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Abstract

Widely adopted in modern Vision Transformer designs, Softmax attention can
effectively capture long-range visual information; however, it incurs excessive
computational cost when dealing with high-resolution inputs. In contrast, linear
attention naturally enjoys linear complexity and has great potential to scale up to
higher-resolution images. Nonetheless, the unsatisfactory performance of linear
attention greatly limits its practical application in various scenarios. In this paper,
we take a step forward to close the gap between the linear and Softmax attention
with novel theoretical analyses, which demystify the core factors behind the per-
formance deviations. Specifically, we present two key perspectives to understand
and alleviate the limitations of linear attention: the injective property and the local
modeling ability. Firstly, we prove that linear attention is not injective, which is
prone to assign identical attention weights to different query vectors, thus adding to
severe semantic confusion since different queries correspond to the same outputs.
Secondly, we confirm that effective local modeling is essential for the success
of Softmax attention, in which linear attention falls short. The aforementioned
two fundamental differences significantly contribute to the disparities between
these two attention paradigms, which is demonstrated by our substantial empirical
validation in the paper. In addition, more experiment results indicate that linear
attention, as long as endowed with these two properties, can outperform Softmax
attention across various tasks while maintaining lower computation complexity.
Code is available at https://github.com/LeapLabTHU/InLine.

1 Introduction

Recent years have witnessed the unprecedented success of Transformer and attention [32] in the field
of computer vision [7]. Softmax attention, also known as dot-product attention, has demonstrated
remarkable expressive power, leading to state-of-the-art performance across various vision tasks [30,
2, 23, 35]. However, applying Softmax attention in vision also faces challenges. The quadratic
complexity of Softmax attention results in prohibitively high computational cost when applied with
a global receptive field. Previous works [33, 19, 36, 6, 45] have strived to reduce the computation
complexity by restricting receptive fields or introducing sparsity. Although effective, these approaches
inevitably compromise Softmax attention’s ability for long-range modeling and scalability.

The nature of Softmax attention forces to compute the dot-products between queries and keys QK⊤∈
RN×N at first, and then aggregates values V ∈RN×C by the normalized score Softmax(QK⊤/

√
d),

which accounts for the quadratic O(N2) complexity w.r.t. the sequence length N . On the contrary,
linear attention relaxes the similarity score between Q and K from Softmax to other functions
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which can be decomposed into kernels, i.e., the linear attention replaces the original score func-
tion Sim(Q,K)= Softmax(QK⊤/

√
d) with Sim(Q,K)=ϕ(Q)ϕ(K)⊤, where ϕ(·) is the kernel

function. This substitution enables a change in the computation order from
(
ϕ(Q)ϕ(K)⊤

)
V to

ϕ(Q)
(
ϕ(K)⊤V

)
based on the associative law of matrix multiplication, reducing the complexity

from O(N2) to O(N) w.r.t. the sequence length N . Nevertheless, every coin has two sides. Linear
attention proves to be less effective than Softmax attention [3, 27, 40], whose poor expressive power
limits its practical application. Although many pieces of research [27, 28, 22, 9, 40] have attempted
to alleviate this issue in different ways, we still do not have a complete understanding of the key
factors that contribute to the gap between linear and Softmax attention.

In this paper, we delve into the fundamental differences between linear and Softmax attention,
offering two insightful perspectives to demystify the topic: the injective property and local modeling
capability. Firstly, we consider attention as a function that maps a query to an attention score. We find
that the injectivity of this attention function greatly affects the performance of the model. Specifically,
if the attention function is not injective, different queries will induce identical attention distributions,
leading to severe semantic confusion within the feature space. Our rigorous analysis has demonstrated
that the Softmax attention function is an injective function, whereas the linear attention function
is not. Therefore, linear attention is vulnerable to the semantic confusion problem, which largely
leads to its insufficient expressiveness. Secondly, our analysis of the attention weight distribution
has confirmed that the success of Softmax attention is not solely dependent on its strong long-range
modeling capabilities. Effective local modeling is also crucial to achieving optimal outcomes.

To validate our analyses, we present two simple yet effective methods to endow linear attention
with the injective property and the local modeling ability, respectively. The widely employed Swin
Transformer [19] architecture is used to validate our findings. The results highlight the importance
of both properties in the gap between linear and Softmax attention. Moreover, comprehensive
experiments demonstrate that linear attention, endowed with these two properties, outperforms the
widely used Softmax attention across diverse tasks.

Our main contributions and takeaways are summarized as follows: (1) Injectivity is a key disparity
between linear and Softmax attention. While Softmax attention is injective, the non-injective nature
of linear attention causes semantic confusion and severely impairs model performance. To the best of
our knowledge, our work is the first to conceptualize attention as a mapping function and prove the
vital importance of its injective property. (2) Local modeling is still essential to the effectiveness
of the attention mechanism, even though it is renowned for its large receptive field and outstanding
long-range modeling ability. (3) We challenge the viewpoint that linear attention is inferior to Softmax
attention and demonstrate that with the above two properties, linear attention can outperform Softmax
attention while maintaining lower computation complexity.

2 Related Works

Vision Transformer and Softmax Attention. Vision Transformer [7] is the pioneer work that
introduces self-attention to vision. Since then, attention has found success in various vision tasks [7,
2, 24]. The widely used attention mechanism is Softmax attention [32], also known as dot-product
attention, which computes the similarity between all query-key pairs. Although effective, its quadratic
computation complexity leads to unmanageable cost when processing global feature maps. Therefore,
various approaches [19, 34, 36, 14, 45, 12] have been proposed to reduce the computational overhead
of Softmax attention. PVT [33] employs downsampling of keys and values to reduce computational
complexity. Swin Transformer [19] restricts the receptive field by introducing window attention
pattern. NAT [14] mimics convolution and calculates attention within the neighborhood of each
feature, and DAT [36] presents an input-dependent sparse attention pattern.

Linear Attention. As opposed to Softmax attention, Linear attention is another attention paradigm
with a natural linear complexity of O(N). Linear attention replaces Softmax with kernel functions,
thereby reducing computational complexity to linear through a change in computation order. Nonethe-
less, prior studies [27, 3, 29, 40, 11] have demonstrated that linear attention performs markedly
worse than Softmax attention. CosFormer attributed this discrepancy to the efficient re-weighting
mechanism of Softmax attention and proposed cosine re-weighting to enhance linear attention. Nys-
trömformer [38] and SOFT [22] use matrix decomposition to further approximate Softmax operation.
Efficient Attention [28] applies Softmax function to queries and keys. TransNormer [26] identifies
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Figure 1: An illustration of injective property and confusion problem. Non-injectivity leads
to various semantic confusions in linear attention when different kernel functions are employed.
(a) With ϕ(·) = ReLU(·), linear attention assigns the same attention values to collinear queries of
varying lengths. (b) Using ϕ(·) = ReLU(A ·+b), linear attention faces severe confusion problem,
producing identical attention distribution for certain queries with different directions and lengths.

that unbounded gradients and attention dilution harm linear attention. FLatten Transformer [9]
introduces a focused function to address the over-smoothing issue. MLLA [10] draws inspiration
from Mamba [8] to improve linear attention.

Despite their elegant outcomes, the fundamental reason for the disparity between linear attention and
Softmax attention remains unclear. In this work, we perform an in-depth analysis of the disparities
between linear and Softmax attention, identifying two crucial properties of high-performance Softmax
attention: injectivity and local modeling ability. We present both theoretical proofs and experimental
verification to validate our findings.

3 Preliminaries

Attention Formulation. Let x ∈ RN×C be an input of N tokens. In each self-attention head, x is
transformed into Q = xWQ,K = xWK , V = xWV through projection matrices WQ/K/V ∈RC×d,
where C and d are the channel dimension of module and each head. Therefore, we have Q,K, V ∈
RN×d, and Qi,Ki, Vi ∈ Rd. Based on this, Softmax attention [32] computes the attention weights
and calculates the output as the weighted sum of value:

Si =

[
exp(Q⊤

i K1)∑N
j=1 exp(Q

⊤
i Kj)

, · · · , exp(Q⊤
i KN )∑N

j=1 exp(Q
⊤
i Kj)

]⊤

, OS
i = S⊤

i V. (1)

For simplicity, we omit
√
d in exp(Q⊤

i Kj/
√
d) since we can equivalently renormalize Q and K. This

attention paradigm has been highly successful in modern vision Transformers. However, it should
compute the similarity between all query-key pairs, resulting in O(N2) complexity. Consequently,
employing Softmax attention with a global receptive field results in overwhelming computation cost.
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Linear attention [15] was proposed to efficiently handle the computation challenge with linear
complexity of O(N). Specifically, exp(Q⊤

i Kj) is replaced by ϕ(Qi)
⊤ϕ(Kj), where ϕ is kernel

function. In this way, linear attentions reformulate eq. (1) as:

Li =

[
ϕ(Qi)

⊤ϕ(K1)∑N
j=1 ϕ(Qi)⊤ϕ(Kj)

, · · · , ϕ(Qi)
⊤ϕ(KN )∑N

j=1 ϕ(Qi)⊤ϕ(Kj)

]⊤

,

OL
i = L⊤

i V =

N∑
j=1

ϕ(Qi)
⊤ϕ(Kj)∑N

j=1 ϕ(Qi)⊤ϕ(Kj)
V ⊤
j =

ϕ(Qi)
⊤(

∑N
j=1 ϕ(Kj)V

⊤
j )

ϕ(Qi)⊤(
∑N

j=1 ϕ(Kj))
.

(2)

The form of OL
i suggests that explicitly computing attention weights Li is unnecessary. Instead, we

can change the computation order from (ϕ(Q)ϕ(K)⊤)V to ϕ(Q)(ϕ(K)⊤V ) based on the associative
property of matrix multiplication. By doing so, the computation complexity is reduced to O(N).

Injective Property. Let f : A → B be a mapping function. We call f an injective function if and
only if ∀x, y ∈ A, x ̸= y, it holds that f(x) ̸= f(y).

4 Analysing the Gap between Linear and Softmax Attention

Due to its linear computation complexity, linear attention is considered a promising solution to
address the computational challenges of Softmax attention in high-resolution scenarios. However,
previous works [27, 3, 40] have shown that linear attention’s expressive power is significantly lower
than that of Softmax attention, rendering it impractical for real-world applications. In this section, we
conducted an in-depth analysis of the gap between linear and softmax attention from two perspectives:
injective mapping and local modeling capability, and offer both theoretical proofs and experimental
verification to enhance understanding of the key disparities between these two attention types.

4.1 Injectivity of Attention Function

We first define the function of Softmax and linear attention as follows:

SK,LK : Rd → RN , SK(Qi) = Si, LK(Qi) = Li, (3)

where Qi denotes the query, and Si, Li are the attention scores in eq. (1) and eq. (2). Given keys
K ∈ RN×d, SK,LK can be viewed as the function of query q, mapping each q to its corresponding
Softmax and linear attention scores, SK(q) and LK(q). Then the final outputs of Softmax and linear
attention corresponding to q can be formulated as OS = SK(q)

⊤V and OL = LK(q)
⊤V .

Injective property. In this work, we identify that the injective property of the attention function
significantly impacts model performance, which may largely contribute to the gap between linear
and Softmax attention. Specifically, we prove that under mild assumptions, the Softmax attention
function SK is injective, whereas linear attention function LK is not (Proposition 1 and 2. Please refer
to Appendix for complete proof). As a consequent, for two different queries p and q (p ̸= q), Softmax
attention should produce different attention distributions SK(p) ̸= SK(q), while linear attention
may yield the same linear attention values LK(p) = LK(q). Since different queries p ̸= q typically
represent distinct semantics, the non-injective property of linear attention actually leads to semantic
confusion, i.e. LK(p) = LK(q) and OL

p = LK(p)
⊤V = LK(q)

⊤V = OL
q , making the model unable

to distinguish certain semantics.

Proposition 1 (Softmax attention is injective) Given K ∈ RN×d with rank(K) = d and
rank([K,1N×1]) = d+ 1. ∀ p, q ∈ Rd, p ̸= q, we have SK(p) ̸= SK(q).

Proposition 2 (Linear attention is not injective) Let ϕ : Rd → Rd be a continuous function.
∃ p, q ∈ Rd, p ̸= q, s.t. LK(p) = LK(q).

We provide an example to better understand the injective property and confusion problem. As shown
in Fig. 1(a), there are four collinear vectors with different lengths. Benefiting from injectivity, Softmax
attention ensures that each of these four queries obtains distinct attention scores, producing more
focused attention distributions for longer queries. Nevertheless, with kernel function ϕ(·) = ReLU(·),
linear attention fails to distinguish the same semantics with different intensities, i.e. collinear queries
with varying lengths, resulting in identical attention scores for all these four queries. Consequently,
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linear attention is unable to yield more focused attention scores for stronger semantics, which
may explain the lack of focus ability discussed in [9]. When using kernel functions with stronger
nonlinearity, linear attention encounters more pronounced confusion issues. For instance, in Fig. 1(b),
employing kernel function ϕ(·) = ReLU(A ·+b), linear attention assigns exactly the same attention
scores to four queries with different directions and lengths. This serious semantic confusion can
directly impair model’s performance.
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Figure 2: The distribution of the
number of times each image encoun-
ters confusion during inference.

Confusion problem in real models. While Fig. 1 illustrates
the concept of confusion, it is also crucial to verify if this issue
occurs in real models. Therefore, we conduct statistical analy-
sis based on Deit-T. We count the occurrences of confusion for
each image (i.e., p ̸= q but SK(p)=SK(q) or LK(p)=LK(q))
during inference on the ImageNet [5] validation set. As it
is rare for two vectors to be strictly equal in floating-point
representation, we consider them approximately equal if the
L2 norm of their difference is less than 1e-3. The results
are provided in Fig. 2. Almost all samples did not encounter
confusion on model employing Softmax attention, whereas a
large number of samples encountered confusion more than 25

times on linear attention model. This proves the existence of
confusion problem with linear attention in real models.

Table 1: Introducing confusion to Softmax attention.
Confusion None f1(q)=

ReLU(q)
∥ReLU(q)∥ f2(q)=

ReLU(Aq+b)
∥ReLU(Aq+b)∥

Acc. 72.2 70.6 69.9

The importance of injectivity. We
further verify the importance of injec-
tivity by inducing confusion in Soft-
max attention. To achieve this, we
apply additional non-injective map-
ping functions to each query before the Softmax attention calculation, i.e., introducing Qi=f(Qi)

prior to eq. (1), where f is a non-injective function. Specifically, we use f1(q) =
ReLU(q)

∥ReLU(q)∥ to
simulate the confusion observed in linear attention using the kernel function ϕ(·) = ReLU(·), as
depicted in Fig. 1(a), and employ f2(q)=

ReLU(Aq+b)
∥ReLU(Aq+b)∥ to replicate the confusion in Fig. 1(b). As

shown in Tab. 1, introducing confusion leads to an obvious decrease in performance, underscoring
the crucial role of the attention function’s injective property. Therefore, the non-injectivity of linear
attention is likely a key factor leading to its limited expressive capacity.

Make linear attention injective. We propose a simple yet effective solution to make linear attention
an injective function. The proof of Proposition 2 (see Appendix) demonstrates that ∀α ̸= 0, αϕ(p)
obtains identical scores in linear attention due to the omission of α in division, resulting in non-
injectivity. Hence, we simply transform the normalization of linear attention from division to
subtraction, presenting our injective linear attention (InLine) as follows:

InLK(Qi) =
[
ϕ(Qi)

⊤ϕ(K1), · · · , ϕ(Qi)
⊤ϕ(KN )

]⊤− 1

N

N∑
s=1

ϕ(Qi)
⊤ϕ(Ks) +

1

N
, (4)

and the attention output corresponding to Qi can be written as OI
i = InLK(Qi)

⊤V . This modification
ensures that the attention weights still sum up to 1, while transforming the attention function into an
injective one (see Proposition 3). Thus, injective linear attention can distinguish different queries,
akin to Softmax attention, and it no longer suffers from confusion problem.

Proposition 3 (InLine attention is injective) Let ϕ : Rd → Rd be an injective map. Given K ∈ RN×d

with rank(ϕ(K))=d and rank([ϕ(K),1N×1])=d+1. ∀p, q ∈ Rd, p ̸= q,⇒ InLK(p) ̸= InLK(q).

Additionally, similar to linear attention, InLine attention can be calculated with O(N) complexity by
changing the computation order:

OI
i = InLK(Qi)

⊤V =

N∑
j=1

[
ϕ(Qi)

⊤ϕ(Kj)−
1

N

N∑
s=1

ϕ(Qi)
⊤ϕ(Ks) +

1

N

]
V ⊤
j

= ϕ(Qi)
⊤

 N∑
j=1

ϕ(Kj)V
⊤
j

−

ϕ(Qi)
⊤

N∑
j=1

ϕ(Kj)− 1

 1

N

N∑
j=1

Vj .

(5)
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Figure 4: Visualizations of attention distributions. Softmax attention exhibits strong local bias. The
other two attention types yield meaningful attention distributions, but focus more on global modeling.

Table 2: Model performances on ImageNet-1K when masking out tokens from different positions.
Loc. k×k means masking out tokens in local k×k windows for each query. Rand n represents
randomly masking out n tokens out of local 3×3 windows for each query. The attention scores of
each query still sum up to 1. These models are tested directly without retraining.

Mask Out Position None Loc. 3×3 Loc. 5×5 Loc. 7×7 Rand 9 Rand 25 Rand 49

Softmax Attn 72.2 51.6 24.3 9.0 71.7 71.5 71.1
InLine Attn 70.0 58.0 40.0 20.0 70.0 69.9 69.5

Since we can compute
∑N

j=1 ϕ(Kj) and 1
N

∑N
j=1 Vj once and reuse them for every query, the overall

complexity of InLine attention is 2Nd2+Nd = O(Nd2). Accounting for multi-head, the complexity
becomes O(NCd), where C and d are the channel dimension of the model and each head.

4.2 Local Modeling Capability

Attention mechanism is famous for its large receptive field and outstanding long-range modeling
capability. However, we find that effective local modeling is crucial for the effectiveness of attention.
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Figure 3: The sum of attention scores in the
local 3×3 windows of each query from DeiT-T.

In Fig. 3, we compute the sum of attention values
assigned to local 3×3 neighborhoods for each query
using DeiT-T. With a total of 14×14+1=197 tokens
in each attention layer of DeiT-T, if attention scores
are randomly assigned, the expected sum of attention
for a 3×3 neighborhood would be 9

197 . The result
shows that all three attention paradigms tend to pay
more attention to the neighborhoods of each query,
revealing local bias, especially in shallow layers.
Notably, Softmax attention allocates a substantial
amount of attention to local windows, suggesting
a stronger local modeling ability compared to the
other two attention paradigms. Visualizations are provided in Fig. 4 to further confirm this finding.

We speculate that Softmax attention’s superior performance stems from robust local priors and strong
local modeling capabilities. To validate this hypothesis, we employ attention masks to mask out
tokens from various positions and assess their effect on model performance.The results are presented
in Tab. 2. Two key observations emerge: 1. Masking out local tokens significantly decreases model
performance, while randomly masking out the same number of tokens has a minor impact on results.
2. Softmax attention’s performance suffers more severely than InLine attention when local tokens are
masked out. These findings demonstrate the significance of local modeling for both attention types
and prove that Softmax attention’s advantage over InLine attention primarily attributes to its stronger
local modeling ability.

Based on our analysis, increasing local bias may enhance the expressive power of InLine attention.
In light of this, we employ a MLP to predict additional local attention residual for InLine attention.
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Table 3: Ablation on the impact of injective property using Swin-T.

Kernel Function ϕ(·) ReLU(·) ReLU(A ·+b) LeakyReLU(·) Identity(·)
Linear Attn 77.3 70.2 1.5 0.2
InLine Attn 79.8 80.0 79.8 80.2

Table 4: Ablation on local modeling ability based on Swin-T. Identity(·) kernel function is used.

Window FLOPs #Param Acc.
72 4.5G 30M 80.3

InLine-Swin-T 142 4.5G 30M 80.4
w/o res. 282 4.5G 30M 80.2

562 4.5G 30M 80.2

Window FLOPs #Param Acc.
72 4.5G 30M 81.6

InLine-Swin-T 142 4.5G 30M 82.1
w/ res. 282 4.5G 30M 82.3

562 4.5G 30M 82.4

Specifically, the output corresponding to Qi is defined as:

Oi = InLK(Qi)
⊤V +

9∑
j=1

rjV
N(i)
j , r = MLP(x), (6)

where InLK(·) denotes InLine attention function, x is the average of input tokens, r is the predicted
local attention residual, and V

N(i)
j represents the value in the 3×3 neighborhood of Qi. In this way,

we explicitly enhance InLine attention’s local bias by introducing local attention residual term. We
refer to InLine attention with local attention residual, i.e. eq. (6), as InLine attention module. As
the local residual term introduces little computational cost Nd + d2 + 9Nd, the InLine attention
module still maintains a linear complexity of O(N).

5 Empirical Study

In Sec. 4, we analyzed two core factors behind the performance gap between Softmax and linear
attention, proposing possible remedies. In this section, we conduct empirical verification to fully
validate the importance of these two properties and the effectiveness of our methods.

5.1 Implementation

We utilize the popular Swin Transformer architecture [19] to investigate the effects of injectivity
and local modeling capability. Specifically, we substitute the original Softmax attention in Swin-
T with linear attention to establish the baseline model. Subsequently, we introduce the injective
property and local bias in turn to assess their respective impacts. To fully verify the effectiveness of
InLine attention module, we further apply it to four advanced and representative Transformer models
including DeiT [30], PVT [33], Swin [19], CSwin [6] and offer broad comparisons with various
state-of-the-art methods using Softmax attention.

5.2 Datasets and Experiment Details

ImageNet classification. The ImageNet-1K [5] recognition dataset contains 1.28M training images
and 50K validation images with a total of 1,000 classes. For a fair comparison, we train our model
using identical settings as the corresponding baseline model. We use AdamW [21] optimizer to train
all our models from scratch for 300 epochs, employing cosine learning rate decay with 20 epochs of
linear warm-up. The initial learning rate is 1× 10−3, and the weight decay is 0.05. Augmentation
and regularization strategies consist of RandAugment [4], Mixup [42], CutMix [41], and random
erasing [43]. Following CSwin [6], EMA [25] is used in the training of InLine-CSwin models.

COCO object detection. COCO [18] object detection and instance segmentation dataset has 118K
training and 5K validation images. We follow the training and testing strategies of the corresponding
baseline model and employ pretrained InLine backbones to conduct experiments.

ADE20K semantic segmentation. ADE20K [44] is a well-established benchmark for semantic
segmentation which encompasses 20K training images, 2K validation images and 150 semantic
categories. The same setting as baseline model is adopted.
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Table 5: Comparison with baseline models on ImageNet-1K. See full comparison table in Appendix.

Method Reso #Params FLOPs Top-1

DeiT-T [30] 2242 5.7M 1.2G 72.2
InLine-DeiT-T 2242 6.5M 1.1G 74.5 (+2.3)

DeiT-B 2242 86.6M 17.6G 81.8
InLine-DeiT-B 4482 23.8M 17.2G 82.3 (+0.5)

PVT-S 2242 24.5M 3.8G 79.8
InLine-PVT-S 2242 21.6M 3.9G 82.0 (+2.2)

PVT-L 2242 61.4M 9.8G 81.7
InLine-PVT-L 2242 50.2M 10.2G 83.6 (+1.9)

Method Reso #Params FLOPs Top-1

Swin-T [19] 2242 29M 4.5G 81.3
InLine-Swin-T 2242 30M 4.5G 82.4 (+1.1)

Swin-S 2242 50M 8.7G 83.0
InLine-Swin-S 2242 50M 8.7G 83.6 (+0.6)

Swin-B 2242 88M 15.4G 83.5
InLine-Swin-B 2242 88M 15.4G 84.1 (+0.6)

Swin-B 3842 88M 47.0G 84.5
InLine-Swin-B 3842 88M 45.2G 85.0 (+0.5)

Table 6: Comparison with SOTA methods on ImageNet-1K.

Method Reso #Params FLOPs Top-1

PVTv2-B2 [34] 2242 25M 4.0G 82.0
ConvNeXt-T [20] 2242 29M 4.5G 82.1
Focal-T [39] 2242 29M 4.9G 82.2
MViTv2-T [17] 2242 24M 4.7G 82.3
CSwin-T [6] 2242 23M 4.3G 82.7
DiNAT-T [13] 2242 28M 4.3G 82.7
InLine-CSwin-T 2242 21M 4.3G 83.2

ConvNeXt-S [20] 2242 50M 8.7G 83.1
PVTv2-B3 [34] 2242 45M 7.9G 83.2
CSwin-S [6] 2242 35M 6.9G 83.6
Focal-T [39] 2242 51M 9.4G 83.6
MViTv2-S [17] 2242 35M 7.0G 83.6
InLine-CSwin-S 2242 33M 6.8G 83.8

Method Reso #Params FLOPs Top-1

Swin-B [19] 2242 88M 15.4G 83.5
PVTv2-B5 [34] 2242 82M 11.8G 83.8
ConvNeXt-B [20] 2242 89M 15.4G 83.8
Focal-B [39] 2242 90M 16.4G 84.0
CSwin-B 2242 78M 15.0G 84.2
NAT-B [14] 2242 90M 13.7G 84.3
InLine-CSwin-B 2242 73M 14.9G 84.5

Swin-B [19] 3842 88M 47.0G 84.5
CaiT-S36 [31] 3842 68M 48.0G 85.0
ConvNeXt-B [20] 3842 89M 45.0G 85.1
MViTv2-B [17] 3842 52M 36.7G 85.2
CSwin-B 3842 78M 47.0G 85.4
InLine-CSwin-B 3842 73M 46.3G 85.7

5.3 Empirical Analysis of Injectivity and Local Modeling

Injective property. As shown in Tab. 3, we adopt four different kernel function ϕ(·) to validate the
effect of injectivity. As discussed in Sec. 4.1, with kernel function ϕ(·) = ReLU(·), linear attention
fails to distinguish the same semantics with different intensities. Addressing this issue with InLine
attention leads to a 2.5 increase in accuracy. When using ϕ(·) = ReLU(A · +b), linear attention
faces more severe semantic confusion, and introducing injective property results in a significant
accuracy boost of 9.8, from 70.2 to 80.0. These obvious improvements fully prove the significance of
injectivity and validate the effectiveness of our injective linear attention. We also employ two kernel
functions that do not ensure non-negativity. Consistent with the findings in [27], linear attention
fails to converge without non-negativity assurance. We attribute this to extreme semantic confusion.
For example, with ϕ(·) = Identity(·), linear attention is unable to distinguish completely opposite
semantics, assigning identical attention scores to q and −q.

Local modeling capability. Tab. 4 highlights the importance of local modeling capability. In the left
table, we apply pure InLine attention to Swin-T and gradually increase the window size from 72 to
562. Due to the linear complexity of InLine attention, we can adopt different window sizes while
preserving identical computational cost. Larger window sizes lead to larger receptive fields, typically
associated with improved performance. However, the results show that the model performance does
not improve with increasing window sizes. We believe this can be attributed to the insufficient local
modeling capability: a small window size restricts the receptive field but introduces strong local
bias, enhancing local modeling, while a large window size enlarges the receptive field but further
diminishes local modeling ability. To validate this, we apply InLine attention with local residual and
present the results in the right table. Significant improvements can be observed upon the introduction
of the local residual term. Additionally, the increase in window size leads to steady performance
improvement after introducing local residual, which strongly supports our analysis.
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(a) (b) (c) 

Figure 5: Speed measurements. Runtime and FPS is tested on a RTX3090 GPU. (a) Accuracy-
Runtime curve on ImageNet. (b) Increasing window size. (c) High-resolution scenarios.

Table 7: Results on COCO dataset. The FLOPs are computed with an input resolution of 1280×800.

(a) Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

PVT-T 240G 1x 36.7 59.2 39.3 35.1 56.7 37.3
InLine-PVT-T 211G 1x 40.2 62.7 43.8 37.7 59.7 40.4
PVT-S 305G 1x 40.4 62.9 43.8 37.8 60.1 40.3
InLine-PVT-S 250G 1x 43.4 66.4 47.1 40.1 63.1 43.3
PVT-M 392G 1x 42.0 64.4 45.6 39.0 61.6 42.1
InLine-PVT-M 310G 1x 44.0 66.4 48.0 40.3 63.4 43.5
PVT-L 494G 1x 42.9 65.0 46.6 39.5 61.9 42.5
InLine-PVT-L 377G 1x 45.4 67.6 49.7 41.4 64.7 44.6

(b) Cascade Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

Swin-S 837G 3x 51.9 70.7 56.3 45.0 68.2 48.8
InLine-Swin-S 835G 3x 52.4 71.0 56.9 45.4 68.8 49.6
Swin-B 981G 3x 51.9 70.5 56.4 45.0 68.1 48.9
InLine-Swin-B 978G 3x 52.6 71.0 57.0 45.4 68.5 49.3

5.4 Main Results and Broad Comparisons

As shown in Tab. 4, InLine-Swin-T with local residual achieves better results than the Swin-T baseline,
increasing from 81.3 to 82.4. Therefore, we wonder whether InLine attention module can perform
better than the widely adopted Softmax attention in various scenarios. To validate this, we further
apply it to several representative Transformers and conduct comprehensive comparisons on image
classification, object detection, and semantic segmentation.

ImageNet classification. Firstly, We apply our InLine attention module to DeiT [30], PVT [33],
and Swin Transformer [19], presenting the results in Tab. 5. It can be seen that substituting Softmax
attention with our method results in notable improvements. For example, InLine-PVT-S outperforms
PVT-L with 30% of the parameters and 40% of the FLOPs. Subsequently, We apply our module to
the advanced Transformer design, CSwin Transformer [6], and offer a broad comparison with various
state-of-the-art models on ImageNet-1K. As depicted in Tab. 6, our InLine-CSwin model not only
yields better results than CSwin, but also surpasses various SOTA CNN and Transformer designs.
These results demonstrate that our InLine attention module tends to be a superior alternative to the
widely used Softmax attention.

Inference throughput analysis. We offer real speed measurements in Fig. 5. As shown in Fig. 5(a),
InLine models achieve an obviously better trade-off between accuracy and latency. In Fig. 5(b), we
increase the window size from 72 to 562. Due to the quadratic complexity of Softmax attention,
Swin-T’s speed drops sharply as window goes larger. On the contrary, InLine-Swin-T with linear
complexity even exhibits higher speed with larger windows. This may be due to the reduction in the
latency caused by the window partition. With a global receptive field, InLine benefits from both high
performance (see Tab. 4) and fast speed. Furthermore, Fig. 5(c) shows the significant computational
advantage of InLine in high-resolution scenarios.
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Table 8: Results of semantic segmentation. The
FLOPs are computed over encoders and decoders
with an input image at the resolution of 512×2048.
S-FPN is short for SemanticFPN [16] model.

Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
InLine-PVT-T S-FPN 127G 16M 39.16 50.63
PVT-S S-FPN 225G 28M 41.95 53.02
InLine-PVT-S S-FPN 168G 25M 42.93 54.58
PVT-L S-FPN 420G 65M 43.49 54.62
InLine-PVT-L S-FPN 298G 55M 44.71 57.17
Swin-T UperNet 945G 60M 44.51 55.61
InLine-Swin-T UperNet 941G 61M 45.57 57.60

Table 9: Comparison of different linear attention
designs using DeiT-T.

Method #Params FLOPs Acc.
Hydra Attn [1] 5.7M 1.1G 68.3

Efficient Attn [28] 5.7M 1.1G 70.2
Linear Angular Attn [40] 5.7M 1.1G 70.8

FLatten [9] 6.1M 1.1G 74.1
InLine (Ours) 6.5M 1.1G 74.5

COCO object detection. Tab. 7 shows that In-
Line attention consistently improves the results
in object detection tasks. For instance, InLine-
PVT-S outperforms PVT-T with 6.7 box AP un-
der similar FLOPs, and InLine-PVT-L surpasses
PVT-M by 3.4 box AP with fewer FLOPs, show-
ing the advantage of InLine attention’s linear
complexity in high-resolution scenarios.

ADE20K semantic segmentation. We employ
our model on two representative segmentation
models, SemanticFPN [16] and UperNet [37].
As depicted in Tab. 8, benefited from injectivity
and effective local modeling ability, Our InLine
achieves better results under all settings with
obviously lower computational cost.

Comparison with SOTA linear attention de-
signs. As shown in Tab. 9, our simple InLine
attention design outperforms various linear at-
tention methods without bells and whistles. Ad-
ditionally, our Inline attention can possibly in-
tegrate with previous designs to achieve better
results, which we leave for future work. For
instance, the advanced focused function in FLat-
ten [9] can also be employed in InLine attention.

5.5 Ablation Study

The effectiveness of our two key designs has been verified and detailed analyzed in Sec. 5.3. In
Tab. 10, we offer additional results to validate the impact of different kernel functions. It is shown
that our InLine attention can effectively work with different kernel functions, further validating the
effectiveness of our method. The ReLU and Exponential functions achieve slightly better results. In
this paper, we use Identity(·) as default for simplicity.

Table 10: Ablation on the impact of different kernel functions based on InLine-Swin-T.

Kernel Function ϕ(·) Identity(·) ReLU() LeakyReLU(·) Exponential(·)
Acc. 82.4 82.5 82.3 82.5

6 Conclusion

In this paper, we shed some light on the core factors leading to the performance gap between linear
and Softmax attention. We identify and validate two fundamental disparities between these two
attention paradigms: injective property and local modeling capability. Injectivity implies that the
attention function assigns distinct attention scores to queries with varying semantics, reflecting
the ability to distinguish different semantics. Using different kernel functions, linear attention’s
non-injectivity results in various semantic confusions. Furthermore, despite being recognized for
their robust long-range modeling capability, attention mechanisms heavily depend on effective local
modeling for impressive results. Thorough empirical validation unequivocally supports our analyses.
Our findings also demonstrate that with the above two properties, linear attention can outperform
Softmax attention with lower computation complexity.
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Appendix

A Mathematical Proof

This section offers mathematical proofs for the three propositions outlined in the main paper.

A.1 Proof of Proposition 1

Proposition 1 (Softmax attention is injective) Given K ∈ RN×d with rank(K) = d and
rank([K,1N×1]) = d+ 1. ∀ p, q ∈ Rd, p ̸= q, we have SK(p) ̸= SK(q).

Proof. To arrive at a contradiction, assume ∃ p, q ∈ Rd, p ̸= q, s.t. SK(p) = SK(q). Then we have:

[
exp(p⊤K1), · · · , exp(p⊤KN )

]⊤ ·
∑N

j=1 exp(q
⊤Kj)∑N

j=1 exp(p
⊤Kj)

=
[
exp(q⊤K1), · · · , exp(q⊤KN )

]⊤
(7)

⇒
[
p⊤K1, · · · , p⊤KN

]
+ c =

[
q⊤K1, · · · , q⊤KN

]
, c = ln

[∑N
j=1 exp(q

⊤Kj)∑N
j=1 exp(p

⊤Kj)

]
(8)

Consider the following two cases:

1. c = 0. Then eq. (8) ⇒ p⊤Kj=q⊤Kj ⇒ K(p− q)=0. As rank(K) = d, we have p = q,
which contradicts the assumption that p ̸= q.

2. c ̸= 0. Then eq. (8) ⇒ p⊤Kj + c= q⊤Kj ⇒ K⊤
j p + c=K⊤

j q ⇒ K⊤
j (p − q)/c= 1.

Therefore, we have K⊤
j (p− q)/c = 1 ⇒ K(p− q)/c = 1N×1, which contradicts the fact

that rank([K, 1N×1]) = d+ 1 and equation Kx = 1N×1 does not have a solution.

Both cases arrive at a contradiction, which proves the original proposition.

Notably, the two assumptions rank(K) = d and rank([K,1N×1]) = d + 1 are easy to satisfy in
real models. In practice, the number of tokens N is usually much larger than head dimension d. For
instance, in the first stage of Swin Transformer [19], N = 562 = 3136 and d = 32. Therefore, we
have K ∈ RN×d, N > d. If rank(K) < d, it indicates that the N key tokens lie in a low-dimension
subspace of Rd. If rank([K,1N×1]) < d + 1, it means that the N key tokens are in a hyperplane
of Rd. Given that N is much greater than d, it is highly likely that the N key tokens have various
directions in Rd, instead of locating in a low-dimension subspace or hyperplane. In this case, it holds
that rank(K) = d and rank([K,1N×1]) = d+ 1.

A.2 Proof of Proposition 2

Lemma 1 (Existence of collinear features in linear attention) Let ϕ : Rd → Rd be a continuous
injective function. ∃p, q ∈ Rd, p ̸= q,∃α ∈ R, α ̸= 0, s.t. ϕ(q) = αϕ(p).

Proof. Let f : U → S, f(x) = ϕ(x)
∥ϕ(x)∥ , U =

{
x | ϕ(x) ̸= 0, x ∈ Rd

}
, S =

{
x | ∥x∥ = 1, x ∈ Rd

}
.

ϕ is a continuous function, so f is continuous on U . ϕ is an injective function, so it has no more than
one zero point. Therefore, U = Rd or

{
x | x ̸= x0, x ∈ Rd

}
is an open subset of Rd, where x0 is

the zero point of ϕ. f(U) ∈ S is not an open set, as every point of f(U) is not an interior point.

Assume f is injective. Then f : U → S is a continuous injective map. According to Brouwer
Invariance of Domain Theorem, U is an open set ⇒ f(U) is also open, which contradicts the fact
that f(U) is not an open set.

Therefore, f is not injective. ⇒ ∃p, q ∈ Rd, p ̸= q, s.t. f(p) = f(q).

⇒ ϕ(q) =
∥ϕ(q)∥
∥ϕ(p)∥

ϕ(p) ≜ αϕ(p), α =
∥ϕ(q)∥
∥ϕ(p)∥

̸= 0. (9)
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Proposition 2 (Linear attention is not injective) Let ϕ : Rd → Rd be a continuous function.
∃ p, q ∈ Rd, p ̸= q, s.t. LK(p) = LK(q).

Proof. Consider the following two cases:

1. ϕ is not injective. ∃p, q ∈ Rd, p ̸= q, s.t. ϕ(p) = ϕ(q) ⇒ LK(p) = LK(q).

2. ϕ is injective. Lemma 1 ⇒ ∃p, q ∈ Rd, p ̸= q,∃α ∈ R, α ̸= 0, s.t. ϕ(q) = αϕ(p).

⇒ LK(q) =

[
αϕ(p)⊤ϕ(K1)∑N
j=1 αϕ(p)

⊤ϕ(Kj)
, · · · , αϕ(p)⊤ϕ(KN )∑N

j=1 αϕ(p)
⊤ϕ(Kj)

]⊤

=

[
ϕ(p)⊤ϕ(K1)∑N
j=1 ϕ(p)

⊤ϕ(Kj)
, · · · , ϕ(p)⊤ϕ(KN )∑N

j=1 ϕ(p)
⊤ϕ(Kj)

]⊤

= LK(p).

(10)

A.3 Proof of Proposition 3

Proposition 3 (InLine attention is injective) Let ϕ : Rd → Rd be an injective map. Given K ∈ RN×d

with rank(ϕ(K))=d and rank([ϕ(K),1N×1])=d+1. ∀p, q ∈ Rd, p ̸= q,⇒ InLK(p) ̸= InLK(q).

Proof. Assume ∃ p, q ∈ Rd, p ̸= q, s.t. InLK(p) = InLK(q). p ̸= q ⇒ ϕ(p) ̸= ϕ(q).

⇒
[
ϕ(p)⊤ϕ(K1), · · · , ϕ(p)⊤ϕ(KN )

]
+ c =

[
ϕ(q)⊤ϕ(K1), · · · , ϕ(q)⊤ϕ(KN )

]
,

c =
1

N

N∑
j=1

ϕ(q)⊤ϕ(Kj)−
1

N

N∑
j=1

ϕ(p)⊤ϕ(Kj).
(11)

The subsequent proof mirrors Proposition 1.

Similar to the analysis in Sec. A.1, rank(ϕ(K)) = d and rank([ϕ(K),1N×1]) = d+1 are easy to
satisfy.

B Complete Experimental Results

We provide complete experimental results on ImageNet-1K classification [5], COCO object de-
tection [18], ADE20K semantic segmentation [44] in Tab. 11, Tab. 12 and Tab. 13. The results
demonstrate that InLine attention module consistently outperforms Softmax counterparts across all
settings, strongly supporting our analyses and fully validating its effectiveness.

C Model Architectures

We summarize the detailed architectures of four Transformer models used in the main paper, including
InLine-DeiT, InLine-PVT, InLine-Swin and InLine-CSwin in Tab.14-18.

D Limitations

In this paper, we shed some light on the core factors leading to the performance gap between linear
and Softmax attention. We identify and validate two fundamental and essential disparities between
these two attention paradigms: injective property and local modeling capability. Firstly, we prove
that linear attention is not injective, which is prone to assign identical attention weights to different
query vectors, thus adding to severe semantic confusion problem. Secondly, we confirm that effective
local modeling is important for the success of Softmax attention, in which linear attention falls short.
The aforementioned two essential differences significantly contribute to the disparities between these
two attention paradigms, which is unequivocally proved by our thorough empirical validation in the
paper. However, there may be other differences between Softmax and linear attention, and this paper
is not exhaustive.
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Table 11: Comparison with baseline models on ImageNet-1K.

Method Reso #Params FLOPs Top-1

DeiT-T [30] 2242 5.7M 1.2G 72.2
InLine-DeiT-T 2242 6.5M 1.1G 74.5 (+2.3)

DeiT-S 2242 22.1M 4.6G 79.8
InLine-DeiT-S 2242 16.7M 5.0G 80.2 (+0.4)

DeiT-B 2242 86.6M 17.6G 81.8
InLine-DeiT-B 4482 23.8M 17.2G 82.3 (+0.5)

PVT-T [33] 2242 13.2M 1.9G 75.1
InLine-PVT-T 2242 12.0M 2.0G 78.2 (+3.1)

PVT-S 2242 24.5M 3.8G 79.8
InLine-PVT-S 2242 21.6M 3.9G 82.0 (+2.2)

PVT-M 2242 44.2M 6.7G 81.2
InLine-PVT-M 2242 37.6M 6.9G 83.2 (+2.0)

PVT-L 2242 61.4M 9.8G 81.7
InLine-PVT-L 2242 50.2M 10.2G 83.6 (+1.9)

Swin-T [19] 2242 29M 4.5G 81.3
InLine-Swin-T 2242 30M 4.5G 82.4 (+1.1)

Swin-S 2242 50M 8.7G 83.0
InLine-Swin-S 2242 50M 8.7G 83.6 (+0.6)

Swin-B 2242 88M 15.4G 83.5
InLine-Swin-B 2242 88M 15.4G 84.1 (+0.6)

Swin-B 3842 88M 47.0G 84.5
InLine-Swin-B 3842 88M 45.2G 85.0 (+0.5)

Table 12: Results on COCO dataset. The FLOPs are computed with an input resolution of 1280×800.

(a) Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

PVT-T 240G 1x 36.7 59.2 39.3 35.1 56.7 37.3
InLine-PVT-T 211G 1x 40.2 62.7 43.8 37.7 59.7 40.4
PVT-S 305G 1x 40.4 62.9 43.8 37.8 60.1 40.3
InLine-PVT-S 250G 1x 43.4 66.4 47.1 40.1 63.1 43.3
PVT-M 392G 1x 42.0 64.4 45.6 39.0 61.6 42.1
InLine-PVT-M 310G 1x 44.0 66.4 48.0 40.3 63.4 43.5
PVT-L 494G 1x 42.9 65.0 46.6 39.5 61.9 42.5
InLine-PVT-L 377G 1x 45.4 67.6 49.7 41.4 64.7 44.6

(b) Cascade Mask R-CNN Object Detection on COCO
Method FLOPs Sch. APb APb

50 APb
75 APm APm

50 APm
75

Swin-S 837G 3x 51.9 70.7 56.3 45.0 68.2 48.8
InLine-Swin-S 835G 3x 52.4 71.0 56.9 45.4 68.8 49.6
Swin-B 981G 3x 51.9 70.5 56.4 45.0 68.1 48.9
InLine-Swin-B 978G 3x 52.6 71.0 57.0 45.4 68.5 49.3
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Table 13: Results of semantic segmentation. The FLOPs are computed over encoders and decoders
with an input image at the resolution of 512×2048. S-FPN is short for SemanticFPN [16] model.

Semantic Segmentation on ADE20K
Backbone Method FLOPs #Params mIoU mAcc
PVT-T S-FPN 158G 17M 36.57 46.72
InLine-PVT-T S-FPN 127G 16M 39.16 50.63
PVT-S S-FPN 225G 28M 41.95 53.02
InLine-PVT-S S-FPN 168G 25M 42.93 54.58
PVT-M S-FPN 315G 48M 42.91 53.80
InLine-PVT-M S-FPN 229G 41M 44.59 57.20
PVT-L S-FPN 420G 65M 43.49 54.62
InLine-PVT-L S-FPN 298G 55M 44.71 57.17
Swin-T UperNet 945G 60M 44.51 55.61
InLine-Swin-T UperNet 941G 61M 45.57 57.60
Swin-S UperNet 1038G 81M 47.64 58.78
InLine-Swin-S UperNet 1035G 81M 48.59 60.73
Swin-B UperNet 1188G 121M 48.13 59.13
InLine-Swin-B UperNet 1183G 122M 49.10 60.57

Table 14: Architectures of InLine-DeiT models.

InLine-DeiT-T InLine-DeiT-S InLine-DeiT-B

InLine Block DeiT Block InLine Block DeiT Block InLine Block DeiT Block
res 14×14

dim 192

head 6

×12 None


res 18×18

dim 320

head 10

×12 None


res 28×28

dim 384

head 12

×12 None

Table 15: Architectures of InLine-PVT models (Part1).

stage output
InLine-PVT-T InLine-PVT-S

InLine Block PVT Block InLine Block PVT Block

res1 56 × 56

Conv4×4, stride=4, 64, LN
win 56×56

dim 64

head 1

×2 None


win 56×56

dim 64

head 1

×3 None

res2 28 × 28

Conv2×2, stride=2, 128, LN
win 28×28

dim 128

head 2

×2 None


win 28×28

dim 128

head 2

×3 None

res3 14 × 14

Conv2×2, stride=2, 320, LN
win 14×14

dim 320

head 5

×2 None


win 14×14

dim 320

head 5

×6 None

res4 7 × 7

Conv2×2, stride=2, 512, LN
win 7×7

dim 512

head 8

×2 None


win 7×7

dim 512

head 8

×3 None
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Table 16: Architectures of InLine-PVT models (Part2).

stage output
InLine-PVT-M InLine-PVT-L

InLine Block PVT Block InLine Block PVT Block

res1 56 × 56

Conv4×4, stride=4, 64, LN
win 56×56

dim 64

head 1

×3 None


win 56×56

dim 64

head 1

×3 None

res2 28 × 28

Conv2×2, stride=2, 128, LN
win 28×28

dim 128

head 2

×3 None


win 28×28

dim 128

head 2

×8 None

res3 14 × 14

Conv2×2, stride=2, 320, LN
win 14×14

dim 320

head 5

×18 None


win 14×14

dim 320

head 5

×27 None

res4 7 × 7

Conv2×2, stride=2, 512, LN
win 7×7

dim 512

head 8

×3 None


win 7×7

dim 512

head 8

×3 None

Table 17: Architectures of InLine-Swin models.

stage output
InLine-Swin-T InLine-Swin-S InLine-Swin-B

InLine Block Swin Block InLine Block Swin Block InLine Block Swin Block

res1 56× 56

concat 4× 4, 96, LN concat 4× 4, 96, LN concat 4× 4, 128, LN
win 56×56

dim 96

head 3

×2 None


win 56×56

dim 96

head 3

×2 None


win 56×56

dim 128

head 3

×2 None

res2 28× 28

concat 2× 2, 192, LN concat 2× 2, 192, LN concat 2× 2, 256, LN
win 28×28

dim 192

head 6

×2 None


win 28×28

dim 192

head 6

×2 None


win 28×28

dim 256

head 6

×2 None

res3 14× 14

concat 2× 2, 384, LN concat 2× 2, 384, LN concat 2× 2, 512, LN

None


win 7×7

dim 384

head 12

×6 None


win 7×7

dim 384

head 12

×18


win 14×14

dim 512

head 12

×2


win 7×7

dim 512

head 12

×16

res4 7× 7

concat 2× 2, 768, LN concat 2× 2, 768, LN concat 2× 2, 1024, LN

None


win 7×7

dim 768

head 24

×2 None


win 7×7

dim 768

head 24

×2 None


win 7×7

dim 1024

head 24

×2
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Table 18: Architectures of InLine-CSwin models.

stage output
InLine-CSwin-T InLine-CSwin-S InLine-CSwin-B

InLine Block CSwin Block InLine Block CSwin Block InLine Block CSwin Block

res1 56× 56

Conv7×7, stride=4, 64, LN Conv7×7, stride=4, 64, LN Conv7×7, stride=4, 96, LN
win 56×56

dim 64

head 2

×2 None


win 56×56

dim 64

head 2

×3 None


win 56×56

dim 96

head 4

×3 None

res2 28× 28

Conv3×3, stride=2, 128, LN Conv3×3, stride=2, 128, LN Conv3×3, stride=2, 192, LN
win 28×28

dim 128

head 4

×4 None


win 28×28

dim 128

head 4

×6 None


win 28×28

dim 192

head 8

×6 None

res3 14× 14

Conv3×3, stride=2, 256, LN Conv3×3, stride=2, 256, LN Conv3×3, stride=2, 384, LN

None


win 7×14

dim 256

head 8

×18 None


win 7×14

dim 256

head 8

×29 None


win 7×14

dim 384

head 16

×29

res4 7× 7

Conv3×3, stride=2, 512, LN Conv3×3, stride=2, 512, LN Conv3×3, stride=2, 768, LN

None


win 7×7

dim 512

head 16

×1 None


win 7×7

dim 512

head 16

×2 None


win 7×7

dim 768

head 32

×2
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Sec. D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides a full set of assumptions and a complete, correct proof for
the theoretical results, i.e., the propositions, in Sec. A of the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper in Sec. 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available at https://github.com/LeapLabTHU/InLine.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details in Sec. 5 and Sec. 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the computer resources in Sec. 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics,
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work focuses on attention mechanism and has no direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks as it is a foundational research focusing on
attention paradigm.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use all assets properly according to their licenses, and give credits to the
creators in Sec. 5.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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