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ABSTRACT

Recently, generative models based on the diffusion process have emerged as a
promising direction for automating the design of molecules. However, directly
adding continuous Gaussian noise to discrete graphs leads to the problem of the fi-
nal noisy data not conforming to the standard Gaussian distribution. Current graph
diffusion models either corrupt discrete data through a transition matrix or relax
the discrete data to continuous space for the diffusion process. These approaches
not only require significant computation resources due to the inclusion of the bond
type matrix but also cannot easily perform scalable conditional generation, such
as adding cross-attention layers, due to the lack of embedding representations.
In this paper, we introduce the Graph Latent Diffusion Model (GLDM), a novel
variant of latent diffusion models that overcomes the mismatch problem of con-
tinuous diffusion space and discrete data space. Meanwhile, the latent diffusion
framework avoids the issues of computational resource consumption and lack of
embeddings for conditional generation faced by current graph diffusion models.
However, it only utilizes graph-level embeddings for molecule generation, losing
node-level and structural information. Therefore, we further extend the GLDM
to the Latent Diffusion Model for Hierarchical Graph (HGLDM). By including
node embeddings and subgraph embeddings that contain structural information,
our model significantly reduces computation time compared to the current graph
diffusion models. We evaluate our model on four benchmarks through the uncon-
ditional generation and conditional generation tasks, demonstrating its superior
performance.

1 INTRODUCTION

Molecule generation is the process of creating novel molecular structures with desired properties and
functions for various applications such as drug discovery, material engineering, and chemical syn-
thesis (Chen et al.,2018)). Recently, diffusion-based generative models have emerged as a promising
direction for the automated design of molecules. These diffusion models are a class of probabilistic
models that learn to generate realistic data by reversing a stochastic diffusion process that gradually
transforms data into noise, which has achieved remarkable success in various image generation tasks
such as image inpainting and image-to-text translation (Croitoru et al.,|2023). However, most of the
previous diffusion models rely on continuous Gaussian noise, which may lead to the final noisy data
not conforming to the standard Gaussian distribution since the mismatch problem of continuous
diffusion space and discrete data space (Niu et al.| 2020).

Existing diffusion-based approaches for generating discrete graphs can be broadly classified into
two types: one type employs transition matrices to iteratively modify discrete features as a way
of controlling the forward corruption process (Austin et al. [2021). However, these approaches
sacrifice the random exploration ability to ensure that the final noisy data conforms to the appropriate
discrete category distribution. The other type relaxes discrete features to continuous features, but
this type incurs a high memory cost due to the bond type matrices, limiting its applicability to large-
scale datasets (Haefeli et al.,[2022). In addition, due to the lack of embedding representation, these
methods are difficult to extend, such as introducing conditional cross-attention layers.

Inspired by the achievements of latent diffusion (Rombach et al.| 2022)) in computer vision, we first
introduce the Graph Latent Diffusion Model (GLDM), a novel variant of latent diffusion models for
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Figure 1: The motivations of the proposed methods. Motivation 1: We introduce GLDM to overcome the
mismatch problem of continuous diffusion space and discrete data space. At the same time, this latent dif-
fusion framework provides less compute consumption and scalable embeddings for conditional generation.
Motivation 2: We propose HGLDM to capture node-level and structural information. This approach improves
conditional generation by capturing the relationship between subgraphs and molecular properties.

molecule generation in continuous space, to overcome the mismatch problem of continuous diffu-
sion space and discrete data space (see Figure (1} Motivation 1). Based on this framework, GLDM
also addresses the issues of high computational cost and lack of latent embeddings for conditional
generation that exist in other graph diffusion models. However, this method encounters the problem
of insufficient node-level information and structural information when sampling exclusively in the
graph-level latent space, leading to sub-optimal graph-level diffusion outcomes.

Therefore, we further propose the Latent Diffusion Model for Hierarchical Graph (HGLDM) in a
hierarchical manner to involve more information on graphs (see Figure |1 Motivation 2). HGLDM
extends GLDM to 3 hierarchical levels of latent space, namely node-level, subgraph-level (sub-
structure-level), and graph-level (structure-level) latent spaces. We first employ the hierarchical
autoencoder to encode hierarchical embeddings within molecules. Then, we propose a hierarchi-
cal diffusion model to generate hierarchical embeddings on continuous space. Based on the latent
diffusion framework, we can achieve conditional molecule generation by using cross-attention to
combine the desired molecular properties with the hierarchical embeddings. Our contributions are
summarized as follows:

* We propose a Latent Diffusion Model for Hierarchical Graph (HGLDM) that leverages the idea
from the latent diffusion framework by incorporating node-level and subgraph-level information
into graph embeddings. This framework avoids the computational resource consumption that
is typically associated with the diffusion process on bond type matrices, while still preserving
hierarchical structure information.

* The proposed model’s embedding representation provides a scalable solution for conditional
molecule generation, allowing for the incorporation of desired molecular properties using cross-
attention. This enables the HGLDM to generate diverse and high-quality molecular structures
that meet various targets, while also possessing the ability to explore the relationship between
subgraphs and molecular properties.

* We also evaluate the naive latent diffusion framework with graph-level embeddings, i.e., the graph
latent diffusion model (GLDM). GLDM generates graph embeddings to overcome the mismatch
problem of continuous diffusion space and discrete data space faced by traditional diffusion-
based approaches. However, we observe that GLDM leads to sub-optimal graph-level diffusion
outcomes.

We further evaluate our model on four benchmark datasets and compare our model with several
state-of-the-art baselines on unconditional and conditional generation tasks, which demonstrate its
superior performance.

2 PROBLEM DEFINITION

A molecular graph is represented by the tuple G = (V, E) with atom set V. = {vq,--- ,v,}, bond
type set E = {e(,, »,)|vi,v; € V}. We denote by n = |V| and m = |E| the number of atoms and
bonds in G, respectively. Each atom and bond has a corresponding categorical label, we denote by
X ={z1, - ,x,} the atom types, by e(,, ,,,) the bond type between atom v; and atom v;. Given
a set of training molecular graphs sampled from the data distribution ¢(G), the goal of molecular
generation is to learn the distribution of the observed set of molecular graphs p(G). By sampling
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Figure 2: Overall framework of GLDM and HGLDM. While GLDM encounters the problem of insufficient
node-level and structural information when sampling in the graph-level latent space, HGLDM (2b) alleviates
this problem by incorporating the node-level and subgraph-level information with a hierarchical design.

a graph Gey ~ p(G), the new molecule can be generated. In this paper, we aim to solve the
molecular generation problem by training the diffusion model based on training data.

3 DIFFUSION MODELS

The diffusion model (Sohl-Dickstein et al.| 2015) is a type of generative model that consists of two
Markov chains: a forward diffusion process and a reverse denoising process.

Forward Diffusion Process. Given a data sample zg ~ ¢(zo), the forward diffusion process
q(z1.7|20) = Hthl q(z¢|z¢—1) generates a sequence of increasingly noisy latent variables z;.7 =
Z1,Zo,- - ,Z7 by gradually adding Guassian noise to corrupt the data sample zy. The forward
diffusion process at time step t is defined as q(z;|z;—1) = N (z4; /1 — Bizi—1, B I), where the
hyperparameter 3; € (0, 1) controls the amount of Gaussian noise N mixed with z;_; at time step
t. B1.r is determined by the noise schedule to ensure that the final latent variable z; approximates
a standard Gaussian noise, i.e., zp ~ N(O, I).

Reverse Denoising Process. The reverse denoising process aims to generate data sample zy by
denoising the noisy variables zr.; toward target data distribution iteratively. However, since the
reverse denoising process at each time step g(z;—1|z;) is intractable, a parameterized Gaussian
transitions py(z;—1|2¢) is designed to approximate the q(z;_1|z:) at each time step as pg(z:—1|z:) =
N (z¢_1; po(z¢,t),0%T), where the means py denotes a neural network with learnable parameters
6, and the variances o2 are predefined. The parameterized reverse denoising process is then defined

as pg(zo.r) = p(z7) Hz;l po(zi—1|21), where p(zr) is a standard Gaussian distribution.

4 LATENT DIFFUSION MODEL FOR HIERARCHICAL GRAPH

In this section, we first introduce the Latent Diffusion Model for Hierarchical Graph (HGLDM), as
illustrated in Figure We introduce the hierarchical autoencoder at the beginning, which maps
discrete molecular features to continuous hierarchical latent space in Section @ Next, we elab-
orate on the hierarchical diffusion model in Section which considers information interaction
across atoms, subgraphs, and the whole graph in the latent space. Then, we describe the training
and sampling processes of HGLDM in Section4.3] In Section[d.4] we introduce a conditional gen-
eration method. Finally, Section describes our initial idea of applying the naive latent diffusion
framework for graphs named as graph latent diffusion model (GLDM) formulated in Figure

4.1 HIERARCHICAL AUTOENCODER

Due to the memory-intensive and time-consuming nature of directly performing the diffusion pro-
cess on the bond type matrix, most diffusion-based graph generation methods encounter challenges
in generating large-scale molecules. To address this, we employ subgraph embeddings as substi-
tutes for bond embeddings which incorporate subgraphs as local structural information. To compre-
hensively encode the molecular information, we also introduce fine-grained atom embeddings and
coarse-grained graph embedding, facilitating a hierarchical encoding of the molecule.

4.1.1 ENCODER AND DECODER

We denote by zX € R™*% the atom embeddings, by z € R"*%m the subgraph embeddings
representing the subgraphs each atom belongs to, and by z& € R'*% the graph embedding. The
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Encoder &£4 and Decoder D, are formulated as follows:

q¢(zX,zM,zG\X,E) =N(&s(X,E),oI),

n n n
, , (1)
pw (Xa E‘zxa zjuv ZG) = le/1(11|sz Z]ua ZG) H H pw(e(’1)7,,'z)])|zxv Z]wa ZG)a
i=1 i=1j=1,j#i

where ¢ and 1 are the trainable parameters of the Encoder £, and Decoder D,;, respectively. In
this paper, we evaluate the state-of-the-art VAE-based method, PS-VAE (Kong et al., [2022)), for
implementing the molecular autoencoder. In PS-VAE, the authors first propose a Principal Sub-
graph method to extract subgraphs, then they utilize GIN (Xu et al.,|2019) with edge features as the
Encoder to convert molecular graph G into hierarchical latent embeddings. The Decoder, an autore-
gressive model implemented with a single GRU (Cho et al.,|2014) layer, converts latent embeddings
into a sequence of graph fragments. Lastly, the link predictor predicts connections between these
fragments to construct the molecule. However, our proposed framework is not limited to this spe-
cific model. Alternative models such as JTVAE (Jin et al., [2018)), HierVAE (Jin et al., 2020), and
MiCaM (Geng et al.,[2022) can also be considered for this purpose.

4.1.2 TRAINING LOSS
The autoencoder is trained by minimizing the reconstruction loss and Kullback-Leibler (KL) loss:

Lag = Lrec + 7LKL
= 7Eq¢(zx ,zM,zG\X,E)de (X7 E|ZX7 ZM; ZG) (2)
+ 9Dk 1(gs(z", 2™, 29X, E)||p(z”, 2", 29)),

where v is a hyperparameter used to set the weight of the KL loss. We use the KL loss to align the
latent space features with the standard Gaussian distribution p(zX, 2z, z%). The training loss L
balances the reconstruction error and the KL-divergence between the prior and the posterior distri-
butions of the latent embeddings, providing a lower bound on the log-likelihood of the data (Kingma
& Welling, 2014)). This results in a compact and meaningful latent space for generating appropri-
ate hierarchical embeddings in Hierarchical Diffusion. To differentiate different time steps in the

diffusion model, we denote z*, z, and z& as z;, 2}, and z§ in the subsequent sections.

4.2 HIERARCHICAL DIFFUSION MODEL

Given the latent hierarchical embeddings z{, z))!, and z§ encoded by the Molecular Encoder £,
the hierarchical diffusion model generates noisy latent variables z;X, z/, and z& during the forward
diffusion process. During the reverse denoising process, we sample the initiate embeddings z+,
zévf , and zg from the standard Gaussian distribution. We propose a Hierarchical Denoising Neural

Network to predict the noises ¢, éM, and € at each reverse denoise step.

4.2.1 HIERARCHICAL DENOISING NEURAL NETWORK

Figure [3a]illustrates the architecture of the Hierarchical Denoising Neural Network. First, we apply
a Multi-Layer Perceptron (MLP) to each of these embeddings to obtain their corresponding latent
representations h;¥, h}, and h{, respectively:

hX = MLP(zX),hM = MLP(zM), h& = MLP(z¢). 3)
Next, we input these latent representations into the Hierarchical Block.

Hierarchical Block. The Hierarchical Block is a module that processes and combines the latent
representations in a hierarchical manner, taking into account the relationships between atomic-level
representations, subgraph-level representations, and global graph-level representations, its architec-
ture is shown in Figure The update process for each level is as follows:

1. Update atom embeddings: For atom and subgraph embeddings, we apply an MLP transformation
to each level and then sum the resulting embeddings to update the atom embeddings:

h¥" = MLP(h;") + MLP(h}). )
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(a) Unconditional generation. (c) Conditional generation.

Figure 3: Hierarchical Denoising Neural Network.

(b) Hierarchical block of denoising model.

2. Update subgraph embeddings: First, we compute the attention scores between subgraph embed-
dings and atom embeddings using dot product. Next, we update the subgraph embeddings by
multiplying the attention scores with the MLP-transformed atom embeddings. Finally, we incor-
porate the original subgraph-level information into the updated subgraph embeddings:

b =3 softmax (h%hij) MLP(h;Y;) + h}". 5)
J

3. Update graph embeddings: In the process of updating graph embeddings, we first use Princi-
pal Neighbourhood Aggregation (PNA) pooling (Corso et al.| |2020) to obtain atom-level repre-
sentation and subgraph-level representation. Then, atom-level representation and subgraph-level
representation are combined with the MLP-transformed graph embedding:

h& = PNA(h) + PNA(hM) + MLP(h$). (6)

In the hierarchical block, we use different MLP functions to indicate that these transformations have

separate parameters and are not shared between different operations. These updated embeddings,

h¥ ’ hM ", and htG/ are then used as the input for the next layer of the Hierarchical Block.

Subsequently, we use another set of MLPs to predict the atomic-level noise, subgraph-level noise,
and graph-level noise from the Hierarchical Block’s output. We then add these predictions as resid-
ual connections to the original input embeddings:

& =25 + MLP(h)X),eM = zM + MLP(h'), e = z& + MLP(h$"). 7
X

These predicted noise values, €;, éé” , and étG , are used to update the embeddings during the reverse
denoising process. By incorporating the hierarchical structure into the denoising model, our method
effectively captures the relationships between different levels of molecular features and generates
more accurate and diverse molecular structures.

4.3 TRAINING AND SAMPLING

In this section, we describe the training and sampling procedures of the Latent Diffusion Model for
Hierarchical Graph (HGLDM) in detail.

Training. The training process of the HGLDM consists of two stages, as described in Algorithm 1 in
the Appendix[A] In the first stage, we train the molecular autoencoder, which includes the molecular
encoder £; and molecular decoder Dy,. We optimize the objective function £ 4 g, which consists
of the reconstruction loss Lg.. and the Kullback-Leibler (KL) divergence loss L ., weighted by a
hyperparameter y. We continue optimizing until the parameters ¢ and v have converged.

In the second stage, we train the hierarchical denoising neural network €y together with the encoder
E4. We optimize the objective function £, which is the expected squared error between the denoising
neural network’s output and the original noise, weighted by the reweighting terms w(t¢). We continue
optimizing until the parameters 6 and ¢ have converged.

Sampling. The sampling process of the HGLDM, as described in Algorithm 2 in Appendix
involves generating new molecules using the trained model. To generate a new molecule, we first
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sample the initial latent variables zX., z), z$ from a standard Gaussian distribution. We then perform

a reverse diffusion process by iterating through the diffusion time steps 7. In each step, we sample a
noise vector € and update the latent variables according to the hierarchical denoising neural network
€y and the noise schedule. Finally, we decode the latent variables 23X, 23!, 2§ using the molecular
decoder D, to obtain the generated molecule’s atom features X and edge features E.

4.4 CONDITIONAL GENERATION

In this section, we introduce a conditional generation approach that leverages cross attention to
incorporate molecular properties as conditions for generating molecules with specific properties, the
architecture is shown in Figure

Given the updated atomic embeddings h;X, subgraph embeddings h}, and graph embedding h¢
after the multi-layer hierarchical blocks, we aim to condition the generation process on the specific
molecular properties. Let s = {s1, o, - - - } denote the molecular property embedding, where each
dimension represents a specific molecular property. We first process atomic embeddings, subgraph
embeddings, graph embeddings, and molecular property embedding s through the MLP to obtain
query, key, and value representations:

QY = MLP(h*), Q" = MLP(h}¥), QY = MLP(h{), K = MLP(s),V = MLP(s).  (8)

The cross-attention mechanism consists of two main steps: computing the attention scores and up-
dating the embeddings using the attention scores and values. First, the attention scores are calculated
using the dot product between the query and key representations, followed by a softmax operation
for normalization:

afj(- = softmax(QZXKjT/\/a), afvjf = softmax(Qf\/[K]T/\/@), a]G = softmax(QGKJT/\/dik.)7
where dj, is the key dimension. The attention scores o;; capture the relevance between the atomic
(subgraph) embeddings and desired molecular properties. Next, the updated embeddings are ob-
tained by computing the weighted sum of the value representations using the attention scores:

X M G
B =D afVi ' =3 alfVily =) afV, ©
J J J
The updated atomic embeddings h’;*, subgraph embeddings h’;”, and graph embeddings h’ tG now
contain information about the specific molecular properties, which guides the generation process

towards molecules with the desired properties.

4.5 GRAPH LATENT DIFFUSION MODEL

As illustrated in Figure @ for GLDM, we first train an autoencoder, such as the classic VAE or
the aforementioned hierarchical VAE models. These models are capable of obtaining node-level
embeddings z{ through the encoder and then generating graph-level embeddings z$, via a pooling
operation. The decoder then reconstructs the discrete molecular data from the graph-level embed-
dings. Subsequently, we train a diffusion model to explore the generative capabilities of various
graph-level embeddings. In this process, we employ the MLPs as the denoising model. Further-
more, we achieve conditional generation by performing cross-attention between the latent graph
embeddings and the given conditional embeddings.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed Latent Diffusion Model for Hierarchical
Graph (HGLDM) on molecule generation tasks using benchmark datasets, state-of-the-art baselines,
and various evaluation metrics. We conduct experiments on both unconditional and conditional
molecule generation tasks, analyzing the results and computational efficiency of our model. The
experimental setups are detailed in Appendix [B]

5.1 UNCONDITIONAL GENERATION

Computational Efficiency. We compare the computational efficiency of GLDM and HGLDM
with the baseline methods by measuring the training and sampling times on the GuacaMol dataset.
The experimental results in Table [T] demonstrate that GLDM and HGLDM significantly out-
perform diffusion-based methods GDSS and DiGress in terms of computational efficiency, be-
ing approximately 3.6 to 4.3 times faster than DiGress during training and 83.5 to 123.4 times
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faster during sampling on the GuacaMol dataset. This highlights the effectiveness of our mod-
els for large-scale molecule generation tasks, where efficiency is a crucial factor to consider.

Quantitative Results. Table [2] presents Table I: Training and sampling speed for our models
our experimental results of the unconditional and the baselines on GuacaMol.

molecule generation tasks. The results demon- Methods # of Params Training (h) Sampling (h)

strate that our proposed methods consistently

achieve superior or competitive performance PS-VAE 637K 12.58 0.17
across the QM9, ZINC250K, GuacaMol and GDSS 76.5K 63.22 8.32
MOSES datasets. Compared to PS-VAE, our DiGress 4.6M 109.00 21.14
models demonstrate superior uniqueness, nov- 51 pMm 549K 2411 0.17
elty, diversity, FCD, and NSPDK MMD. Fur-  psipM 2.0M 25'17 0'25

thermore, they significantly surpass diffusion-
based methods regarding validity, novelty and diversity, showcasing their enhanced performance. In
addition, compared to diffusion-based methods, our approaches achieve comparable unique results
with fewer parameters and less time consumption. This highlights the advantages of the graph latent
diffusion framework in generating more innovative and valid molecular structures. Although the
proposed method does not achieve the best results in FCD and NSPDK MMD, this is mainly limited
by the VAE backbone model, and we have improved upon PSVAE in terms of FCD and NSPDK
across all the datasets. Furthermore, unlike general graph generation, which focuses more on learn-
ing the distribution of structures and features, comparing feature similarity in molecular generation
without considering molecular properties lacks practical value.

Table 2: Results of unconditional generation on QM9, ZINC250K, GuacaMol and MOSES.

Datasets Methods Valid 1 Uniquet Novelty T Diversity T FCDJ NSPDK MMD.

GDSS  0.957 4 0.000 0.982 + 0.003 0.988 4 0.001 0.925 + 0.000 2.959 +0.040  0.003 £ 0.000
DiGress 0.992 £ 0.003 0.960 + 0.001 0.391 £ 0.001 0.920 £ 0.000 2.123 +0.033  0.001 £ 0.000

QM9 PS-VAE 1.000 = 0.000 0.981 £ 0.002 0.996 £ 0.000 0.881 £ 0.000 16.877 & 0.059 0.059 £ 0.000

GLDM  1.000 £ 0.000 0.982 4+ 0.001 0.996 £ 0.000 0.884 £ 0.000 14.829 £ 0.169 0.050 £ 0.001
HGLDM 1.000 £ 0.000 0.985 + 0.002 0.997 4 0.000 0.884 £ 0.000 14.576 & 0.183 0.047 £ 0.001

GDSS  1.000 £ 0.000 0.997 4 0.001 1.000 +£ 0.000 0.902 £ 0.000 16.086 = 0.071 0.018 £ 0.000
DiGress  0.565 # 0.005 1.000 £ 0.000 1.000 + 0.000 0.882 £ 0.000 13.042 4 0.164 0.031 4 0.001

ZINC250K PS-VAE  1.000 £ 0.000 0.993 + 0.001 1.000 & 0.000 0.912 4 0.000 20.386 & 0.061 0.085 + 0.001

GLDM  1.000 £ 0.000 0.994 + 0.001 1.000 & 0.000 0.913 £ 0.000 20.444 £ 0.088 0.086 £ 0.001
HGLDM 1.000 £ 0.000 0.997 + 0.001 1.000 £ 0.000 0.914 + 0.000 19.913 & 0.091 0.084 £ 0.000

GDSS 1.000 £ 0.000 0.986 £ 0.001 0.996 4+ 0.001 0.892 + 0.000 40.291 £ 0.072  0.058 + 0.000
DiGress 0.875 4 0.005 1.000 £ 0.000 0.999 4 0.001 0.904 + 0.000 12.069 + 0.051 0.018 £ 0.000

PS-VAE 1.000 £ 0.000 0.998 4 0.000 0.998 £ 0.000 0.905 £ 0.000 24.105 £ 0.082 0.090 £ 0.000

GLDM  1.000 £ 0.000 0.998 4 0.000 0.998 £ 0.000 0.904 £ 0.000 23.879 £ 0.041 0.095 £ 0.000
HGLDM 1.000 £ 0.000 0.999 & 0.001 0.999 +£ 0.000 0.905 £ 0.000 23.845 £ 0.098 0.095 £ 0.001

GDSS 1.000 £ 0.000 0.994 £ 0.003 0.999 £ 0.000 0.899 4 0.000 21.265 £ 0.249  0.037 £ 0.005
DiGress  0.858 + 0.005 1.000 £ 0.000 0.996 + 0.001 0.886 £ 0.000 9.228 + 0.081  0.010 + 0.000

MOSES PS-VAE 1.000 £ 0.000 0.999 +£ 0.000 1.000 & 0.000 0.905 £ 0.000 26.401 & 0.078 0.079 £ 0.000

GLDM  1.000 £ 0.000 0.998 + 0.000 1.000 £ 0.000 0.905 + 0.000 26.365 & 0.095 0.077 £ 0.001
HGLDM 1.000 £ 0.000 0.999 £ 0.000 1.000 £ 0.000 0.906 + 0.000 25.815 + 0.053 0.072 + 0.000

Guacamol

Ablation Study. As shown in Table |ZL comparing PS-VAE, GLDM, and HGLDM, both GLDM
and HGLDM outperform PS-VAE with higher uniqueness and novelty scores, showcasing their ef-
fectiveness in generating diverse and novel molecular structures. Additionally, compared to GLDM,
the incorporation of atom embeddings and subgraph embeddings in HGLDM enhances its ability to
capture complex structural information, resulting in more innovative molecular structures.

5.2 INTERPOLATION OF LATENT EMBEDDINGS

To showcase the improvements offered by the latent diffusion framework over traditional diffusion
models (Jo et al.| 2022af |[Vignac et al) [2023) in molecular generation, we conduct an interpolation
experiment on latent embeddings. We select 100 molecules with the highest QED (Quantitative
Estimate of Drug-likeness) (Bickerton et al.l|2012)) and 100 molecules with the highest PlogP (Pe-
nalized logP) (Kusner et al.,|2017) from the ZINC250K dataset. Utilizing this sampled dataset, we
train the PSVAE and HGLDM models and carry out three sets of experiments: QED Interpolation,
PlogP Interpolation, and Mixed Interpolation. QED Interpolation involves using only latent em-
beddings with high QED values, while PlogP Interpolation uses only those with high PlogP values.
Mixed interpolation combines latent embeddings with high QED and high PlogP values. In each
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(d) QED Interpolation on HGLDM (e) PlogP Interpolation on HGLDM (f) Mixed Interpolation on HGLDM
Figure 4: The results of interpolating latent embeddings of the PSVAE and HGLDM. We interpolate latent
embeddings with high QED values (i.e., (a) and (d)), latent embeddings with high PlogP values (i.e., (b) and
(e)), and mixed latent embeddings with high QED and PlogP attribute values (i.e., (c) and (f)).

interpolation, we randomly sample two latent embeddings, z&* and 2“2, and generate the interpo-
lated embeddings G’ through z&' = AzG" + (1 — A\)z&2, where A € (0,1). In QED Interpolation
and PlogP Interpolation, we set the expected minimum QED to be 0.94 and the minimum PlogP to
0.89 and output 10 interpolated embeddings that first reached the expected minimum values. In the
Mixed interpolation experiment, we randomly interpolate ten embeddings.

We employ t-SNE (Van der Maaten & Hintonl [2008) to visualize the corresponding latent embed-
dings and interpolated embeddings in Figure ] Additionally, we annotate the average property
values of the molecules decoded from the interpolated embeddings. From Figure [d we can draw
two key conclusions. Firstly, the clear boundaries between embeddings of different properties in
the scatter plot, along with the high property values retained by the interpolated embeddings, sug-
gest that latent embeddings can effectively distinguish between molecules with varying property
values. This provides a solid foundation for further conditional generation using these latent embed-
dings. Secondly, latent embeddings trained by HGLDM capture more distinct features of different
property values compared to PS-VAE latent embeddings, as evidenced by the farther distances be-
tween HGLDM latent embeddings with different property values and the higher property values of
molecules decoded from HGLDM latent embeddings interpolation. This highlights the enhancement
of the latent diffusion framework over VAE-based models.

5.3 CONDITIONAL GENERATION

To evaluate the conditional generation capabilities of HGLDM, we conduct an experiment on a set
of 100 molecules sampled from the test dataset of ZINC250K and calculate their QED (Quantitative
Estimate of Drug-likeness) (Bickerton et al.l 2012), SA (Synthetic Accessibility)
2009), and PlogP (Penalized logP) (Kusner et al.l 2017) values as the conditioning values
during training. The ablation study of the conditional generation can be found in Appendix [C.1]

Quantitative Results. For GDSS, we employ MOOD which uses classifier guid-
ance based on GDSS, as its conditional generation framework. For DiGress, we concatenated the
molecular property values to the graph-level features as additional features. The performance of
each model is assessed by comparing the mean absolute error (MAE) between the target properties
and the properties of the generated molecules, as shown in Table [3] The results show that both
HGLDM and GLDM, which employ cross-attention mechanisms, outperform DiGress on all prop-
erty generation tasks and outperform GDSS on single property generation tasks. This demonstrates
the advantage of the latent diffusion framework in capturing the relationships between latent molec-
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Table 3: MAE results of conditional generation on ZINC250K, the values in parentheses represent the standard
deviation of the absolute error.

Models Task QED SA PlogP QED&SA&PlogP

GDSS Unconditional ~ 0.437(0.006)  0.058(0.025)  0.114(0.044) 0.176(0.027)
Conditional 0.435(0.009)  0.033(0.007)  0.077(0.020) 0.182(0.012)

. Unconditional  0.859(0.009)  0.679(0.010)  0.788(0.013) 0.775(0.010)
DiGress  Conditional  0.531(0.018) 0.152(0.011)  0.173(0.024) 0.207(0.019)

Unconditional  0.414(0.005)  0.065(0.008)  0.099(0.012)  0.191((0.008)
GLDM Conditional  0.404(0.005)  0.063(0.010)  0.094(0.011) 0.187(0.009)

Unconditional  0.415(0.005)  0.063(0.013)  0.085(0.010) 0.188(0.009)
HGLDM  Conditional  0.348(0.018)  0.021(0.010)  0.068(0.004) 0.185(0.008)

ular embeddings and properties. In multi-properties generation, although GDSS performs the best,
its conditional generation results are slightly worse compared to unconditional generation. Addi-
tionally, GDSS exhibits significant variance in the unconditional generation, resulting in unstable
generated results. We also note that DiGress generates many invalid molecules during the condi-
tional generation process, possibly due to the limitations of concatenating molecular properties as
conditions, which cannot be effectively learned by node features and chemical bond features in the
denoising network. Comparing HGLDM to GLDM, we observe that different from the slight im-
provement in unconditional generation task, HGLDM can significantly improve the performance
over GLDM in conditional generation task. This is because the properties of molecules are often de-
termined by distinctive functional groups (subgraphs). The hierarchical embeddings in HGLDM can
effectively learn the influence of molecular properties on subgraphs, enabling the model to generate
molecules with desired properties more accurately. Additionally, HGLDM achieves better results
than both GLDM and DiGress, even in the unconditional setting. This highlights the effectiveness
of the hierarchical structure in capturing more information about molecular properties.

6 RELATED WORK

Diffusion-based Molecule Generation. In recent years, generative models based on diffusion pro-
cesses have emerged as a promising direction for molecular automated design (Liu et al., 2023} |Lee
et al.,[2023)). Most of the previous diffusion models have the mismatch problem of continuous diffu-
sion space and discrete data space (Niu et al.,|[2020). To address this limitation, recent works (Haefeli
et al., 2022} |Chen et al.| 2022} [Vignac et al.| 2023} |Luo et al., 2022)) have proposed to utilize dis-
crete noise instead of Gaussian noise. Besides those methods on graph structures, there are also
several works that define diffusion models in 3D atomic positions (Irippe et al., [2022; Hoogeboom
et al.| [2022} Bao et al.l [2022; Huang et al., 2022; |Qiang et al.| [2023} Xu et al., [2023). To the best
of our knowledge, our proposed method is the first work that incorporates the hierarchical structure
information into the design of discrete denoising diffusion model for the molecule generation.

Hierarchical Graph Learning. Hierarchical graph learning extends GNNs by incorporating mul-
tiple levels of abstraction and resolution in the graph, which can capture both local and global infor-
mation about the graph (Gao et al., [2023} |Defferrard et al.,2016; Ying et al.| 2018};|Gao & Ji,{2019).
It was only recently that the power of graph hierarchy in graph generation has been explored (Jin
et al., 2020; Kuznetsov & Polykovskiyl 20215 |Qu & Zou, |2022; |[Karami & Luol 2023). Despite
some differences, all of these methods learn the hierarchy for graph generation using VAEs, GANS,
or normalizing flows. In contrast, our hierarchy is constructed to incorporate the diffusion model on
graphs in the discrete space.

7 CONCLUSION AND FUTURE WORK

In this work, we propose the Graph Latent Diffusion Model (GLDM) and the Latent Diffusion Model
for Hierarchical Graph (HGLDM) as novel approaches for molecule generation. These models ef-
fectively address the challenges of time consumption and lack of latent embedding for conditional
generation faced by previous diffusion-based approaches. Specifically, compared to traditional ap-
proaches, HGLDM learns both the structural and molecular property information of molecules by
incorporating hierarchical embeddings. Our experiments on benchmark datasets demonstrate the su-
perior performance of HGLDM in both unconditional and conditional molecule generation, show-
casing its ability to generate diverse and high-quality molecules that meet various objectives. As
future work, our model can be further extended to incorporate language models for multimodal con-
ditional generation, such as using MoleculeSTM (Liu et al.,|2022) to describe the desired molecular
properties and guide the HGLDM for conditional generation.



Under review as a conference paper at ICLR 2024

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981-17993, 2021.

Fan Bao, Min Zhao, Zhongkai Hao, Pei-Yun Li, Chongxuan Li, and Jun Zhu. Equivariant energy-
guided sde for inverse molecular design. ArXiv, abs/2209.15408, 2022.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90-98, 2012.

Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database gdb-13. Journal of the American Chemical Society, 131(25):
8732-8733, 2009.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096-1108, 2019.

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. The rise
of deep learning in drug discovery. Drug discovery today, 23(6):1241-1250, 2018.

Xiaohui Chen, Yukun Li, Aonan Zhang, and Li-ping Liu. Nvdiff: Graph generation through the
diffusion of node vectors. arXiv preprint arXiv:2211.10794, 2022.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pp. 1724-1734. ACL, 2014. doi: 10.3115/v1/d14-1179. URL
https://doi.org/10.3115/v1/d14-11709.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Veli¢kovi¢. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260-13271, 2020.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Pro-
ceedings of the 26th International Conference on Machine Learning, pp. 255-262. Omnipress;
Madison, WI, USA, 2010.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS, 2016.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of cheminfor-
matics, 1:1-11, 2009.

Hongyang Gao and Shuiwang Ji. Graph u-nets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44:4948-4960, 2019.

Zi-Chao Gao, Chenran Jiang, Jiawen Zhang, Xiaosen Jiang, Langing Li, Peilin Zhao, Huanming
Yang, Yong Huang, and Jia Li. Hierarchical graph learning for protein—protein interaction. Nature
Communications, 14, 2023.

Zijie Geng, Shufang Xie, Yingce Xia, Lijun Wu, Tao Qin, Jie Wang, Yongdong Zhang, Feng Wu,

and Tie-Yan Liu. De novo molecular generation via connection-aware motif mining. In The
Eleventh International Conference on Learning Representations, 2022.

10


https://doi.org/10.3115/v1/d14-1179

Under review as a conference paper at ICLR 2024

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanael Perraudin, and Roger Wattenhofer. Diffu-
sion models for graphs benefit from discrete state spaces. ArXiv, abs/2210.01549, 2022.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. ArXiv, abs/2203.17003, 2022.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Co-
ley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
datasets and tasks for drug discovery and development. Proceedings of Neural Information Pro-
cessing Systems, NeurlPS Datasets and Benchmarks, 2021.

Lei Huang, Hengtong Zhang, Tingyang Xu, and Ka chun Wong. Mdm: Molecular diffusion model
for 3d molecule generation. ArXiv, abs/2209.05710, 2022.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757-1768, 2012.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323-2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839-4848. PMLR,
2020.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
2022a.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
pp. 10362-10383. PMLR, 2022b.

Mahdi Karami and Jun Luo. Higen: Hierarchical multi-resolution graph generative networks. ArXiv,
abs/2303.03293, 2023.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114\l

Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:2550—
2563, 2022.

Matt J. Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar variational autoen-
coder. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, vol-
ume 70 of Proceedings of Machine Learning Research, pp. 1945-1954. PMLR, 2017. URL
http://proceedings.mlr.press/v70/kusnerl7a.html.

Maksim Kuznetsov and Daniil Polykovskiy. Molgrow: A graph normalizing flow for hierarchical
molecular generation. ArXiv, abs/2106.05856, 2021.

Seul Lee, Jachyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
distribution generation. In International Conference on Machine Learning, pp. 18872—18892.
PMLR, 2023.

Chengyi Liu, Wengqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing Li. Gen-

erative diffusion models on graphs: Methods and applications. arXiv preprint arXiv:2302.02591,
2023.

11


http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v70/kusner17a.html

Under review as a conference paper at ICLR 2024

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang,
Chaowei Xiao, and Anima Anandkumar. Multi-modal molecule structure-text model for text-
based retrieval and editing. arXiv preprint arXiv:2212.10789, 2022.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. ArXiv,
abs/2211.08892, 2022.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International Con-
ference on Artificial Intelligence and Statistics, 2020.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
Frontiers in pharmacology, 11:565644, 2020.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. Journal
of chemical information and modeling, 58(9):1736-1741, 2018.

Bo Qiang, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, Wei-Ying Ma, and
Yanyan Lan. Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3d. In
International Conference on Machine Learning, pp. 28277-28299. PMLR, 2023.

Eric Zhonghang Qu and Dongmian Zou. Hyperbolic neural networks for molecular generation.
ArXiv, abs/2201.12825, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684-10695, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256-2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Brian L. Trippe, Jason Yim, Doug K Tischer, Tamara Broderick, David Baker, Regina Barzilay, and
T. Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding
problem. ArXiv, abs/2206.04119, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In International Conference
on Learning Representations, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Kmn.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp- 38592-38610. PMLR, 2023.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Neural Information
Processing Systems, 2018.

12


https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2024

A DETAILS OF TRAINING AND SAMPLING

A.1 TRAINING AND SAMPLING FOR DIFFUSION MODEL

By assuming a; = HZ=1 (1 — fs), the noisy latent variable z; at time step ¢ can be formulated via
re-parameterization trick (Kingma & Welling, 2014) as q(z¢|zo) = N(z¢;/@i2zo, (1 — ay)I). In
this manner, we could generate noisy latent variable z; = /azzo + (v/1 — &;)e directly from z
by mixing it with Gaussian noise € ~ AN(0, I') instead of iterating ¢(z:|z;—1) t times. Then, the
following objective (Song & Ermon, |[2019) is adopted to train the parameterized neural network:

L =E,) cno,n),t[w(t)]€ — €o(ze, 1)]]7], (10)

2
where w(t) m are reweighting terms. With trained neural network €y, we
could predict the Gaussian noise € at time step t. The sampling process can be conducted as
1 .
z.t_l = ﬁ(zt - %ee(zt,t‘)? + oe. We sample zg ~ N(ZT, 0, I) from standard Gaus-
sian distribution, by iteratively denoising, finally a data sample z is generated.

A.2 ALGORITHMS OF TRAINING AND SAMPLING

Training. The training process of the HGLDM consists of two stages, as described in Algorithm 1 in
the Appendix[A] In the first stage, we train the molecular autoencoder, which includes the molecular
encoder £, and molecular decoder Dy,. We optimize the objective function £ 4 g, which consists
of the reconstruction loss Lg.. and the Kullback-Leibler (KL) divergence loss L ., weighted by a
hyperparameter . We continue optimizing until the parameters ¢ and v have converged.

In the second stage, we train the hierarchical denoising neural network €y together with the encoder
E4. We optimize the objective function £, which is the expected squared error between the denoising
neural network’s output and the original noise, weighted by the reweighting terms w(t¢). We continue
optimizing until the parameters 6 and ¢ have converged.

Sampling. The sampling process of the HGLDM, as described in Algorithm 2 in Appendix [A]
involves generating new molecules using the trained model. To generate a new molecule, we first
sample the initial latent embeddings z%, z}, z$ from a standard Gaussian distribution. We then
perform a reverse diffusion process by iterating through the diffusion time steps 7'. In each step, we
sample a noise vector € and update the latent embeddings according to the hierarchical denoising
neural network €y and the noise schedule. Finally, we decode the latent embeddings 2, 2}, 2§ us-
ing the molecular decoder D, to obtain the generated molecule’s atom features X and edge features

E.
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Algorithm 1: Training

Input: The molecular graph G = (X, E), Molecular Encoder &4, Molecular Decoder Dy,
Hierarchical Denoising Neural Network €g, weight of KL loss v, &, related to the noise
schedule, reweighting terms w(t).

First Stage: Molecular Autoencoder Training

repeat

[ATANTAR R0 4 )

Samplee NNS(OQ NNOI) €S ~ N(0,1)
z <—,uX—|—0'06 <—uM+aoe ZG<—/1, + op€
XaE<_D1/)( ) Ma G)

LAg = Lrec + LKL

¢, + optimizer(Lag, §, V)

until ¢ and ¢ converged,

Second Stage: Hierarchical Denoising Neural Network Training

repeat

zg,zgd,zg ~ q¢(z ZM z8|X, E)
Sample t ~ U(0,7), € NN(O,I),EM ~N(0,1), € NJ\/(O I)
7y = Vazy + (V1 - a)ed, 2 = Vazo 4 (V1 - @t) 2y = WZo + (V1 —a)e®
L= Ezé,z’(‘)",zg,eNN(O,I),t[w(t)||€ - 69(Z§>Z¥[7Z?7 )H ] Where €= [6 ) € 7€G]
0, ¢ < optimizer(L;0, o)
until 9, ¢ converged,

G

Algorithm 2: Sampling

Input: Hierarchical Denoising Neural Network €5, Molecular Decoder D,;, diffusion time
steps T'

Output: New molecule G = (X,E)

Sample zX., 2z}, z$ ~ N (0, I)

for¢=T,T—1,---,1)do

L Sample € ~ N(0,1), where € = [€X, €M, €C]

Zi_1 = 11—& (z¢ — \/1[3:54,, €(2¢,1)) + o€, where z; = [2X, 2M, 28]
end
X, E < Dy(=, 251, 2§)
Return X, E

B IMPLEMENTATION DETAILS

Datasets. We utilize four benchmark datasets for our experiments: QM9 (Blum & Reymond,
2009) with 133K molecules (up to 9 heavy atoms), ZINC250K (Irwin et all [2012) with 250K
molecules (up to 38 atoms), GuacaMol (Brown et al., 2019) with 1.3M molecules (up to 88 atoms)
and MOSES (Polykovskiy et al., 2020) with more than 1.9M molecules.

Baselines. We compare the proposed models (GLDM and HGLDM) with the following state-of-
the-art models. VAE-based models: PS-VAE (Kong et al., 2022) generates molecules based on
mined frequent principal subgraphs from the dataset; Diffusion-based models: GDSS (Jo et al.,
2022b) proposes a graph diffusion process that models the joint distribution of the nodes and edges
through a system of stochastic differential equations (SDEs), DiGress (Vignac et al., 2023) is a
discrete denoising diffusion model for generating graphs with categorical node and edge attributes.
The implementation details of the proposed methods and baselines are provided in the Appendix

Evaluation Metrics. We consider six metrics for molecule generation: validity, uniqueness, nov-
elty, diversity, FCD and NSPDK MMD. Validity measures the proportion of molecules that pass ba-
sic valency checks. Uniqueness measures the ratio of unique ones in generated molecules. Novelty
assesses the ability of the models to generate molecules not contained in the training set. Diversity
(Huang et al.| 2021)) evaluates the internal diversity of a set of molecules. The internal diversity is
defined as the average pairwise Tanimoto distance between the Morgan fingerprints. FCD (Fréchet
ChemNet Distance) (Preuer et al., 2018) evaluates the distance between the training and generated
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Figure 5: Heatmaps of attention scores between subgraphs and molecular properties, where the horizontal axis
represents the names of various molecular properties, and the vertical axis represents the SMILES of subgraphs.

sets using the activations of the penultimate layer of the ChemNet. NSPDK (Neighborhood sub-
graph pairwise distance kernel) MMD (Costa & De Grave|[2010) is the MMD between the generated
molecules and test molecules, which considers both the node and edge features for evaluation.

Hyperparameters of Hierarchical Autoencoder. Most of our hyperparameters follow those pre-
sented in the to train the PS-VAE. However, we made a modification for the QM9
dataset by setting the weight parameter for the KL loss to 1e-5 to achieve better performance. This
change may be attributed to the limited variety of atom types in the QM9 dataset; a lower KL loss
can contribute to increased uniqueness and novelty in the generated samples.

Hyperparameters of Latent Diffusion Model for Hierarchical Graph. We set the diffusion steps
to 200 and stacked 6 hierarchical blocks in the denoising model. The hidden layer dimensions of the
hierarchical embeddings are set to 64, and we use § attention heads to compute the attention scores.
The learning rate and batch size are set to le-4 and 128, respectively.

B.1 UNCONDITIONAL GENERATION

The training processes of all the methods are carried out using Distributed Data Parallel (DDP) on
8 NVIDIA V100 GPUs for a total of 100 epochs, while the sampling processes are performed on
a single NVIDIA V100 GPU. We generate a total of 10,000 molecules for each method during the
sampling phase.

B.2 CONDITIONAL GENERATION

Properties and Oracles. (1) QED (Quantitative Estimate of Drug-likeness) (Bickerton et al.} 2012)
measures the drug-likeness of molecules with a range from 0 to 1; (2) SA (Synthetic Accessibil-
ity) (Ertl & Schuffenhauer, [2009) is a metric that evaluates how easily a molecule can be synthe-
sized; (3) PlogP (Penalized logP) (Kusner et all 2017) is logP penalized by synthesis accessibility
and ring size which has an unbounded range.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATION STUDY ON CONDITIONAL GENERATION

Relationship between subgraphs and molecular properties. By incorporating hierarchical em-
beddings, HGLDM demonstrates its ability to explore the relationship between subgraphs and
molecular properties. Examining the attention scores between subgraphs and molecular proper-
ties of the 5 molecules presented in Figure [3] as representative cases, we make the following ob-
servations: Firstly, there is a strong correlation between molecular properties and the presence of
influential subgraphs. For example, in Figure [5a] the molecule has a higher QED value due to the
presence of subgraphs with higher QED influences. Similarly, the molecule in Figure[5b|has a lower
SA value, while the molecules in Figures exhibit higher PlogP values due to the influential
subgraphs. Secondly, certain specific subgraphs show a strong correlation with molecular proper-
ties. For instance, longer subgraphs consistently exhibit more significant QED influence, while ‘CC’
subgraphs have a more substantial impact on the SA value. Moreover, ‘CCNC’, ‘CNC(N)=0’, and
‘O’ subgraphs (atoms) are more influential on PlogP value. These observations highlight the impor-
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tance of considering atom-level and subgraph-level information in understanding the relationships
between molecular properties and molecular structures.
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Generated Molecule Examples. In Figure[6] we present the molecules generated through condi-
tional generation based on QED, SA, and PlogP conditions. By comparing the target values with the
QED, SA, and PlogP values of both the molecules (Mol) and the subgraph of the molecules (Sub-
Mol), we observe that the SubMol values are closer to the target values. This highlights how the
hierarchical structure can identify subgraphs that match the target values, leading to the generation
of molecules with properties that are more aligned with the desired targets.

D RELATED WORK

Diffusion-based Molecule Generation. In recent years, generative models based on diffusion pro-
cesses have emerged as a promising direction for the automated design of molecules (Liu et al.,
2023} [Lee et all [2023). Most of the previous diffusion models have the mismatch problem of
continuous diffusion space and discrete data space (Niu et al.l 2020). To address this limitation,
some recent works have proposed to use discrete noise instead of Gaussian noise for graph diffu-
sion models. Among them, Haefeli et al.| (2022)) designed a discrete denoising diffusion kernel for
unattributed graphs and largely accelerated the sampling process. (Chen et al.| (2022) proposed the
NVDiff, which only diffuses the node variables and decodes edge types from them. Similarly, Di-
Gress (Vignac et al., [2023) is a discrete diffusion model that progressively edits a graph by adding
or removing edges, and changing the categories. Another recent work (Luo et al., |2022) proposed
a fast graph generation model via spectral diffusion, which leverages low-rank diffusion SDEs on
the graph spectrum space instead of the whole graph adjacency matrix space. Besides those meth-
ods that operate on graph structures, there are also several works that define diffusion models for
molecule generation in 3D atomic positions (Trippe et al.,2022; Hoogeboom et al.,2022; Bao et al.,
2022; |Huang et al.l [2022; |Qiang et al.| [2023 |Xu et al., 2023)). To the best of our knowledge, our
proposed method is the first work that incorporates the hierarchical structure information into the
design of discrete denoising diffusion model for the molecule generation.

Hierarchical Graph Learning. Hierarchical graph learning extends GNNs by incorporating multi-
ple levels of abstraction and resolution in the graph, which can capture both local and global informa-
tion about the graph (Gao et al.| 2023)). To construct multiple levels of graph hierarchy, [Defferrard
et al. (2016) employed graph coarsening algorithms. |Ying et al.|(2018)); Gao & Ji|(2019) proposed
to jointly learn the graph hierarchy and the encoding process. It was only recently that the power of
graph hierarchy in graph generation has been explored (Jin et al., [2020; Kuznetsov & Polykovskiy,
20215 |Qu & Zou, 2022; [Karami & Luol [2023). Despite some differences, all of these methods
learn the hierarchy for graph generation using VAEs, GANSs, or normalizing flows. In contrast, our
hierarchy is constructed to incorporate the diffusion model on graphs in the discrete space.

E LIMITATIONS

Although this paper proposes a hierarchical latent diffusion model that significantly improves upon
VAE-based models, there are still some limitations. Firstly, the model’s performance is still subject
to the limitations of the VAE backbone, so choosing a good VAE backbone is crucial for HGLDM.
Secondly, while the model greatly reduces training and sampling time compared to other diffusion-
based models, it still requires a long training time on large-scale datasets such as MOSES and
GuacaMol, which limits the process of hyperparameter tuning and selection.
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