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Abstract
Recent research shows that in-context learning
(ICL) can be effective even when demonstrations
have missing or incorrect labels. To shed light
on this capability, we examine a canonical setting
where the demonstrations are drawn according to
a binary Gaussian mixture model (GMM) and a
certain fraction of the demonstrations have miss-
ing labels. We provide a comprehensive theoreti-
cal study to show that: (1) The loss landscape of
one-layer linear attention models recover the opti-
mal fully-supervised estimator but completely fail
to exploit unlabeled data; (2) In contrast, multi-
layer or looped transformers can effectively lever-
age unlabeled data by implicitly constructing esti-
mators of the form

∑
i≥0 ai(X

⊤X)iX⊤y with
X and y denoting features and partially-observed
labels (with missing entries set to zero). We
characterize the class of polynomials that can be
expressed as a function of depth and draw con-
nections to Expectation Maximization, an itera-
tive pseudo-labeling algorithm commonly used in
semi-supervised learning. Importantly, the lead-
ing polynomial power is exponential in depth, so
mild amount of depth/looping suffices.

1. Introduction
In-Context Learning (ICL) is an intriguing capability of
modern language models and has enjoyed remarkable empir-
ical success (Brown et al., 2020; Min et al., 2022). The push
toward long-context models (Snell et al., 2024; Guo et al.,
2025) has further boosted the benefits of ICL by allowing
the model to ingest a large number of demonstrations. For
instance, in “Many-shot in-context learning” paper, (Agar-
wal et al., 2024) demonstrate that pushing more examples
into context window can substantially boost the accuracy.
The many-shot ICL setting naturally raises the question of
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when and how ICL can succeed with weaker supervision.
This motivates our central question:

Q: How can transformers learn from unlabeled data?

We primarily investigate this question under a semisu-
pervised ICL (SS-ICL) setting with GMMs. Formally,
given a prompt containing a dataset of feature-label pairs
(xi, yi)

n
i=1 ∈ Rd × R as demonstrations and a query fea-

ture x, a model learns to predict the corresponding output
y given prompt. This prompt model is well studied under
various fully-supervised settings (Garg et al., 2022; Von Os-
wald et al., 2023; Ahn et al., 2023; Akyürek et al., 2023;
Mahankali et al., 2024; Collins et al., 2024; Shen et al.,
2024) where each demonstration includes a clearly labeled
output. In our SS-ICL setting, only m out of n total samples
have correct labels (m ≤ n) either −1 or 1, and remaining
labels are unknown and fed to the model as yi = 0.

In this work, we provide a comprehensive theoretical and
empirical study of attention models with varying depths
when trained with SS-ICL. Our analysis reveals the impor-
tance of depth: despite being able to implement the optimal
supervised learner, single-layer linear attention completely
fails to leverage unlabeled examples. In contrast, deeper or
looped transformer architectures can emulate strong semi-
supervision algorithms. Our specific contributions are:

⋄ Landscape of one-layer linear attention (§3): We
study the optimization landscape of single-layer linear
attention for the SS-ICL problem under an isotropic
task prior. We prove that the global minimum of the
loss function is the plug-in estimator (cf. (SPI)). This
implies that 1-layer model learns Bayes-optimal classi-
fier in the fully-supervised setting, but completely fails
to make use of unlabeled data.

⋄ Depth is crucial but shallow can suffice (§4): We
show that multilayer linear attention can emulate
semisupervised learners by implementing polynomial
estimators of the form µ̂ =

∑K
i≥0 ai(X

⊤X)iX⊤y,
which can be interpreted as the model implicitly con-
ducting iterative pseudo-labeling. We show that L-
layer (or looped) attention can express up to K =
O(3L) powers, highlighting exponentiation requires
only logarithmic depth. Corroborating these, experi-
ments reveal that shallow transformers with L ≥ 2 al-
ready achieve strong results and their performance can
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be approximately predicted through an eigen-estimator
combining i = 0 and∞ (see (SSPI-k)).

⋄ Applications to Tabular FMs (§B): Tabular founda-
tion models represent a suitable application of theory
as they also model the ICL examples with a single
token. To harness unlabeled examples, we propose a
novel strategy that iteratively creates soft pseudo-labels
by explicitly looping the tabular FM while controlling
validation risk. Focusing on the few-shot learning set-
ting where TabPFN-v2 excels, we demonstrate that our
approach can significantly improve performance on
various real-world datasets.

2. Problem Setup and Preliminaries
2.1. Semi-supervised Data Model

Consider a d-dimensional semi-supervised binary GMM
with n examples (xi, yi)

n
i=1, where xi ∈ Rd denotes the

feature vector and yi ∈ {−1, 0, 1} represents the corre-
sponding observed label, with yi = 0 indicating a missing
label, and each label is revealed independently with prob-
ability p ∈ [0, 1]. Specifically, the data is generated as
follows (for each i ∈ [n]):

xi = yci · µ+ ξi and yi =

{
yci , w.p. p

0, w.p. 1− p
(1)

where yc
i ∼ Unif{1,-1} denotes the true label. Here

µ ∼ Unif(Sd−1) denotes the task mean, which is sam-
pled uniformly from the unit sphere, and ξi ∼ N (0, σ2I)
is the random noise with σ ≥ 0 being the noise level that
controls the variability of xi around its mean. Observe that
p = 1 corresponds to fully supervised learning and p = 0
corresponds to fully-unsupervised learning.

2.2. In-context Learning and Linear Attention

We build on the setting of (Garg et al., 2022; Mahankali
et al., 2024; Zhang et al., 2023; Li et al., 2024) and construct
the in-context prompts with examples drawn from (1).

Prompt Generation: Given a task vector µ ∼ Unif(Sd−1),
we sample (n + 1) in-context demonstrations (xi, yi)

n+1
i=1

according to (1) and construct the prompt

Z =

[
x1 x2 · · · xn x
y1 y2 · · · yn 0

]⊤
∈ R(n+1)×(d+1). (2)

We will investigate training a transformer such that given Z
as prompt, it correctly predicts the label y := ycn+1 of the
query x := xn+1 through ICL.

Model Architecture: Given any prompt Z ∈
R(n+1)×(d+1), the linear attention mechanism outputs

att(Z;W) = (ZWqW
⊤
k Z⊤)MZWv (3)

whereW := {Wk,Wq,Wv ∈ R(d+1)×(d+1)} denotes the
key, query and value weight matrices, respectively. Note
that the label for the query x is excluded from the prompt Z.
Similar to Ahn et al. (2023), we consider a training objective

with a mask M =

[
In 0
0 0

]
to ensure inputs cannot attend

to their own labels and training can be parallelized.

Building upon the single-layer linear attention mechanism
of (3), we can extend our model to multiple layers to capture
more complex patterns. Consider optimizing an L-layer
linear attention model and let Zℓ be the input of ℓth layer,
ℓ ∈ [L]. Additionally, let Wℓ := {Wkℓ,Wqℓ,Wvℓ ∈
R(d+1)×(d+1)} be the corresponding weight matrices of ℓth
layer. Then, the input prompt of ℓth layer is defined by

Zℓ = Zℓ−1 + att(Zℓ−1;Wℓ−1) for ℓ = 2, . . . L,

and Z1 = Z. We focus on the next-token prediction setting,
where the model makes a prediction based on the final query
token [x⊤ 0]⊤. Let h ∈ Rd+1 denote the linear prediction
head. We define the output of the L-layer linear attention
model at the last (query) token as

fatt-L(Z) = h⊤att(ZL;WL)[n+1]. (4)

The predicted label is given by yatt-L(Z) = sgn(fatt-L(Z)).

Model Training: Consider the ICL setting where each input
prompt Z (cf. (2)) corresponds to a randomly sampled task
vector µ ∼ Unif(Sd−1) and let ℓ(·) : R → R be the loss
function. Additionally, define the set of attention weights
W(L) := ∪Lℓ=1Wℓ ∈ (R(d+1)×(d+1))3L. The objective of
L-layer linear atention takes the following form:

min
W(L),h

Latt-L(W(L),h) (5)

where Latt-L(W(L),h) = E [ℓ(y, fatt-L(Z))] .

Here, y := ycn+1 and the expectation subsumes the random-
ness of µ and (ξi, yi)

n+1
i=1 .

3. Loss Landscape of One-layer Linear
Attention under SS-ICL

In this section, we analyze the optimization behavior of
single-layer linear attention under SS-ICL.

Supervised Plug-in (SPI) Estimator: Under our problem
setting, SPI is the asymptotically Bayes-optimal estimator
given only labeled data (Hastie et al., 2009; Devroye et al.,
2013). Consider the binary semi-supervised GMM problem
described in (1) with dataset (xi, yi)

n
i=1, and let I ⊂ [n]

represent the indices of labeled samples, e.g., yi ̸= 0 for
i ∈ I. The SPI estimator returns the task mean

µ̂s =
1

|I|
∑
i∈I

yixi. (SPI)
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(a) n = 50, p ∈ (0, 1].
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(b) np = 10, n ∈ {10, · · · , 100}.
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(c) np = 10, n ∈ {10, · · · , 10000}.

Figure 1. Experimental results support our theoretical findings presented in Sections 3 and 4.

Theorem 3.1. Consider the objective (cf. (5)) with L = 1
and squared loss function ℓ(y, ŷ) = (y − ŷ)2, and denote
the optimal prediction as y⋆att-1(Z). Let µ̂s represent the
SPI estimator defined in (SPI). Then, for any Z from (2),

y⋆att-1(Z) = sgn(x⊤µ̂s). (6)

Additionally, its classification error obeys P(y⋆att-1(Z) ̸= y)

= Eg∼N (0,1),h∼X 2
d−1

[
Q

(
1 + εσg

σ
√

(1 + εσg)2 + ε2σh

)]
(7)

≤ Q

(
1− 10dε2σ

σ

)
+ e−d + e−1/8ε2σ

where we define εσ = σ/
√
np and X 2

d defines chi-squared
distribution with d degrees of freedom.

Eq. (6) shows that one-layer linear attention model indeed
implements SPI predictor, assuming access to np labeled
examples. Most existing work (Thrampoulidis et al., 2020;
Wang & Thrampoulidis, 2022) focuses on a single classi-
fication task under asymptotic data regimes. In contrast,
within the ICL framework considered in our setting, the task
mean µ is randomly sampled, and the classification error
is computed by averaging over random draws of Z, y, and
µ. Accordingly, in (7), we express the error in a simplified
form as an expectation.

The experimental results in Figure 1 support Theorem 3.1,
where dark blue circular markers represent the performance
of the single-layer linear attention model, blue curves show
the classification accuracy of the SPI estimator, and the red
dotted curves depict 1−P(y⋆att-1(Z) ̸= y) as computed from
(7). The alignments of these curves empirically validate
Theorem 3.1. Based on these results, we can conclude: 1-
layer linear attention learns optimal supervised estimator
but doesn’t benefit from unlabeled data.

As shown in Figs 1(b) and 1(c), when the number of la-
beled samples (np = 10) is fixed, increasing the number
of unlabeled examples (even up to ∼ 10000) has no ef-
fect on performance, as the dark blue markers remain at
the same level. At first glance, this may seem counterin-
tuitive—while the data is unlabeled, it still contains infor-
mation about the classification feature. For instance, the

mean of the data points carries relevant information, and
one might expect the model to extract and leverage this for
better predictions. This expectation is particularly reason-
able when a large amount of unlabeled data is available,
as the sample covariance matrix approximates the popu-
lation covariance, i.e., E[X⊤X/n] = µµ⊤ + σ2I where
X = [x1,x2, · · · ,xn]

⊤ ∈ Rn×d. The key insight into why
single-layer attention fails to leverage unlabeled data lies
in the expectation structure. In our isotropic GMM setting
where µ ∼ Unif(Sd−1), the sample covariance matrix con-
verges to E[X⊤X/n] = E[µµ⊤] + σ2I = (1/d + σ2)I ,
which contains no task-specific information. The expec-
tation across multiple tasks loses the signal from µ. This
explains why single-layer attention, operating in a meta-
learning framework across many tasks rather than optimiz-
ing for a single fixed task, cannot extract useful information
from unlabeled data.

In the following section, we study multi-layer linear atten-
tion and demonstrate that it has the ability to propagate
X⊤X into deeper layers, thereby enabling the model to
utilize the unlabeled data.

4. Multi-layer Attention and Benefits of Depth
In this section, we explore how deeper attention models can
effectively utilize the unlabeled data. Let

X =
[
x1 · · · xn

]⊤
and y =

[
y1 · · · yn

]⊤
. (8)

We first present the following propositions to show that
multi-layer as well as looped linear attention can be ex-
pressed as a polynomial function of X⊤X . This structure
allows the models to leverage unlabeled data to improve the
estimation of the task mean µ.

Proposition 4.1. Given an L-layer linear attention model
described in Section 2.2 with input prompt Z defined in (2),
one can construct the key, query, value weight matrices and
the linear prediction head such that the model outputs

fatt-L(Z) = x⊤AX⊤y. (9)

Then, the following A matrices are achievable via label and
feature updates:
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• Label propagation: A = c
∏L−1

ℓ=1

(
I + cℓX

⊤X
)

for
arbitrary constants {c, c1, · · · , cL−1};

• Feature propagation: A = c
(
X⊤X

)3L−1−1
for an

arbitrary constant c.

Proposition 4.2. Consider the same setting as in Proposi-
tion 4.1. There exists a single-layer linear attention model
whose parameters can be constructed such that, when
looped L times, its output reproduces that of (9), with
cℓ ≡ c′ for some arbitrary constant c′.

In the following, we provide further clarification on the label
and feature propagation.

1. The final prediction of the label propagation process can
be rewritten as (for ℓ ∈ [L− 1])

fatt-L(Z) = cx⊤X⊤yL where yℓ+1 = (I + cℓXX⊤)yℓ,

with y1 = y. Here, yℓ can be interpreted as the pseudo-
labels input to the ℓth layer, and each cℓ is parameterized
by the attention mechanism in the corresponding layer.
The L-layer linear attention process shares similarities
with the Expectation-Maximization algorithm for semi-
supervised learning, with L iterations of pseudo-labeling
and a different label update strategy.

2. In contrast, the feature propagation process yields

fall-L(Z) = cx⊤
LX

⊤
L y where

{
Xℓ+1 = (XℓX

⊤
ℓ )Xℓ

xℓ+1 = (X⊤
ℓ Xℓ)xℓ

with (X1,x1) = (X,x). Here, (Xℓ,xℓ) can be viewed
as the input features at the ℓth layer, encoding expo-
nentially higher-order powers of X⊤X . This result
highlights that a linear attention model requires only
O(logK) layers to represent polynomial functions of
degree K.

Our construction for label propagation is inherently related
to the GD emulation capability of linear attention (Ahn et al.,
2023). However, the feature propagation construction is
fundamentally different. The lemma below shows that, even
if the multilayer model can express polynomials of X⊤X
with exponential degrees in depth, the expressible manifold
of polynomials has dimensionality linear in depth.
Lemma 4.3 (Label + Feature Propagation). For an L-layer
linear attention model, the resulting eventual prediction
corresponds to the matrix A in Proposition 4.1 of the form

A =

(3L−3)/2∑
ℓ=0

aℓ(X
⊤X)ℓ. (10)

The coefficients a := [a0 · · · a(3L−3)/2]
⊤ lie on a man-

ifold of dimension at most 2L as a can be expressed as
a = g(c) for some smooth function g : R2L → R(3L−3)/2

with c representing the parameters of individual layers.

Motivated by Proposition 4.1 that multi-layer linear atten-
tion can implement higher-degree polynomials of X⊤X ,
we introduce the following SSPI estimator.

Semisupervised Plug-in (SSPI) Estimator Observe that
the feature covariance satisfies E[X⊤X]/n = µµ⊤ + σ2I .
We propose the semisupervised plug-in estimator as follows:

µ̂ss-k = αµ̂s + (1− α)(X⊤X/n− σ2I)kµ̂s (SSPI-k)

where µ̂s is the SPI estimator, and α ∈ [0, 1] controls the
trade-off between the fully- and semi-supervised estimators.
The optimal α depends on the problem parameters n, d, p.
Note that as k → ∞, (X⊤X/n − σ2I)k converges to a
rank-one projection onto the top eigenvector of the debiased
covariance matrix, serving as an estimator for µ (up to sign).

In Figure 1, we present the prediction accuracies of 2-/5-
layer linear attention models, and evaluate the SSPI algo-
rithm with varying k values using their respective optimal
choices of α. The results reveal a close alignment between
multi-layer linear attention and SSPI estimators. Notably,
the 2-layer model outperforms SSPI-1, due to its ability to
implement higher-degree polynomials of X⊤X (cf. Propo-
sition 4.1 and (10)). Furthermore, since the 5-layer model
is capable of representing higher-order functions than the
2-layer model, it can better estimate the top eigenvector, re-
sulting in performance that closely matches that of SSPI-∞.

In the following, we analyze the optimal classifier of the
form sgn(x⊤Aµ̂s) for a GMM, and provide insights into
its behavior in the asymptotic regime as n→∞.
Theorem 4.4. Consider a GMM defined in Section 2.1
and suppose that (xi, yi)

n+1
i=1 is generated using a fixed µ

following (1). Given matrix A ∈ Rd×d, define prediction

ŷA = sgn(x⊤Aµ̂s).

where µ̂s is the SPI estimator defined in (SPI). Let A⋆ :=
minA∈Rd×d P(ŷA ̸= y) be its optimal solution set. Then,
µµ⊤ ∈ A⋆. Additionally, it obeys P(ŷµµ⊤ ̸= y) =

Q(1/σ) +Q(
√
np/σ)− 2Q(1/σ)Q(

√
np/σ). (11)

Theorem 4.5. Consider an L-layer linear attention model
with L ≥ 2 and n = ∞. Additionally, let µ̂s be the SPI
estimator defined in (SPI). There exist model constructions
such that for any Z following (2), its prediction satisfies

yatt-L(Z) = sgn(x⊤µµ⊤µ̂s).

The proof follows directly from Proposition 4.1 (label prop-
agation). The results in Figure 1(c) validate Theorem 4.5,
showing that as n becomes large enough, (i.e., n = 10000)
the predictions from both 2-layer and 5-layer linear atten-
tion models, as well as the SSPI-1 and SSPI-∞ estima-
tors, closely align with the classification error characterized
in Theorem 4.4, depicted by the black dotted line. Non-
asymptotic result is presented in Appendix E.5.
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A. Related Work
Theoretical Analysis of In-Context Learning Recent work has developed theoretical frameworks for understanding
in-context learning in transformers. Akyürek et al. (2023), Von Oswald et al. (2023) and Dai et al. (2023) demonstrated
that transformers emulate gradient descent during ICL. Xie et al. (2022) offered a Bayesian perspective, while Zhang
et al. (2023; 2024) showed transformers learn linear models in-context. Ahn et al. (2023) established they implement
preconditioned gradient descent, and Mahankali et al. (2024) proved one-step gradient descent is optimal for single-layer
linear attention. Multiple works (Li et al., 2023; Yang et al., 2024; Li et al., 2024; Bai et al., 2023; Shen et al., 2024) studied
the generalization capability of transformers. However, these exclusively focus on fully-supervised settings, leaving a
critical gap in understanding how transformers handle partially labeled data—a common real-world scenario. Our work
addresses this gap by providing the first theoretical characterization of semi-supervised in-context learning. (Wang et al.,
2024) considers a setting where the model observes demonstrations of the form (query, responsei, rewardi) and aims to
correct its response based on the reward sequence. Our work has a different focus as it highlights that the model can
correct/impute the missing labels using implicit feedback from labeled demonstrations.

Semi-Supervised Learning Traditional semi-supervised learning (SSL) aims to leverage unlabeled data to improve
classifier performance. For linear classifiers, Oymak & Gulcu (2021) characterized self-training iterations and demonstrated
rejecting low-confidence samples; further theoretical analyses of self-training/pseudo-labeling cover deep networks (Wei
et al., 2021) and models like gradient-boosted trees (Kumar et al., 2020). For Gaussian Mixture Models (GMMs), Lelarge
& Miolane (2019) quantified maximal improvement from unlabeled data, while Krishnapuram et al. (2004) developed
graph-based priors. Learning GMMs via Expectation-Maximization (EM) or pseudo-labeling, especially with few labels, is
well-studied. Ratsaby & Venkatesh (1995) provided early PAC-style bounds for GMMs learned from few labeled and many
unlabeled points. Balakrishnan et al. (2017) offered further statistical guarantees for EM. Nigam et al. (2000) demonstrated
empirically that EM (viewable as iterative pseudo-labeling (Fan et al., 2023)) with pseudo-labels significantly reduces text
classification error using unlabeled documents. These foundational works, with ongoing research in areas like agnostic
learning (Kwon & Caramanis, 2020) and evolving theories (Xu et al., 2021), underpin many SSL concepts. While these
works established fundamental principles, they did not consider how these concepts apply to in-context learning with
transformers. Our contribution bridges this gap by showing how transformer depth enables effective utilization of unlabeled
examples within the prompt, essentially implementing semi-supervised learning without parameter updates.

B. Experiments
In Sections 3 and 4, we introduced Figure 1 and demonstrated its consistency with our theoretical results. In this section,
we describe the experimental setup and implementation details. Additionally, we present further empirical findings to
investigate additional questions of interest in Section B.1. Motivated by Proposition 4.2, which suggests that looping can
help leverage unlabeled data, Section B.2 introduces an algorithm based on the TabPFN, showing how it can enhance
prediction performance by incorporating a small amount of unlabeled data and iterative pseudo-labeling through model
looping.

Experimental Setup Following Section 2, set d = 10 and noise level σ = 1. All models are trained using Adam optimizer
with a learning rate of 10−3 for 40,000 epochs, with a batch size of 512. We use logistic loss in our experiments. Since our
study focuses on the optimization landscape and model expressivity, and experiments are implemented via gradient descent,
we repeat 10 trainings from random initialization and results are presented as the maximal test accuracy among those 10
trails.

B.1. Additional Observations

Exploration of Optimal α Values In Section 4, we introduced the SSPI-k estimator (cf. (SSPI-k)), but did not discuss the
choice of the mixing parameter α, which plays a crucial role in balancing the contribution of the supervised estimator µ̂s.
Specifically, α controls how much weight is given to the purely supervised signal. In the fully supervised case, the optimal
choice is α = 1, as µ̂s corresponds to the optimal estimator.

In Figures 2(a) and 2(b), we empirically examine the optimal values of α. Given µ ∼ Unif(Sd−1), we define the optimal α
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Figure 2. Additional experimental results. (a)&(b): Analysis of the optimal α values for the SSPI estimator (cf. (SSPI-k)) under varying
(n, p, k). Green solid and dotted curves represent optimal α values for SSPI-1 and SSPI-∞, respectively. The SSPI results shown in
Figure 1 use the corresponding α values from Figs. 2(a) and 2(b). (c): Comparison of different model architectures for the SS-ICL
problem. Dark blue and orange curves show results for 1-layer and 5-layer attention models, with solid and dashed curves representing
linear and softmax attention, respectively. Cyan curves correspond to 5-layer Transformers. The black dotted curve shows the asymptotic
Bayes-optimal error (cf. (Lelarge & Miolane, 2019)). Results suggest the performance ordering: Transformer ¿ linear attention ¿ softmax
attention. Further details are provided in Section B.

as the minimizer of the following cosine similarity-based objective:

α⋆ := min
α∈[0,1]

L(α) where L(α) = 1− E[cosine similarity(µss-k,µ)].

For each setting, we optimize α using the Adam optimizer for 10,000 epochs with a batch size of 128 and a learning rate of
0.01. The results are shown in Figs 2(a) and 2(b).

In Figure 2(a), for both SSPI-1 and SSPI-∞, the optimal α starts near zero when the number of labeled examples is small,
reflecting the limited utility of µ̂s in low-supervision regimes. As the number of labeled samples increases, α grows
approximately linearly and approaches 1 when the problem becomes fully supervised. In Figure 2(b), when n = 10 and
p = 1 (i.e., all examples are labeled), the optimal α begins at 1. As n increases and the fraction of unlabeled data grows, α
decreases significantly. This trend indicates that as the volume of unlabeled data increases, the SSPI estimator adaptively
reduces reliance on the supervised component µ̂s and increases reliance on the semi-supervised component, which leverages
the structure of the unlabeled data through X⊤X .

Comparison Across Different Model Architectures Beyond linear attention, we investigate additional model architec-
tures under our SS-ICL setting. The comparison results are presented in Fig. 2(c). The softmax attention model uses the
same structure described in Section 2.2, with the only difference being the addition of a softmax operation in Eq. (3). The
Transformer model introduces further nonlinearity and capacity by incorporating multi-layer perceptrons (MLPs) and layer
normalization. The Transformer experiments are conducted with 5-layer models.

When comparing weaker models—such as 1-layer linear (dark blue solid) and softmax (dark blue dashed) attention—we
observe that softmax attention consistently underperforms linear attention. Notably, softmax attention fails to match the
performance of the optimal supervised estimator, even when all labels are observed (i.e., when the number of labeled samples
equals n = 50). Furthermore, increasing the depth of softmax attention (orange dashed curve for 5-layer softmax) still
does not surpass the performance of 5-layer linear attention (orange solid curve). Among all architectures, the Transformer
achieves the best performance due to its increased model capacity and expressiveness. Compared with Fig. 1(a), where
the orange and dark blue markers (linear attention) are identical, the Transformer significantly improves accuracy. This
improvement highlights that SSPI, while effective, is not the optimal semi-supervised estimator. Although our semi-
supervised setting assumes isotropic data, the characterization of its optimal algorithm remains an open and foundational
problem for future exploration. In the figure, we also include the asymptotic Bayes-optimal curve (black dotted; derived
from (Lelarge & Miolane, 2019)) . As the number of samples increases, the results from linear attention, softmax attention,
and Transformer all converge toward this optimal curve. We attribute the initial performance gap, particularly at low values
along x-axis (e.g., np = 1), to the scarcity of labeled data.
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Algorithm 1 LoopTabFM: Looping Tabular FM with Soft Pseudo-labels and Risk-aware Updates
Require: Dataset Dlab,Dunlab, looping iterations K

1: function Looping(Dlab,Dunlab,K)
2: FM0← TabPFN-v2(Dlab){FMk corresponds to model of Loop-k.}
3: Dunlab ← FM0(Dunlab) {Assign pseudo labels via ŷsoft ← FM0(x ∈ Dunlab).}
4: FMbest ← FM0

5: Rval = Val Risk(Dunlab)
6: for Looping iteration k = 1, . . . ,K do
7: FMk ← TabPFN-v2(Dlab ∪ Dunlab)
8: Dunlab ← FMk(Dunlab) {Update pseudo labels via ŷsoft ← FMk(x ∈ Dunlab).}
9: if Val Risk(Dunlab) < Rval then

10: FMbest ← FMk

11: Rval = Val Risk(Dunlab)
12: end if
13: end for
14: return FMbest
15: end function
16: function Val Risk(Dunlab)
17: return 1

|Dunlab|
∑

i min
(∣∣ŷsoft

i − 1
∣∣ , ∣∣ŷsoft

i + 1
∣∣){ŷsoft corresponds to the assigned soft label for feature in Dunlab.}

18: end function

B.2. Tabular Experiments

To further investigate how model looping (Proposition 4.2) can improve label prediction, we propose the LoopTabFM
algorithm that addresses unlabeled data by iteratively assigning pseudo-labels, with its details outlined in Algorithm 1.
Suppose that we are given labeled Dlab and unlabeled Dunlab datasets. The overall workflow of the algorithm proceeds as
follows:

1. Base Model: Perform ICL using TabPFN on the labeled dataset Dlab and treat the resulting model as the base model
(Loop-0). The corresponding test accuracies are reported in Table 1.

2. Pseudo-Label Assignment: Using the current model (e.g., Loop-k) to generate predictions for the unlabeled data
Dunlab. Assign soft pseudo-labels based on these predictions. Note that the model outputs are scalars (i.e., elements of
R) and can be interpreted as soft labels.

3. Model Update: Construct a new prompt by combining the labeled examples with their true labels and the unlabeled
examples with their assigned soft pseudo-labels. Perform ICL using TabPFN on this combined prompt to obtain an
updated model (Loop-(k + 1)). Repeat this process from Step 2 until the maximum number of looping iterations is
reached.

⋆ Model Validation: To improve the stability of the looping process, we introduce an additional validation step and retain
the model with the lowest validation risk as the final (best) model. Specifically, after assigning soft pseudo-labels to the
unlabeled data, i.e., Dunlab = {(xi, ŷ

soft
i )ni=1}, we compute the validation risk over these pseudo-labeled examples as

follows:
Val Risk(Dunlab) =

1

n

∑
i∈[n]

min
(∣∣ŷsoft

i − 1
∣∣ , ∣∣ŷsoft

i + 1
∣∣) ,

which penalizes predictions that deviate from confident binary labels ±1.

We evaluated the effectiveness of our proposed looping strategy by iteratively applying TabPFN-v2 on real-world binary
classification benchmarks used in (Hollmann et al., 2025). The results are summarized in Table 1, where each entry
represents an average over 100 random splits of the dataset, with 80% of the data used as the test set in each split.

For each experiment, we randomly sample 10 labeled and 10 unlabeled examples, ensuring that the labeled set includes
at least one example from each class. As a baseline (Loop-0), we apply TabPFN-v2 using only the labeled data. The
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Table 1. Comparison of test accuracy (%) between the baseline (Loop-0) and LoopTabFM (Algorithm 1) after 1 to 5 iterations using
TabPFN-v2. Each result is averaged over 100 random trials. The highest test accuracy for each dataset is highlighted in bold. The final
column reports the relative improvement (%) of Loop-5 over the baseline, computed as (Loop-5 − Loop-0)/Loop-0×100%. Positive
signs indicate a performance improvement over the baseline, while negative signs indicate a performance drop.
OpenML ID # of features # of samples Class imbalance Loop-0 Loop-1 Loop-2 Loop-3 Loop-4 Loop-5 Rel. Imp. (%)

3 36 3196 1.09 58.62 58.63 58.45 58.69 59.00 58.97 0.60 (+)
31 20 1000 2.33 66.18 65.95 66.05 65.58 65.52 65.07 1.68 (−)
1049 37 1458 7.19 72.00 75.62 79.48 80.31 81.49 81.40 13.06 (+)
1067 21 2109 5.47 73.12 76.59 77.94 77.92 78.57 78.60 7.50 (+)
1464 4 748 3.20 60.46 63.96 70.20 71.29 72.26 72.18 19.38 (+)
1487 72 2534 14.84 82.54 87.67 88.57 88.27 89.85 89.56 8.51 (+)
1489 5 5404 2.41 66.40 67.62 68.30 68.14 68.21 68.18 2.69 (+)
1494 41 1055 1.96 62.24 63.05 64.62 65.94 66.07 66.05 6.12 (+)
40701 20 5000 6.07 66.45 70.65 75.99 78.18 78.00 77.70 16.93 (+)
40900 36 5100 67 98.53 98.41 98.39 98.39 98.27 98.26 0.28 (−)
40981 14 690 1.25 73.56 74.41 74.67 74.99 74.93 74.94 1.88 (+)
40983 5 4839 17.54 79.71 85.04 89.36 92.94 92.90 92.75 16.35 (+)
41143 144 2984 1 64.64 64.80 65.06 65.17 65.29 65.13 0.76 (+)
41144 259 3140 1.01 50.70 50.63 50.68 50.67 50.71 50.77 0.14 (+)
41145 308 5832 1 56.16 56.28 56.21 56.24 56.19 56.22 0.12 (+)
41146 20 5124 1 71.26 73.90 75.39 75.84 76.02 77.07 8.51 (+)
41156 48 4147 3.03 67.74 69.78 70.64 71.82 71.72 71.74 5.90 (+)

Average 68.84 70.76 72.35 72.96 73.24 73.21 6.35 (+)

corresponding test accuracies are reported in the “Loop-0” column of Table 1. We compare this to models updated through
up to k ≤ 5 iterations of pseudo-label update, with results shown in the “Loop-k” columns. The final column reports the
relative improvement (Rel. Imp.) over the baseline. Our results demonstrate that the looping strategy can significantly
improve test accuracy. For instance, on OpenML datasets 1049, 1464, 40701, and 40983, accuracy improves by more than
10% over the baseline using only 10 additional unlabeled samples. The last row of the table reports average performance
across datasets, revealing that the majority of performance gains occur in the first two iterations. This observation aligns
with our synthetic experiments using multi-layer models (Figure 1), where the improvement from 1-layer to 2-layer is
substantially greater than the improvement from 2-layer to 5-layer. These findings highlight that explicitly looping the tabular
foundation model to iteratively refine soft pseudo-labels of unlabeled data using only a few iterations can substantially
enhance performance.

As shown and discussed, our LoopTabFM algorithm enhances model performance. However, this improvement is not
consistent across all datasets. For example, performance drops on the OpenML datasets with IDs 31 and 40900. This may be
attributed to factors such as noise levels in the raw data, class imbalance, or other dataset-specific characteristics. In contrast
to our synthetic experimental setting, where the model is pretrained in a meta-learning fashion on the distribution of the
given dataset, TabPFN is used as a general-purpose pretrained foundation model and applied directly to target datasets in a
single-shot inference setting. Prior work (Ye et al., 2025) has also shown that TabPFN can be sensitive to input length, which
may further affect performance consistency. Despite these limitations, our experiments with TabPFN offer an initial insight
into how unlabeled data and iterative looping can be leveraged to improve predictive performance. These findings suggest
promising future directions, such as designing data-aware looping algorithms that adapt to dataset-specific properties.

C. Discussion and Limitations
Our paper introduces a theoretical study of semisupervised in-context learning and characterizes how transformer, specifically
linear attention, models can harness unlabeled data in their context window to make inference. We show that depth is
crucial to go beyond supervised estimation and utilize unlabeled data, and the latter is achieved by constructing estimators
of the form µ̂ =

∑K
i=0 ai(X

⊤X)iX⊤y. logK depth suffices to express a Kth order polynomial which is in line with our
synthetic and real experiments that corroborate that mild amount of depth/looping already achieves most of the benefit.
Our core theoretical results are limited to linear attention models and it is important to understand the capabilities of the
full transformer architecture. Indeed, transformer (MLP+softmax) empirically outperforms a linear attention model with
equal number of layers, well approximating the Bayes optimal semisupervised estimator. It would also be exciting to go
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beyond the classification setting and examine how self-generated CoT rationales, as in (Wu et al., 2023), can enhance ICL
capabilities for tasks that require reasoning/autoregression. Additionally, our proposed LoopTabFM algorithm demonstrates
that iteratively pseudo-labeling unlabeled data can indeed enhance predictive performance for tabular tasks. However,
there remains significant potential for developing more intelligent, data-specific algorithms that more effectively leverage
unlabeled data to further improve model performance.

D. Analysis of Single-layer Linear Attention
D.1. Supporting Lemmas

Recap the SPI estimator from (SPI). Given a semi-supervised dataset (xi, yi)
n
i=1 as described in Section 2.1, let I denote

the token indices set corresponding to the labeled demonstrations, that is, we have

yi =

{
yci , i ∈ I
0, otherwise.

(12)

Then, the SPI estimates the task mean via

µ̂s =
1

|I|
∑
i∈I

yixi.

Let W ∈ Rd×d be the preconditioning matrix. We define the following objective:

W ⋆ := arg min
W∈Rd×d

L̃(W ) where L̃(W ) = E

(x⊤W
∑
i∈I

yixi − y

)2
 . (13)

Here, we set (x, y) to be the query feature and its corresponding true label. The expectation subsumes the randomness in
(xi, yi), (x, y) as described in Section 2.1.

In the following, we provide a lemma that establishes equivalence between optimizing Latt-1(W(1),h) (cf. (5) and choosing
L = 1) and L̃(W ).

Lemma D.1. Consider ICL problem described in Section 2.2 with prompt defined in (2). Consider training a single-layer
linear attention with squared loss, that is, L = 1 and ℓ(y, ŷ) = (y − ŷ)2. Recall the objectives from (5) and (13), and let
L⋆

att-1 and L̃⋆ := L̃(W ⋆) be their corresponding optimal losses where W ⋆ is defined in (13). Then, we have

L⋆
att-1 = L̃⋆. (14)

Additionally, let f⋆
att-1 : R(n+1)×(d+1) → R denote the optimal prediction (associated with the optimal loss L⋆

att-1). We have
that f⋆

att-1 is unique and for any prompt Z (cf. (2))

f⋆
att-1(Z) = x⊤W ⋆

∑
i∈I

yixi. (15)

Proof. Recap the single-layer linear attention model and its prediction from (3) and (4). We have

fatt-1(Z) = h⊤att(Z;W)[n+1] where att(Z;W) = (ZWqW
⊤
k Z⊤)MZWv (16)

withW := {Wq,Wk,Wv} being the set of the query, key and value matrices of the attention. SinceW and h are tunable
parameters, without loss of generality and for simplicity, let

W := WqW
⊤
k and h̄ := Wvh.

Following the proof of Li et al., 2024, Proposition 1, similarly, we denote

W =

[
W̄ w1

w⊤
2 w

]
and h̄ =

[
h1

h

]
,

where W̄ ∈ Rd×d, w1,w2,h1 ∈ Rd, and w, h ∈ R.
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Additionally, let I denote the token indices set corresponding to the labeled demonstrations (cf. (12)). Recall the prompt Z
from (2), and X = [x1 · · · xn]

⊤ ∈ Rn×d and y = [y1 · · · yn]⊤ ∈ Rn from (8). Then we get

Z =

[
x1 x2 · · · xn x
y1 y2 · · · yn 0

]⊤
=

[
X⊤ x
y⊤ 0

]⊤
∈ R(n+1)×(d+1). (17)

Combining (16) and (17) together, we can rewrite the one-layer linear prediction as

fatt-1(Z) = [x⊤ 0]WZ⊤MZh̄

= [x⊤ 0]

[
W̄ w1

w⊤
2 w

] [
X⊤ x
y⊤ 0

] [
In 0
0 0

] [
X⊤ x
y⊤ 0

]⊤ [
h1

h

]
= [x⊤W̄ x⊤w1]

[
X⊤X X⊤y
y⊤X y⊤y

] [
h1

h

]
= [x⊤W̄ x⊤w1]

[
X⊤Xh1 + hX⊤y
y⊤Xh1 + hy⊤y

]
= x⊤W̄ (X⊤Xh1 + hX⊤y) + x⊤w1(y

⊤Xh1 + hy⊤y)

= x⊤(hW̄ +w1h
⊤
1 )X

⊤y + x⊤(W̄X⊤Xh1 + hy⊤yw1)

= x⊤W̃X⊤y + x⊤(W̄X⊤Xh1 +mhw1)

where W̃ := hW̄ +w1h
⊤
1 and we define m := |I|.

Next, recall the loss from (5) and consider the squared loss function, ℓ(y, ŷ) = (y − ŷ)2. We have

Latt-1(W(1),h) = E
[
(fatt-1(Z)− y)2

]
= E

[(
x⊤W̃Xy + x⊤ (W̄X⊤Xh1 +mhw1

)
− y
)2]

= E
[(

yx⊤W̃Xy + yx⊤ (W̄X⊤Xh1 +mhw1

)
− 1
)2]

.

For simplicity and without loss of generality, we omit y and use x to represent yx. Note that the distribution of (updated) x
is not conditioned on its class and given mean vector µ, it follows x ∼ N (µ, σ2I). Similarly, let xi represent ycixi. We
can then write

Latt-1(W(1),h) = E

(x⊤W̃
∑
i∈I

xi + x⊤ (W̄X⊤Xh1 +mhw1

)
− 1

)2
 (18)

= E

(x⊤W̃
∑
i∈I

xi − 1

)2
+ E

[(
x⊤ (W̄X⊤Xh1 +mhw1

))2]

+ 2E

[(
x⊤W̃

∑
i∈I

xi − 1

)(
x⊤ (W̄X⊤Xh1 +mhw1

))]
.

We start with showing that for any given parameters W ∈ R(d+1)×(d+1),h ∈ Rd+1, the component E[(x⊤W̃
∑

i∈I xi −
1)(x⊤(W̄X⊤Xh1 +mhw1))] = 0. To prove it, we first expand

(x⊤W̃
∑
i∈I

xi − 1)(x⊤(W̄X⊤Xh1 +mhw1))

= (x⊤W̃
∑
i∈I

xi)(x
⊤W̄X⊤Xh1)︸ ︷︷ ︸

(a)

− x⊤W̄X⊤Xh1︸ ︷︷ ︸
(b)

+ (x⊤W̃
∑
i∈I

xi)(mhx⊤w1)︸ ︷︷ ︸
(c)

−mhx⊤w1︸ ︷︷ ︸
(d)

.

12



Theoretical Insights into In-context Learning with Unlabeled Data

In the following, we consider the expectations of (a), (b), (c), (d) sequentially, all of which take the value zero. First note
that since µ ∼ Unif(Sd−1) and (ξi)

n
i=1, ξ ∼ N (0, σ2I), the odd moments of µ, ξ and ξi, i ∈ [n] are all zeros.

(a) : E

[
(x⊤W̃

∑
i∈I

xi)(x
⊤W̄X⊤Xh1)

]

= E

(µ+ ξ)⊤W̃
∑
i∈I

(µ+ ξi)(µ+ ξ)⊤W̄
∑
i∈[n]

(µ+ ξi)(µ+ ξi)
⊤h1


=
∑
i∈I

∑
j∈[n]

E
[
(µ+ ξ)⊤W̃ (µ+ ξi)(µ+ ξ)⊤W̄ (µ+ ξj)(µ+ ξj)

⊤h1

]
=
∑
i∈I

∑
j∈[n]

E
[
µ⊤W̃µµ⊤W̄ (µµ⊤ + ξjξ

⊤
j )h1 + ξ⊤W̃µξ⊤W̄ (µµ⊤ + ξjξ

⊤
j )h1

]
= 0,

(b) : E
[
x⊤W̄X⊤Xh1

]
= E

(µ+ ξ)⊤W̄
∑
i∈[n]

(µ+ ξi)(µ+ ξi)
⊤h1


= E

µ⊤W̄
∑
i∈[n]

(µµ⊤ + ξiξ
⊤
i )h1


= 0,

(c) : E

[
(x⊤W̃

∑
i∈I

xi)(mhx⊤w1)

]

= mhE

[
(µ+ ξ)⊤W̃

∑
i∈I

(µ+ ξi)(µ+ ξ)⊤w1

]
= mh

∑
i∈I

E
[
(µ+ ξ)⊤W̃µ(µ+ ξ)⊤w1

]
= mh

∑
i∈I

E
[
µ⊤W̃µµ⊤w1 + ξ⊤W̃µξ⊤w1

]
= 0,

(d) : E
[
mhx⊤w1

]
= 0.

Therefore, loss in (18) returns

Latt-1(W(1),h) = E

(x⊤W̃
∑
i∈I

xi − 1

)2


︸ ︷︷ ︸
L̃(W̃ )

+ E
[(
x⊤(W̄X⊤Xh1 +mhw1)

)2]
.

Here, the first term E[(x⊤W̃
∑

i∈I xi − 1)2] = L̃(W̃ ) where L̃(W̃ ) is defined in (13).

13
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Recall that W̃ = hW̄ + w1h
⊤
1 . Then for any W̃ ∈ Rd×d, setting h1 = w1 = 0d and h = 1 returns

E
[(
x⊤ (W̄X⊤Xh1 +mhw1

))2]
= 0, and then

Latt-1(W(1),h) = E

(x⊤W̄
∑
i∈I

xi − 1

)2


Therefore, optimizing Latt-1(W(1),h) returns the same minima as optimizing L̃(W ), which completes the proof of (14).
Note that optimal loss L⋆

att-1 depends on the labeled data i ∈ I only.

Furthermore, since L̃(W ) is strongly convex (see (19)), W ⋆ exists and is unique. Therefore, (14) and uniqueness of W ⋆

leads to the conclusion (15).

Lemma D.2. Consider the objective defined in (13) with semi-supervised data following Section 2. Then the optimal
solution W ⋆ satisfies

W ⋆ = cI

for some c > 0.

Proof. Recap the Objective (13) and its optimal solution W ⋆. Let I be the index set corresponding the labeled in-context
examples, and |I| = m. Note that, m is also a random variable, independent of xi, y

c
i ,x, y.

As in the proof of Lemma D.1, we use x to represent yx and xi to represent ycixi for simplicity, where (updated)
xi,x ∼ N (µ, σ2I). Letting ξ′, ξ, ξi ∼ N (0, σ2I) be independent, we obtain

L̃(W ) = E

[
(x⊤W

∑
i∈I

xi − 1)2

]
(19)

= E

[
((µ+ ξ)⊤W

∑
i∈I

(µ+ ξi)− 1)2

]
= E

[
((µ+ ξ)⊤W (mµ+

√
mξ′)− 1)2

]
= E

[
m2(µ⊤Wµ)2 +m(µ⊤Wξ′)2 +m2(ξ⊤Wµ)2 +m(ξ⊤Wξ′)2 + 1

]
− 2E

[
mµ⊤Wµ

]
=

E[m2]

d(d+ 2)
(tr(W )2 + tr(WW⊤) + tr(W 2)) +

E[m+m2]

d
σ2tr(WW⊤)

+ E[m]σ4tr(WW⊤) + 1− 2E[m]

d
tr(W ).

Differentiating it results in

∇W L̃(W ) =
2E[m2]

d(d+ 2)
(tr(W )I +W +W⊤) +

2E[m+m2]σ2

d
W + 2E[m]σ4W − 2E[m]

d
I.

Setting ∇W L̃(W ) = 0, we obtain the optimal W ⋆

W ⋆ =
1

(1 + σ2)E[m2]/E[m] + σ2 + σ4d
I,

which leads to the conclusion that W ⋆ = cI , for c = 1
(1+σ2)E[m2]/E[m]+σ2+σ4d > 0. It completes the proof.

D.2. Proof of Theorem 3.1

Proof. Note that (6) can be easily proven using Lemmas D.1 and D.2. Then, we focus on proving (7).

Given that (6) holds, we can rewrite its classification error as

P(y⋆att-1(Z) ̸= y) = P(sgn(x⊤µ̂s) ̸= y) = P(sgn(yx⊤µ̂s) ̸= 1) (20)

14
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where µ̂s =
1
|I|
∑

i∈I yixi defined in (SPI) and I is the index set of labeled samples. Let m = |I|.

Recall from Section 2.1 where x ∼ N (y · µ, σ2I). We can rewrite

yx = µ+ σg1 where g1 ∼ N (0, I).

Then for any given µ, µ̂s, we get

P
(
sgn(yx⊤µ̂s) ̸= 1

∣∣ µ, µ̂s

)
= P

(
(µ+ σg1)

⊤
µ̂s < 0

∣∣ µ, µ̂s

)
= P

(
µ⊤µ̂s < σg⊤

1 µ̂s

∣∣ µ, µ̂s

)
= Q

(
µ⊤µ̂s

σ ∥µ̂s∥ℓ2

)
. (21)

Here Q-function is the tail distribution function of the standard normal distribution.

Next, similarly, given that xi ∼ N (yi · µ, σ2I) for i ∈ I, we can rewrite

µ̂s =
1

m

∑
i∈I

yixi = µ+
σ√
m
g2 where g2 ∼ N (0, I).

Then combining (20) and (21), we have

P(y⋆att-1(Z) ̸= y) = Eµ,g2

[
Q

(
µ⊤µ̂s

σ ∥µ̂s∥ℓ2

)]

= Eµ,g2

Q
 µ⊤(µ+ σ√

m
g2)

σ
∥∥∥µ+ σ√

m
g2

∥∥∥
ℓ2




= Eµ,g2

Q
 1 + σ√

m
µ⊤g2

σ
√
1 + 2 σ√

m
µ⊤g2 +

σ2

m ∥g2∥
2
ℓ2

 .

Note that for any µ with ∥µ∥ℓ2 = 1, we have µ⊤g2 ∼ N (0, 1). Therefore, we can write

µ⊤g2 = g where g ∼ N (0, 1),

and let U ∈ Rd×d be a unitary matrix with first row being µ. We can write

∥g2∥2ℓ2 = ∥Ug2∥2ℓ2 = g2 + h where h ∼ X 2
d−1.

Here, X 2
d−1 denotes chi-squared distribution with (d− 1) degrees of freedom. Then, we get

P(y⋆att-1(Z) ̸= y) = Eg,h

Q
 1 + σ√

m
g

σ
√

1 + 2 σ√
m
g + σ2

m (g2 + h)


= Eg,h

Q
 1 + σ√

m
g

σ
√

(1 + σ√
m
g)2 + σ2

m h

 ,

= Eg,h

[
Q

(
1 + εσg

σ
√
(1 + εσg)2 + ε2σh

)]
,

where εσ := σ/
√
m. It completes the proof of (7).
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Next, we derive an upper bound for P(y⋆att-1(Z) ̸= y). Let c := ε−1
σ . Then we have

P(y⋆att-1(Z) ̸= y) = Eg,h

[
Q

(
c+ g

σ
√
(c+ g)2 + h

)]

= Eg≥− c
2 ,h

[
Q

(
c+ g

σ
√
(c+ g)2 + h

)]
+ Eg<− c

2 ,h

[
Q

(
c+ g

σ
√
(c+ g)2 + h

)]

≤ Eg≥− c
2 ,h

[
Q

(
c+ g

σ
√
(c+ g)2 + h

)]
+Q(c/2)

= Eg≥− c
2 ,h

[
Q

(
1

σ
√
1 + h/(c+ g)2

)]
+Q(c/2), (22)

where the inequality comes from the fact that P(g ≤ −c/2) = Q(c/2) and Q(x) ≤ 1 for any x ∈ R. Next, we have

1√
1 + h/(c+ g)2

≥ 1− 1

2

h

(c+ g)2
≥ 1− 2h

c2
.

Here the first inequality comes from that 1√
1+x
≥ 1− 1

2x and the second utilizes that g ≥ − c
2 .

Since h ∼ X 2
d−1, from the Laurent-Massart inequality (Laurent & Massart, 2000), we have that

P
(
h ≥ d− 1 + 2

√
(d− 1)t1 + 2t1

)
≤ e−t1 .

Therefore, we have that with probability at least 1− e−t1

1√
1 + h/(c+ g)2

≥ 1−
2(d− 1 + 2

√
(d− 1)t1 + 2t1)

c2
.

Setting t1 = d, we get with probability at least 1− e−d

1√
1 + h/(c+ g)2

≥ 1− 10d

c2
.

Combining the result with (22), since Q(x) ≤ 1 for x ∈ R and Q(x) ≤ e−x2/2 for x > 1, we get that

P(y⋆att-1(Z) ̸= y) ≤ e−d +Q(c/2) +Q

(
1

σ

(
1− 10d

c2

))
≤ e−d + e−1/8ε2σ +Q

(
1

σ

(
1− 10dε2σ

))
.

It completes the proof.

E. Analysis of Multi-layer Linear Attention
E.1. Proof of Proposition 4.1

Proof. We consider the following model constructions for the attention matrices in the ℓth layer, ℓ ∈ [L] and the final linear
prediction head:

ℓth layer: WqℓW
⊤
kℓ =

[
Id 0
0 0

]
and Wvℓ =

[
aℓId 0
0 bℓ

]
;

Prediction head: h =

[
0d

c

]
.

(23)
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Suppose the input to ℓth layer is

Zℓ =

[
Xℓ yℓ

x⊤
ℓ yℓ

]
∈ R(n+1)×(d+1) where Z1 = Z =

[
X y
x⊤ 0

]
.

Recapping the model construction from (23), the ℓth layer output returns

(
ZℓWqℓW

⊤
kℓZ

⊤
ℓ M

)
ZℓWvℓ =

[
Xℓ yℓ

x⊤
ℓ yℓ

] [
Id 0
0 0

] [
X⊤

ℓ xℓ

y⊤
ℓ yℓ

]
M

[
Xℓ yℓ

x⊤
ℓ yℓ

] [
aℓId 0
0 bℓ

]
=

[
XℓX

⊤
ℓ Xℓxℓ

x⊤
ℓ X

⊤
ℓ x⊤

ℓ xℓ

] [
In 0
0 0

] [
aℓXℓ bℓyℓ

aℓx
⊤
ℓ bℓyℓ

]
=

[
aℓXℓX

⊤
ℓ Xℓ bℓXℓX

⊤
ℓ yℓ

aℓx
⊤
ℓ X

⊤
ℓ Xℓ bℓx

⊤
ℓ X

⊤
ℓ yℓ

]
. (24)

Therefore, after residual connection, the input of (ℓ+ 1)th layer is

Zℓ+1 = Zℓ +

[
aℓXℓX

⊤
ℓ Xℓ bℓXℓX

⊤
ℓ yℓ

aℓx
⊤
ℓ X

⊤
ℓ Xℓ bℓx

⊤
ℓ X

⊤
ℓ yℓ

]
=

[
Xℓ + aℓXℓX

⊤
ℓ Xℓ yℓ + bℓXℓX

⊤
ℓ yℓ

x⊤
ℓ + aℓx

⊤
ℓ X

⊤
ℓ Xℓ yℓ + bℓx

⊤
ℓ X

⊤
ℓ yℓ

]
∈ R(n+1)×(d+1). (25)

• Label propagation: We first focus on deriving label propagation results. Suppose that we have

aℓ = 0 for ℓ ∈ [L].

Then following (24), the output of ℓ’th layer takes the following form:

(
ZℓWqℓW

⊤
kℓZ

⊤
ℓ M

)
ZℓWvℓ =

[
0 bℓXℓX

⊤
ℓ yℓ

0 bℓx
⊤
ℓ X

⊤
ℓ yℓ

]
.

Here, the first d coordinates of each token’s output are zeros, and therefore, the corresponding input coordinates remain
unchanged, and we have

Xℓ ≡X and xℓ ≡ x for ℓ ∈ [L].

The prediction (based on the last token output and after applying prediction head) is given by

fall-L(Z) = cbLx
⊤X⊤yL. (26)

We next focus on obtaining yL. From (25), we have

yℓ+1 = yℓ + bℓXX⊤yℓ = (I + bℓXX⊤)yℓ.

Therefore,

yL =

L−1∏
ℓ=1

(I + bℓXX⊤)y.

Combining with (26) results in

fall-L(Z) = cbLx
⊤X⊤

L−1∏
ℓ=1

(I + bℓXX⊤)y = cbLx
⊤

L−1∏
ℓ=1

(I + bℓX
⊤X)X⊤y.

It completes the proof.
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• Feature propagation: We now focus on the feature propagation setting. In contrast to the label propagation, let us
assume that

aℓ →∞ and bℓ → 0+ for ℓ ∈ [L].

The prediction (following (24), based on the last token output and after applying prediction head) is given by

fall-L(Z) = cbLx
⊤
LX

⊤
L yL. (27)

We first obtain yL. From (25) (since bℓ → 0), we have

yℓ+1 = yℓ + bℓXX⊤yℓ = yℓ.

Therefore,

yℓ ≡ y for ℓ ∈ [L].

Next, we focus on XL,xL. From (25), as aℓ →∞, we have

Xℓ+1 = Xℓ + aℓXℓX
⊤
ℓ Xℓ = Xℓ(I + aℓX

⊤
ℓ Xℓ) = aℓXℓX

⊤
ℓ Xℓ;

x⊤
ℓ+1 = x⊤

ℓ + aℓx
⊤
ℓ X

⊤
ℓ Xℓ = x⊤

ℓ (I + aℓX
⊤
ℓ Xℓ) = aℓx

⊤
ℓ X

⊤
ℓ Xℓ.

Therefore,

XL = aL−1XL−1(X
⊤
L−1XL−1)

= aL−1a
3
L−2XL−2(X

⊤
L−2XL−2)

32−1
2

= aL−1a
3
L−2a

32

L−3XL−3(X
⊤
L−3XL−3)

33−1
2

= · · ·

= aL−1a
3
L−2a

32

L−3...a
3L−2

1 X(X⊤X)
3L−1−1

2 ,

and

x⊤
L = aL−1x

⊤
L−1(X

⊤
L−1XL−1)

= aL−1a
3
L−2x

⊤
L−2(X

⊤
L−2XL−2)

32−1
2

= aL−1a
3
L−2a

32

L−3x
⊤
L−3(X

⊤
L−3XL−3)

33−1
2

= · · ·

= aL−1a
3
L−2a

32

L−3...a
3L−2

1 x⊤(X⊤X)
3L−1−1

2 .

Combining all together with (27), we have that

fall-L(Z) = cbLx
⊤
LX

⊤
L yL

= cbL

(
L−1∏
ℓ=1

a3
L−1−ℓ

ℓ

)2

x⊤(X⊤X)3
L−1−1X⊤y.

It completes the proof.

E.2. Proof of Proposition 4.2

Proof. The proof follows directly by adopting the same model construction and proof strategy as in Proposition 4.1, under
the additional assumption that

aℓ = a and bℓ = b for ℓ ∈ [L].
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E.3. Proof of Lemma 4.3

Proof. In the proof of Proposition 4.1, we showed how to derive the label and feature propagation results by restricting the
construction to either aℓ ≡ 0 (for label propagation) or (aℓ → ∞, bℓ → 0) (for feature propagation). Here, we consider
a propagation process without imposing restrictions on the choices of (aℓ, bℓ), and study the form of the final prediction
returned by the model.

To avoid the notation conflict, we express the matrix A in (10) as

A =

K∑
k=0

ek(X
⊤X)k

and let e = [e0 e2 · · · e(3L−3)/2]
⊤ ∈ RK+1.

Recall the same model construction used in the proof of Proposition 4.1, defined in (23). From (24), we have that

fatt-L(Z) = cbLx
⊤
LX

⊤
L yL

where following (25), we have

Xℓ+1 = Xℓ(I + aℓX
⊤
ℓ Xℓ),

x⊤
ℓ+1 = x⊤

ℓ (I + aℓX
⊤
ℓ Xℓ),

yℓ+1 = (I + bℓXℓX
⊤
ℓ )yℓ.

At each layer, the operations performed are linear combinations and multiplications involving X⊤
ℓ Xℓ and identity matrices

scaled by the parameters (aℓ, bℓ). Thus, each coefficient ek of (X⊤X)k depends smoothly on the scalar parameters (aℓ, bℓ).

From (24) and (25), we have that

fatt-L(Z) = cbLx
⊤
LX

⊤
L yL (28)

= cbL · x⊤
L−1(I + aL−1X

⊤
L−1XL−1)

2(I + bL−1X
⊤
L−1XL−1)X

⊤
L−1yL−1

= · · ·

That is, in the final fatt-L(Z) expression, the coefficients corresponding to different degrees of (X⊤X)k depend
on the model parameters cbL and (aℓ, bℓ)

L−1
ℓ=1 , which together have at most 2L − 1 degrees of freedom. Let c =

[cbL a1 · · · aL−1 b1 · · · bL−1]
⊤. This means there exists a smooth function g : R2L−1 → RK such that: e = g(c).

It remains to show that an L-layer linear attention model can produce terms involving powers of X⊤X up to degree
(3L − 3)/2.

Let f(Z) be a function that contains terms of the form x⊤(X⊤X)kX⊤y for various powers k. Define P(f(Z)) as the
projection that extracts the highest degree k present in f(Z). For example, P

(
x⊤(I + (X⊤X)2)X⊤y

)
= 2. Then from

(28), we have

P(fatt-L(Z)) = P(x⊤
LX

⊤
L yL)

= P(x⊤
L−1(X

⊤
L−1XL−1)

3X⊤
L−1yL−1)

= P(x⊤
L−2(X

⊤
L−2XL−2)(X

⊤
L−2XL−2)

32(X⊤
L−2XL−2)

2X⊤
L−2yL−2)

= P(x⊤
L−2(X

⊤
L−2XL−2)

32+3X⊤
L−2yL−2)

= P(x⊤
L−3(X

⊤
L−3XL−3)(X

⊤
L−3XL−3)

33+32(X⊤
L−3XL−3)

2X⊤
L−3yL−3)

= P(x⊤
L−3(X

⊤
L−3XL−3)

33+32+3X⊤
L−3yL−3)

= . . .

= P(x⊤(X⊤X)3
L−1+···+32+3X⊤y)

= 3L−1 + · · ·+ 32 + 3 =
3L − 3

2
.

It completes the proof.
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E.4. Proof of Theorem 4.4

Proof. Let ξ ∼ N (0, I) and rewrite yx = µ+ σξ. For any matrix A ∈ Rd×d, the prediction error of ŷA = sgn(x⊤Aµ̂s)
given µ̂s returns

P(ŷA ̸= y
∣∣ µ̂s) = P(yx⊤Aµ̂s < 0

∣∣ µ̂s)

= P((µ+ σξ)⊤Aµ̂s < 0
∣∣ µ̂s)

= Q

(
µ⊤Aµ̂s

σ ∥Aµ̂s∥ℓ2

)
. (29)

For any A ∈ Rd×d, we can decompose it as

A =

d∑
i=1

λiuiv
⊤
i

where u1 = µ, ∥ui∥ℓ2 = 1 and u⊤
i uj = 0 for any i ̸= j. Let λ1 > 0. Then, we get

µ⊤Aµ̂s = µ⊤(

d∑
i=1

λiuiv
⊤
i )µ̂s

=

d∑
i=1

λiµ
⊤uiv

⊤
i µ̂s

= λ1µ
⊤u1v

⊤
1 µ̂s

= λ1v
⊤
1 µ̂s. (30)

Now consider ∥Aµ̂s∥ℓ2 where we have

Aµ̂s =

d∑
i=1

λiuiv
⊤
i µ̂s

= λ1µv
⊤
1 µ̂s +

d∑
i=2

λiuiv
⊤
i µ̂s.

Since ui, i ̸= 1 is orthogonal to µ, λ1µv
⊤
1 µ̂s is orthogonal to

∑d
i=2 λiuiv

⊤
i µ̂s. Therefore, given ∥ui∥ℓ2 = 1 for all

i ∈ [d], it obeys

∥Aµ̂s∥
2
ℓ2

=
∥∥λ1µv

⊤
1 µ̂s

∥∥2
ℓ2
+

d∑
i=2

∥∥λiuiv
⊤
i µ̂s

∥∥2
ℓ2

= (λ1v
⊤
1 µ̂s)

2 + λ2
1

d∑
i=2

(λ−1
1 λiv

⊤
i µ̂s)

2. (31)

For simplicity, define

∆(µ̂s) =

d∑
i=2

(λ−1
1 λiv

⊤
i µ̂s)

2

where ∆(·) is a function of λ1 and (λi,vi)’s for i ≥ 2, and we have

∆(µ̂s) ≥ 0 and ∆(−µ̂s) = ∆(µ̂s).

Recall that µ̂s is the SPI estimator (cf. (SPI)). Let |I| = m. We can write µ̂s = µ+ ξ′/
√
m where ξ′ ∼ N (0, σ2I).
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Using (29), (30) and (31), the classification error becomes

P(ŷA ̸= y) = Eµ̂s

[
Q

(
µ⊤Aµ̂s

σ ∥Aµ̂s∥ℓ2

)]

= Eµ̂s

[
Q

(
v⊤
1 µ̂s

σ
√
(v⊤

1 µ̂s)
2 +∆(µ̂s)

)]

= Ev⊤
1 µ̂s<0

[
Q

(
v⊤
1 µ̂s

σ
√
(v⊤

1 µ̂s)
2 +∆(µ̂s)

)]
+ Ev⊤

1 µ̂s≥0

[
Q

(
v⊤
1 µ̂s

σ
√

(v⊤
1 µ̂s)

2 +∆(µ̂s)

)]
.

First, note that for any x > 0, Q(x) < 0.5 < Q(−x). Therefore, the optimal choice of v1 ∈ Rd that minimizes P(ŷA ̸= y)
is contained within the set of v1 values that maximize P(v⊤

1 µ̂s > 0). Let v⋆
1 := argmaxv1∈Rd P(v⊤

1 µ̂s > 0). Given that
µ̂s ∼ N (µ, σ2/mI), we have that v⋆

1 = cµ for c > 0. Let c = 1 and therefore, v⋆
1 = µ without loss of generality (since

λ1 can be any positive scalar). Then we obtain

min
A∈Rd×d

P(ŷA ̸= y) = min
∆

Eµ̂s

[
Q

(
µ⊤µ̂s

σ
√
(µ⊤µ̂s)

2 +∆(µ̂s)

)]
.

Let f(µ̂s) be the probability density function of µ̂s. Since µ̂s ∼ N (µ, σ2/mI), then it satisfies

f(µ̂s) ≥ f(−µ̂s) for any µ⊤µ̂s > 0. (32)

Therefore, the classification error becomes

P(ŷA ̸= y
∣∣ v1 = µ) =

∫
µ̂s

f(µ̂s)Q

(
µ⊤µ̂s

σ
√
(µ⊤µ̂s)

2 +∆(µ̂s)

)
dµ̂s

=

∫
µ⊤µ̂s>0

f(µ̂s)Q

(
µ⊤µ̂s

σ
√
(µ⊤µ̂s)

2 +∆(µ̂s)

)
+ f(−µ̂s)Q

(
−µ⊤µ̂s

σ
√
(µ⊤µ̂s)

2 +∆(µ̂s)

)
dµ̂s

=

∫
µ⊤µ̂s>0

(f(µ̂s)− f(−µ̂s))Q

(
µ⊤µ̂s

σ
√
(µ⊤µ̂s)

2 +∆(µ̂s)

)
+ f(−µ̂s)dµ̂s.

Following (32), to minimize the error, we need minimize Q
(

µ⊤µ̂s

σ
√

(µ⊤µ̂s)
2+∆(µ̂s)

)
for µ⊤µ̂s > 0, which can be easily done

by choosing λi = 0 for i ≥ 2. Then we get ∆(µ̂s) ≡ 0. Therefore, the optimal solution set A⋆ defined in Theorem 4.4
satisfies:

A⋆ =
{
λ1µµ

⊤ ∣∣ λ1 > 0
}
.

Combining all together, we obtain

min
A∈Rd×d

P(ŷA ̸= y) =

∫
µ⊤µ̂s>0

(f(µ̂s)− f(−µ̂))Q
(
1

σ

)
+ f(−µ̂s)dµ̂s

=

∫
µ⊤µ̂s>0

f(µ̂s)dµ̂s ·Q
(
1

σ

)
+

∫
µ⊤µ̂s<0

f(µ̂s)dµ̂s ·
(
1−Q

(
1

σ

))
= Q

(
−
√
m

σ

)
Q

(
1

σ

)
+Q

(√
m

σ

)(
1−Q

(
1

σ

))
=

(
1−Q

(√
m

σ

))
Q

(
1

σ

)
+Q

(√
m

σ

)(
1−Q

(
1

σ

))
= Q

(
1

σ

)
+Q

(√
m

σ

)
− 2Q

(√
m

σ

)
Q

(
1

σ

)
.

It completes the proof.
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E.5. Non-asymptotic Analysis

In Section 4 and Theorem 4.5, we showed that with infinitely many unlabeled samples, an L-layer linear attention model
(for L ≥ 2) can implement the predictor described in Theorem 4.4 with optimal A choice, achieving the classification error
given by (11). In this section, we turn to the non-asymptotic setting where n is finite, and analyze the model’s performance
under this regime.

Theorem E.1. Let the prompt Z be generated as described in Section 2.2. Consider an L-layer linear attention model with
L ≥ 2 and denote its optimal prediction as y⋆att-L(Z). Additionally, let µ̂s be the SPI estimator defined in (SPI). Suppose
that the number of labeled samples satisfies np ≥ 8dσ2 and n > O(d) is sufficiently large. Then, there exists a universal
constant C > 0 such that the classification error satisfies

P(y⋆att-L(Z) ̸= y) ≤ Q

(
1− C

√
d/n

σ

)
+ e−d.

Proof. Recap from Proposition 4.1. For any L-layer attention model with L ≥ 2, it can output

fatt-L(Z) = x⊤(X⊤X/n− σ2I)µ̂s. (33)

Let
ŷ = sgn(fatt-L(Z))

with fatt-L(Z) defined in (33). Then we have

P(y⋆att-L(Z) ̸= y) ≤ P(ŷ ̸= y).

Therefore, in the following, we focus on upper-bounding the classification error P(ŷ ̸= y) corresponding to (33). Given
that the optimal prediction under the form sgn(x⊤Aµ̂s) is given by ŷµµ⊤ := sgn(x⊤µµ⊤µ̂s) (cf. Theorem 4.4), with its
corresponding error presented in (11). To analyze the performance of ŷ, we study its difference from the prediction ŷµµ⊤ .

To begin with, let gi = ξi/σ ∼ N (0, I) and g =
∑n

i=1 ξi/σ
√
n ∼ N (0, I). For simplicity, let A := X⊤X/n − σ2I .

We get

A =
1

n
X⊤X − σ2I

=
1

n

(
n∑

i=1

µµ⊤ + µξ⊤i + ξiµ
⊤ + ξiξ

⊤
i

)
− σ2I

= µµ⊤ +
σ√
n
(µg⊤ + gµ⊤) + σ2

(∑n
i=1 gig

⊤
i

n
− I

)
.

Recall (29) from the proof of Theorem 4.4. Our goal is to bound

P(ŷ ̸= y) = Eµ̂

[
Q

(
µ⊤Aµ̂s

σ ∥Aµ̂s∥ℓ2

)]
.

Define

∆ := A− µµ⊤ =
σ√
n
(µg⊤ + gµ⊤) + σ2

(∑n
i=1 gig

⊤
i

n
− I

)
. (34)

From the Laurent-Massart inequality (Laurent & Massart, 2000), we have that with probability at least 1− e−t1 (assuming
t1 ≥ d), the first term of (34) can be bounded by

1√
n

∥∥µg⊤ + gµ⊤∥∥ ≤ 2∥g∥√
n
≤ 6

√
t1
n
. (35)
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Additionally, from (Neopane, 2018), we have that with probability at least 1− e−t2 (assuming t2 ≥ d), the second term of
∆ (cf. (34)) is bounded by (with a universal constant C > 0)∥∥∥∥∑n

i=1 gig
⊤
i

n
− I

∥∥∥∥ ≤ C ·
√

t2
n
. (36)

Combining (35) and (36), we get with probability at least 1− 2e−t (for t ≥ d)

∥∆∥ ≤ C1

√
t

n
where C1 := 6σ + Cσ2.

We also bound ∥µ̂s∥ as follows. Let µ̂s = µ+ σ/
√
mg′ ∼ N (µ, σ2mI), similar to (35), with probability at least 1− e−t3

(assuming 2d ≤ t3 ≤ m/4σ2), we can bound

∥µ̂s∥ ≤ 1 +
σ√
m
∥g′∥ ≤ 1 + 3σ

√
t3
m
≤ 3.

Then consider a significantly large n (to ensure that ∥∆∥ ≤ 1/12, e.g., n ≥ (12C1)
2t). With probability at least

1− 3e−min(t,t3) and suppose that µ⊤µ̂s > 0.5, we can bound∣∣∣∣∣ µ⊤Aµ̂s

∥Aµ̂s∥ℓ2
− µ⊤µµ⊤µ̂s

∥µµ⊤µ̂s∥ℓ2

∣∣∣∣∣ =
∣∣∣∣∣ µ⊤(∆+ µµ⊤)µ̂s

∥(∆+ µµ⊤)µ̂s∥ℓ2
− µ⊤µµ⊤µ̂s

∥µµ⊤µ̂s∥ℓ2

∣∣∣∣∣
≤

∣∣∣∣∣ µ⊤∆µ̂s

min(∥(∆+ µµ⊤)µ̂s∥ℓ2 , ∥µµ
⊤µ̂s∥ℓ2)

∣∣∣∣∣
≤ ∥∆∥ · ∥µ̂s∥

µ⊤µ̂s − ∥∆∥ · ∥µ̂s∥
≤ 4∥∆∥ · ∥µ̂s∥

≤ C2

√
t

n
where C2 := 12C1.

Now, we are ready to bound the classification error, where we get

P (ŷ ̸= y) = Eµ̂

[
Q

(
µ⊤Aµ̂s

σ ∥Aµ̂s∥ℓ2

)]

= Eµ̂

[
Q

(
1

σ
+

1

σ

(
µ⊤Aµ̂s

∥Aµ̂s∥ℓ2
− µ⊤µµ⊤µ̂s

∥µµ⊤µ̂s∥ℓ2

))]

≤ P(µ⊤µ̂s > 0.5)

(
Q

(
1− C2

√
t/n

σ

)
+ 3e−min(t,t3)

)
+ P(µ⊤µ̂s < 0.5)

≤ Q

(
1− C2

√
t/n

σ

)
+ 3e−min(t,t3) +Q

(√
m

2σ

)
.

Choosing t = t3 = 2d, since m/4σ2 ≥ 2d, we obtain

P (ŷ ̸= y) ≤ Q

(
1− C2

√
2d/n

σ

)
+ 3e−2d + 0.5e−d

≤ Q

(
1− C2

√
2d/n

σ

)
+ e−d.

It completes the proof.
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