. With this condition, we can start to separate mechanism from behavior
(P4); if the same mechanism (transitive inference) were used across tasks, we would expect similar
performance on this task variant. Instead, performance dropped to chance (see Figure 2, control
conditions increasing in complexity from left to right).

4 Results

While the model showed excellent performance on initial versions of this task, performance dropped
significantly after the introduction of control conditions to address alternative explanations (Figure
2). In addition, careful probing revealed that the language model’s performance was not robust, but
instead highly contingent on the specific words used in the prompt and test set (see Figure 3). Taken
together, this probing demonstrates the lack of a generalizable TI ability in GPT-4o.

5 Discussion

While these results should cast serious doubt on the deductive reasoning capacities of LLMs, they
also show how careful study design inspired by animal cognition can give a deeper insight into
whether and where such important abilities are present. For example, when designing an experiment
to answer a simple question like "Do LLMs understand the concept of transitivity?," minor prompt
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Figure 2: Accuracy of the GPT-4o language model in a transitive inference task across a variety of
task structures. Performance was perfect across the first three conditions, but fell dramatically in the
last, indicating that the model does not robustly demonstrate TI ability.

Figure 3: Performance of GPT-4o in a transitive inference task utilizing a single-trial and sentence-
structured inquiry. A single transitive descriptor was replaced [“greater” (top) vs. “bigger” (bottom)]
in the following prompt: Consider the following relationships between the abstract elements: A is
greater than B, B is greater than C. . . , and F is greater than G. Now, between the elements elem1 and
elem2, which is greater? Relative accuracy is provided with 95% CI. Animal name lists were either
ordered by relative size of animal or shuffled; random strings were thirty-six random characters. In
similar tasks, humans, pigeons, and macaque monkeys are more accurate when making comparisons
between abstract elements with more intervening terms, also known as the Symbolic Distance Effect.
However, GPT-4o’s errors exhibit the opposite pattern in two versions of the task: the LLM is
more accurate for elements with smaller symbolic distances, which is consistent with associative,
non-inferential models of TI performance.

variations can lead us to sweeping "yes" or "no" conclusions, while the answer often lies somewhere
in between. Figures 2 and 3 illustrate just how much of a distribution exists between those two overly
simplistic answers. If we ignore this nuance, we risk missing critical details about an LLM’s behavior
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pattern. The five core principles we have laid out in this paper are a distillation of many decades
of animal cognition researchers grappling with similar behavioral confounds – animals often only
demonstrate advanced capabilities like TI under certain conditions, their performance can easily be
affected by noise in the environment, and each animal species operates in only their own modalities.
Having to probe for intelligent behavior under these constraints has led to a rich literature of ideas,
principles, experimental paradigms and theoretical frameworks that, when applied to LLMs and other
foundation models, have the potential to greatly illuminate the full nature of the model’s behavior.

It is particularly difficult to understand and characterize LLM behavior because their surface-level
responses may not reflect a deeper conceptual understanding. Grounding work on LLM evaluation
in the existing scaffolding provided by animal cognition experiments and paradigms gives us a
foundation on which to develop in-depth behavioral studies that can truly probe concept-level
understanding in LLMs. By putting our five principles into practice, we go beyond simplistic
binary statements of whether LLMs "do" or "don’t" exhibit advanced concept learning and reasoning
capabilities. Instead, these five principles can help us conduct in-depth, credible analyses of the range
of behavior these models exhibit–and surface the capacities they may (or may not) possess. This
work introduces these principles and takes a first step towards demonstrating how they can concretely
be used in empirical studies of advanced concept learning and reasoning abilities.
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