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ABSTRACT

Comparing structured objects such as graphs is a fundamental operation involved
in many learning tasks. To this end, the Gromov-Wasserstein (GW) distance,
based on Optimal Transport (OT), has proven to be successful in handling the
specific nature of the associated objects. More specifically, through the nodes
connectivity relations, GW operates on graphs, seen as probability measures over
specific spaces. At the core of OT is the idea of conservation of mass, which
imposes a coupling between all the nodes from the two considered graphs. We
argue in this paper that this property can be detrimental for tasks such as graph
dictionary or partition learning, and we relax it by proposing a new semi-relaxed
Gromov-Wasserstein divergence. Aside from immediate computational benefits,
we discuss its properties, and show that it can lead to an efficient graph dictionary
learning algorithm. We empirically demonstrate its relevance for complex tasks on
graphs such as partitioning, clustering and completion.

1 INTRODUCTION

One of the main challenges in machine learning (ML) is to design efficient algorithms that are able
to learn from structured data (Battaglia et al.,|2018)). Learning from datasets containing such non-
vectorial objects is a difficult task that involves many areas of data analysis such as signal processing
(Shuman et al., 2013)), Bayesian and kernel methods on graphs (Ng et al., 2018}; |[Kriege et al., [2020) or
more recently geometric deep learning (Bronstein et al., 2017;|2021) and graph neural networks (Wu
et al.| [2020). In terms of applications, building algorithms that go beyond Euclidean data has led to
many progresses, e.g. in image analysis (Harchaoui & Bachl |2007), brain connectivity (Ktena et al.,
2017), social networks analysis (Yanardag & Vishwanathan, |2015) or protein structure prediction
(Jumper et al.| 2021)).

Learning from graph data is ubiquitous in a number of ML tasks. A first one is to learn graph
representations that can encode the graph structure (a.k.a. graph representation learning). In this
domain, advances on graph neural networks led to state-of-the-art end-to-end embeddings, although
requiring a sufficiently large amount of labeled data (Ying et al.l 2018}, |Morris et al.l 2019;|Gao & Ji,
2019; Wu et al., 2020). Another task is to find a meaningful notion of similarity/distance between
graphs. A way to address this problem is to leverage geometric or signal properties through the use of
graph kernels (Kriege et al.,2020) or other embeddings accounting for graph isomorphisms (Zambon
et al.| 2020). Finally, it is often of interest either to establish meaningful structural correspondences
between the nodes of different graphs, also known as graph matching (Zhou & De la Torre, [2012;
Maron & Lipman, 2018} [Bernard et al., 2018} |Yan et al.;[2016) or to find a representative partition of
the nodes of a graph, which we refer to as graph partitioning (Chen et al,[2014; Nazi et al.|[2019;
Kawamoto et al., 2018} |Bianchi et al., [2020).

Optimal Transport for structured data. Based on the theory of Optimal Transport (OT, Peyré
& Cuturi, 2019)), a novel approach to graph modeling has recently emerged from a series of works.
Informally, the goal of OT is to match two probability distributions under the constraint of mass
conservation and in order to minimize a given matching cost. OT originally tackles the problem
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GW(C, h,C,h)=0.219 srGW(C, h, C) =0.05 srGW(C, h,€)=0.113

Figure 1: Comparison of the GW matching (left) and asymmetric stGW matchings (middle and right)
between graphs C' and C' with uniform distributions. Nodes of the source graph are colored based on
their clusters. The OT from the source to the target nodes is represented by arcs colored depending
on the corresponding source node color. The nodes in the target graph are colored by averaging the
(rgb) color of the source nodes, weighted by the entries of the OT plan.

of comparing probability distributions whose supports lie on the same metric space, by means of
the so-called Wasserstein distance. Extensions to graph data analysis were introduced by either
embedding the graphs in a space endowed with Wasserstein geometry (Nikolentzos et al., 2017}
Togninalli et al] [2019; [Petric Maretic et al [2019) or relying on the Gromov-Wasserstein (GW)
distance (Mémoli, [2011; |Sturm} 2012). The latter approach is a variant of the classical OT in which
one aims at comparing probability distributions whose supports lie on different metric spaces by
finding a matching of these distributions being as close as possible to an isometry. By expressing
graphs as probability measures over spaces specific to their topology, where the structure of a graph
is represented through a pairwise distance/similarity matrix between its nodes, the GW distance
computes both a soft assignment matrix between the nodes of the two graphs and a notion of distance
between them (see the left part of Figure[T)). These properties have proven to be useful for a wide
range of tasks such as graph matching and partitioning (Xu et al.,|2019a; |(Chowdhury & Needham,
2021} [Vayer et al., [2019), estimation of nonparametric graph models (graphons, |Diaconis & Janson)
2007; | Xu et al., [2021) or for graph dictionary learning (Vincent-Cuaz et al.,[2021; Xu, [2020). GW
was also extended to directed graphs in|Chowdhury & Mémoli| (2019) and to labeled graphs via the
Fused Gromov-Wasserstein (FGW) distance in [Vayer et al.| (2020).

Despite those recent successes, applications of GW to graph modeling still have several limitations.
First, finding the GW distance remains challenging, as it boils down to solving a difficult non-
convex quadratic program (Peyré et al.| 2016; Solomon et al., 2016} [Vayer et al.,|2019), which, in
practice, limits the size of the graphs that can be processed. A second limit naturally emerges when a
probability mass function is introduced over the set of the graph nodes. The mass associated with a
node refers to its relative importance and, without prior knowledge, each node is either assumed to
share the same probability mass or to have one proportional to its degree. In this paper, we somehow
argue that these choices can be suboptimal in several cases, and should be relaxed, with the additional
benefit of lowering the computational complexity. As an illustration, consider Figure[I} on the left
image, the GW matching is given between two graphs, with respectively two and three clusters,
associated with uniform weights on the nodes. By relaxing the weight constraints over the second
(middle image) or first graph (right image) we obtain different matchings, that can better preserve
the structure of the source graph by reweighing the target nodes and thus selecting a meaningful
subgraph.

Contributions. We introduce a new optimal transport based divergence between graphs derived
from the GW distance. We call it the semi-relaxed Gromov-Wasserstein (stGW) divergence. After
discussing its properties and motivating its use in ML applications, we propose an efficient solver
for the corresponding optimization problem. Our solver better fits to modern parallel programming
than exact solvers for GW do. We empirically demonstrate the relevance of our divergence for graph
partitioning, Dictionary Learning (DL), clustering of graphs and graph completion tasks. With stGW,
we recover SOTA performances at a significantly lower computational cost compared to methods
based on pure GW.

2 MODELING GRAPHS WITH THE GROMOV-WASSERSTEIN DIVERGENCE

In this section we introduce more formally the GW distance and discuss two of its applications on
graphs, namely graph partitioning and unsupervised graph representation learning. In the following
the probability simplex with N-bins is denoted as X := {h € RY| Y, h; = 1}.



Published as a conference paper at ICLR 2022

GW as graphs similarity. In the OT context, a graph G with n nodes can be modeled as a couple
(C, h) where C € R™ ™ is a matrix encoding the connectivity between nodes and h € ¥, is a
histogram, referred here as distribution, modeling the relative importance of the nodes within the
graph. The matrix C can be arbitrarily chosen as the graph adjacency matrix, or any other matrix
describing the relationships between nodes in the topology of the graph (e.g. adjacency, shortest-path,
Laplacian). The distribution is often considered as uniform (h = %ln) but can also convey prior
knowledge e.g. using the normalized degree distribution (Xu et al} 2019a). Consider now two graphs
G = (C,h)and G = (C, h), respectively with n and m nodes, potentially different (n # m). The
GW distance between G and G is defined as the result of the following optimization problem:

GW%(C,h,é,ﬁ) = TIll’liIl Z ‘Cij —ékl‘QTiijl with T € R}*™ (1)

The optimal coupling T acts as a probabilistic matching of nodes which tends to associate pairs of
nodes that have similar pairwise relations in C and C respectively, while preserving masses h and
h through its marginals constraints. GW defines a distance on the space of metric measure spaces
(mm-spaces) invariant to measure preserving isometries (Mémoli, 2011; |Sturm, |2012)). In the case of
graphs, which corresponds to discrete mm-spaces, such invariant is a permutation of the nodes that
preserves the structures and the weights of the graphs (Vayer et al., [2020). First applications of GW
to ML on graphics problems (Peyré et al., 2016} Solomon et al., |2016) motivated further connections
with graph partitioning. In the GW sense, this paradigm is illustrated by finding an ideally partitioned
graph G = (D, h) of m clustrers whose structure is a diagonal matrix D € R™*™ representing
the cluster’s connections, and its distribution h estimates the proportion of the nodes in each cluster
(Xu et al.,2019a)). The OT plan between a graph G = (C, h) represented by its adjacency matrix
C to this ideal graph can be used to recover G’s clusters, if their number and proportions match the
number and the weights of G’s nodes. Xu et al.| (2019a) suggested to empirically refine both graph
distributions, by choosing h based on power-law transformations of the degree distribution of G and
to deduce h from h by linear interpolation. (Chowdhury & Needham|(2021) proposed to use heat
kernels from the Laplacian of G instead of its adjacency binary representation, and proved that the
resulting GW partitioning is closely related to the well-known spectral clustering (Fiedler, [1973).

The GW distance has been extended to graphs with node attributes (typically R vectors) thanks to
the Fused Gromov-Wasserstein distance (FGW) (Vayer et al.,[2019). In this context, an attributed
graph G with n nodes is a tuple G = (C, F', h) where F' € R"*¢ is its matrix of node features. FGW
between two attributed graphs aims at finding an OT by minimizing a weighted sum of a GW cost
on structures and a Wasserstein cost on features (balanced by a parameter « € [0, 1]). Most of the
applications of GW can be naturally extended with FGW to attributed graphs.

GW for Unsupervised Graph Representation Learning. More recently, GW has been used as a
data fitting term for unsupervised graph representation learning by means of Dictionary Learning
(DL) (Mairal et al., [2009; |Schmitz et al., 2018). While DL methods mainly focus on vectorial data
(Ng et al.}2002; Candes et al., |2011; |Bobadilla et al., 2013), DL applied to graphs datasets consists
in factorizing them as composition of graph primitives (or atoms) encoded as {(C', hy) }rex]- The
first approach proposed by (Xul 2020) consists in a non-linear DL based on entropic GW barycenters.
On the other hand, |[Vincent-Cuaz et al.| (2021) proposed a linear DL method by modeling graphs as a
linear combination of graph atoms thus reducing the computational cost. In both cases, the embedding
problem that consists in the projection of any graph on the learned graph subspace requires solving a
computationally intensive optimization problem.

3  SEMI-RELAXED GROMOV-WASSERSTEIN DIVERGENCE

3.1 DEFINITION AND PROPERTIES

Given two observed graphs G = (C,h) and G = (C, h) of n and m nodes, we propose to find a
correspondence between them while relaxing the weights h on the second graph. To this end we
introduce the semi-relaxed Gromov-Wasserstein divergence as :

stGW32(C, h,C) = min GW3(C, h,C,h) (2)
RES,



Published as a conference paper at ICLR 2022

This means that we search for a reweighing of the nodes of G leading to a graph with structure C
with minimal GW distance from G. While the optimization problem (2)) above might seem complex
to solve, it is actually equivalent to a GW problem where the mass constraints on the second marginal
of T are relaxed, reducing the problem to:

stGW3(C, h,C) = Tllr}iI:th |Cij — Cul*TiTy with T € R7X™. 3)
ijkl

From an optimal coupling T of problem (3)), the optimal weights n expressed in problem () can
be recovered by computing 7™’s second marginal, i.e R =17 1,,. This reformulation with relaxed
marginal has been investigated in the context of the Wasserstein distance (Rabin et al., 2014; [Flamary
et al.|[2016) and for relaxations of the GW problem in (Schmitzer & Schnorr, 2013)) but was never
investigated for the GW distance itself. To the best of our knowledge, the most similar related work
is the Unbalanced GW [Séjourné et al.| (2020); [Liu et al.| (2020); |Chapel et al.| (2019)) where one could
recover stGW with different weighting over the marginal relaxations (co on the first marginal and 0
on the second) but this specific case was not discussed nor studied in these works.

A first interesting property of stGW is that since h is optimized in the the simplex X,,, its optimal
value k2" can be sparse. As a consequence, parts of the graph G can be omitted in the comparison,
similarly to a partial matching. This behavior is illustrated in the Figure[I] where two graphs with
uniform distributions and structures C' and C forming respectively 2 and 3 clusters are matched. The
GW matching (left) between both graphs forces nodes of different clusters from C' to be transported
on one of the three clusters of C, leading to a high GW cost where clusters are not preserved.
Whereas stGW can find a reasonable approximation of the structure of the left graph either though
transporting on only two clusters (middle) or finding a structure with 3 clusters in a subgraph of the
target graph with two clusters (right). A second natural observation resulting from the dependence of
stGW s, of only one input distributions is its asymmetry, i.e. sSscGW2(C, h, C) # stGW4(C, h, C).
Interestingly, stGW, shares similar properties than GW as described in the next proposition:

Proposition 1 Let C € R"*" and C € R™*™ be distance matrices and h € %, with supp(h) =
[n]. Then stGWo(C, h,C) = 0 iff there exists h € %, with card(supp(h)) = n and a bijection
o : supp(h) — [n] such that:

Vi € supp(h), h(i) = h(o(i)) (4)

And: Vk, 1 € supp(h)?, Cri = Cy(k)o()- ®)

In other words stGWy(C, h, C) vanishes iff there exists a reweighing h e 3. of the nodes of the
second graph which cancels the GW distance. When it is the case, the induced graphs (C, h) and

(C, E*) are isomorphic (Mémoli, [2011; [Sturm| 2012)). We refer the reader interested in the proofs of
the equivalence and the Proposition [I]to the annex (section[7.2).

3.2 OPTIMIZATION AND ALGORITHMS

In this section we discuss the computational aspects of the srGW divergence and propose an algorithm
to solve the related optimization problem (3). We also discuss variations resulting from entropic
or/and sparse regularization of the initial quadratic problem.

Solving for the semi-relaxed GW. The op- Algorithm 1 CG solver for sstGW
timization problem related to the calculation
of ssGW2(C, h, C) is a non-convex quadratic ~ 1* repe‘?tt) .

program similar to the one of GW with the im- 2 G'") + Compute gradient w.r.t T of 2).
portant difference that the linear constraints are ~ 3* X )« minx )1{,%h<X ,G")

independent. 4. T+ (1_7;)T(t)+7*X(t) with~* €

Consequently, we propose to solve (3) with [0, 1] from exact-line search.
a Conditional Gradient (CG) algorithm (Jaggi, 5: until convergence.

2013) that can benefit from those independent
constraints and is known to converge to local
stationary point on non-convex problems (Lacoste-Julien, 2016). This algorithm, provided in Alg.
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consists in solving at each iteration (¢) a linearization (X, G) of the problem (3) where G is the
gradient of the objective in (3). The solution of the linearized problem provides a descent direction
X™* — T, and a linesearch whose optimal step can be found in closed form to update the current solu-
tion T (Vayer et al., 2019). While both srtGW and GW CG require at each iteration the computation
of a gradient with complexity O(n?m + m?n), the main source of efficiency of our algorithm comes
from the computation of the descent directions. In the GW case, one needs to solve an exact linear
OT problem, while in our case, one just needs to solve several independent linear problems under a
simplex constraint. This simply amounts to finding the minimum on the rows of G as discussed in
(Flamary et al., 2016, Equation (8)), within O(mn) operations, with potential parallelization with
GPUs. Performance gains are illustrated in the experimental section.

Entropic regularization. Recent OT applications have shown the interest of adding an entropic
regularization to the exact problem ,e.g. (Cuturi, 2013} Peyré et al.l|2016)). Entropic regularization
makes the optimization problem smooth and more robust while densifying the optimal transport plan.
Similar to (Peyré et al.| 2016} Xu et al.,2019bj} Xie et al.|[2020), we can use a mirror-descent scheme
w.r.t. the Kullback-Leibler divergence (KL) to solve entropic regularized stGW. The problem boils
down to find, at iteration ¢ the coupling T+ «— argming; _p.p5o(T, GM) + e KL(T|T®)
where ¢ > 0, G®) denotes the gradient of the GW loss at iteration ¢t and KL(T|T®) is the KL
divergence. These updates can be solved using the following closed-form Bregman Projections :

T argmin e KL(T|K®Y) <  TUD  diag <h> K®, (6)
T1,,=h;T>0 K®1,,
where K() = exp (G) — elog(T™")) (exp and log are applied componentwise). Unlike existing
solvers for GW based on entropic regularization (Peyré et al., 2016} |Solomon et al., 2016) that rely
on a Sinkhorn’s matrix scaling algorithm on K ) ar each iteration, our problem requires only one
(left) scaling of K (*) per iteration. We denote by scGW . (C, h, C) the result of this procedure.

Sparsity promoting regularization. As illustrated in Figure I} srGW naturally leads to sparse
solutions in h. To compress even more the localization over a few nodes of C, we can promote the
sparsity of h through a penalization Q(T) = i |h;|*/2 which defines a concave function in the
positive orthant R . We adapt the Majorisation-Minimisation (MM) of |Courty et al.|(2014)) that was
introduced to solve classical OT with a similar regularizer. The resulting algorithm, which relies
on a local linearization of Q(T'(*)), consists in iteratively solving the srGW or stGW,, problems,

regularized at iteration ¢ 4+ 1 by a linear OT cost of components RY = A—;(ﬁ;t))’l/ 2. Further

1,7
detailed explanations on these algorithms can be found in section of the annex.

4 LEARNING THE TARGET STRUCTURE

A dataset of K graphs D = {(C;, hy,) }re[x] is now considered, with heterogeneous structures and
a variable number of nodes, denoted by (ng), c[K]" In the following, we introduce a novel graph
dictionary learning (DL) whose peculiarity is to learn a unigue dictionary element. Then we discuss
how this dictionary can be used to perform graph completion, i.e. reconstruct the full structure of a
graph from an observed subgraph.

4.1 A NEW GRAPH DICTIONARY LEARNING

Semi-relaxed Gromov-Wasserstein embedding. We first discuss how an observed graph can be
represented in a dictionary with a unique element (or atom) C € R™*™, assumed to be known or
designed through expert knowledge. First, one computes erW%(C’k, hy, C) using the algorithmic
solutions and regularization strategies detailed in Section From the resulting optimal coupling
T}, the optimal weights for the target graph C are recovered with h, = T} 1,,, . The graph (C, h})
can be seen as a projection of (C, hy) in the GW sense and the distribution on the nodes EZ is an
embedding of the graph (C}, hy). Representing a graph as a vector of weights EZ on a graph C is a
new and elegant way to define a graph subspace that is orthogonal to other DL methods that either rely
on GW barycenters (Xul 2020) or linear representations (Vincent-Cuaz et al.,[2021). One particularly
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Algorithm 2 Stochastic update of the dictionary atom C
1: Sample a minibatch of graphs B := {(C®), h(i))}k
2: Get transports {T} }rep from sscGW(Cy, hy, C) with Alg

3: Compute the gradient V& of srGW with fixed {77 } .5 and perform a projected gradient step
on symmetric non-negative matrices S:

C «+ Projs(C — 77%5) (7

interesting aspect of this modeling is that when HZ is sparse, only the subpart (or subgraph) of C
corresponding to the nodes with non-zero weights in EZ is used.

srGW Dictionary Learning and online algorithm. Given a dataset of graphs D =
{(C%, hi) }keK)> We propose to learn the graph dictionary C' € R™*™ from the observed data, by
optimizing:

L ) —
éer]gglx R ,; stGW35(Cy, hy, C). (8)
This problem is denoted as srGW Dictionary Learning. It can be seen as a stGW barycenter
problem (Peyré et al., [2016) where we look for a graph structure C' for which there exists node
weights (EZ) re[k] leading to a minimal GW error. Interestingly this DL model requires only to
solve the srGW problem to compute the embedding E; since it can be recovered from the solution
T}, of the problem.

We solve this non-convex optimization problem above with an online algorithm similar to the one
first proposed in [Mairal et al.| (2009) for vectorial data and adapted by [Vincent-Cuaz et al.| (2021)
for graph data. The core of the stochastic algorithm is depicted in Alg. The main idea is to
use batches of graphs to independently solve the embedding problems (via Alg[I]), then compute
estimates of the gradient V& with respect to C on each batch B. Finally a projected gradient on
the set S of symmetric non-negative matrices is performed to update C. In practice we use Adam
optimizer (Kingma & Bal,[2015)) in all our experiments. The complexity of this stochastic algorithm
is mostly bounded by computing the gradients, which can be done in O(nim + m?ny) (see Section
. Hence, in a factorization context i.e. maxy (ny) >> m, the overall learning procedure has a

quadratic complexity w.r.t. the maximum graphs size. Since the embedding E,: is a by-product of
computing the different srGW, we do not need an iterative solver to estimate it. Consequently, it
leads to a speed up on CPU of 2 to 3 orders of magnitude compared to our main competitors (see
Section whose DL methods, instead, require such iterative scheme.

4.2 DL-BASED MODEL FOR GRAPHS COMPLETION

The structure C' estimated on the dataset D can be used to infer/complete a new graph from the dataset
that is only partially observed. In this setting, we aim at recovering the full structure C € R™*"
while only a subset of relations between 7,55 < 1 nodes is observed, denoted as Cl,ps € Robs X Tobs
This amounts to solving:

min  stGW2 (C, h, 6) , where C = [ Cobs | ] , )
imp N imp

where only the n? — n2, _ coefficients collected into Cjy,,, are optimized (and thus imputed). We
solve the optimization problem above by a classical projected gradient descent. At each iteration we
find an optimal coupling T™* of stGW that is used to calculate the gradient of sStGW w.r.t Cpp. The
latter is obtained as the gradient of the srtGW cost function evaluated at the fixed optimal coupling T™
by using the Envelope Theorem (Bonnans & Shapiro} 2000). The projection step is here to enforce
known properties of C, such as positivity and symmetry. In practice the estimated C',,,, will have
continuous values, so one has to apply a thresholding (with value 0.5) on Cj;,,, to recover a binary
adjacency matrix. The method can be easily extended to labeled graphs by also optimizing the node
features of non-observed nodes.
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GW(C, h, 13, h) =0.235 GW(C, h, 15, h)=0274 srGW(C, h, I3) = 0.087 srGW(C, h, 14) =0.087
(ami=0.66) (ami=0.54) (@ami=1.0) (@ami=1.0)

Figure 2: GW vs stGW partitioning of G = (C, h = 1,,/n) with 3 clusters of varying proportions
toG = (I. 7 h) where h is fixed to uniform for GW (left) and estimated for for srtGW (right) for
q = 3 and ¢ = 4. Nodes of G are colored based on their cluster assignments while those of G are
interpolated based on linear interpolation of node colors of G linked to them through their OT (colored
line between nodes) if these links exist, otherwise default nodes color is black. Node sizes of both
graphs G and G depend on their respective masses h and h.

5 NUMERICAL EXPERIMENTS

This section illustrates the behavior of stGW on graph partitioning (a.k.a. nodes clustering), clustering
of graphs and graph completion. All the Python implementations in the experiments will be released
on Github. For all experiments we provide e.g. validation grids, initializations and complementary

metrics in the annex (see sections: partitioning[7.5.1}clustering(7.5.2 completion|7.5.3)

5.1 GRAPH PARTITIONING

As discussed in Section 2] it is possible to achieve graph partitioning via OT by estimating a GW
matching between the graph to partition G = (C, h) (n nodes) and a smaller graph G = (I, h),
with ¢ < n nodes. The atom I, is set as the identity matrix to enforce the emergence of densely
connected groups (i.e. communities). The distribution h estimates the proportion of nodes in each
cluster. We recall that i must be given to compute the GW distance, whereas it is estimated with

stGW. All partitioning performances are measured by Adjusted Mutual Information (AMI, |Vinh
et al., 2010).

Simulated data. In Figure 2] we illustrate the behavior of GW and srGW partitioning on a toy
graph, simulated according to SBM (Holland et al., |1983) with 3 clusters of different proportions.
We see that miss-classification occurs either when the proportions h do not fit the true ones or when
q # 3. On the other hand, clustering from stGW can simultaneously recover any cluster proportions
(since it estimates them) and can select the actual number of clusters, using the sparse properties of h.

Real-world datase!:s.. .In order to bench— Table 1: Partitioning performances on real datasets
mark the srGW partitioning on real (directed measured by AMI. We see in bold (resp. italic) the

and undirected) graphs, we consider 4 datasets  first (resp. second) best method. NA: non applicable.
(details provided in Table [] of the annex):

a Wikipedia hyperlink network (Yang & Wikipedia EU-email | Amazon | Village
N . v asym | sym | asym | sym sym sym

Leskovec, 2015); a directed graph of email stGW (ours) | 56.92 | 56.92 | 49.94 | 50.11 | 4828 | 81.84
interactions between departments of a Euro- stSpecGW | 50.74 | 63.07 | 49.08 | 50.60 | 7626 | 87.53
A . ) stGW, | 57.13 | 57.55 | 5475 | 55.05 | 5000 | 83.18

pean research institute (Yin et al., [2017); an stSpecGW, | 53.76 | 6138 | 54.27 | 50.89 | 8510 | 8431
Amazon product network (Yang & Leskovec] GWL 3867 | 35.77 | #7123 | 4639 | 3856 | 6897
. : : SpecGWL | 40.73 | 48.98 | 45.89 | 49.02 | 65.16 | 77.85

2015)); a network of interactions between in- FastGreedy | NA | 5530 | NA | 4580 | 7721 | 93.66
; i : Louvain NA | 5472 | NA | 5612 | 7630 | 93.66
dian villages (Banerjee et al, 2013). For the InfoMap | 4643 | 4643 | 54.18 | 49.10 | 94.33 | 93.66

directed graphs, we adopt the symmetrization
procedure described in |(Chowdhury & Needham|(2021). Our main competitors are the two GW
based partitioning methods proposed by Xu et al.|(2019b) and |(Chowdhury & Needham)| (2021}). The
former (GWL) relies on adjacency matrices, the latter (SpecGWL) adopts heat kernels on the graph
normalized laplacians (SpecGWL). The GW solver of [Flamary et al.| (2021) was used for these
methods. For fairness, we also consider these two representations for srGW partitioning (namely
srtGW and srSpecGW). Finally, three competing methods specialized in graph partitioning are also
considered: FastGreedy (Clauset et al.,|2004), Louvain (with validation of its resolution parameter,

!code available at https://github.com/cedricvincentcuaz/srGW,
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Table 2: Clustering performances on real datasets measured by Rand Index. In bold (resp. italic) we
highlight the first (resp. second) best method.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
MODELS | IMDB-B | IMDB-M | MUTAG PTC-MR BZR COXZ | ENZYMES | PROTEIN
STGW (ours) | 51.59(0.10) | 54.94(0.29) | 71.25(0.39) | 51.48(0.12) | 62.60(0.96) | 60.12(0.27) | 71.68(0.12) | 59.66(0.10)

stGW, | 52.44(0.46) | 56.70(0.34) | 72.31(0.51) | 51.76(0.39) | 66.75(0.38) | 62.15(0.27) | 72.51(0.10) | 60.67(0.29)
StGW, | 51.75(0.56) | 55.36(0.14) | 74.41(0.84) | 52.35(0.42) | 67.63(1.17) | 59.75(0.39) | 70.93(0.33) | 59.97(0.21)
stGW,y, | 52.23(0.83) | 55.90(0.68) | 74.69(0.73) | 52.53(0.47) | 67.81(0.94) | 60.53(0.36) | 71.31(0.52) | 60.81(0.43)
GDL 51.34(0.27) | 55.14(0.35) | 70.28(0.25) | 51.49(0.31) | 62.84(1.60) | 58.39(0.52) | 69.83(0.33) | 60.19(0.28)
GDL,, | 51.69(0.56) | 55.43(0.22) | 70.92(0.11) | 51.820.47) | 66.30(1.71) | 59.61(0.74) | 71.03(0.36) | 60.46(0.65)
GWEr | 51.02(0.30) | 55.09(0.46) | 69.07(1.02) | 51.47(0.59) | 52.45(2.41) | 56.91(0.46) | 72.09(0.21) | 59.97(0.11)
GWE-f | 50.43(0.29) | 54.18(0.27) | 59.13(1.87) | 50.82(0.81) | 51.75(2.84) | 52.84(0.53) | 71.58(0.31) | 58.92(0.41)
GW-k 50.31(0.03) | 53.67(0.07) | 57.62(1.45) | 50.42(0.33) | 56.77(0.53) | 52.45(0.13) | 66.35(1.37) | 50.08(0.01)

Blondel et al.,|2008) and Infomap (Rosvall & Bergstrom), 2008). The graph partitioning results are
reported in Table[l] Our method stGW always outperforms the GW based approaches and on this
application the entropic regularization seems to improve the performance. We want to stress that
our general purpose divergence srGW outperforms methods that have been specifically designed for
nodes clustering tasks on 3 out of 6 datasets.

5.2 CLUSTERING OF GRAPHS DATASETS

Datasets and methods. We now show how the embeddings (h;) ke[x] provided by the stGW
Dictionary Learning can be particularly useful for the task of graphs clustering. We considered here
three types of datasets (details provided in Table[9]of the annex): i) social networks from IMDB-B and
IMDB-M (Yanardag & Vishwanathan, |2015)); ii) graphs with discrete features representing chemical
compounds from MUTAG (Debnath et al., |{1991) and cuneiform signs from PTC-MR (Krichene
et al.| 2015); iii) graphs with continuous features, namely BZR, COX2 (Sutherland et al., 2003)) and
PROTEINS, ENZYMES (Borgwardt & Kriegel, 2005). Our main competitors are the following
OT-based SOTA models: i) GDL (Vincent-Cuaz et al., |2021) and its regularized version, namely
GDL,; ii)) GWF (Xul [2020), with both fixed (GWF-f) and random (GWF-r, default setting for the
method) atom size; iii) GW kmeans (GW-k), a k-means equipped with GW distances and barycenters
(Peyré et al., [2016)).

Experimental settings. For all experiments we follow the benchmark proposed in [Vincent-Cuaz
et al. (2021). The clustering performances are measured by means of Rand Index (RI, Rand,|1971).
The standard Euclidean distance is used to implement k-means over srtGW and GWFs embeddings,
but we use for GDL the dedicated Mahalanobis distance as described in [Vincent-Cuaz et al.| (2021)).
GW-k does not use any embedding since it directly computes (a GW) k-means over the input graphs.
For each parameter configuration (number of atoms, number of nodes and regularization parameter,
detailed in section we run each experiment five times, independently. The mean RI over the
five runs is computed and the dictionary configuration leading to the highest RI for each method is
reported.

Results and discussion. Clustering performances and running times are reported in Tables [2] and 3]
respectively. All variants of ssGW DL are at least comparable with the SOTA GW based methods.
Remarkably, the sparsity promoting variants always outperform other methods. Notably Table 3]
shows embedding computation times of the order of the millisecond for srGW, two order of magnitude
faster than the competitors.

5.3 GRAPHS COMPLETION

Finally, we present graph completion results on the real world datasets IMDB-B and MUTAG, using
the approach proposed in Since this completion problem has never been investigated by existing
GW graph methods, we adapted the learning procedure used for stGW to GDL (Vincent-Cuaz et al.,
2021).

Experimental setting. Since the datasets do not explicitly contain graphs with missing nodes, we
proceed as follow: first we split the dataset into a training dataset (Dy,.q;, ) used to learn the dictionary
and a test dataset (Dys:) reserved for the completion tasks. For each graph of C' € Dy, we
created incomplete graphs C,s by independently removing 10% and 20% of their nodes, uniformly
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Table 3: Embedding computation times (in ms) averaged over whole datasets at a convergence
precision of 1075 on learned dictionaries. (—) (resp. (+)) denotes the fastest (resp. slowest)
runtimes regarding DL configurations. We report here runtimes using F'GW,, 5 for datasets with
nodes attributes. Measures taken on Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES [ PROTEIN
O HTOH]OH[OH ][O [GH]O G666
stGW (ours) | 1.51 | 2.62 | 0.83 | 1.59 | 0.86 | 1.83 | 0.40 | 1.01 | 0.43 | 0.79 | 0.51 | 0.90 | 0.62 | 0.95 | 0.46 | 0.60
stGW 195 | 6.11 | 1.06 | 553 | 3.68 | 598 | 1.65 | 3.38 | 0.89 | 2.88 | 0.97 | 460 | 1.35 | 473 | 1.57 | 2.96
GWF-f 219 | 651 | 103 | 373 | 236 | 495 | 191 | 477 | 181 | 916 | 129 | 641 93 | 627 | 78 | 322

completion accuracy (%)

GDL 108 | 236 | 43.8 | 152 | 102 | 514 | 100 509 | 73.2 | 532 | 48.7 | 347 38 301 29 151
IMDB-B 10% imputed nodes 95.0 IMDB-B 20% imputed nodes MUTAG 10% imputed nodes MUTAG 10% imputed nodes
981 — srGW 94'57 — srGw 596‘ — srFGw — srFGwW
97 A SrGW, ! SrGW, C g5 SrFGW, w SrFGW,
961 — GDL 94.0 — GDL 3 — GDL = 0.02 T
— GDLy | 93.5 —— GDL, T g4 —— GDL, s =<3GD!;
95 S 2
93.0 1 = =
94 1 2 93 £ 0.014
92.5 1 53 IS5
E o
931 92.01 8 921
T T T T T T T T T T T T T T T 0.00 T T T T
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
test dataset proportion(%) test dataset proportion(%) test dataset proportion (%) test dataset proportion (%)

Figure 3: Completion performances for IMDB-B (left) and MUTAG (right) datasets, measured by
means of accuracy for structures and Mean Squared Error for node features, respectively averaged
over all imputed graphs.

at random. The partially observed graphs are then reconstructed using the procedure described in
Section[4.2) and the average performance of each method is computed for 5 different dataset splits.

Results. The graph completion results are reported in Figure 3] Our srGW dictionary learning
outperforms GDL consistently, when enough data is available to learn the atoms. When the proportion
of train/test data varies, we can see that the linear GDL model that maintains the marginal constraints
tends to be less sensitive to the scarcity of data. This can come form the fact that srGW is more
flexible thanks to the optimization of h but can slightly overfit when few data is available. Sparsity
promoting regularization can clearly compensate this overfitting and systematically leads to the best
completion performances (high accuracy, low Means Square Error).

6 CONCLUSION

We introduce a new transport based divergence between structured data by relaxing the mass constraint
on the second distribution of the Gromov-Wasserstein problem. After designing efficient solvers to
estimate this divergence, called the semi-relaxed Gromov-Wasserstein (stGW), we suggest to learn
a unique structure to describe a dataset of graphs in the stGW sense. This novel modeling can be
seen as a Dictionary Learning approach where graphs are embedded as a subgraph of a single atom.
Numerical experiments highlight the interest of our methods for graph partitioning, and unsupervised
representation learning whose evaluation is conducted through clustering and completion of graphs.

We believe that this new divergence will unlock the potential of GW for graphs with unbalanced
proportions of nodes. The associated fast numerical solvers allow to handle large size graph datasets,
which was not possible with current GW solvers. One interesting future research direction includes
an analysis of stGW to perform parameters estimation of stochastic block models. Also, as relaxing
the second marginal constraint in the original optimization problem gives more degrees of freedom
to the underlying problem, one can expect dedicated regularization schemes, over e.g. the level of
sparsity of h, to address a variety of application needs. Finally, our method can be seen as a special
relaxation of the subgraph isomorphism problem. It remains to be understood theoretically in which
sense this relaxation holds.
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7 APPENDIX

7.1 NOTATIONS & DEFINITIONS

In this section we recall the notations used in the rest of the appendix.

Notations. For a vector h € R™ we define its support as supp(h) = {i € [m]|h; # 0}. Note that
if h € ¥,,, we have supp(h) = {i € [m]|h; > 0}. The cardinal of a discrete set A is denoted |A|.

For a 4-D tensor L = (L;j;1)i;r We denote ® the tensor-matrix multiplication such that for a given

matrix M, L ® M is the matrix with entries (D, Lq;jk.lel)ij.

14
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Constraints on couplings. We introduce U (h, h) the set of all admissible couplings between h
and h, i.e the set B B
U(h,h) :={T e R"}*™T1,, =h,T'1, = h}.

We also introduce for any h € 33, and m € IN*, U (h, m) the set of all admissible couplings between
h and any histogram of ¥,,, i.e the set

U(h,m) :={T € R}*™"|T1,, = h},
such that VT' € U(h,m), the second marginal k(= T'"1,,) belongs to %,,,.

Gromov-Wasserstein distance. For any ¢ > 1, the Gromov-Wasserstein distance of order ¢
between (C, h) and (C, h) is defined by:

GW!(C,h,C,h)= min_ L,(C,C,T)
TeU(hR)

where o -
L (C,C,T)= Z Z |Cij — Cr|"Tix T
i,5€[n]? k,l€[m]?
This definition can be equivalently expressed with a tensor-matrix multiplication as

GW}(C, h,C,h)= min_ (L,(C,C)®T,T) (10)
TcU(h,h)

where L,(C, C) is the 4-D tensor such that L,(C,C) = ((Cy; — ékl)q)ijkl'

Semi-relaxed Gromov-Wasserstein divergence. The semi-relaxed Gromov-Wasserstein diver-
gence of order ¢ satisfies the following equation:

q C) — ; C
stGWI(C, h,C) Tegl(l}&n) L,(C,C,T)

or equivalently

q ro : Yol
stGW{(C, h,C) Terz/gl(lam)<Lq(C,C)®T,T>. (11)

Fused Gromov-Wasserstein distance. For attributed graphs i.e graphs with nodes features, we
use the Fused Gromov-Wasserstein distance (Vayer et al.l 2019). Consider two attributed graphs
G=(C,F,h)and G = (C,F,h) where F = (F;);c[,) € R"*? and F = (F;);e[m) € R™*?
are their respective matrix of features whose rows are denoted by { F; };c[,) and {F';};c[- Given

a trade-off parameter between structures and features denoted o € [0; 1], the FGW7 , distance is
defined as the result of the following optimization problem

min (1 -« F; — F||9T;; + Cij — Cr| T T; 12)
TEZ/{(h,E)( )%:H JHq J %‘ J kl| k451 (

which is equivalent to

min_ (1 — a)My(F,F)+aL,(C,C)®T,T) (13)
Teu(h,h)

where M, (F, F) is a matrix with entries M, (F, F);; = ||F; — Fj]|4.
Semi-relaxed Gromov-Wasserstein distance. Then in a similar way than for the Gromov-

Wasserstein distance, the semi-relaxed Fused Gromov-Wasserstein of order q is defined for any
trade-off parameter « € [0; 1] as the result of the following optimization problem

STEGWL(C.F.h,CF) = min ((1—a)M,(F,F)+aL,(C.C)eT.T) (4

One can see these problems as regularized versions of the quadratic problem of GW/srGW where a
linear term in 7" takes into account a similarity measure between features of attributed graphs.
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7.2 SEMI-RELAXED (FUSED) GROMOV-WASSERSTEIN PROPERTIES
7.2.1 EQUIVALENCE OF THE OPTIMIZATION PROBLEMS

Let us begin with the proof of the equivalence between both optimization problems used to define our
semi-relaxed Gromov-Wasserstein divergence. Consider two observed graph (C, h) and (C, h) of n
and m nodes. Our first optimization problem reads as

h" € argmin GWY(C, h, C, h). (15)
RhES,,
The second optimization problem coming from the relaxation of the second marginal constraints

(T'"1,, = h) of admissible couplings T reads as

' Cii — Cril?Tin T 16
TGIZ/Itl(lfIlez)%' j k| " Tin T (16)

Note that in the following proofs we always assume that graphs correspond to finite discrete measures
and that their geometry is well-defined in the sense that entries of C' and C' are always finite. This
implies that graphs define compact spaces ensuring existence of optimal solutions for both problems.

Lemma 1 Problems([I3]and[I6|are equivalent.

Proof. Consider a solution of problem denoted (E;, T1) note that the definition implies that
T ¢ U (mﬁ;). Another observation is that given E;, the transport plan T3 also belongs to
arg Mingcy ., 71y £q(C, C, T) hence is an optimal solution of GW,(C, h, C, hy).

Now consider a solution of problemdenoted T, with second marginal E;. By definition the couple
(R, Ts) is suboptimal for problem ie
L,(C,C,Ty) < Ly(C,C,Ty). (17)
And the symmetric also holds as T} is a suboptimal admissible coupling for problem[I6]i.e ,
L,(C,C,Ty) < L,(C,C,Ty). (18)
These inequalities imply that £,(C, C,T1) = L,(C, C,T). Therefore we necessarily have T} €
arg Mingcy(p, my L£4(C, C, T), and (hy, Ty) € arg ming s, peyn, 7 La(C, C, T). Hence the

equality, GW,(C, h,C, h}) = GW,(C, h, C, h), holds true. Therefore by double inclusion we
have
argmin £,(C,C,T) = argmin  L,(C,C,T). (19)
Teu(h,m) heS,,, TeU(h,h)

Which is enough to prove that both problems are equivalent.

The equivalence between analog problems for the semi-relaxed Fused Gromov-Wasserstein diver-
gence can be proved in the exact same way.

7.2.2 ZERO CONDITIONS OF (FUSED) SRGW

We prove the following result:

Proposition 1 Let C' € R"*" and C € R™*m be distance matrices and h € X, with supp(h) =
[n]. Then stGW,(C, h,C) = 0 iff there exists h € X, with card(supp(h)) = n and a bijection
o : supp(h) — [n] such that:

Vi € supp(h), h(i) = h(a(i)) (20)
and:

Vk, 1 € supp(h)?, Cri = Cogiyoq)- 2D
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Algorithm 3 CG solver for srtGW, optionally with a linear regularization term D € R"*™. Note that
D = 0 for unregularized version of srGW of equation

1: repeat
2:  G® « Compute gradient w.r.t T of (24) satisfying equationapplied inT®.
3:  Get direction X *) problem: Solve independent subproblems on rows of G(*) thanks to the
equivalence stated here
X® « argmin (X,G" + D)

XeU(h,m) 22)

X0 = (himl(-t))ieﬂn}] + argmin(x;, th) + D).
T €Xm

4:  Get optimal step size * for the descent direction X ) — T'®): for any € [0, 1] let us denote
ZM () =T® 4 4(X® —T®), then v* is defined as

argmin(L(C,C) ® Z(t)(’)’)a Z'(y)) + (D, Z(t)(”Y» (23)
v€[0,1]

factored as a second-order polynomial function of the form a~y? + by + c, by using linearity
of the tensor-multiplication ® and of the scalar product. Then the closed form is obtained by
simple analysis of coefficients a and b as in (Vayer et al.,2019).

5.0 T  ZO (%) = (1 —)TO 44+ X0,

6: until convergence decided based on relative variation of the loss between step ¢ and ¢ + 1.

Proof. The reasoning involved in this proof mostly relates on the definition of stGW as
ming .y, GWI(C,h,C,h).

(=) Assume that stGW,(C, h,C) = 0. Then we have GW,(C, h,C,h) = 0 for some h. By
virtue to Gromov-Wasserstein properties (Sturm, 2012, Lemma 1.10) there exists a bijection o
between the support of the distributions which is distance preserving. In other words, there exists
o : supp(h) — supp(h) = [n] such that h(j) = h(c(j)) for all j € supp(h) and Ci = Cy1)o()
for all k,1 € supp(h)2.

(«=) Consider T' € U(h, h) and the induced bijection o satisfying equations|20|and 21} It is trivial to
verify that £(C, C, T) = 0 implying that GW,(C, h, C, h) = 0. Moreover as T' € U(h, m) since
U(h,h) C U(h,m) and the same cost is involved in both transport problems, we have:

0 <stGW,(C,h,C) < GW,(C,h,C,h") =0 = ssGW,(C,h,C) =0.

7.3 ALGORITHMIC DETAILS

We provide in this section the algorithmic details completing our explanations given in the main paper
(see subsection [3.2). Note that for all numerical experiments we considered ¢ = 2, so the following
algorithms are specific to this scenario.

7.3.1 CONDITIONAL GRADIENT SOLVER FOR SRGW AND SRFGW

The optimization problem related to computing srGW3(C, h, C) can be reformulated as

. =2 —

_min vee(T)T (C ®x 1,1] — 2C ©x C) vee(T). (24)
>0

where @ denotes the Kronecker product of two matrices, vec the column-stacking operator and

the power operation on C' is applied element-wise. For simplicity let us use the other equivalent

formulation using the 4-D tensor notation i.e

min _ (L(C,C)®T,T) (25)
TeU(h,h)
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where L(C,C) = ((Cy; — 6kl)2)ij ;- This is a non-convex optimization problem with the same
objective and gradient G than GW which can be expressed in the general case as

G=L(CC)oT+L(CT,.C)aT. (26)
Note that if C and C are symmetric matrices the gradient can be factored to
G=2L(C,C)®T. (27)

We propose to use a Conditional Gradient (CG) algorithm |Jaggi (2013)) to solve this problem, provided
in Alg.

For the sake of conciseness, we also introduce here a linear regularization term of the form (D, T')
which will be used while enforcing sparsity promoting regularization on stGW or for adapting this
algorithm to scFGW where D results from distances between features (up to proper scaling with the
trade-off parameter o).

Then in this general case, our CG algorithm consists in solving at each iteration ¢ the following
linearization of the problem (24)

min (X, G"Y + D) (28)

where G(*) is the gradient at T(*) of (24). The optimization problem above can be very efficiently
solved as discussed in (Flamary et al.| 2016, Equation (8)). Indeed the problem above can clearly
be reformulated as n independent linear problems under simplex constraints (each row of X can be
solved independently) of the form

min  x'g, (29)

T 1,,=h,,z>0

where g, is the row r of G. Optimizing a linear function over the simplex of dimensionality n can be
done in O(m) because it consists in finding the smallest component i* = arg min g, in the linear
cost, the solution being a scaled dirac vector h,.d;« where all the mass is positioned on component ¢*.
The solution of the linearized problem provides a descent direction X () — T®) and a line-search is
performed to get the optimal step size as described in equation[23] Note that the gradients at time step
T and T**+1 have a simple linear relation, which we used in our implementation for conciseness
but it is rather equivalent to the more classical implementation literally expressing terms involved in
the line-search part.

Extension to s'cFGW. For two attributed graphs G = (C, F, h) and (C, F, h), of n and m nodes
respectively, the semi-relaxed Fused Gromov-Wasserstein divergence of order 2 from G onto G is
defined for any « € [0, 1] as the result of the following optimization problem

stFGW2(C, F,h,C,F) = . 51(1’13 )<(1 —a)M(F,F)+aL(C,C)®T,T) (30)

€ ,m
where M (F,E) denotes the matrix of euclidean distances between features of F' and F, i.e.
M;; = || F; — F;||3. As aside note, one efficient way to compute this matrix in practice is by using
the following factorization M(F, F) = (FOF)1,41, +1,1) (FOF) — 9FF ', where ® denotes
the Hadamard product. The problem in equation[I4]is a nonconvex quadratic problem which gradient

w.r.t. T reads as : o
aG+ (1 —a)M(F,F) 31

where G corresponds to the gradient of the GW cost satisfying equation [26] Therefore we propose to
tackle this problem by a straight-forward adaptation of the CG al@rithm detailed above by adding
the multiplier « to the GW cost and setting D = (1 — o) M (F, F).

7.3.2 ALGORITHMIC DETAILS AND GUARANTIES ON ENTROPIC SRGW.

Recent OT applications have shown the interest of adding an entropic regularization to the exact
problem @ Cuturi| (2013); [Peyré et al|(2016). We detail here how to design a mirror-descent
scheme w.r.t. the Kullback-Leibler divergence (KL) to solve (24)), in the same vein than [Peyré et al.
(2016); Xu et al.|(2019b); Xie et al.| (2020).
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Algorithm 4 MD solver for entropic srGW, optionally with a linear regularization term D € R™"*".
Note that D = 0 for unregularized version of ssGW of equation [25]

1: repeat

2 pG(t) + Compute gradient w.r.t T of (24) satisfying equationapplied inT®.

3. Compute the matrix K (*)(e) following equations (36) and (38).

4: Get T*Y) with the scaling of K (e) following equation (37).

5: until convergence decided based on relative variation of the loss between step ¢ and ¢ + 1.

Algorithmic details. Indeed in order to solve the stGW problem stated in[I6] we can use a mirror-
descent scheme w.r.. the KL geometry. At iteration ¢, the update of the current transport plan
TO c Y (h, m) results from the following optimization problem

T o argmin (G(TO), T) + cKL(T|T) (32)
TeU(h,m)

where G satisﬁesand KL(T|T®) = > i T log(%) T+ Tf?. Let us denote the entropy
i

ofany T € RY™ by H(T) = — >, T3 (log Tj; — 1), then the following relation can be proven
M
——)) < eKL(T|M) = (—elog M, T) — e H(T) (33)
€
and leads to this equivalent formulation of

T  argmin (G(TW) — elogT®, T) — e H(T). (34)
TeU(h,m)

(M,T) — eH(T) = e KL(T| exp(

Denoting M) (¢) = G(T®) — elog T™, overall we end up with the following iterations

T « argmin (MY (e), T) — e H(T). (35)
TeU(h,m)

Which is equivalent thanks to the relation stated above to

T « argmin e KL(K® (e)|T) where K®(e) := exp{—M®(e)/e}.  (36)
TeU(h,m)

Following the seminal work of (Benamou et al., 2015), the optimal T*+1) is given by a simple
scaling of the matrix K (*)(¢) reading as

T+ = diag ( K®(e). (37)

h
K®(e)1,,
Note that an analog scheme is achievable while penalizing the stGW problem with a linear term of
the form (D, T). Which would simply result in a modification of the matrix M (®) (¢) such that

MO (e) = G(TY) + D — elogT®. (38)
This more general setting is summarized in algorithm 4}
Similarly than for the CG algorithm [3] it is straight-forward to adapt the MD algorithm [] to the

semi-relaxed Fused Gromov-Wasserstein using FGW cost expressed in

7.3.3 SPARSITY PROMOTING REGULARIZATION OF SRGW

In order to promote sparsity of the estimated target distribution while matching (C, h) to the structure
C using stGW, we suggest to use Q(T') = |h;|'/? which defines a concave function in the
positive orthant R ;. This results in the following optimization problem:

i L(C,C)®T,T)+ \T 39
pamin (L(C.C) @ T.T) + X,0T) (39)

with Ay € R an hyperparameter. As mentioned in the main paper, equation can be tackled with a
Majorisation-Minimisation (MM) algorithm. MM consists in iteratively minimising an upper bound
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Algorithm 5 MM solver for stGW, and stGW .

: Set RO = 0.
repeat

DN —

3:  Get optimal transport T*) with second marginal E(t)

solver [t (stGW.¢) with D = R().

Compute R(*+1) = %(Egt)) i_jl/ ? the new local linearization of Q(T®).
5: until convergence.

from CG solver [3{ (stGW ) or MD

&

Algorithm 6 Stochastic update of the atom C
1: Sample a minibatch of graphs B := {(C*), h(i))}k
2: Get transports {T7} }rep from scGW(Cy, hy, C) with Alg

3: Compute the gradient V& of stGW with fixed {7} } .es and perform a projected gradient step
on symmetric non-negative matrices S:

C « Projs(C — nVg) (41)

of the objective function which is tight at the current iterate (Hunter & Langel [2004). With this
procedure, the objective function is guaranteed to decrease at every iteration. In our case, we only

need to majorize the penalty term €(T') to obtain a tractable function. Denoting Y =TTy,
the estimate at iteration ¢, one can simply apply the tangent inequality

— — 1 o
S VR <SS VR + (R RN, (40)
j j 23\ h;

. . o . . . o —(t o
Using this inequality is equivalent to linearize the regularization term at h( ) whose contribution

can be absorbed into the inner product as (L(C,C) @ T + R"), T') where R(") = %(Egt))flm.

,
The overall optimization procedure is summarized in[5] Note that the same procedure is used for
promoting sparsity of stFGW using the adaptation of our CG solver 3| and MD solver [ to this
scenario.

7.4 LEARNING THE TARGET STRUCTURE

We detail in the following the algorithms for the stGW Dictionary Learning and its application to
graphs completion.

7.4.1 SRGW DICTIONARY LEARNING.

We propose to learn the graph atom C' € R™*™ from the observed data D = {(C}, hy) } (k). by
optimizing

K
1 _
min  — Y stGW2(Cy, hy, C), 42
6€R'm><'m K k; 2( k k ) ( )

This is a nonconvex problem that we propose to tackle thanks to a stochastic gradient algorithm
summarized in@ At each iteration it consists in sampling a batch of graphs B = {(Cy, hy.) }re[5]
from the dataset and to embed each graph where h;, = TkT 1,, by solving independent stGW problems

for the current state of the dictionary. Then we compute the estimate of the gradient over C reading
as

~ 2 — = =T
Vel =% > (C © hyhy, — T,ICka) . 43)
ke[B]
Note that only the entries (4, j) of C such that i and j belongs to Uy, supp(hy) can have a non-null

gradient. Finally, depending on the input structures we consider, we apply a projection on an adequate
set S, for instance if input structures are adjacency matrices we consider S as the set of non-negative
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Algorithm 7 Algorithms for graph completion using DL from stGW or GDL

1: Initialize randomly the entries Cj,y,,, by iid sampling from A/(0.5,0.01) (In a symmetric manner
if Cpps is symmetric).
2: repeat
3:  Compute the optimal representations G of the (c ® h) onto the dictionary and optimal
transport T between (C®) | h) and G®):
(stGW) : GO = (C, Y =TWT1,) where T® « ssGW(C®, h,T)

LA _ WE T ) () , ®) ol
(GDL) : G (Y wC,, k) where (w®,TM) « nin GW(CW,h, Y w.Cs, h)
s€[s] s€[s]
(46)
4:  Get C"*1) from a projected gradient step w.r.z. the GW distance between (C'*), h) and G*)
with the optimal coupling T'®).
5. until convergence.

symmetric matrices (iterates can preserve symmetry but not necessarily non-negativity depending on
the chosen learning rate).

Extension to attributed graphs. The stochastic algorithm described above can be adapted to a
dataset of attributed graph D = {(C}, Fi;, hi,) }re[x] with nodes features in R?, by learning an

attributed graph atom (C, F). The optimization problem would now read as

1 .
_ min — Y siFGW3 ,(Cy, Fi, by, C, F) (44)
CeRﬂlXT”,FGRT”Xd K ke[[Kﬂ ’

for any « € [0, 1]. The stochastic algorithm@is then adapted by first computing embeddings based
on stFGW instead of stGW. Then simultaneously updating C following (@4)) up to the factor « and
F thanks to the following equation

V() = % > (diag(hi)F — T, Fy) . (45)

ke[B]
7.4.2 DL-BASED MODEL FOR GRAPHS COMPLETION

The estimated structure C, learned on the dataset D can be used to infer/complete a new graph form
the dataset being only partially observed. Let us say that we want to recover the structure C' € R™*"
but we only observed the relations between 7,5 < n nodes denoted as Cps € R™obs XTobs | We
propose to solve the following optimization problems to recover the full matrix C' while modeling

graphs with our srtGW Dictionary Learning
Cos | = |, (47)
s Cimp

Graph completion witlLGDL For the linear dictionary GPL (Vincent-Cuaz et al., 2021)) with
several atoms denoted {C'; },¢c[s] sharing the same weights h we adapted our formulation to their
model:

min erW% (C~', h,é) , where C =

imp

. . 2 -
gl,lnri uI)Iél%l GWs5 | C,h, ez[[;g]] wsCys, h (48)

The matrix C has only the n? — n?,_ coefficients collected into Cj,;, are optimized (and thus
imputed). This way Cj,,,, expresses the connections between the imputed nodes, and between these
nodes and the observed ones in C,;s. We tackle the non-convex problems above following the
procedure described in Algorithm[7}

It consists in an alternating scheme where at each iteration ¢, we embed the current estimated graph
C® on the dictionary depending on the chosen model (see (#6)). Let us denote G*) = (C') A1)
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this representation which respectively reads for stcGW as G = (C, E(t)) and for GDL as G(*) =
>, e[s] wgt)ég , h). Note that from this embedding step we also get the optimal transport ') from

the GW distance between (C(*), h) and G®). Then we can update the imputed part C'i(fyzp of C")
while keeping fixed Cl,;s thanks to a projected gradient step with gradient w.r.t. C reading as

2 (C(t) ©hhT - T<t>é<t>T<t>T) (49)

7.5 DETAILS ON THE NUMERICAL EXPERIMENTS.

7.5.1 GRAPH PARTITIONING

Table 4: Partitioning benchmark: Datasets statistics.

Datasets | #nodes | # communities | connectivity rate (%)

Wikipedia 1998 15 0.09

EU-email 1005 42 3.25
Amazon 1501 12 0.41
Village 1991 12 0.42

Table 5: Partitioning performances on real datasets measured by AMI. Comparison between stGW
and Kmeans whose hard assignments are used to initialize stGW.

Wikipedia EU-email Amazon | Village
asym | sym | asym | sym sym sym

stGW (ours) | 56.92 | 56.92 | 49.94 | 50.11 4828 81.84
stGW, 57.13 | 57.55 | 54.75 | 55.05 | 50.00 83.18
Kmeans (adj) | 29.40 | 29.40 | 36.59 | 34.35 | 34.36 60.83

Detailed partitioning benchmark. We detail here the benchmark between srGW and state-of-
the-art methods for graph partitioning on real (directed and undirected) graphs. We replicated
the benchmark from (Chowdhury & Needham) 2021)) using the 4 datasets whose preprocessing is
detailed in their paper and resulting statistics are provided in Table [d] We considered the two GW
based partitioning methods proposed by (Xu et al.| 2019a) (GWL) and (Chowdhury & Needham),
2021) (SpecGWL). We benchmarked our methods denoted stGW and srSpecGW using respectively
the adjacency and heat kernel on normalized Laplacian matrices as inputs. All these OT based
methods depend on hyperparameters which can be tuned in an unsupervised way (i.e. without
knowing the ground truth partition) based on modularity maximization (Chowdhury & Needham,
2021)). Following their numerical experiments, we considered as input distribution h for the observed

graph the parameterized power-law transformations of the form h; = Z’f ipi where p; = (deg(i) +

a)®, with deg(i) the i-th node degree and real parameters @ € R and b € [0,1]. If the graph
has no isolated nodes we chose ¢« = 0 and a = 1 otherwise. b is validated within these 10
values {0,0.0001, 0.005, ...,0.1,0.5, 1} which progressively transform the input distribution from
the uniform to the normalized degree ones. An ablation study of this parameter is reported in Table[6]
The heat parameter for SpecGWL and srSpecGW is tuned for each dataset within the range [1, 100]
by recursively splitting this range into 5 values, find the parameter leading to maximum modularity,
and repeat the same process on the induced new interval with this best parameter as center. This
process is stopped based on the relative variation of maximum modularity between two successive
iterates of precision 1073, A similar scheme can be used to fine-tune the entropic parameter.

On our algorithm initialization. (Chowdhury & Needham,[2021)) also discussed the sensitivity of
GW solvers to the initialization and showed that GW matchings with heat kernels have considerably
less spurious local minimum than GW applied on adjacency matrices. This way it is arguable to

compare both methods by using the product hh' as default initialization. We observed for srtGW
that using an initialization based on the hard assignments of a kmeans on the rows of the input
representations (up to the left scaling diag(h)), was a better trade-off for both kinds of representation.
Hence we applied this scheme for our method in this benchmark. We illustrate in Table @ how stGW
refines these hard assignments by soft ones through OT.

Note that for these partitioning tasks we should/can not initialize the transport plan of our sSrtGW
. . . s (0 .
solver using the product of h € ¥ with a uniform target distribution h( - élQ, leading to
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Table 6: Partitioning performances on real datasets measured by AMI: Ablation study of the param-
eter involved in the power-law transformations parameterized by b € [0, 1] of normalized degree
distributions for srGW and GW based methods. We denote different modes of transformation by
‘unif” (b = 0), ’deg’ (b = 1) and ’inter’ (0 < b < 1). We see in bold (resp. italic) the first (resp.
second) best model. We also highlight distribution modes leading to first (bold) and second (italic)
times to highest scores across all methods.

Wikipedia EU-email Amazon Village
asym sym asym sym sym sym

unif | deg | inter | unif | deg | inter | unif | deg | inter | unif | deg | inter | unif | deg | inter | unif | deg | inter
stGW (ours) | 52.7 | 47.4 | 56.9 | 52.7 | 474 | 56.9 | 49.7 | 43.6 | 499 | 49.5 | 39.9 | 50.1 | 40.8 | 42.7 | 483 | 749 | 62.0 | 81.8
srSpecGW | 48.9 | 44.8 | 50.7 | 582 | 554 | 63.0 | 47.8 | 44.3 | 49.1 | 46.8 | 43.6 | 50.6 | 75.7 | 69.5 | 76.3 | 87.5 | 78.1 | 86.1
stGW, 549 | 485 | 571 | 543 | 47.8 | 57.6 | 539 | 48.6 | 54.8 | 535 | 42.1 | 55.1 | 48.2 | 429 | 50.0 | 832 | 69.1 | 82.7
srSpecGW, | 51.7 | 452 | 53.8 | 59.0 | 549 | 61.4 | 52.1 | 479 | 54.3 | 47.8 | 43.2 | 509 | 83.8 | 76.9 | 851 | 843 | 77.6 | 83.9
GWL 338 | 88 | 387 [ 3315 [ 142 | 357 [ 472|351 ] 43.6 [ 379463 [ 458 [ 32.0 [ 27.5 | 385 | 689 [ 433 | 66.9
SpecGWL | 36.0 | 282 | 40.7 | 293 | 33.2 | 489 | 432 | 40.7 | 459 | 48.8 | 47.1 | 49.0 | 645 | 64.8 | 65.1 | 7713 | 649 | 77.8

TO) = %hlg. Indeed, for any symmetric input representation C' of the graph, the partial derivative
of our objective w.rt the (p, q) € [N] x [Q] entries of T, satisfies

oL 2
aT(C, I, TO) =2 Z(cip - 5jq)21;<jo> -3 Z(cfp + 0jq — 2Cip0iq)hi

pq s ij
(50)

ij
_ %{QZ Chhi+1-2) Cighi}

This expression is independent of ¢ € [Q], so taking the minimum value over each row in the
direction finding step of our CG algorithm (see algo [3) will lead to X = T'(°). Then the line-search
step involving, for any v € [0,1], Z(O(y) = T® 4+ (X — T(®) will be independent of ~y as
Z)(~) = T©)_ This would imply that the algorithm will terminate with optimal solution T* = T(*)
being a non-informative coupling.

Parameterized input distributions: Ablation study. We report in Table [6] an ablation study
of the parameter b € [0, 1] introduced on the input graph distributions, first suggested by (Xu
et al.l 2019a). In most scenario and every OT based methods, a parameter b €]0, 1] leads to best
AMI performances (except for the dataset Village), while the common assumption of uniform
distribution remains competitive. The use of raw normalized degree distributions consequently
reduces partitioning performances of all methods. Hence these results first indicated that further
research on the input distributions could be beneficial. They also suggest that the commonly used
uniform input distributions provide a good compromise in terms of performances while being
parameter-free.

Additional clustering metric. In order to com- Typle 7: Partitioning performances on real
plete our partitioning benchmark on real datasets, Jatasets measured by Adjusted Rand Index
we report in[I0]the Adjusted Rand Index (ARI). The (ARI) corresponding to best configurations
comparison between ARI and AMI has been thor-  reported in Table [T We see in bold (resp.
oughly investigated in (Romano et al., 2016) and led  jialic) the first (resp. second) best method.
to the following conclusion: ARI should be used NA: non applicable.

when the reference clustering has large equal sized

clusters; AMI should be used when the reference Wikipedia EU-cmail [ Amazon [ Village

asym | sym [ asym | sym sym sym

clustering is unbalanced and there exist small clus- STGW (ours) | 33.56 | 33.56 | 30.99 | 2901 | 30.08 | 67.03

ters. Our method srGW always outperforms the GW | “ShecoW | 32851 3891 132,76 | 3138 1 2101 | 03¢
based approaches for a given type of input structure stSpecGW, | 37.71 | 57.24 | 38.22 | 30.74 | 75.81 | 7471

. . GWL 5.70 | 13.85 | 19.35 | 26.81 24.96 48.35
representations (adjacency vs heat kernels) and on SpecGWL | 2523 | 30.94 | 2632 | 30.17 | 46.66 | 67.22
this application the entropic regularization seems to | FasGreedy | JA 93611 A | 17281 2080 1 oror
improve the performance. Note that this metric also InfoMap | 3548 | 3548 | 16.70 | 16.70 | 89.74 | 93.97

leads to slight variations of rankings, which seem to

occur more often for methods explicitly based on modularity maximization. We want to stress that for
this metric our general purpose divergence srGW outperforms methods that have been specifically
designed for nodes clustering tasks on 4 out of 6 datasets (instead of 3 using the AMI).
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Table 9: Clustering and Completion benchmark: Datasets descriptions

datasets features | #graphs | #classes | mean #nodes | min #nodes | max #nodes | median #nodes | mean connectivity rate
IMDB-B None 1000 2 19.77 12 136 17 55.53
IMDB-M None 1500 3 13.00 7 89 10 86.44
MUTAG {0..2} 188 2 17.93 10 28 17.5 14.79
PTC-MR {0,.., 17} 344 2 14.29 2 64 13 25.1
BZR R3 405 2 35.75 13 57 35 6.70
COX2 R3 467 2 41.23 32 56 41 5.24
PROTEIN RY 1113 2 29.06 4 620 26 23.58
ENZYMES R! 600 6 32.63 2 126 32 17.14

srGW runtimes: CPU vs GPU for large graphs. Par-
titioning experiments with our methods were run on a
GPU Tesla K80 as it brought a considerable speed up in
terms of computation time compared to using CPUs as
large graphs had to be processed. To illustrate this mat-
ter, we generated 10 graphs following Stochastic Block
Models with 10 clusters, a varying number of nodes in
{100, 200, ..., 2900, 3000} and the same connectivity ma-
trix. We report in Table the averaged runtimes of one CG
iteration depending on the size of the input graphs. For
small graphs with a few hundreds of nodes, performances
on CPUs or a single GPU are comparable. However, op-
erating on GPU becomes very beneficial once graphs of
a few thousand of nodes are processed.

o
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Figure 4: Runtimes of srtGW’s CG algo-
rithm over increasing graph sizes.

Runtimes comparison on real datasets. We report in Table [ the runtimes on CPUs for the
partitioning benchmark on real datasets. For the sake of comparison, we ran the srGW partitioning
experiments using CPUs instead of a GPU. We can observe that GW partitioning of raw adjacency
matrices (GWL) is the most competitive in terms of computation time (while being the last in
terms of clustering performances), on par with InfoMap. Our stGW partitioning methods lack
behind the GW based ones in terms of speed. Note that we remain in the same order of complexity.
We want to stress that as illustrated in the previous

paragraph, the use of CPUs for srGW multiplied by Table 8: Runtimes (seconds) on real datasets
10 to 20 times the computation times observed on a measured on CPU for all partitioning methods
GPU. First the linear OT problems involved in each and corresponding best configurations.

CQG iteration of GW based methods are solved thanks

to a C solver (POT’s implementation (Flamary et al., Wikipedia | EU-email | Amazon | Village
1 1 _ asym | sym | asym | sym sym sym
2021)), yvhereas our ;rGW CG solver is fully imple e R S o
mented in Python. This can compensate the computa- siSpecGW | 291 | 271 | 249 | 2.83 | 306 | 311
. 1 b ﬁ f GW 1 d GW 1 stGW, 2.69 | 248 | 231 | 2.81 2.87 2.53
tional benefits of sr solver regarding solver srSpecGW, | 2.35 | 196 | 215 | 203 | 2.16 | 2.58
1 1 1 1 GWL 0.17 | 0.17 | 0.13 | 0.12 0.13 0.16
(see details in section 3.2 of the main paper). So soowL | omr | o | v [0 | T | o
the computation time became mostly affected by the FasiGreedy | NA | 0.56 | NA | 231 | 037 | 126
number of computed gradients. We observed in these vt | oar | 075 | oz |o1a | oxs | o1

experiments that for the same precision level, stGW
needed considerably more iterations to converge than GW. Let us recall that our srGW partitioning
method consists in matching an observed graph to the identity matrix C = I, whereas GW based
partitioning methods use as target structure C' = diag(h) as h is fixed beforehand. Our lack of
heterogeneity in the chosen target structure could be the reason of these slow convergence patterns.
hence advocates for further studies regarding srGW based graph partitioning using more informative
structures.

7.5.2 DICTIONARY LEARNING: CLUSTERING EXPERIMENTS

We report in table[J]the statistics of the datasets used for our benchmark on clustering of many graphs.

Detailed settings for the clustering benchmark. We detail now the experimental setting used in
the clustering benchmark derived from the benchmark conducted by [Vincent-Cuaz et al.| (2021)).
For datasets with attributes involving FGW, we validated 15 values of the trade-off parameter o
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Table 10: Clustering performances on real datasets measured by Adjusted Rand Index(ARI. In bold
(resp. italic) we highlight the first (resp. second) best method.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
MODELS | IMDB-B | IMDB-M | MUTAG PTC-MR BZR COX2 | ENZYMES | PROTEIN
SIGW (ours) | 3.14(0.19) | 2.26(0.08) | 41.12(0.93) | 2.71(0.16) | 6.24(1.49) | 5.98(1.26) | 3.74(0.22) | 16.67(0.19)
stGW, | 5.03(0.90) | 3.09(0.11) | 43.27(1.20) | 3.28(0.76) | 16.50(2.06) | 7.78(1.46) | 4.12(0.12) | 18.52(0.28)
stGW, | 3.51(1.10) | 2.18(0.05) | 48.32(1.65) | 4.60(0.91) | 15.44(2.46) | 5.71(0.93) | 3.36(0.39) | 16.81(0.17)
stGWoy, | 4.56(1.62) | 2.71(0.24) | 48.77(1.47) | 4.97(0.83) | 16.38(2.15) | 6.15(1.24) | 3.98(0.62) | 18.03(0.32)

GDL 2.67(0.52) | 2.26(0.13) | 39.62(0.49) | 2.72(048) | 6.43(142) | 5.12(1.37) | 3.39(0.31) | 17.08(0.21)
GDL,, | 3.44(1.09) | 2.17(0.19) | 40.75(0.23) | 3.59(0.71) | 14.83(2.88) | 6.27(1.89) | 3.57(0.44) | 18.25(0.37)
GWE-r | 2.0900.61) | 2.03(0.15) | 37.09(1.13) | 2.92(0.92) | 2.89(2.66) | 5.18(1.17) | 4.27(0.31) | 17.34(0.14)
GWE-f | 0.85(0.57) | 1.74(0.13) | 18.14(3.09) | 1.54(1.24) | 2.78(2.41) | 4.03(0.96) | 3.69(0.28) | 15.89(0.20)
GW-k 0.66(0.07) | 1.23(0.04) | 15.092.48) | 0.66(0.43) | 4.56(0.83) | 4.19(0.58) | 2.34(0.96) | 0.43(0.06)

Table 11: Clustering performances on real datasets measured by Adjusted Mutual Information(AMI).
In bold (resp. italic) we highlight the first (resp. second) best method.

NO ATTRIBUTE DISCRETE ATTRIBUTES REAL ATTRIBUTES
MODELS | IMDB-B | IMDB-M | MUTAG PTC-MR BZR COX2 | ENZYMES | PROTEIN
SIGW (ours) | 3.31(0.25) | 2.63(0.33) | 32.97(0.57) | 3.21(0.23) | 8.20(0.75) | 2.64(0.40) | 6.99(0.18) | 12.69(0.32)
stGW, | 4.65(0.33) | 2.95(0.24) | 33.82(1.58) | 5.47(0.55) | 9.25(1.66) | 3.08(0.61) | 7.48(0.24) | 13.75(0.18)
stGW, | 3.58(0.25) | 2.57(0.26) | 35.01(0.96) | 2.53(0.56) | 10.28(1.03) | 3.01(0.78) | 7.71(0.29) | 12.51(0.35)
stGWoy, | 4.20(0.17) | 2.49(0.61) | 35.13(2.10) | 2.80(0.64) | 10.09(1.19) | 3.76(0.63) | 8.27(0.34) | 14.11(0.30)
GDL 2.78(0.20) | 2.57(0.39) | 32.25(0.95) | 3.81(0.46) | 8.14(0.84) | 2.02(0.89) | 6.86(0.32) | 12.06(0.31)
GDL,., | 3.420041) | 2.52(027) | 32.73(0.98) | 4.93(0.49) | 8.76(1.25) | 2.56(0.95) | 7.39(0.40) | 13.77(0.49)
GWE-r | 2.11(0.34) | 2.41(0.46) | 32.94(1.96) | 2.39(0.79) | 5.65(1.86) | 3.28(0.71) | 8.31(0.29) | 12.82(0.28)
GWE-f | 1.05(0.15) | 1.85(0.28) | 15.03(0.71) | 1.27(0.96) | 3.89(1.62) | 1.53(0.58) | 7.56(0.21) | 11.05(0.33)
GW-k 0.68(0.08) | 1.39(0.19) | 9.68(1.04) | 0.80(0.18) | 6.91(0.48) | 1.51(0.17) | 4.99(0.63) | 3.94(0.09)

via a logspace search in (0, 0.5) and symmetrically (0.5, 1). For DL based approaches, a first step
consists into learning the atoms. srGW dictionary sizes are tested in M € {10, 20, 30, 40, 50}, the
atom is initialized by randomly sampling its entries from A(0.5,0.01) and made symmetric. The
extension of stGW to attributed graphs, namely stFGW, is referred as srGW for conciseness in
[2 of the main paper. One efficient way to initialize atoms features for minimizing our resulting
reconstruction errors is to use a Kmeans algorithm seeking for M clusters on the nodes features
observed in the dataset. For GDL and GWF, a variable number of S = [k atoms is validated,
where k denotes the number of classes and 5 € {2,4,6,8}. The size of the atoms M is set
to the median of observed graph sizes within the dataset for GDL and GWF-f. These methods
initialize their atoms by sampling observed graphs within the dataset, with adequate sizes for
GDL and GWF-f, while sizes of GWF-r are just determined by this random sampling procedure
independently of the number of nodes distribution. For scGW 4, stGW ., 4 and GD L, the coefficient
of our respective sparsity promoting regularizers is validated within {0.001,0.01,0.1,1.0}. Then
for scGW,,srGW 4, GWF-f and GWF-r, the entropic regularization coefficient is validated also
within {0.001,0.01, 0.1, 1.0}. Finally, we considered the same settings for the stochastic algorithm
hyperparameters across all methods: learning rates are validated within {0.01, 0.001} while the batch
size is validated within {16, 32}; We learn all models fixing a maximum number of epochs of 100
(over convergence requirements) and implemented an (unsupervised) early-stopping strategy which
consists in computing the respective unmixings every 5 epochs and stop the learning process if the
cumulated reconstruction error (Err;) does not improve anymore over 2 consecutive evaluations
(i.e. Erry < Erryyq and Erry < Erryyo). For the sake of consistency, we report in Table the
Averaged Mutual Information (AMI) performances on this benchmark, as we reported the RI in the
main paper to be consistent with our main competitors.

Visualizations of srGW embeddings. We provide in Figure[5]some examples of graphs embed-
dings from the dataset IMDB-B learned on a srGW dictionary C of 10 nodes. We assigned different
colors to each nodes of the graph atom (forth column) in order to visualize the correspondences
recovered by the OT plan T resulting from the projection of the respective sample (C, h) onto C in
the srGW sense (third column). As the atom has continuous values we set the edges intensity of grey
proportionally to the entries of C. By coloring nodes of the observed graphs based on the OT to its
respective embedding (C)(second column) we clearly observe that key subgraphs information, such
as clusters and hubs are captured within the embedding.
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Data sample C;, h; Data sample (colored by T)
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Figure 5: Illustration of the embedding of different graphs from the IMDB dataset on the estimated
dictionary C. Each row corresponds to one observed graph and we show its graph (left), its graph
with nodes colored corresponding to the OT plan (center left), the projected graph on the dictionary
with optimal weight k" and the full dictionary with uniform mass (right).

Impact of the graph atom size. Moreover if we
increase the size of the dictionary, our embeddings
are refined and can bring complementary structural
information at a higher resolution e.g. finding sub-
structures or variable connectivity between nodes
in the same cluster. We illustrate these resolution
patterns in Table [6| for embeddings learned on the
IMDB-B dataset. We represent the embedded graph
size distributions depending on the sizes of the graph
atom learned thanks to stGW and its sparse variant
stGW,. For any graph atom size, the mean of each
embedded graph size distribution represented with
a white dot is below the atom size, hence embed-
dings are sparse and subparts of the atom are indeed
selected. Moreover, promoting sparsity of the embed-
dings (srGW ) lead to more concentrated embedded

26

IMDB-B unmixings on srGW dictionaries

method
20 1 srtGW
9 [ SrGW,
@
S 15
o
o
3
© 10
kel
(9]
Qo
E @)
v 5 i
(N \
0
10 20 30 40 50

graph atom size

Figure 6: Evolution of the embedded graph
sizes over the graph atom size validated in
{10, 20, 30, 40,50} for dictionaries learned
with scGW and stGW, (with A = 0.01).
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graph size distributions with lower averaged sizes

than its unregularized counterpart (stGW), as expected. Finally, these distributions seem to reach a
stable configuration when the graph atom size is large enough. This argues in favor of the existence
of a (rather small) threshold on the atom size where the heterogeneity of all the graphs contained in
the dataset is well summarized in the dictionaries.

7.5.3 DICTIONARY LEARNING: COMPLETION EXPERIMENTS

Experiment details on graphs completion. For these completion experiments the exact same
scheme, than in our clustering benchmark, is applied for learning srGW and GDL dictionaries on
formed datasets D;,4;. On interesting specificity used on dataset IMDB-B was for the initialization.
Indeed instead of initializing the structure atom iid from A (0.5,0.01), we initialized the entries of
C'imp denoting connections only between the new imputed nodes randomly. Then we initialized
entries representating connections of these nodes to the ones of C,;4 seeing the degree (scaled
by maximum observed degrees) of each observed node as initial probability for a new node to be
connected to this observed node. Then for each entries (7, j) where x; belongs to C,ps and x; to

Cimp, Cj is initialized as N/ (WLZZ;(I_), 0.01). This initialization led to better performances for
tobs v

both model so might be a first good practice to tackle completion of clustered graph using OT. For
MUTAG we sticked with the initialization used for our and initialized imputed features randomly in
the range of locally observed features.

Additional experiments on graphs completion. We complete the experiments on com-
pletion tasks of datasets IMDB-B and MUTAG reported in the subsection of the
main paper. Let us recall that for these experiments we fixed a percentage of im-
puted nodes (10 % and 20%) and looked at the evolution of completion performances
over the proportion of train/test datasets. Here instead, we fix the proportion of the
test dataset to 10% and make percentage of imputed nodes vary in {10,15,20,25,30}.
A similar benchmark procedure than for experiments of the main paper is conducted.
These graph completion results are reported in

this trend is reversed for high percentage of im-
puted nodes. Indeed, as stGW dictionaries cap-
ture subgraph patterns of variable resolutions
from the input graphs, the scarcity of prior in-
formation in an observed graph leads to a too
high number of valid possibilities to complete
it. Whereas GDL dictionaries based on GW
lead to more steady performances as they keep , , , , )
their focus on global stteructures. Interestingly, 10 15 20 25 30
the sparsity promoting regularization can clearly imputed nodes (%)

compensate this kind of overfitting over sub-
graphs for higher levels of imputed nodes and
systematically leads to better completion per-
formances (high accuracy, low Means Square
Error). Moreover, the entropic regularization of
stGW (stGW . and stGW,4) can be favorably used to compensate this overfitting pattern for high
percentages of imputed nodes (> 20%) and also pairs well with the sparse regularization (stGW_ ).

Figure[7]for IMDB-B dataset and in Figure [§]for IMDB-B test dataset proportion 10.0%
MUTAG dataset. Our stGW dictionary learn- o7 | — SIGW
ing and its regularized variants outperform GDL SrGW,
and GD L, consistently when the percentage of 96 1 — SrGW,
imputed nodes is not too high (< 20%), whereas 95 | — SrGWe+g
— GDL

94 GDL,

completion accuracy (%)

Figure 7: Completion performances for IMDB-B
dataset, measured by means of accuracy for struc-
tures averaged over all imputed graphs.
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Figure 8: Completion performances for MUTAG dataset, measured by means of accuracy for
structures and Mean Squared Error for node features, respectively averaged over all imputed graphs.
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