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Abstract

Understanding why deep nets can classify data in large dimensions remains a chal-
lenge. It has been proposed that they do so by becoming stable to diffeomorphisms,
yet existing empirical measurements support that it is often not the case. We revisit
this question by defining a maximum-entropy distribution on diffeomorphisms, that
allows to study typical diffeomorphisms of a given norm. We confirm that stability
toward diffeomorphisms does not strongly correlate to performance on benchmark
data sets of images. By contrast, we find that the stability toward diffeomorphisms
relative to that of generic transformations Rf correlates remarkably with the test
error εt. It is of order unity at initialization but decreases by several decades during
training for state-of-the-art architectures. For CIFAR10 and 15 known architectures
we find εt ≈ 0.2

√
Rf , suggesting that obtaining a smallRf is important to achieve

good performance. We study how Rf depends on the size of the training set and
compare it to a simple model of invariant learning.

1 Introduction

Deep learning algorithms LeCun et al. (2015) are now remarkably successful at a wide range of
tasks Amodei et al. (2016); Huval et al. (2015); Mnih et al. (2013); Shi et al. (2016); Silver et al.
(2017). Yet, understanding how they can classify data in large dimensions remains a challenge. In
particular, the curse of dimensionality associated with the geometry of space in large dimension
prohibits learning in a generic setting Luxburg and Bousquet (2004). If high-dimensional data can be
learnt, then they must be highly structured.

A popular idea is that during training, hidden layers of neurons learn a representation Le (2013) that
is insensitive to aspects of the data unrelated to the task, effectively reducing the input dimension and
making the problem tractable Ansuini et al. (2019); Recanatesi et al. (2019); Shwartz-Ziv and Tishby
(2017). Several quantities have been introduced to study this effect empirically. It includes (i) the
mutual information between the hidden and visible layers of neurons Saxe et al. (2019); Shwartz-Ziv
and Tishby (2017), (ii) the intrinsic dimension of the neural representation of the data Ansuini et al.
(2019); Recanatesi et al. (2019) and (iii) the projection of the label of the data on the main features of
the network Kopitkov and Indelman (2020); Oymak et al. (2019); Paccolat et al. (2021a), the latter
being defined from the top eigenvectors of the Gram matrix of the neural tangent kernel (NTK) Jacot
et al. (2018). All these measures support that the neuronal representation of the data indeed becomes
well-suited to the task. Yet, they are agnostic to the nature of what varies in the data that need not
being represented by hidden neurons, and thus do not specify what it is.

Recently, there has been a considerable effort to understand the benefits of learning features for one-
hidden-layer fully connected nets. Learning features can occur and improve performance when the
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true function is highly anisotropic, in the sense that it depends only on a linear subspace of the input
space Bach (2017); Chizat and Bach (2020); Ghorbani et al. (2019, 2020); Paccolat et al. (2021a);
Refinetti et al. (2021); Yehudai and Shamir (2019). For image classification, such an anisotropy would
occur for example if pixels on the edge of the image are unrelated to the task. Yet, fully-connected
nets (unlike CNNs) acting on images tend to perform best in training regimes where features are not
learnt Geiger et al. (2021, 2020); Lee et al. (2020), suggesting that such a linear invariance in the data
is not central to the success of deep nets.

Instead, it has been proposed that images can be classified in high dimensions because classes
are invariant to smooth deformations or diffeomorphisms of small magnitude Bruna and Mallat
(2013); Mallat (2016). Specifically, Mallat and Bruna could handcraft convolution networks, the
scattering transforms, that perform well and are stable to smooth transformations, in the sense that
‖f(x)− f(τx)‖ is small if the norm of the diffeomorphism τ is small too. They hypothesized that
during training deep nets learn to become stable and thus less sensitive to these deformations, thus
improving performance. More recent works generalize this approach to more common CNNs and
discuss stability at initialization Bietti and Mairal (2019a,b). Interestingly, enforcing such a stability
can improve performance Kayhan and Gemert (2020).

Answering if deep nets become more stable to smooth deformations when trained and quantifying
how it affects performance remains a challenge. Recent empirical results revealed that small shifts of
images can change the output a lot Azulay and Weiss (2018); Dieleman et al. (2016); Zhang (2019),
in apparent contradiction with that hypothesis. Yet in these works, image transformations (i) led
to images whose statistics were very different from that of the training set or (ii) were cropping
the image, thus are not diffeophormisms. In Ruderman et al. (2018), a class of diffeomorphisms
(low-pass filter in spatial frequencies) was introduced to show that stability toward them can improve
during training, especially in architectures where pooling layers are absent. Yet, these studies do
not address how stability affects performance, and how it depends on the size of the training set. To
quantify these properties and to find robust empirical behaviors across architectures, we will argue
that the evolution of stability toward smooth deformations needs to be compared relatively to that of
any deformation, which turns out to vary significantly during training.

Note that in the context of adversarial robustness, attacks that are geometric transformations of small
norm that change the label have been studied Alaifari et al. (2018); Alcorn et al. (2019); Athalye et al.
(2018); Engstrom et al. (2019); Fawzi and Frossard (2015); Kanbak et al. (2018); Xiao et al. (2018).
These works differ for the literature above and from out study below in the sense that they consider
worst-case perturbations instead of typical ones.

1.1 Our Contributions

◦ We introduce a maximum entropy distribution of diffeomorphisms, that allow us to generate
typical diffeomorphisms of controlled norm. Their amplitude is governed by a "temperature"
parameter T .

◦ We define the relative stability to diffeomorphisms index Rf that characterizes the square
magnitude of the variation of the output function f with respect to the input when it is
transformed along a diffeomorphism, relatively to that of a random transformation of the
same amplitude. It is averaged on the test set as well as on the ensemble of diffeomorphisms
considered.

◦ We find that at initialization, Rf is close to unity for various data sets and architectures,
indicating that initially the output is as sensitive to smooth deformations as it is to random
perturbations of the image.

◦ Our central result is that after training, Rf correlates very strongly with the test error εt:
during training, Rf is reduced by several decades in current State Of The Art (SOTA) archi-
tectures on four benchmark datasets including MNIST Lecun et al. (1998), FashionMNIST
Xiao et al. (2017), CIFAR-10 Krizhevsky (2009) and ImageNet Deng et al. (2009). For more
primitive architectures (whose test error is higher) such as fully connected nets or simple
CNNs, Rf remains of order unity. For CIFAR10 we study 15 known architectures and find
empirically that εt ≈ 0.2

√
Rf .

◦ Rf decreases with the size of the training set P . We compare it to an inverse power 1/P
expected in simple models of invariant learning Paccolat et al. (2021a).
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The library implementing diffeomorphisms on images is available online at github.com/pcsl-
epfl/diffeomorphism.
The code for training neural nets can be found at github.com/leonardopetrini/diffeo-sota and the
corresponding pre-trained models at doi.org/10.5281/zenodo.5589870.

2 Maximum-entropy model of diffeomorphisms

2.1 Definition of maximum entropy model

We consider the case where the input vector x is an image. It can be thought as a function x(s)
describing intensity in position s = (u, v) ∈ [0, 1]2, where u and v are the horizontal and vertical
coordinates. To simplify notations we consider a single channel, in which case x(s) is a scalar
(but our analysis holds for colored images as well). We denote by τx the image deformed by τ ,
i.e. [τx](s) = x(s − τ(s)). τ(s) is a vector field of components (τu(s), τv(s)). The deformation
amplitude is measured by the norm

‖∇τ‖2 =

∫

[0,1]2
((∇τu)2 + (∇τv)2)dudv. (1)

To test the stability of deep nets toward diffeomorphisms, we seek to build typical diffeomorphisms
of controlled norm ‖∇τ‖. We thus consider the distribution over diffeomorphisms that maximizes
the entropy with a norm constraint. It can be solved by introducing a Lagrange multiplier T and by
decomposing these fields on their Fourier components, see e.g. Kardar (2007) or Appendix A. In this
canonical ensemble, one finds that τu and τv are independent with identical statistics. For the picture
frame not to be deformed, we impose fixed boundary conditions: τ = 0 if u = 0, 1 or v = 0, 1. One
then obtains:

τu =
∑

i,j∈N+

Cij sin(iπu) sin(jπv) (2)

where the Cij are Gaussian variables of zero mean and variance 〈C2
ij〉 = T/(i2 + j2). If the picture

is made of n× n pixels, the result is identical except that the sum runs on 0 < i, j ≤ n. For large n,
the norm then reads ‖∇τ‖2 = (π2/2)n2T , and is dominated by high spatial frequency modes. It
is useful to add another parameter c to cut-off the effect of high spatial frequencies, which can be
simply done by constraining the sum in Eq.2 to i2 + j2 ≤ c2, one then has ‖∇τ‖2 = (π3/8) c2T .

Once τ is generated, pixels are displaced to random positions. A new pixelated image can then be
obtained using standard interpolation methods. We use two interpolations, Gaussian and bi-linear1,
as described in Appendix C. As we shall see below, this choice does not affect our result as long as
the diffeomorphism induced a displacement of order of the pixel size, or larger. Examples are shown
in Fig.1 as a function of T and c.

2.2 Phase diagram of acceptable diffeomorphisms

Diffeomorphisms are bijective, which is not the case for our transformations if T is too large. When
this condition breaks down, a single domain of the picture can break into several pieces, as apparent
in Fig.1. It can be expressed as a condition on ∇τ that must be satisfied in every point in space
Lowe (2004), as recalled in Appendix B. This is satisfied locally with high probability if ‖τ‖2 � 1,
corresponding to T � (8/π3)/c2. In Appendix, we extract empirically a curve of similar form in the
(T, c) plane at which a diffeomorphism is obtained with probability at least 1/2 . For much smaller T ,
diffeomorphisms are obtained almost surely.

Finally, for diffeomorphisms to have noticeable consequences, their associated displacement must
be of the order of magnitude of the pixel size. Defining δ2 as the average square norm of the pixel
displacement at the center of the image in the unit of pixel size, it is straightforward to obtain from
Eq.2 that asymptotically for large c (cf. Appendix B for the derivation),

δ2 =
π

4
n2T ln(c). (3)

The line δ = 1/2 is indicated in Fig.1, using empirical measurements that add pre-asymptotic terms
to Eq.3. Overall, the green region corresponds to transformations that (i) are diffeomorphisms with
high probability and (ii) produce significant displacements at least of the order of the pixel size.

1Throughout the paper, if not specified otherwise, bi-linear interpolation is employed.
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Figure 1: Samples of max-
entropy diffeomorphisms
for different temperatures
T and high-frequency cut-
offs c for an ImageNet data-
point of resolution 320 ×
320. The green region cor-
responds to well behav-
ing diffeomorphisms (see
Section 2.2). The dashed
line corresponds to δ = 1.
The colored points on the
line are those we focus our
study in Section 3.

3 Measuring the relative stability to diffeomorphisms

Relative stability to diffeomorphisms To quantify how a deep net f learns to become less sen-
sitive to diffeomorphisms than to generic data transformations, we define the relative stability to
diffeomorphisms Rf as:

Rf =
〈‖f(τx)− f(x)‖2〉x,τ
〈‖f(x+ η)− f(x)‖2〉x,η

. (4)

where the notation 〈〉y can indicate alternatively the mean or the median with respect to the distribution
of y. In the numerator, this operation is made over the test set and over the ensemble of diffeomor-
phisms of parameters (T, c) (on which Rf implicitly depends). In the denominator, the average is on
the test set and on the vectors η sampled uniformly on the sphere of radius ‖η‖ = 〈‖τx− x‖〉x,τ . An
illustration of what Rf captures is shown in Fig.2. In the main text, we consider median quantities,
as they reflect better the typical values of distribution. In Appendix E.3 we show that our results for
mean quantities, for which our conclusions also apply.

Dependence of Rf on the diffeomorphism magnitude Ideally, Rf could be defined for infinites-
imal transformations, as it would then characterize the magnitude of the gradient of f along smooth
deformations of the images, normalized by the magnitude of the gradient in random directions. How-
ever, infinitesimal diffeomorphisms move the image much less than the pixel size, and their definition
thus depends significantly on the interpolation method used. It is illustrated in the left panels of Fig.3,
showing the dependence of Rf in terms of the diffeomorphism magnitude (here characterised by the
mean displacement magnitude at the center of the image δ) for several interpolation methods. We
do see that Rf becomes independent of the interpolation when δ becomes of order unity. In what
follows we thus focus on Rf (δ = 1), which we denote Rf .

SOTA architectures become relatively stable to diffeomorphisms during training, but are not
at initialization The central panels of Fig.3 show Rf at initialization (shaded), and after training
(full) for two SOTA architectures on four benchmark data sets. The first key result is that, at initial-
ization, these architectures are as sensitive to diffeomorphisms as they are to random transformations.
Relative stability to diffeomorphisms at initialization (guaranteed theoretically in some cases Bietti
and Mairal (2019a,b)) thus does not appear to be indicative of successful architectures.

4



data-space

r

x+η

x

x τx

Figure 2: Illustrative drawing of the data-space Rn×n around a data-point x (black point). We
focus here on perturbations of fixed magnitude – i.e. on the sphere of radius r centered in x. The
intersection between the images of x transformed via typical diffeomorphisms and the sphere is
represented in dashed green. By contrast, the red point is an example of random transformation. For
large n, it is equivalent to adding an i.i.d. Gaussian noise to all the pixel values of x. Figures on the
right illustrate these transformations, the color of the dot labelling them corresponds to that of the
left illustration. The relative stability to diffeomorphisms Rf characterizes how a net f varies in the
green directions, normalized by random ones.

By contrast, for these SOTA architectures, relative stability toward diffeomorphisms builds up during
training on all the data sets probed. It is a significant effect, with values of Rf after training generally
found in the range Rf ∈ [10−2, 10−1].

Standard data augmentation techniques (translations, crops, and horizontal flips) are employed for
training. However, the results we find only mildly depend on using such techniques, see Fig.12 in
Appendix.

Learning relative stability to diffeos requires large training sets How many data are needed to
learn relative stability toward diffeomorphisms? To answer this question, newly initialized networks
are trained on different training-sets of size P . Rf is then measured for CIFAR10, as indicated in
the right panels of Fig.3. Neural nets need a certain number of training points (P ∼ 103) in order to
become relatively stable toward smooth deformations. Past that point, Rf monotonically decreases
with P . In a range of P , this decrease is approximately compatible with the an inverse behavior
Rf ∼ 1/P found in the simple model of Section 6. Additional results for MNIST and FashionMNIST
can be found in Fig.13, Appendix E.3.

Simple architectures do not become relatively stable to diffeomorphisms To test the universal-
ity of these results, we focus on two simple architectures: (i) a 4-hidden-layer fully connected (FC)
network (FullConn-L4) where each hidden layer has 64 neurons and (ii) LeNet LeCun et al. (1989)
that consists of two convolutional layers followed by local max-pooling and three fully-connected
layers.

Measurements of Rf for these networks are shown in Fig.4. For the FC net, Rf ≈ 1 at initialization
(as observed for SOTA nets) but grows after training on the full data set, showing that FC nets do not
learn to become relatively stable to smooth deformations. It is consistent with the modest evolution of
Rf (P ) with P , suggesting that huge training sets would be required to obtain Rf < 1. The situation
is similar for the primitive CNN LeNet, which only becomes slightly insensitive (Rf ≈ 0.6) in a
single data set (CIFAR10), and otherwise remains larger than unity.

Layers’ relative stability monotonically increases with depth Up to this point, we measured the
relative stability of the output function for any given architecture. We now study how relative stability
builds up as the input data propagate through the hidden layers. In Fig.14 of Appendix E.3, we report
Rf as a function of depth for both simple and deep nets. What we observe is Rf0 ≈ 1 independently

2With the only exception of the ImageNet results (central panel) in which only one trained network is
considered.
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reduced
sensitivity
to diffeo

Figure 3: Relative stability to diffeomorphisms Rf for SOTA architectures. Left panels: Rf vs.
diffeomorphism displacement magnitude δ at initialization (dashed lines) and after training (full lines)
on the full data set of CIFAR10 (P = 50k) for several cut-off parameters c and two interpolations
methods, as indicated in legend. ResNet is shown on the top and EfficientNet on the bottom. Central
panels: Rf (δ = 1) for four different data-sets (x−axis) and two different architectures at initialization
(shaded histograms) and after training (full histograms). The values of c (in different colors) are
(3, 5, 15) and (3, 10, 30) for the first three data-sets and ImageNet, respectively. ResNet18 and
EfficientNetB0 are employed for MNIST, F-MNIST and CIFAR10, ResNet101 and EfficientNetB2
for ImageNet. Right panels: Rf (δ = 1) vs. training set size P at c = 3 for ResNet18 (top) and
EfficientNetB0 (bottom) trained on CIFAR10. The value of Rf0 at initialization is indicated with
dashed lines. The triangles indicate the predicted slope Rf ∼ P−1 in a simple model of invariant
learning, see Section 6. Statistics: Each point in the graphs2 is obtained by training 16 differently
initialized networks on 16 different subsets of the data-sets; each network is then probed with 500
test samples in order to measure stability to diffeomorphisms and Gaussian noise. The resulting Rf
is obtained by log-averaging the results from single realizations.

Figure 4: Relative stability to diffeomorphisms Rf in primitive architectures. Top panels: Rf at
initialization (shaded) or for trained nets (full) for a fully connected net (left) or a primitive CNN
(right) at P = 50k. Bottom panels: Rf (P ) for c = 3 and different data sets as indicated in legend.
Statistics: see caption in the previous figure.

of depth at initialization, and monotonically decreases with depth after training. Overall, the gain
in relative stability appears to be well-spread through the net, as is also found for stability alone
Ruderman et al. (2018).
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4 Relative stability to diffeomorphisms indicates performance

Thus, SOTA architectures appear to become relatively stable to diffeomorphisms after training,
unlike primitive architectures. This observation suggests that high performance requires such a
relative stability to build up. To test further this hypothesis, we select a set of architectures that
have been relevant in the state of the art progress over the past decade; we systematically train them
in order to compare Rf to their test error εt. Apart from fully connected nets, we consider the
already cited LeNet (5 layers and ≈ 60k parameters); then AlexNet Krizhevsky et al. (2012) and
VGG Simonyan and Zisserman (2015), deeper (8-19 layers) and highly over-parametrized (10-20M
(million) params.) versions of the latter. We introduce batch-normalization in VGGs and skip
connections with ResNets. Finally, we go to EfficientNets, that have all the advancements introduced
in previous models and achieve SOTA performance with a relatively small number of parameters
(<10M); this is accomplished by designing an efficient small network and properly scaling it up.
Further details about these architectures can be found in Table 1, Appendix E.2.

The results are shown in Fig.5. The correlation between Rf and εt is remarkably high (corr. coeff.3 :
0.97), suggesting that generating low relative sensitivity to diffeomorphisms Rf is important to obtain
good performance. In Appendix E.3 we also report how changing the train set size P affects the
position of a network in the (εt, Rf ) plane, for the four architectures considered in the previous
section (Fig.18). We also show that our results are robust to changes of δ, c (Fig.21) and data sets
(Fig.20).

What architectures enable a low Rf value? The latter can be obtained with skip connections or not,
and for quite different depths as indicated in Fig.5. Also, the same architecture (EfficientNetB0)
trained by transfer learning from ImageNet – instead of directly on CIFAR10 – shows a large
improvement both in performance and in diffeomorphisms invariance. Clearly, Rf is much better
predicted by εt than by the specific features of the architecture indicated in Fig.5.

nets performance vs relative diffeo stability
CIFAR10 FullConnL2

FullConnL4
FullConnL6

VGG11

AlexNet

VGG11bn

LeNet

EfficientNetB0

VGG19bnVGG16bn

ResNet18
ResNet34

ResNet50

EfficientNetB0

EfficientNetB2

number of layers
2          50

batch-norm

skip connections

transfer learning from ImageNet

10%

3%

30%

Figure 5: Test error εt vs. relative stability to diffeomorphisms Rf computed at δ = 1 and c = 3
for common architectures when trained on the full 10-classes CIFAR10 dataset (P = 50k) with SGD
and the cross-entropy loss; the EfficientNets achieving the best performance are trained by transfer
learning from ImageNet (?) – more details on the training procedures can be found in Appendix E.1.
The color scale indicates depth, and the symbols the presence of batch-norm (�) and skip connections
(†). Dashed grey line: power low fit εt ≈ 0.2

√
Rf . Rf strongly correlates to εt, much less so to

depth or the presence of skip connections. Statistics: Each point is obtained by training 5 differently
initialized networks; each network is then probed with 500 test samples in order to measure Rf . The
results are obtained by log-averaging over single realizations. Error bars – omitted here – are shown
in Fig.19, Appendix E.3.
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5 Stability toward diffeomorphisms vs. noise

The relative stability to diffeomorphisms Rf can be written as Rf = Df/Gf where Gf characterizes
the stability with respect to additive noise and Df the stability toward diffeomorphisms:

Gf =
〈‖f(x+ η)− f(x)‖2〉x,η
〈‖f(x)− f(z)‖2〉x,z

, Df =
〈‖f(τx)− f(x)‖2〉x,τ
〈‖f(x)− f(z)‖2〉x,z

. (5)

Here, we chose to normalize these stabilities with the variation of f over the test set (to which both x
and z belong), and η is a random noise whose magnitude is prescribed as above. Stability toward
additive noise has been studied previously in fully connected architectures Novak et al. (2018) and
for CNNs as a function of spatial frequency in Tsuzuku and Sato (2019); Yin et al. (2019).

The decrease of Rf with growing training set size P could thus be due to an increase in the stability
toward diffeomorphisms (i.e. Df decreasing with P ) or a decrease of stability toward noise (Gf
increasing with P ). To test these possibilities, we show in Fig.6 Gf (P ), Df (P ) and Rf (P ) for
MNIST, Fashion MNIST and CIFAR10 for two SOTA architectures. The central results are that (i)
stability toward noise is always reduced for larger training sets. This observation is natural: when
more data needs to be fitted, the function becomes rougher. (ii) Stability toward diffeomorphisms
does not behave universally: it can increase with P or decrease depending on the architecture and the
training set. Additionally, Gf and Df alone show a much smaller correlation with performance than
Rf– see Figs.15,16,17 in Appendix E.3.

Figure 6: Stability toward Gaussian noise (Gf ) and diffeomorphisms (Df ) alone, and the rela-
tive stability Rf . Columns correspond to different data-sets (MNIST, FashionMNIST and CIFAR10)
and rows to architectures (ResNet18 and EfficientNetB0). Each panel reports Gf (blue), Df (orange)
and Rf (green) as a function of P and for different cut-off values c, as indicated in the legend.
Statistics: cf. caption in Fig.3. Error bars – omitted here – are shown in Fig.22, Appendix E.3.

6 A minimal model for learning invariants

In this section, we discuss the simplest model of invariance in data where stability to transformation
builds up, that can be compared with our observations of Rf above. Specifically, we consider the
"stripe" model Paccolat et al. (2021b), corresponding to a binary classification task for Gaussian-
distributed data points x = (x‖, x⊥) where the label function depends only on one direction in data
space, namely y(x) = y(x‖). Layers of y = +1 and y = −1 regions alternate along the direction
x‖, separated by parallel planes. Hence, the data present d − 1 invariant directions in input-space
denoted by x⊥ as illustrated in Fig.7-left.

When this model is learnt by a one-hidden-layer fully connected net, the first layer of weights can be
shown to align with the informative direction Paccolat et al. (2021a). The projection of these weights

3Correlation coefficient: Cov(log εt,logRf )√
Var(log εt)Var(logRf )

.
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Figure 7: Left: example of the
stripe model. Dots are data-
points, the vertical lines rep-
resent the decision boundary
and the color the class label.
Right: Relative stability Rf
for the stripe model in d = 30.
The slope of the curve is −1,
as predicted.

on the orthogonal space vanishes with the training set size P as 1/
√
P , an effect induced by the

sampling noise associated to finite training sets.

In this model, Rf can be defined as:

Rf =
〈‖f(x‖, x⊥ + ν)− f(x‖, x⊥)‖2〉x,ν

〈‖f(x+ η)− f(x)‖2〉x,η
, (6)

where we made explicit the dependence of f on the two linear subspaces. Here, the isotropic noise
ν is added only in the invariant directions. Again, we impose ‖η‖ = ‖ν‖. Rf (P ) is shown in Fig.
7-right. We observe that Rf (P ) ∼ P−1, as expected from the weight alignment mentioned above.

Interestingly, Fig.3 for CIFAR10 and SOTA architectures support that the 1/P behavior is compatible
with the observations for some range of P . In Appendix E.3, Fig.13, we show analogous results for
MNIST and Fashion-MNIST. We observe the 1/P power-law scaling for ResNets. It suggests that
for these architectures, learning to become invariant to diffeomorphisms may be limited by a naive
measure of sampling noise as well. By contrast for EfficientNets, in which the decrease in Rf is
more limited, a 1/P behavior cannot be identified.

7 Discussion

A common belief is that stability to random noise (small Gf ) and to diffeomorphisms (small Df )
are desirable properties of neural nets. Its underlying assumption is that the true data label mildly
depends on such transformations when they are small. Our observations suggest an alternative view:

1. Figs.6,16: better predictors are more sensitive to small perturbations in input space.

2. As a consequence, the notion that predictors are especially insensitive to diffeomorphisms is
not captured by stability alone, but rather by the relative stability Rf = Df/Gf .

3. We propose the following interpretation of Fig.5: to perform well, the predictor must build
large gradients in input space near the decision boundary – leading to a large Gf overall.
Networks that are relatively insensitive to diffeomorphisms (small Rf ) can discover with
less data that strong gradients must be there and generalize them to larger regions of input
space, improving performance and increasing Gf .

This last point can be illustrated in the simple model of Section 6, see Fig.7-left panel. Imagine
two data points of different labels falling close to the – e.g. – left true decision boundary. These
two points can be far from each other if their orthogonal coordinates differ. Yet, if Rf = 0 (now
defined in Eq.6), then the output does not depend on the orthogonal coordinates, and it will need to
build a strong gradient – in input space – along the parallel coordinate to fit these two data. This
strong gradient will exist throughout that entire decision boundary, improving performance but also
increasing Gf . Instead, if Rf = 1, fitting these two data will not lead to a strong gradient, since they
can be far from each other in input space. Beyond this intuition, in this model decreasing Rf can
quantitatively be shown to increase performance, see Paccolat et al. (2021b).
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8 Conclusion

We have introduced a novel empirical framework to characterize how deep nets become invariant to
diffeomorphisms. It is jointly based on a maximum-entropy distribution for diffeomorphisms, and on
the realization that stability of these transformations relative to generic ones Rf strongly correlates to
performance, instead of just the diffeomorphisms stability considered in the past.

The ensemble of smooth deformations we introduced may have interesting applications. It could
serve as a complement to traditional data-augmentation techniques (whose effect on relative stability
is discussed in Fig.12 of the Appendix). A similar idea is present in Hauberg et al. (2016); Shen
et al. (2020) but our deformations have the advantage of being easier to sample and data agnostic.
Moreover, the ensemble could be used to build adversarial attacks along smooth transformations, in
the spirit of Alaifari et al. (2018); Engstrom et al. (2019); Kanbak et al. (2018). It would be interesting
to test if networks robust to such attacks are more stable in relative terms, and how such robustness
affects their performance.

Finally, the tight correlation between relative stability Rf and test error εt suggests that if a predictor
displays a given Rf , its performance may be bounded from below. The relationships we observe
εt(Rf ) may then be indicative of this bound, which would be a fundamental property of a given data
set. Can it be predicted in terms of simpler properties of the data? Introducing simplified models of
data with controlled stability to diffeomorphisms beyond the toy model of Section 6 would be useful
to investigate this key question.
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