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Abstract

Deep neural networks can suffer severe performance degradation when trained on
datasets with instance-dependent label noise—annotation errors that correlate with
input features. To address this issue, we propose a lightweight, model-agnostic
preprocessing framework based on an ensemble of contrastive Siamese networks.
Our method detects and corrects noisy labels by measuring embedding consistency:
clean samples yield stable representations across models, while noisy samples
exhibit high variability and increased misclassification rates. Each Siamese model
is trained on a subset of image pairs, and we demonstrate that noisy instances are
significantly more likely to be misclassified under this subset-driven embedding
process, with the ensemble’s false-positive rate decaying exponentially with the
number of models. Ultimately, samples with high model disagreement are flagged
and either relabeled by consensus or discarded. Empirically, on real-world CIFAR-
10N (9.01% natural noise), our method reduces label corruption to 4.45% and
achieves 88.51% accuracy on the cleaned dataset—0.26 percentage points ahead
of the nearest baseline. Under synthetic instance-dependent noise, label corruption
on CIFAR-10 is reduced from 40% to 25.9% (yielding a 12.54 percentage point
accuracy gain) and on Fashion-MNIST from 40% to 4.6% (a 2.23 percentage point
accuracy gain). Our preprocessing step adds minimal overhead, produces inter-
pretable uncertainty scores, and can be seamlessly integrated with any downstream
learner to enhance robustness against label noise ]

1 Introduction

The performance of deep learning models critically depends on high-quality labeled training
datasets [1]]. However, real-world datasets often suffer from label corruption due to crowdsourcing in-
accuracies, ambiguous cases, and inexpert annotations [2| [3]]. Manual label verification is impractical
at scale; thus, automated solutions must balance identifying noisy labels with retaining clean training
examples [3]. The widespread occurrence of label noise in practical datasets has motivated extensive
research. It profoundly degrades model performance and reliability.

Label noise is broadly categorized into instance-independent noise (IIN)—including symmetric
(uniform) and asymmetric (class-conditional) noise—and instance-dependent noise (IDN), where
errors correlate with input features. IDN poses unique challenges; for example, a blurry "sneaker”
image mislabeled as an "ankle boot" reflects feature-dependent ambiguity that undermines generaliza-
tion [3}4]. There are a variety of methods to mitigate label noise, which can be broadly categorized
into sample selection, label correction, and hybrid cleaning.

Sample selection methods detect and remove noisy examples by exploiting the “memorization
effect,” where DNNs fit clean patterns before over-fitting noise [5]. Models are then trained only
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on high-confidence samples, keeping original labels [3]. Recent advances include curriculum-based
weighting (e.g., MentorNet [6]) and neighborhood consistency checks (e.g., ConFrag [2]]).

Label correction methods tackle noise by revising annotations instead of discarding samples [7]].
These include prediction-based strategies (e.g., iterative label updates using model confidence [8]])
and clean sample-based methods (e.g., refining labels via agreement with trusted subsets [9]]).

Hybrid cleaning methods integrate both selecting and correction techniques [10]]. For instance,
unclean sample correction partially relabels ambiguous instances flagged by disagreement metrics,
while adaptive methods dynamically adjust correction criteria (e.g., confidence thresholds) based on
model performance [[11}[12].

Other paradigms include loss adjustment (e.g., noise-robust loss functions [[13]]) and regularization
(e.g., adversarial training [14], mixup [15]). Meta-learning methods dynamically re-weight sam-
ples via bi-level optimization [[16]. Contrastive learning (e.g., Jo-SRC [[L1]) learns noise-invariant
representations but conflates semantic similarity with label noise.

While numerous approaches focus on modifying training procedures or loss functions, we propose
a preprocessing framework that identifies and rectifies label errors before training, incorporating
contrastive learning and ensemble disagreement. Contrastive learning is performed via a specialized
Siamese network architecture that emphasizes visual consistency over potentially erroneous labels
while learning distinctive feature representations for image pairs. We note that contrastive learning
has previously been successfully used for identifying noisy labels [17, [1]]. In this work, we propose
an ensemble of Siamese networks to detect and correct instance-dependent label noise. Contrastive
training produces compact, well-separated clusters for clean samples, whereas noisy points remain
ambiguous and are more likely to be misclassified by individual models (see Appendix [A)), suggesting
that the frequency of misclassification itself can serve as an effective indicator of label corruption.

Our contributions are as follows:

* A novel Siamese-ensemble preprocessing framework that trains each contrastive model on
different random subsets to expose instance-dependent noise via embedding variability.

* Theoretical guarantees showing (a) noisy examples incur strictly higher misclassification proba-
bility under our subset-driven embedding process, and (b) the ensemble’s false-positive detection
rate decays exponentially in size.

* A novel relabeling score metric that quantitatively evaluates the quality of label corrections while
maintaining interpretability.

* Strong empirical validation on both controlled and real-world benchmarks:

— CIFAR-10: label corruption reduced from 20% to 3.2%, 30% to 8.6%, 40% to 25.9%;, yielding
a 12.5% absolute accuracy gain at 40% noise (71.2% vs. 58.6% baseline).

— Fashion-MNIST: corruption reduced from 20% to 2.8%, 30% to 4.7%, 40% to 4.6%, boosting
accuracy by 2.2% at 40% noise (87.9% vs. 85.7%).

— CIFAR-10N: cleaned corruption from 9.01% to 4.4% and raised top-1 accuracy to 88.5%, a
0.26% lead over the next best method.

* Open-source release of all code, datasets, and evaluation scripts at fhttps://
hidden-because-anonymity, enabling easy integration with any downstream classifier. Also,
key parameters for training are available in Appendix [F}

2 Methodology

We propose a Siamese network that uses contrastive learning and ensemble consensus to detect and
correct instance-dependent label noise (Fig.[I). The formal notation is provided in Appendix

Nested Cross-Validation: Implemented via Algorithm 3] the process first splits the dataset D into &
stratified outer folds. For each fold, k—1 folds form the outer training set (Dor) while the remaining
fold serves as validation (IDgy). Dgr is further divided into m inner folds, with m —1 sub-folds (ID;r)
training Siamese networks and one sub-fold (Dyy) validating early stopping. Contrastive pairs derive
exclusively from Dy; using Section [2.2]s balanced strategy.

Ensemble Noise Detection: For each inner fold, we train a Siamese model and record its predictions
on Doy. We collect these predictions into a matrix P as described in Algorithm[I} For each sample
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x; in Doy, we compute the disagreement count r(x;) = Z;"Zl 1(P; ; # y;). We flag ; as noisy if
r(x;) > 74, leveraging Theorem to ensure that noisy labels exhibit higher disagreement rates.

Consensus-Based Correction: Flagged samples are relabeled using Algorithm 2] If at least 7;
models agree on a new label, we substitute the consensus label; otherwise, we discard the sample.

Siamese networks, detailed in Section @ are trained on pairs selected based on Dy, with early
stopping employed and monitored through performance metrics derived from D;,. This nested
structure helps maintain model integrity while Theorem 2.3]ensures robustness against individual
model errors.
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Figure 1: Overview of the proposed method.

2.1 Custom Siamese Network Architecture

We train a Siamese network on the inner training set D;; and validate on Dyy to generate predictions
for samples in Doy. The twin-branch architecture (Fig. [2) builds on the foundational design of [18]
and integrates contrastive learning from [19]. It combines contrastive and classification objectives
through three key components:

Feature Extractor: A CNN that processes input pairs to extract discriminative features.

Embedding Head: Projects features into a normalized embedding space using a sigmoid layer to
constrain values to [0, 1], enabling similarity-based analysis and dimensionality reduction.

Classification Head: Lightweight MLP mapping embeddings to class predictions.

The model is trained via a loss function that combines contrastive and classification objectives:

B 2
1 b b b 2 SYTRC b) (|2 b) ~(b
Lo = 55 > | (L= 9 max((ipy” — h7ll2 —,0) +y§>uh§>—h;)||2+;cca<p§>,y§ h
b=t Contrastive Loss Z
Classification Loss

where B is the number of pairs, ys € {0, 1} indicates positive/negative pairs, h1, ho are the twin
branch embeddings, ~ is the contrastive margin, Lcg denotes cross-entropy loss, p denotes the logit,
and ¢ symbolizes the noisy labels.

2.2 Pair Selection Analysis

The mechanism governing pair selection critically shapes model performance by controlling rep-
resentation quality and contrastive learning efficacy. Our experiments demonstrate that optimal
performance requires balanced positive-to-negative pair ratios. In a balanced c-class dataset under
k x m nested cross-validation, the maximum number of positive pairs is:

1 (m—1)(k—1)
MPP = (Lc X2|D”H> X c= (L ks % ”J) X c 2)

To maintain a balanced training set, we limit the total number of pairs to 2 x MPP, ensuring equal
representation of positive and negative pairs. However, our experiments show that effective training
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Figure 2: Siamese network with twin branches processing input pairs. Shared weights generate
embeddings (hq, ho) and logits (p1, p2) for joint contrastive-classification learning.

Algorithm 1 Collect Predictions by Nested Cross-Validation

Inputs: Dataset D = {(x;, §;) }/_;, Number of outer folds k, Number of inner folds m
Output: Prediction matrix P € [0,1]"”"™ where P; ; is the prediction of the j-th model on the i-th

sample
1: function COLLECTPREDICTIONS(D, k, m)
2:  Initialize prediction matrix P € [0,1]"*"
3: for outer_fold =1 to k£ do
4: Dor, Doy < StratifiedSplit(D, outer_fold, k) > Outer split (Appendix
5: Initialize ensemble models { f1, fa,..., fm}
6: for inner_fold = 1 to m do
7: Dir, Dy + StratifiedSplit(Dgr, inner_fold, m) > Inner split (Appendix C)
8: finner_fola < TrainModel(D;r, Dyy) > Train siamese model with early stopping
9: for each sample x; in Doy do
10: Pinnerﬁfold,i = finnerﬁfold(xi) > Ensemble predictions
11: end for
12: end for
13: end for
14: return P

15: end function

Algorithm 2 Noise Detection and Relabeling

Inputs: Prediction matrix P € [0,1]"*", Dataset D = {(x;,%;)}?_,, Detection threshold 7,
Relabeling threshold 7;
Output: Cleaned dataset D, = {(x5, y5) }12,

1: function DETECTANDRELABEL(P, D, 74, 71)

2 Initialize clean dataset Dye,, = {}

3 for each sample : = 1 to n do

4 T, = Z;”:l 1(P,; # vi) > Calculate error rate
5: [ = mode(P;.) > Find most common prediction
6 if r; < 74 then

7 Detean ¢ Detean U { (x5, 75) } > Detected as clean
8: else if count(/) > 7, then

9: Detean < Detean U {(x5, 1)} > Relabeled as clean
10: end if
11: end for
12: return D,

13: end function
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can be achieved with significantly fewer pairs; for instance, using only 0.12% of the maximum
possible pairs on CIFAR-10 yielded competitive performance, suggesting that the model can learn
robust representations even with a small subset of selected pairs.

Label noise can affect the pair selection process, necessitating an analysis of the probability of
selecting valid training pairs as a function of the noise rate r and the number of classes c. Detailed
derivations are provided in Appendix[D] To ensure robust performance, we require that this probability
exceeds a predefined threshold «. This criterion yields an upper bound r* on the acceptable noise
rate, dependent on « and c. Comprehensive derivations and closed-form solutions are outlined in
Appendix and Fig. [3]illustrates typical operational ranges for various c values.

2.3 Noise Detection Analysis

Let C and N denote the sets of clean and noisy
samples, and L and M P the latent-quality and \ \ \
performance indicators. Theorem [2.2] shows —a=05—=a=055
that noisy samples misclassify more often, and --a=06a=0.65
Appendix [A]shows noise degrades embeddings,
raising P(—L | N).

Assumption 2.1 (Independence Conditions).
We assume (i) latent—performance independence,
P(LNMP) = P(L)P(MP), and (ii) perfor-
mance-noise independence, P(MP | N) =
P(MP|C)=P(MP).

Theorem 2.2 (Noise Misclassification Bias).

Let G(x,3) = 1(argmax fyg(x) = §) denote 10 20 30 40 50
the misclassification indicator. Under Assump-
tion 2.1} for any noise rate v > 0 and number Figure 3: r* vs. number of classes

of classes ¢ > 3,
P(G=0|N)>P(G=0]|C).

Proof. The proof follows from analyzing the probability decomposition of correct classification
under our decision tree framework (see Appendix [E.T|for the complete mathematical derivation). [J

Our experimental evaluation in Section [3|empirically validates Theorem [2.2] demonstrating that noisy
samples indeed exhibit higher misclassification rates than clean samples. Building on this result, we
further consider the effect of aggregating predictions from multiple models. Moreover, by treating
the normalized disagreement score % Z;"Zl 1 ( fi(z) # gj) as a continuous noise-confidence value,
we not only rank samples by their likelihood of corruption but, as shown in the reliability diagrams of

Appendix [} provides a useful approximation of the true noise rate.

Theorem 2.3 (False-Positive Decay Under Ensemble Prediction). Consider an ensemble of m trained
Siamese models f1, ..., fm. For a data point s = (x,vy), we classify it as noisy if at least T, models
misclassify it. Under the clean data condition (s € C), define the total misclassification count
X =>"", X;, where each X; € {0,1} is an indicator variable for misclassification by the i-th
model. Let B[ X;] = pc be the expected misclassification rate on clean data, and assume the model
errors have bounded variance o* = E[(X; — pc)?]. Then, the probability of false-positive detection
decays exponentially with the number of models:

2
me

PX>m|C) <exp|——F—5 ), 3

(X zm|C) = p( 202+§e) )

where ¢ = 7¢ — pc > 0 represents the margin between the threshold rate and the expected

misclassification rate.

Proof. A concise proof of this result employs Bernstein’s inequality to accommodate correlated
model errors; the detailed proof is available in Appendix [E.3] O

Based on Theorem [2.3] we establish 7q > 0.6m, which guarantees an exponential decay in false-
positive probability with the increase of m. Specifically, this configuration ensures low false-positive
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rate when employing m > 10 models, assuming a minimum model accuracy of 75% on clean data
(corresponding to pc = 0.25). Appendix [E.4] derives these bounds mathematically, while Section [3.4]
and Appendix [G|empirically demonstrates our method’s robust sensitivity trade-off.

Trade-off between m and k£ Increasing the number of models m reduces the available data for the
inner validation set (Dyy), necessitating a larger number of folds % to maintain statistical robustness.

2.4 Quantifying Label Correction Quality

We evaluate label corrections using a relabeling score. For each data point, we assign +2 points
for correctly relabeling noisy samples, -2 for incorrectly relabeling clean samples, +1 for properly
removing noisy samples, -1 for wrongly removing clean samples, and O for incorrectly relabeling
noisy samples. We compute the overall relabeling score by summing these individual scores and
dividing by the number of relabeled samples, facilitating comparison across datasets. This scoring
framework is illustrated in Fig. ] Our evaluation focuses on aggregate performance across samples
identified as noisy by our method, with class-specific analysis reserved for future work. Further, we
define relabeling accuracy as the ratio of correctly relabeled samples and relabeling count as the total
number of relabeled samples; these metrics are detailed in Appendix [G.1.2]

Detected Noise

_—/\

Clean Sample Noisy Sample
Eligible for Relabeling Not Eligible for Relabeling Eligible for Relabeling Not Eligible for Relabeling
Assigned Incorrect Label (-2) Remove Sample (-1) Assigned Incorrect Label Assigned Correct Label (+2) Remove Sample (+1)

Figure 4: Scoring system for label corrections: green/red = positive/negative impact.

3 Experiments

We evaluate noise detection performance on synthetic and real-world benchmarks, assess relabeling
efficacy via custom metrics, measure downstream classification accuracy after cleaning, and employ
nested cross-validation with m = k = 10 folds.

3.1 Implementation Details

We conducted experiments on a workstation with an AMD Ryzen 9 5950X CPU, 32 GB of system
RAM, and an AMD Radeon 6900 XT GPU (16 GB VRAM) using PyTorch with ROCm acceleration.
Due to inefficiencies on non-CUDA hardware, VRAM never exceeded 50%, leading to longer training
times. We used a batch size of 2048; each CIFAR-10 noise ratio experiment required approximately
100 hours, while Fashion-MNIST runs completed in approximately 24 hours owing to its lower
resolution and computational complexity. Training durations remained modest in epochs: each
CIFAR-10N inner fold converged in under 50 epochs, Fashion-MNIST experiments converged in
around 30 epochs, and CIFAR-10 runs converged by approximately 70 epochs.

3.2 Performance Metrics

Following [20], we treat noise detection as a binary classification task with four key metrics. We
define Noise Precision as the proportion of true noisy samples among those flagged as noisy and Noise
Recall as the proportion of noisy samples we detect. Noise F1 is the harmonic mean of precision and
recall, and Noise Accuracy measures overall detection accuracy (full formulas in Appendix [B.2). We
also use the relabeling score (Sec. [2.4) to evaluate correction quality. Finally, we assess classification
accuracy on the cleaned data using standard metrics.

3.3 Datasets

Experiments cover: (1) Synthetic noise (20-40% in CIFAR-10[21]]/Fashion-MNIST[22]] using [23]),
(2) Real noise (CIFAR-10N’s 9.01% annotation errors [24]).
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3.4 Noise Detection Results

Figure [5] breaks down, for each dataset and noise level, the counts of noisy versus clean samples
before and after applying our cleaning procedure. For example, on CIFAR-10 with 20% injected
noise, the noisy-sample count drops from 10, 208 to 1, 333 (=~ 3.2%); similarly, on Fashion-MNIST
with 40% noise it falls from 24, 189 to 1, 810 (=~ 4.6%). This figure shows that our approach not only
lowers the number of noisy samples but also (in all but two cases) raises the count of clean samples,
emphasizing its overall effectiveness.

Since the bar chart shows only counts, it does not distinguish correctly-removed noisy labels (true-
positives) from mistakenly-removed clean labels (false-positives). Table[T]fills this gap by reporting
Noise Accuracy, Precision, Recall, and F1-Score, along with the Relabeling Score. A high Noise
Precision (e.g. 0.798 on 20% Fashion-MNIST) means we remove few clean labels, whereas Noise
Recall (e.g. 0.915 on 20% CIFAR-10) shows our ability to catch injected noise. The table also lists
the optimal detection threshold 74 and relabeling threshold 7, chosen via grid search; the full-tuning
results appear in Appendix [G.I} When facing real-world datasets where ground-truth clean labels are
unavailable, we propose a practical threshold selection methodology in Appendix [H} By combining
raw count reductions (Fig.[3) with precision/recall metrics (Table[I), we demonstrate both the extent
of noise removal and the preservation of clean data. Researchers can use Table[T]as a reference for
comparing new noise-detection methods against our optimal thresholds and performance metrics.

I 1 Noisy Clean
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Before  After Before  After Before After Before After Before  After Before After Before — After
9.01%  3.7% 20% 4.9% 30% 10.8%  40%  28.8% 20% 2.8% 30% 4.7% 40% 7.9%

CIFARI0N CIFAR10 Fashion-MNIST

Figure 5: Comparison of noisy and clean samples before and after identifying noise.

Table 1: Optimal Configurations and Evaluation Metrics of the Noise Detection

CIFAR-10 Fashion-MNIST

Noise Ratio CIFAR-10N  20% 30% 40% 20% 30% 40%
74 (Detection Threshold) 10 8 7 6 9 9 7

7 (Relabeling Threshold) 10 10 10 10 10 10 10
Noise Accuracy 0.9451 0.8999 0.8069 0.6115 | 0.9358 0.9216 0.8787
Noise Precision 0.6999 0.6932 0.6386 0.5069 | 0.7981 0.8502 0.7958
Noise Recall 0.6848 0.9149 0.8188 0.7021 | 0.9258 0.9003 0.9402
Noise F1-Score 0.6922 0.7887 0.7176 0.5887 | 0.8572 0.8746 0.8620
Relabeling Score 1.13 1.87 2.51 0.68 2.07 2.43 3.17

3.5 Classification Performance on Noise-Corrected Datasets

We assess the performance of models trained on our refined data partitions across both synthetic and
real-world noise conditions. The outcomes are summarized in Table Pl and Table 3

Synthetic noise (20—40% IDN) Our preprocessing yields the largest absolute and relative gains at
all noise levels:
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* CIFAR-10 (IDN-20/30/40%): Accuracy improves from 76.05% to88.17% at 20% noise
(+12.12pp), from 72.28% to 83.63% at 30% noise (+11.35pp), and from 58.62% to 71.16%
at 40% noise (+12.54 pp). Not only are these increases the biggest margins against the strongest
prior (PTD-R-V [23])), but our standard deviations (&£ 0.28-1.38 pp) remain low, indicating stable
performance across trials.

* Fashion-MNIST (IDN-20/30/40 %): At milder noise (20%), we edge past the best baseline
(PTD-R-V [23]) by 0.23 pp (91.31% vs. 91.08%), while at higher noise (40%) the lead grows to
2.23 pp (87.92% vs. 85.69%), demonstrating robust correction even when nearly half the labels
are corrupted.

These results reveal two critical trends: (i) Noise-Robust Consistency: On CIFAR-10, our method
improves previous results by approximately 12 pp regardless of noise rate, demonstrating the reliability
of ensemble-driven detection even as corruption intensifies. (ii) Dataset Complexity Adaptation:
Fashion-MNIST, being simpler, sees smaller absolute gains at low noise but still benefits substantially
at high noise, indicating the relabeling mechanism dynamically adjusts to data complexity.

Real-world noise (9.01% CIFAR-10N) On CIFAR-10N’s 9.01% natural noise, cleaning reduces
corruption to 3.7% and boosts ResNet-34 accuracy to 88.51% (£ 0.50pp), a 0.26 pp improve-
ment over the best reported result (88.25%)[23]], despite using fewer ensemble members and folds
(m and k) due to hardware constraints (Sec.[3.1). This smaller yet significant gain reflects the lower
initial noise rate, but confirms that our framework generalizes beyond synthetic settings.

Our results reveal three main trends. First, the roughly 12pp improvement on CIFAR-10 is virtually
unchanged across the 20-40% noise range, demonstrating that our approach scales robustly with
noise severity. Second, the low run-to-run variance (standard deviation < 1.4pp) highlights the
reliability of the produces cleaned datasets. Third, simpler image domains such as Fashion-MNIST
benefit most under extreme noise—exhibiting larger relative gains—indicating that the relabeling
threshold dynamically adapts to dataset complexity. Further ablation experiments, including dataset
analysis that illustrates the contributions of its key components under label uncertainty (Appendix [F).

Table 2: CIFAR-10 and Fashion-MNIST Classification Accuracy

CIFAR-10 Fashion-MNIST

Method IDN-20% IDN-30% IDN-40% | IDN-20% IDN-30% IDN-40%

CE 68.21 £0.72 60.48 £0.62 49.84 £1.27 | 88.38 042 84.224+0.35 68.86+0.78
Decoupling[26] 70.01 £0.66 63.05+0.65 4427 £191 | 86.50+0.35 8533 £047 7854 +0.53
MentorNet[6] 70.56 £0.34 65.424+0.79 4622+£098 | 87.02+ 041 86.02+0.82 80.12+0.76
Co-teaching[27] 7299 +£045 67.224+0.64 4925+£1.77 | 87.89+041 86.88+0.32 82.78 +0.95
Co-teaching+[28] 71.07 £0.77 64.77+0.58 47.73 £2.32 | 89.77 £0.45 88.52+0.45 83.57£1.77
Joint[29] 73.89 £0.34 69.03+0.79 54.75£598 | 56.83 045 51.27+£0.67 4424+0.78
DMI[30] 69.89 £0.33 61.88+0.64 5123 £1.18 | 90.33+:0.21 84.81 £0.44 69.01 £1.87
Forward[31] 68.99 +£0.62 60.21 £0.75 47.17£2.96 | 88.61 £0.43 84.27+0.46 70.25+1.28
Reweight[32] 68.42+0.75 6258 +£046 50.12£0.96 | 89.70 £0.35 87.04 +0.35 80.29 +0.89
T-Revision[33] 69.32 +0.64 64.09+£037 5038 £0.87 | 90.68 £ 0.66 89.46+0.45 84.01 £1.24
PTD-F[23] 7345 +£0.62 65254+0.84 49.88£0.85 | 90.01 =0.31 87.42+0.65 83.89+0.49
PTD-R[23] 75.02+£0.73 71.86 £0.42 56.15£0.45 | 90.03 £0.32 87.68 £0.42 84.03 £0.52
PTD-F-V[23] 73.88£0.61 69.01 £047 5043 £0.62 | 90.79+0.29 89.33 +£0.33 8532+0.36
PTD-R-V[23] 76.05 £0.53 7228 £0.49 58.62+£0.88 | 91.08 =0.46 89.66 +£0.43 85.69 £0.77
Ours 88.17 £ 0.28 83.63+0.34 71.16 + 1.38 | 91.31 £ 0.49 90.47 £ 0.13  87.92 £ 0.66

4 Discussion

Our framework has two principal limitations. First, computational overhead stems from the nested
cross-validation scheme (Sec. [2), which requires training m x k models. This overhead increases
substantially for larger datasets. For example, applying our method to CIFAR-100, which comprises
100 classes, would necessitate increasing both m and & (e.g., to 20 folds each) to preserve detection
power; consequently, computational cost would be at least four times that incurred on CIFAR-10. In
our current study, hardware constraints precluded experiments on CIFAR-100; future work could
explore optimizations such as grouped class sampling or distributed training to alleviate this burden.
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Table 3: CIFAR-10N Classification Accuracy

Method CIFAR-10N \ Method CIFAR-10N \ Method CIFAR-10N
Co-teaching+[28] 82.31 4 0.89 | DoctorNet[34]  84.52 £ 0.69 | CoDis[33] 87.23 £0.45
BLTM][36] 82.62 £ 0.17 | Max-MIG[37] 85.12 £ 0.36 | GCNet(F)[38] 87.70 + 0.51
CrowdLayer[39] 82.84 + 0.24 | MBEM[40] 85.49 4+ 0.43 | GCNet(W)[38] 87.84 +0.21
CoNAL[41] 83.01 £+ 0.21 | Co-teaching[27] 85.90 + 0.50 | BayesianIDNT[42] 88.19 + 0.47
CE(EM)[43] 83.14 + 0.80 | LogitClip[44] 86.37 + 0.43 | AdaptCDRP[25] 88.25 +0.34
TraceReg[45] 83.16 = 0.24 | CCC[46] 86.45 +0.53

Ours 88.51 + 0.50

Second, consensus relabeling can reinforce class imbalances or mislabel ambiguous samples. Our
experiments cover up to ten classes (CIFAR-10, Fashion-MNIST, CIFAR-10N), but scaling to
high-cardinality benchmarks (e.g., CIFAR-100, ImageNet) will require more efficient pair selection
strategies—such as grouping similar classes or calibrating thresholds per class—to maintain accuracy
without prohibitive computational cost.

From an ethical perspective, our method carries three potential risks: (i) bias amplification, whereby
minority classes become underrepresented after relabeling; (ii) dataset distortion, in which valid
edge cases or outliers may be overwritten; and (iii) ambiguity exclusion, when confidently relabeling
uncertain samples reduces dataset diversity. We propose mitigating these risks through fairness-aware
thresholds, diversity-preserving sampling, and the release of audit logs to ensure transparency.

5 Future Directions

Future research avenues include iterative refinement through repeated relabeling cycles, enabling the
model to progressively de-noise more challenging instances (guided by our reliability analysis of
ensemble disagreement in Appendix [[). Extending the framework to multi-modal data (e.g., image-
text or audio-visual) could broaden its applicability. To further mitigate relabeling bias, fairness-aware
consensus mechanisms, such as class-conditional thresholds, warrant in-depth exploration. On the
technical side, promising directions include analyzing the impact of false positives on downstream
robustness (Appendix [J) and adapting the detection pipeline to identify adversarially perturbed or
out-of-distribution samples.

6 Conclusion

In this paper, we proposed a novel framework for robust learning under instance-dependent label
noise by leveraging a Siamese network trained with contrastive learning to extract visually coherent
representations. Our method reliably distinguishes noisy labels by analyzing embedding variability
across perturbations and is supported by theoretical guarantees and extensive empirical validation.
Experiments on both synthetic and real-world benchmarks demonstrate significant improvements in
noise detection (up to 80.2 percentage points) and downstream classification accuracy (up to 12.5
percentage points F1-score gain) compared to prior methods. The approach is model-agnostic, easy
to integrate, and complemented by interpretable uncertainty estimates. These contributions establish
a practical framework for learning with corrupted labels.
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A Visual Motivation: How Label Noise Affects Embedding Structure

To illustrate the impact of label noise on representation quality, Figure [ compares t-SNE embeddings
of the Fashion-MNIST dataset with 20% instance-dependent noise to the raw feature space. In
the raw feature space (Figure[6a)), the classes heavily overlap, and the noisy samples (circled) are
intermingled with clean clusters, making them indistinguishable. However, after applying Siamese
contrastive learning (Figure [6b), the clean samples form tight, well-separated clusters, while the
noisy points are positioned on the periphery or between the clusters. This behavior is precisely what
we leverage for noise detection. This visual evidence motivated our ensemble Siamese design. By
enforcing consistency among clean examples and amplifying the disagreements on mislabeled data,
we can reliably identify and correct noisy labels, even in the presence of severe instance-dependent
corruption.

(a) Embeddings from the raw feature space show over- (b) Embeddings after Siamese training: clean samples
lapping class clusters, with noisy samples (circled) in- form compact, well-separated clusters, while noisy sam-
distinguishable from clean ones. ples shift to the periphery or inter-class regions.

Figure 6: t-SNE visualization of Fashion-MNIST embeddings with 20% instance-dependent noise,
where noisy samples are circled in black.

B Notations and Definitions

B.1 Notations

Table ] summarizes the notation used throughout this paper.

B.2 Definitions

Let N be the total number of samples, v, the true label, 3, the observed (noisy) label, v,, € {0,1}
the model’s noise flag (with v, = 1 indicating a predicted noisy sample), and 1(-) the indicator
function. We then define the following metrics for evaluating noise detection:

* Noise Precision: Correctly flagged noisy samples among all flagged

Z ]l(vnzl A grﬁéyn)

4
> L(oa=1) @
* Noise Recall: True noisy samples detected
1(vp=1 A YnFYn
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Table 4: Notation Summary

Symbol  Description Symbol Description

r Noise rate c Number of classes

k Number of outer folds m Number of inner folds

Y True label Y Noisy label

D Dataset Deiean Cleaned Dataset

Dirain Train set Dyatidation  Validation set

Dor Outer training set Doy Outer validation set

Dip Inner training set Dy Inner validation set

C Clean sample subset N Noisy sample subset

1 Indicator function P Probability

Td Detection threshold T Relabeling threshold

T Optimal detection threshold T Optimal relabeling threshold
fo Model function fi(z) Output of the j-th model

P Prediction matrix r(z) Disagreement count of a sample
Q@ Min. pair selection success probability — 7* Max. permissible noise rate
L Latent representation quality MP Model performance

G Classification Result

* Noise F1-Score: Harmonic mean of noise precision/recall

Noise Precision - Noise Recall

" Noise Precision + Noise Recall

* Noise Accuracy: Overall correct decisions

Z ]].(Unil A gn#yn) + Z ]]-(Un:() A gn:yn)

(6)

N

C Algorithm Details of Stratified Splitting

(N

Here we provide the algorithm for stratified split used in Algorithm 1]

Algorithm 3 Stratified Split Function

Inputs: Dataset DD, fold number, total folds &
Outputs: Training set Dy,.4;,, validation set Dy, qzidation

1: function STRATIFIEDSPLIT(D, fold, k)

2 Group samples by class labels

3 for each class c do

4: ne  |Del

5: fold_size. + |n./k|

6: starte < (fold — 1) x fold_size,
7 end. < start. + fold_size,

8: Add samples D.[start. : end.] t0 Dyalidation
9: Add remaining samples to Dy;.4;p,
10: end for
11: return Dtrain7 Dvalidation
12: end function

> Number of samples in class ¢
> Size of each fold for class ¢
> Start index for validation

> End index for validation

14
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D Impact of Label Noise on Pair Selection for Contrastive Learning

D.1 Interpreting the Pair Selection Tree under Label Noise

We formalize the impact of label noise on pair selection using a probabilistic decision tree (Fig.[7).
Let:

 r € [0, 1] denotes the noise rate (probability of a sample’s label being corrupted),
¢ ¢ denotes the number of classes,
* A positive pair contains samples intended to be from the same class,

* A negative pair contains samples intended to be from different classes.

Pairs

A

0.5 0.5

— T

Positive Samples Negative Samples

(1- >/2/<1\X (1- )%>\

0 Noise (I) 1 Noise (II) 2 Noise 0 Noise (V) 1 Noise 2 Noise
1 =2 1 =2 1 =3
c—1 c—1 c—1 c— c—2 c—2
Same Class (ITI)  Different Classes (IV)  Same Class (VI)  Different Classes (VII)  Same Class (VIII) Different Classes (IX)

Figure 7: Pair Selection Tree Under Label Noise. Green/red leaves denote favorable/unfavorable
pairs. Edge probabilities depend on noise rate r and class count c.

We explicitly categorize pairs into two groups based on their intended training signal (observed
labels), then analyze their validity under noise:

* Positive Pairs (Leaves I-IV): Pairs labeled as belonging to the same class.

* Negative Pairs (Leaves V-IX): Pairs labeled as belonging to different classes.

A leaf is considered valid only if its observed label (same vs. different class) matches the samples’
true class relationship, as detailed below:

Positive Pairs (Leaves I-1V)

I.  Valid Positive: Both clean, same true class. (Favorable)

II. Corrupted Positive: One noisy label creates mismatch. (Unfavorable)
III. Lucky Positive: Both corrupted to the same (wrong) class. (Favorable)
IV. Collapsed Positive: Both corrupted to different classes. (Unfavorable)

Negative Pairs (Leaves V-IX)

V. Valid Negative: Both clean, different classes. (Favorable)

VI. False Negative: One corrupted label matches true class. (Unfavorable)
VII. Honest Negative: One corrupted label preserves dissimilarity. (Favorable)
VIII. Corrupted Negative: Both corrupted to same class. (Unfavorable)

IX. Resilient Negative: Both corrupted but preserve dissimilarity. (Favorable)

Key Insight: Favorable leaves preserve true class relationships despite noise, while unfavorable ones
introduce spurious mismatches or false agreements.
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485 D.2 Deriving Probabilities for Valid and Invalid Pairings

486 Let r be the corruption probability and ¢ > 3 the number of classes in a balanced dataset. We
487 derive probabilities for good/poor latent representations by summing contributions from favor-
ags  able/unfavorable leaves.

483 Probability of Good Latent Representation:

1
P(L)= Y P(leaf) =05 x (1-r)>+05x71? x T H0.5x (1- 2 (8
—_——— Cc— —_———
favorable leaves Leaf 1 | —— Leaf 5
Leaf 3
) _
405 x2r(1—1) x S22 105 x 12 x E23 )
c—1 c—2
Leaf 7 Leaf 9
r? r(l—r)(c—2) 7r%(c—23)
=(1-r)? Combine t 10
(1—7) +2(C_1) 1 c—2) (Combine terms) (10)
(A —c=3)r?+2(2c— A)r+2(c? — 3¢+ 2) (11
N 2(c —2)(c—1) '
490 Probability of Poor Latent Representation:
-2
P(-L)= Y P(leaf) =0.5x 2r(1 — ) +0.5 x 2 x - (12)
unfavorable leaves Leav 2 #
Leaf 4
+O.5><2r(1—7")><Cil+0.5><7“2><072 (13)
Leaf 6 Leaf 8
r2(c—2) r(l—r) r?
=7r(l- E d 14
rd=nt 5oy T oot Yooy Exand 14
_ (=2 +c+3)r2 + (2¢2 — 4c)r. (15)

2(c—2)(c—1)
491 D.3 Computing the Noise Threshold for Reliable Pair Selection

492 The maximum permissible noise rate r* is the largest noise level r at which the probability of
403 sampling pairs that preserve true class relationships (favorable leaves in Appendix [D.T]) exceeds a
ae4 user-defined threshold o € [0, 1). This ensures the Siamese network retains sufficient valid training
495 signals for robust learning.

496 Derivation of 7* The total probability of favorable pairs (green leaves in Fig.[/) is:
(2 —c—3)r?+22c—cA)r+2(c* —3c+2)

Pravorable (1, €) = . 16
favor able(r C) 2(0 — 2)(0 — 1) (16)
497 e Atr=0:
2(c? — 3¢+ 2 )
ijavorable(oa C) = 2((0_2)(0_1)) =1>« (SZTLC(ﬁ a € [O, 1)) (17)
498 e Atr=1:
2 —3c+1
P l,e)=————. 18
favorable( 70) 2(0 _ 2)(0 — 1) 18)
499 For ¢ > 3, Payoravte (1, ¢) < 1. For example, ¢ = 3 gives Pryorapie(1,3) = < aif o > 0.25.

500 * Monotonicity: Pi,yorable is continuous and strictly decreasing in r.

sot By the Intermediate Value Theorem, there exists a unique o € (0, 1) where Pryorabie (7*) = . To
502 guarantee Ppyorable > v, We solve:

(—c—=3)r* +2(2c—A)r+ [2(c® —3c+2) — 2a(c— 2)(c—1)] > 0. (19)
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Quadratic Solution Let coefficients be defined as:
A=c?—c—3, B=202c—c), C=2(c*-3c+2)—2a(c—2)(c—1). (20

For ¢ > 3, the quadratic coefficient A = ¢2 — ¢ — 3 is positive, meaning the parabola is convex. The
roots of Ar? + Br + C = 0 are:

—B —+B?—-4AC —B+vB? —4AC
- = . @1)
2A 2A

By noting that A > 0, B < 0 and C' > 0, we can conclude that 0 < 7, < 1 < r9. Consequently for
r € [0, 1] (noise rate), the inequality Ar? + Br + C > 0 holds for r < r* := ry.

Closed-Form Expression Substituting A, B, and C' yields:

22— — 20
r= (63 Y Gidet2’— P 2B -2—2 1), (22)
2 —c—
Real solutions require (¢ — 2)¥ > 0, constraining « to:
=22 —4c+6
2(c? —2c2 —2c+3)°

a > omin(c) = (23)

This bound reaches its minimum value 1/4 at ¢ = 3, so we restrict « to the interval [0.25, 1).

E Proofs

E.1 Proof of Theorem2.2]

We prove that noisy samples incur a higher misclassification probability than clean samples under
the assumptions of our framework. Let G = 1/0 denote a correct/incorrect classification, and N/C
denote noisy/clean samples. The model’s performance (M P) and latent representation quality (L) are
independent and M P is defined regardless of noise. We model successful classification as requiring
both high-quality latent representations and proper model performance, under Assumption 2.1}

P(G=1)=P(LNMP) =P(L)-P(MP), (24)

with L = latent representation quality, M P = intrinsic model performance.

Step 1: Decomposing Misclassification Probability. Misclassification probability by the law of
total probability is:

P(G=0)=1-P(G=1)=1-PL)P(MP). (25)

Equivalently, misclassification occurs if either the latent representation is poor (—L) or the model
fails (=M P):

P(G = 0) = P(~L U ~MP) = P(~L) + P(~MP) — P(~L)P(~MP). (26)
Conditioning on noise (N) and cleanliness (C), and using the assumption P(—M P | N) = P(-MP |
C) = P(—~MP), we derive:

P(G =0 |N) = P(=L | N) + P(-MP) — P(-L | N)P(-MP), @27)
P(G=0|C)=P(=L | C) +P(~MP) — P(~L | C)P(~MP). (28)

—~

Step 2: Difference in Misclassification Rates. Subtracting the two equations:
P(G=0|N)-P(G=0|C)=[P(-L|N)=P(=L|C)]- (1 -P(-MP)). (29)
Noise effect on L >0

Since 1 —P(—=MP) > 0 (as P(-M P) € [0, 1)), the inequality P(G = 0 | N) > P(G = 0 | C) holds
if:

P(~L | N) > P(-L | C). (30)
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Step 3: Quantifying P(—~L | N) and P(=L | C). We compute these probabilities using the
tree structure in Fig. [/] which models the latent representation process. Here, r is the corruption
probability, and ¢ > 3 is the number of classes. A "poor" latent representation (—L) occurs when
samples in a pair map to inconsistent clusters.

Case 1: Noisy Samples (N). The probability P(—L | N) aggregates contributions from four disjoint
events:

* One corrupted, one clean: Probability 2r(1 — r), leading to a mismatch.

* Both corrupted, different classes: Probability r? - <=2

c—1"
* One corrupted, one clean mis-clustered: Probability 2r(1 —r) - L.

* Both corrupted, same incorrect class: Probability r2. C_%

Summing these terms (see Appendix [E.2|for algebra):
(=c® + ¢+ 3)r? + (2¢% — do)r

P(-L |N) = 31
(=L [N) = =1 31
Case 2: Clean Samples (C). For clean samples, corruption is absent. P(—L | C) includes:
* Both clean but mis-clustered: Probability 2r(1 — r).
* One clean mis-clustered: Probability 2r(1 —r) - L.
Summing these terms:
(4 — 2¢2)r? + (2¢* — de)r
P(-L|C) = 32
(~L| C) S e (32)
Step 4: Final Inequality. Substituting into P(—L | N) > P(-L | C):
(= +c+3)r? + (2¢2 —de)r _ (4c—2¢)r? + (2¢2 — 4o)r (33)
2(c=2)(c—1) 2(c=2)(c—1) '
Subtracting the right-hand side from the left:
2 3 3 2
(" —3e43r" 4 (34)

2(c=2)(c—1)

The denominator 2(c — 2)(c — 1) is positive for ¢ > 3. The numerator ¢> — 3¢ + 3 has discriminant
A = (=3)? —4(1)(3) = =3 < 0, so it is positive for all real c. Since r > 0, the inequality holds.

Boundary Cases. If P(—M P) ~ 1, the model is fundamentally flawed, and noise has negligible
impact. Our framework assumes P(—M P) < 1, which holds for non-trivial models.

Conclusion. Thus, P(G = 0 | N) > P(G = 0 | C), proving that noisy samples exhibit higher
misclassification rates due to biased latent representations.

E.2 Detailed Probability Calculations

Noisy Case (N):

P(ﬂL|N):%-2r(l—r)+%-r2-2:?—&—%-27’(1—7")-%4—%-1"2-cil (35)
B r?(c—2) r(l—r) r?
—r(l—r)+2(671) 1 +2(671) (36)
C2r(L=r)(e—1)+7*(c—2) 4+ 2r(1 —r) + 12 37
N 2(c—1) 37)
(= +c+3)r? 4+ (2¢2 — do)r
B 2(c—2)(c—1) ' G8)
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Clean Case (C):

IF’(—\L|C):%~27’(177")+%'2r(171“)~0_%:7’(177")+% 39)
C(e=Dr(I—-r)4+r(1-7)
= 1 (40)
_ (4c—2e%)r? 4 (2¢2 — do)r
N 2(c—2)(c—1) ' D

E.3 Proof of Theorem 2.3

We bound the false-positive probability P(X > 74 | C) when models may be correlated. Let
X =", X;, where X; € {0, 1} indicates misclassification by model i for a clean sample, with
E[X;] = pc. Unlike Chernoff, Bernstein’s inequality does not strictly require independence but
instead bounds deviations using variance. We use the following generalized version for dependent
variables:

Generalized Bernstein Inequality: For random variables X, ..., X,, with | X; — E[X;]| < 1, let
S =3 Xiand 0 = 377 Var(X;) + 37, Cov(X;, X;). Then, for t > 0,
2
P(S—-E[S]>1) < —— . 42
(S~ Bl8) 20 <o (-5 ) @)

Step 1: Applying the Generalized Bound. For X; ~ Bernoulli(pc), we have E[X] = mpc and
Var(X) = " po(1 — pe) + 3,; Cov(Xi, X;). Let oy, = Var(X). Applying the inequality
to S = X witht = 7y — mpc = me:

2.2
P(X > 74| C) < exp (—"”) . 43)

2 2
2O-total =+ 3 me

Step 2: Bounding the Total Variance. Assume pairwise correlations satisfy Cov(X;, X;) <
ppc (1 — pe) for some p < 1. Then:

oo < mpc(l—pe) +m(m —1)ppe(l — pe) < mpe(L —pe)(L+ pm). (44)

For weakly correlated models (for example p = O(1/m)), o2, = O(m), preserving the exponential
decay rate. Substituting into the bound:

m62
P(X 2 74| C) <exp (—gpc(l —pc)(1+ pm) + §e) ' )

Step 3: Exponential Decay. For p = o(1) (decaying correlations), the dominant term in the
denominator is 2pc(1 — pe). Thus, the probability decays exponentially with m:

€2

P(X > 7, |C) =0 (e, ¢= .
Kz2nl0) ( ). 2pc (1 —pe) + 3¢

(40)

Conclusion. Even with bounded correlations, the false-positive rate diminishes exponentially in m,
provided correlations do not grow with m.

E.4 Threshold Derivation

Corollary (Practical Threshold Selection Under Worst-Case Variance). Assume deep learning
models exhibit a worst-case clean-data misclassification rate of pc = 0.25, with variance bounded
by 02 = pc(1 — pc) = 0.1875. To ensure exponential decay of false-positives (Theorem , the
detection threshold T, must satisfy:

2021n(1/0)

.
s po+ | T (47)
m m
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where § is the desired confidence level (§ = 0.05 for 95% confidence for example). Substituting
pc = 0.25 and 0 = 0.1875:

0.3751In(1/4
T 5 0.5 4 4 235 I00/0) (48)
m m
For practical deployment with m > 10, we adopt the conservative heuristic:
Td 5 06, (49)
m

ensuring € = < —pc > 0.35 for m > 10. This guarantees a decay rate k = ~ 0.2, yielding
i o >0.35 > 10. Thi d k 0.2, yieldi

_ e
202+%5

P(False-Positive) < e~%2™ which decays to < 0.14 for m = 10 and < 0.001 for m = 30.

F Implementation details

Key Libraries Used in All Experiments:

* torch==2.6.0

* torchvision ==0.20.1
* numpy ==2.2.4

* scikit-learn==1.6.1
* matplotlib==3.10.0
* seaborn==0.13.2

* tqdm ==4.67.1

Key Parameters For Training Siamese Network on CIFAR-10:

* Feature extractor: ResNet50 (pre-trained)

* Learning rate: 5 x 1075 (Adam), Weight decay: 5 x 10~

* Batch size: 2,048, Epochs: 1,000 (early stopping patience=8)
* Loss: Cross-entropy (label smoothing=0.1)

* Contrastive margin: 2.0

* Embedding dimension: 64

* Training pairs: 200,000, Validation pairs: 20,000

* Dropout probability: 0.5

¢ Cross-validation: 10 inner folds, 10 outer folds

Note: These parameters were obtained through trial and error.

Key Parameters For Training Classification Model on CIFAR-10:

* Base model: Pre-ActResNet34

» Batch size: 256 (train/val/test)

* Learning rate: 0.001, Weight decay: 5.46e-5
Epochs: 200 (Early Stopping Patience=20)
* Loss: Cross-entropy (Label Smoothing=0.1)

Note: These parameters were obtained via grid search using Optuna [47].

Key Parameters For Training Siamese Network on Fashion-MNIST:

 Feature extractor: ResNet34
* Learning rate: 5 x 10~° (Adam), Weight decay: 1 x 1073
* Batch size: 2,048, Epochs: 1,000 (early stopping patience=_8)
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* Loss: Cross-entropy (label smoothing=0.1)

* Contrastive margin: 1.0

* Embedding dimension: 128

* Training pairs: 200,000, Validation pairs: 20,000
* Dropout probability: 0.5

¢ Cross-validation: 10 inner folds, 10 outer folds

Note: These parameters were obtained through trial and error.

Key Parameters For Training Classification Model on Fashion-MNIST:

* Base model: Pre-ActResNet34

* Batch size: 256 (train/val/test)

e Learning rate: 0.0002, Weight decay: 1.12 x 106
* Epochs: 200 (Early Stopping Patience=20)

* Loss: Cross-entropy (Label Smoothing=0.1)

Note: These parameters obtained via grid search using Optuna [47].

G Additional experimental results

G.1 Detailed Experimental Results and Threshold Selection

We present comprehensive results from our grid search for determining the optimal detection threshold
(74), which serves as the noise confidence cutoff, and the relabeling threshold (7;), which represents
the minimum agreement required for clean labels. The selection process aims to balance two key
objectives:

* Primary Objective: Maximize the Noise F1-Score (which balances precision and recall) to
ensure the detection of as many noisy labels as possible.

* Secondary Objective: Maintain a high Relabeling Score to effectively adjust the noisy labels.

G.1.1 Threshold Selection Strategy
1. Grid Search Space: 743 € {6,7,8,9,10}, 7; € {6,7,8,9, 10} (discrete confidence levels)
2. Metric Prioritization:

* Primary: Noise F1-Score for 74
» Secondary: Relabeling Score for 7;

3. Trade-off Analysis:

» Higher 74: Increases precision but reduces recall
» Lower 7;: Increases relabeling but risks error propagation

Warning: This strategy relies on clean validation data. For real-world datasets without ground-truth
clean labels, we propose a practical threshold-selection methodology in Appendix [H] This approach
enables effective noise detection and correction without requiring access to clean validation data.

Note: Fortunately, our Siamese model does not require to be trained each time for different
hyperparameters. We only need to train the model once and then use the same model to detect and
relabel noisy samples with different hyperparameters.
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Table 5: Noise Detection Performance with different hyper-parameters for CIFAR-10

Noise Ratio 74 Noise Accuracy Noise Precision Noise Recall Noise F1-Score

6 0.8972 0.4628 0.8792 0.6064

7 0.9119 0.5066 0.8519 0.6354

CIFAR-1ION 8 0.9244 0.5544 0.8182 0.6609
9 0.9358 0.6135 0.7758 0.6852

10 0.9451 0.6999 0.6848 0.6922

6 0.8676 0.6098 0.9760 0.7506

7 0.8864 0.6510 0.9560 0.7746

IDN-20% 8 0.8999 0.6932 0.9149 0.7887
9 0.9070 0.7408 0.8375 0.7862

10 0.8955 0.7887 0.6671 0.7228

6 0.7873 0.5979 0.8847 0.7136

7 0.8069 0.6386 0.8188 0.7176

IDN-30% 8 0.8160 0.6791 0.7310 0.7041
9 0.8124 0.7194 0.6123 0.6616

10 0.7889 0.7606 0.4307 0.5500

6 0.6115 0.5069 0.7021 0.5887

7 0.6326 0.5309 0.6217 0.5727

IDN-40% 8 0.6530 0.5655 0.5343 0.5495
9 0.6652 0.6084 0.4342 0.5068

10 0.6663 0.6748 0.3041 0.4193

Table 6: Noise Detection Performance with different hyper-parameters for Fashion-MNIST

Noise Ratio 73 Noise Accuracy Noise Precision Noise Recall Noise F1-Score

6 0.8723 0.6227 0.9810 0.7618
7 0.8962 0.6741 0.9714 0.7959
IDN-20% 8 0.9194 0.7353 0.9577 0.8319
9 0.9358 0.7981 0.9258 0.8572
10 0.9395 0.8714 0.8325 0.8515
6 0.8715 0.7091 0.9780 0.8221
7 0.8943 0.7544 0.9667 0.8474
IDN-30% 8 0.9125 0.8008 0.9473 0.8679
9 0.9216 0.8502 0.9003 0.8746
10 0.9026 0.9044 0.7597 0.8257
6 0.8631 0.7591 0.9677 0.8508
7 0.8787 0.7958 0.9402 0.8620
IDN-40% 8 0.8821 0.8307 0.8887 0.8587
9 0.8667 0.8662 0.7917 0.8273
10 0.8093 0.9033 0.5902 0.7140
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G.1.2 Dataset-Specific Analysis

In Tables [5] and [] we summarize the grid search over detection thresholds 74 for CIFAR-10 and
Fashion-MNIST. Then, fixing the best 74 from that search, Tables [7]and [§] present our sweep over
relabeling thresholds 7;.. For each 7. we report:

* the total number of relabeled samples (“Count”),

* the relabeling accuracy (“Accuracy”),

* the relabeling score (see Section[2.4),

* the resulting noise ratio,

* the size of the dataset remaining after cleaning.

Table 7: CIFAR-10 Relabeling Threshold Results

Relabeling
Noise Ratio S Score Distribution Noise Ratio Remaining
Before Count Accuracy Score After Samples
2 -1 0 1 2
6 1159 164 399 248 2438 3996 61.01 0.66 6.01% 49588
7 1044 279 306 440 2339 3689 63.40 0.75 5.62% 49281
CIFAR-1ION 10 8 932 391 222 647 2216 3370 65.75 0.84 5.26% 48962
9 798 525 166 871 2048 3012 67.99 0.94 4.90% 48604
10 613 710 103 1241 1741 2457 70.85 1.13 4.45% 48049
6 2695 1439 704 772 7863 11262 69.82 0.86 8.93% 47789
7 2031 2103 500 1273 7566 10097 74.93 1.01 7.29% 46624
20% 8 8§ 1414 2720 330 1866 7143 8887 80.37 1.19 5.75% 45414
9 866 3268 195 2908 6236 7297 85.45 1.42 4.40% 43824
10 379 3755 85 4832 4422 4886 90.50 1.87 3.22% 41413
6 3742 3199 826 1770 9667 14235 67.91 0.73 16.17% 45031
7 2525 4416 514 2780 8969 12008 74.69 0.94 13.44% 42804
30% 7 8 1321 5620 302 4537 7424 9047 82.06 1.23 10.88% 39843
9 566 6375 131 6684 5448 6145 88.66 1.64 9.23% 36941
10 178 6763 47 9204 3012 3237 93.05 2.51 8.63% 34033
6 8613 4910 1315 3367 9221 19149 48.15 -0.02 37.94% 41723
7 5713 7810 778 5786 7339 13830 53.07 0.09 34.04% 36404
40% 6 8 3323 10200 403 8070 5430 9156 59.31 0.23 30.34% 31730
9 1606 11917 165 10246 3492 5263 66.35 0.40 27.56% 27837
10 494 13029 44 12204 1655 2193 75.47 0.68 25.99% 24767
Table 8: Fashion-MNIST Relabeling Threshold Results
Relabeling
Noise Ratio T4 T Score Distribution Noise Ratio Remaining
Before Count Accuracy Score After Samples
-2 -1 0 1 2
6 2094 833 876 959 9734 12704 76.62 1.21 6.69% 58208
7 1752 1175 621 1620 9328 11701 79.72 1.33 5.77% 57205
20% 9 8 1436 1491 434 2321 8814 10684 82.49 1.46 4.98% 56188
9 865 1875 268 3235 8066 9386 85.93 1.64 4.09% 54890
10 462 2465 122 5035 6412 6996 91.65 2.07 2.88% 52500
6 2043 847 1223 1624 13560 16826 80.59 1.42 8.83% 57529
7 1662 1228 857 2638 12912 15431 83.68 1.55 7.72% 56134
30% 9 8§ 1273 1617 582 3704 12121 13976 86.72 1.70 6.71% 54679
9 865 2025 361 5145 10901 12127 89.89 1.91 5.76% 52830
10 353 2537 170 8044 8193 8716 93.99 2.43 4.73% 49419
6 2806 3028 1639 3598 17506 21951 79.75 1.37 11.04% 53374
7 1917 3917 1100 5375 16268 19285 84.36 1.56 8.80% 50708
40% 7 8 1148 4686 681 7887 14175 16004 88.57 1.83 6.91% 47427
9 604 5230 372 11106 11265 12241 92.03 2.22 5.55% 43664
10 231 5603 133 15508 7102 7466 95.12 3.17 4.65% 38889

Tables[7]and [§]demonstrate that increasing the relabeling threshold 7; yields steadily higher relabeling
accuracy and score, while reducing the number of samples corrected. This trade-off highlights a
fundamental balance in our method: higher 7, values produce more reliable corrections on fewer
samples, whereas lower thresholds cover more samples with lower confidence. Moreover, as 7;
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increases, the remaining dataset after cleaning diminishes, which must be considered when selecting
7. Finally, the strong correlation between the relabeling score and the post-cleaning noise ratio
confirms the score’s effectiveness as an indicator of correction quality.

These results serve as a benchmark for future methods in noisy-label detection. We recommend
reporting the relabeling score—alongside precision and recall— as a clear, interpretable metric for
assessing the quality of label corrections.

G.2 Understanding How the Detection Threshold Affects Noise Detection

Figure [ shows how adjusting the detection threshold (74) impacts the performance of our noise
detection method. Think of 74 as a "knob" that controls how strict the model is when deciding whether
a data sample is noisy:

* Higher 74 (stricter):

— Reduces false alarms (incorrectly flagging clean data as noisy).
— Also reduces correct detections (missing some actual noisy data).

e Lower 74 (looser):

— Increases correct detections.
— Increases false alarms.

G.2.1 Key Observations
* CIFAR-10 Results (Figure [8a):

— At moderate noise levels (20-30%): A threshold of 74/m > 0.6 keeps false alarms between
2%-25%, while catching most true noise.

— At 40% noise: Performance drops (more false alarms and missed detections), showing the
challenge of extreme noise.

* Fashion-MNIST Results (Figure [8b):

— Simpler data allows better performance: False alarms stay below 21% even at 40% noise with
7a/m > 0.6.

* Theoretical Agreement: The sharp drop in false alarms as 74 increases matches our mathematical

True Positive Rate (TPR)

predictions (Corollary [E.4 & Theorem 2.3).

0.4

0.2

10

. — 4 — CIFAR-10N
,’ ’ —— 20% Noise
e —=— 30% Noise
L’ ’ 40% Noise
4 - — — Random Guess
| | I I
0.2 0.4 0.6 0.8 1

False Positive Rate (FPR)
(a) CIFAR-10

True Positive Rate (TPR)

0.4

0.2

,’ ’ —e— 20% Noise
e —=— 30% Noise
e 40% Noise
- — — Random Guess
| | I I
0.2 0.4 0.6 0.8

False-Positive Rate (FPR)

(b) Fashion-MNIST

Figure 8: ROC curves for noise detection on CIFAR-10 and Fashion-MNIST datasets.
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Threshold Selection Without Ground-Truth Labels

In many real-world scenarios, clean labels are unavailable for tuning detection and relabeling
thresholds. We propose a simple calibration protocol that requires training the Siamese ensemble
only once (Algorithm [):

1.

Single-Pass Embedding Extraction. Train the Siamese ensemble on the full noisy dataset to
compute each sample’s disagreement count:

m

r(z) =Y 1(fi(x) #§) € {0,1,...,m}.

j=1
Detection Threshold Grid. Define candidate detection thresholds:

7a € {[0.6m],[0.7m],...,m}.
Lower values favor recall (flagging more potential noise), while higher values favor precision.
Relabeling Threshold Grid. For each 7,4, define relabeling thresholds:

7 € {[0.5m], [0.6m],..., 74}
Lower 7; relabels more samples (risking mis-corrections); higher 7, is more conservative.
Calibration Loop. For each (74, 7) pair:
(a) Use the model to obtain a cleaned dataset without any extra training.
(b) Train a lightweight downstream classifier for a few epochs.
(c) Evaluate validation performance (e.g., accuracy or F1 score).
Select (74, 7¢) that maximizes the chosen metric.

Final Deployment. Re-clean the full dataset with the selected thresholds and train the target
model at scale.

Algorithm 4 Threshold Calibration without Clean Labels

Inputs: Siamese ensemble of size m, noisy dataset D = (z;, §; ), number of outer folds &k
Output: Optimal thresholds (7}, 7;)

1:
2
3
4.
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

function CALIBRATETHRESHOLDS(ID, m, k)
P = CollectPredictions(ID, k, m) > Algorithm|l]
Ta=10.6m],...,m
best_score =0
for 74 in 74 do
7. ={[0.5m],...,m}
for 7. in 7, do
Dejean = DetectAndRelabel(P, D, 74, 77) > Algorithm
Train classifier on D e, for few epochs
score = Validate classifier on held-out set
if score > best_score then
best_score = score
(T;’ 7—r*) = (Td7 Tr)
end if
end for
end for
return (7, ;)
end function
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I Reliability Analysis of Ensemble Disagreement

Our model naturally yields a probabilistic estimate of label noise by interpreting the raw disagree-
ment count:

r(x) = Y 1(fi(x) #9), (50)
j=1
not as a hard decision but as a noise score:
p(xz) =Pz e N|r(z)) = Lﬂ? € [0, 1]. (51)

Figure 9] then plots, for each predicted noise probability p, the observed fraction of truly noisy labels
among all samples with that score. Concretely, each marker at p shows

[{z: p(z) =pAxecN}
[{z: p(x) =B}

This is exactly a reliability diagram: horizontal axis = predicted noise probability, vertical axis =
empirical noise rate. From the curves we observe:

(52)

* Strong discrimination. In all subplots and noise regimes, the curves rise monotonically, confirm-
ing that higher p(z) reliably ranks samples by corruption likelihood.

» Systematic overconfidence. Every curve lies below the diagonal (except for CIFAR-10 40%).
For example, on CIFAR-10N at p = 0.6, only ~ 20% of those samples are actually noisy. Thus
p = r/m overestimates the true noise probability.

* Noise-level dependence. As the true noise rate increases (20%—40%), the curves move closer to
the diagonal-yet even at 40% noise, p = 0.8 corresponds to only = 43% actual corruption.

Theoretical guarantee. Under Theorem and its ensemble-size corollaries, as the number of
models m grows, the distributions of p(z:) = r(x)/m for clean and noisy samples concentrate around
two well-separated values. A threshold chosen between these values yields exponentially vanishing
false-positive and false-negative rates.

Practical implication. To avoid excessive false positives, detection thresholds should be chosen by
consulting these curves (e.g. pick the p where the empirical curve crosses the desired noise rate) or by
applying a lightweight calibration method (such as isotonic regression) to correct the overconfidence
before using p(x) as a probability.

Future directions. Having access to clean validation data and a calibrated noise score enables
several new strategies:

* Soft sample weighting: Rather than a hard discard, downstream losses can be re-weighted by
1 — p(z) for robust training under uncertainty.

* Data-driven thresholding: Users can pick 7; by consulting the calibration curves to meet target
precision or recall.

* Active cleansing: Samples with intermediate p(x) can be triaged for human review, maximizing
annotation efficiency.

» Calibration: Learning a lightweight calibration transform (e.g. via isotonic regression) could
correct residual bias in p(x).

* Dynamic thresholding: One could also explore dynamic thresholding schemes that adapt to
class imbalances or domain shifts by re-estimating calibration on the fly.
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Figure 9: Fraction of noisy samples vs. P(z € N | 7(z)). Higher ensemble disagreement correlates
strongly with label noise.

J Discussion on False-Positive Cases

False-positives are clean samples mistakenly flagged as noisy. These often include ambiguous
examples like blurry images or objects with unusual angles (Fig. that confuse both AI models
and human annotators. While problematic for training, removing these challenging samples can
paradoxically improve model performance by:

* Focusing learning on clearer examples first (like teaching addition before calculus)

» Reducing exposure to confusing patterns early in training

* Aligning with curriculum learning principles [48]] (gradual difficulty increase)

# | APNES] K

Airplane Airplane

5.0

t

Figure 10: Examples of confusing clean images from CIFAR-10 that our model mistakenly flagged
as noisy. These contain unusual angles, partial objects, or blurry textures that challenge both humans
and algorithms.
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NeurlIPS Paper Checklist

1.

3.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The paper’s claims in the abstract and introduction accurately reflect our contribu-
tions in developing a Siamese network framework for instance-dependent label noise detection
and correction. Our theoretical contributions are substantiated by Theorem [2.2]and Theorem [2.3]
with complete proofs in Appendix [E.T|and Appendix [E.3|respectively. The experimental results
in Section [3| validate our claims, demonstrating significant improvements over baselines on both
synthetic and real-world datasets.

Guidelines:

» The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors in the
section 4]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
Justification: All assumptions are clearly stated in theorems, with complete proofs in appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all details needed to reproduce the main results: algorithmic
descriptions in Section [2] network architecture in Section [2.1] and hyper-parameters in Ap-
pendix [F} Ready-to-run code is included in the supplementary materials for submission and will
be publicly released on GitHub in the final version.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

29



859

860
861

862

863
864
865
866
867

868

869
870
871
872
873
874
875
876
877
878
879
880

882
883
884
885
886

887

888
889

890

891
892
893
894
895

896

897
898
899
900
901

902

903

905

906
907
908
909
910
911

Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient instructions in
the repository itself to faithfully reproduce the main experimental results. The saved runs are
also provided in the repository. The code is written in PyTorch and is fully reproducible and
ready to run. Due to submission anonymity, the code is not publicly available at this time, but it
will be released in a public Github repository after the review process.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper provides all algorithmic details (Section [2), network architecture
(Section [2.1), and hyper-parameters (Appendix [F). All scripts for data preprocessing, model
training, and evaluation, along with detailed usage instructions, are included in the anonymized
supplementary material and will be publicly released in the final GitHub repository to ensure
full reproducibility. reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance for all classification experiments by running
each experiment 5 times. Tables 2] and [3] show mean accuracy and standard deviation (in the
format mean = std) for our method and all baseline methods. This approach captures variability
from initialization and stochastic training processes, allowing for fair statistical comparison
between methods. The standard deviation represents the 1-sigma error bars assuming normally
distributed results.
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10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The computational resources needed to reproduce the experiments are provided in
Section [3]and Appendix [F}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper conforms to the NeurIPS Code of Ethics, as it is fully compliant with
the guidelines provided in the link.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
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11.

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative societal
impacts of the work performed in Section

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pre-trained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: This paper uses open-source datasets and models, and does not release any new
models or datasets that have a high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification: We used publicly available benchmark datasets (CIFAR-10[21], Fashion-
MNIST(22], and CIFAR-10N[24]) with proper citations in Section[3.3] All datasets are used in
accordance with their respective licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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15.

* The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowd-sourcing and research with human subjects

Question: For crowd-sourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: Paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowd-sourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: Paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

» The answer NA means that the paper does not involve crowd-sourcing nor research with
human subjects.
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1066 * Depending on the country in which research is conducted, IRB approval (or equivalent) may

1067 be required for any human subjects research. If you obtained IRB approval, you should
1068 clearly state this in the paper.

1069 * We recognize that the procedures for this may vary significantly between institutions and
1070 locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
1071 for their institution.

1072 * For initial submissions, do not include any information that would break anonymity (if
1073 applicable), such as the institution conducting the review.

1074 16. Declaration of LLM usage

1075 Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
1076 standard component of the core methods in this research? Note that if the LLM is used only for
1077 writing, editing, or formatting purposes and does not impact the core methodology, scientific
1078 rigorousness, or originality of the research, declaration is not required.

1079 Answer: [NA]

1080 Justification: The core method development in this research does not involve LLMs as any
1081 important, original, or non-standard components.

1082 Guidelines:

1083 * The answer NA means that the core method development in this research does not involve
1084 LLMs as any important, original, or non-standard components.

1085 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
1086 what should or should not be described.
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