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Abstract

Deep neural networks can suffer severe performance degradation when trained on1

datasets with instance-dependent label noise—annotation errors that correlate with2

input features. To address this issue, we propose a lightweight, model-agnostic3

preprocessing framework based on an ensemble of contrastive Siamese networks.4

Our method detects and corrects noisy labels by measuring embedding consistency:5

clean samples yield stable representations across models, while noisy samples6

exhibit high variability and increased misclassification rates. Each Siamese model7

is trained on a subset of image pairs, and we demonstrate that noisy instances are8

significantly more likely to be misclassified under this subset-driven embedding9

process, with the ensemble’s false-positive rate decaying exponentially with the10

number of models. Ultimately, samples with high model disagreement are flagged11

and either relabeled by consensus or discarded. Empirically, on real-world CIFAR-12

10N (9.01% natural noise), our method reduces label corruption to 4.45% and13

achieves 88.51% accuracy on the cleaned dataset—0.26 percentage points ahead14

of the nearest baseline. Under synthetic instance-dependent noise, label corruption15

on CIFAR-10 is reduced from 40% to 25.9% (yielding a 12.54 percentage point16

accuracy gain) and on Fashion-MNIST from 40% to 4.6% (a 2.23 percentage point17

accuracy gain). Our preprocessing step adds minimal overhead, produces inter-18

pretable uncertainty scores, and can be seamlessly integrated with any downstream19

learner to enhance robustness against label noise.120

1 Introduction21

The performance of deep learning models critically depends on high-quality labeled training22

datasets [1]. However, real-world datasets often suffer from label corruption due to crowdsourcing in-23

accuracies, ambiguous cases, and inexpert annotations [2, 3]. Manual label verification is impractical24

at scale; thus, automated solutions must balance identifying noisy labels with retaining clean training25

examples [3]. The widespread occurrence of label noise in practical datasets has motivated extensive26

research. It profoundly degrades model performance and reliability.27

Label noise is broadly categorized into instance-independent noise (IIN)—including symmetric28

(uniform) and asymmetric (class-conditional) noise—and instance-dependent noise (IDN), where29

errors correlate with input features. IDN poses unique challenges; for example, a blurry "sneaker"30

image mislabeled as an "ankle boot" reflects feature-dependent ambiguity that undermines generaliza-31

tion [3, 4]. There are a variety of methods to mitigate label noise, which can be broadly categorized32

into sample selection, label correction, and hybrid cleaning.33

Sample selection methods detect and remove noisy examples by exploiting the “memorization34

effect,” where DNNs fit clean patterns before over-fitting noise [5]. Models are then trained only35
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on high-confidence samples, keeping original labels [3]. Recent advances include curriculum-based36

weighting (e.g., MentorNet [6]) and neighborhood consistency checks (e.g., ConFrag [2]).37

Label correction methods tackle noise by revising annotations instead of discarding samples [7].38

These include prediction-based strategies (e.g., iterative label updates using model confidence [8])39

and clean sample-based methods (e.g., refining labels via agreement with trusted subsets [9]).40

Hybrid cleaning methods integrate both selecting and correction techniques [10]. For instance,41

unclean sample correction partially relabels ambiguous instances flagged by disagreement metrics,42

while adaptive methods dynamically adjust correction criteria (e.g., confidence thresholds) based on43

model performance [11, 12].44

Other paradigms include loss adjustment (e.g., noise-robust loss functions [13]) and regularization45

(e.g., adversarial training [14], mixup [15]). Meta-learning methods dynamically re-weight sam-46

ples via bi-level optimization [16]. Contrastive learning (e.g., Jo-SRC [11]) learns noise-invariant47

representations but conflates semantic similarity with label noise.48

While numerous approaches focus on modifying training procedures or loss functions, we propose49

a preprocessing framework that identifies and rectifies label errors before training, incorporating50

contrastive learning and ensemble disagreement. Contrastive learning is performed via a specialized51

Siamese network architecture that emphasizes visual consistency over potentially erroneous labels52

while learning distinctive feature representations for image pairs. We note that contrastive learning53

has previously been successfully used for identifying noisy labels [17, 1]. In this work, we propose54

an ensemble of Siamese networks to detect and correct instance-dependent label noise. Contrastive55

training produces compact, well-separated clusters for clean samples, whereas noisy points remain56

ambiguous and are more likely to be misclassified by individual models (see Appendix A), suggesting57

that the frequency of misclassification itself can serve as an effective indicator of label corruption.58

Our contributions are as follows:59

• A novel Siamese-ensemble preprocessing framework that trains each contrastive model on60

different random subsets to expose instance-dependent noise via embedding variability.61

• Theoretical guarantees showing (a) noisy examples incur strictly higher misclassification proba-62

bility under our subset-driven embedding process, and (b) the ensemble’s false-positive detection63

rate decays exponentially in size.64

• A novel relabeling score metric that quantitatively evaluates the quality of label corrections while65

maintaining interpretability.66

• Strong empirical validation on both controlled and real-world benchmarks:67

– CIFAR-10: label corruption reduced from 20% to 3.2%, 30% to 8.6%, 40% to 25.9%, yielding68

a 12.5% absolute accuracy gain at 40% noise (71.2% vs. 58.6% baseline).69

– Fashion-MNIST: corruption reduced from 20% to 2.8%, 30% to 4.7%, 40% to 4.6%, boosting70

accuracy by 2.2% at 40% noise (87.9% vs. 85.7%).71

– CIFAR-10N: cleaned corruption from 9.01% to 4.4% and raised top-1 accuracy to 88.5%, a72

0.26% lead over the next best method.73

• Open-source release of all code, datasets, and evaluation scripts at https://74

hidden-because-anonymity, enabling easy integration with any downstream classifier. Also,75

key parameters for training are available in Appendix F.76

2 Methodology77

We propose a Siamese network that uses contrastive learning and ensemble consensus to detect and78

correct instance-dependent label noise (Fig. 1). The formal notation is provided in Appendix B.1.79

Nested Cross-Validation: Implemented via Algorithm 3, the process first splits the dataset D into k80

stratified outer folds. For each fold, k−1 folds form the outer training set (DOT) while the remaining81

fold serves as validation (DOV). DOT is further divided into m inner folds, with m−1 sub-folds (DIT)82

training Siamese networks and one sub-fold (DIV) validating early stopping. Contrastive pairs derive83

exclusively from DIT using Section 2.2’s balanced strategy.84

Ensemble Noise Detection: For each inner fold, we train a Siamese model and record its predictions85

on DOV. We collect these predictions into a matrix P as described in Algorithm 1. For each sample86
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xi in DOV, we compute the disagreement count r(xi) =
∑m

j=1 1(Pi,j ̸= yi). We flag xi as noisy if87

r(xi) ≥ τd, leveraging Theorem 2.2 to ensure that noisy labels exhibit higher disagreement rates.88

Consensus-Based Correction: Flagged samples are relabeled using Algorithm 2. If at least τr89

models agree on a new label, we substitute the consensus label; otherwise, we discard the sample.90

Siamese networks, detailed in Section 2.1, are trained on pairs selected based on DIT, with early91

stopping employed and monitored through performance metrics derived from DIV. This nested92

structure helps maintain model integrity while Theorem 2.3 ensures robustness against individual93

model errors.94
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Figure 1: Overview of the proposed method.

2.1 Custom Siamese Network Architecture95

We train a Siamese network on the inner training set DIT and validate on DIV to generate predictions96

for samples in DOV. The twin-branch architecture (Fig. 2) builds on the foundational design of [18]97

and integrates contrastive learning from [19]. It combines contrastive and classification objectives98

through three key components:99

Feature Extractor: A CNN that processes input pairs to extract discriminative features.100

Embedding Head: Projects features into a normalized embedding space using a sigmoid layer to101

constrain values to [0, 1], enabling similarity-based analysis and dimensionality reduction.102

Classification Head: Lightweight MLP mapping embeddings to class predictions.103

The model is trained via a loss function that combines contrastive and classification objectives:104

Ltotal =
1

B

B∑
b=1

[
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1 − h
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]
(1)

where B is the number of pairs, ys ∈ {0, 1} indicates positive/negative pairs, h1, h2 are the twin105

branch embeddings, γ is the contrastive margin, LCE denotes cross-entropy loss, p denotes the logit,106

and ỹ symbolizes the noisy labels.107

2.2 Pair Selection Analysis108

The mechanism governing pair selection critically shapes model performance by controlling rep-109

resentation quality and contrastive learning efficacy. Our experiments demonstrate that optimal110

performance requires balanced positive-to-negative pair ratios. In a balanced c-class dataset under111

k ×m nested cross-validation, the maximum number of positive pairs is:112

MPP =

(
⌊ 1c × |DIT|⌋

2

)
× c =

(
⌊ (m−1)(k−1)

m×k×c × n⌋
2

)
× c (2)

To maintain a balanced training set, we limit the total number of pairs to 2×MPP, ensuring equal113

representation of positive and negative pairs. However, our experiments show that effective training114
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Figure 2: Siamese network with twin branches processing input pairs. Shared weights generate
embeddings (h1, h2) and logits (p1, p2) for joint contrastive-classification learning.

Algorithm 1 Collect Predictions by Nested Cross-Validation
Inputs: Dataset D = {(xi, ỹi)}ni=1, Number of outer folds k, Number of inner folds m
Output: Prediction matrix P ∈ [0, 1]

n×m where Pi,j is the prediction of the j-th model on the i-th
sample

1: function COLLECTPREDICTIONS(D, k,m)
2: Initialize prediction matrix P ∈ [0, 1]

n×m

3: for outer_fold = 1 to k do
4: DOT,DOV ← StratifiedSplit(D, outer_fold, k) ▷ Outer split (Appendix C)
5: Initialize ensemble models {f1, f2, . . . , fm}
6: for inner_fold = 1 to m do
7: DIT,DIV ← StratifiedSplit(DOT, inner_fold,m) ▷ Inner split (Appendix C)
8: finner_fold ← TrainModel(DIT,DIV) ▷ Train siamese model with early stopping
9: for each sample xi in DOV do

10: Pinner_fold,i = finner_fold(xi) ▷ Ensemble predictions
11: end for
12: end for
13: end for
14: return P
15: end function

Algorithm 2 Noise Detection and Relabeling

Inputs: Prediction matrix P ∈ [0, 1]
n×m, Dataset D = {(xi, ỹi)}ni=1, Detection threshold τd,

Relabeling threshold τr
Output: Cleaned dataset Dclean = {(xc

i , y
c
i )}

nc
i=1

1: function DETECTANDRELABEL(P,D, τd, τr)
2: Initialize clean dataset Dclean = {}
3: for each sample i = 1 to n do
4: ri =

∑m
j=1 1(Pi,j ̸= yi) ▷ Calculate error rate

5: l = mode(Pi,:) ▷ Find most common prediction
6: if ri < τd then
7: Dclean ← Dclean ∪ {(xi, ỹi)} ▷ Detected as clean
8: else if count(l) ≥ τr then
9: Dclean ← Dclean ∪ {(xi, l)} ▷ Relabeled as clean

10: end if
11: end for
12: return Dclean

13: end function
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can be achieved with significantly fewer pairs; for instance, using only 0.12% of the maximum115

possible pairs on CIFAR-10 yielded competitive performance, suggesting that the model can learn116

robust representations even with a small subset of selected pairs.117

Label noise can affect the pair selection process, necessitating an analysis of the probability of118

selecting valid training pairs as a function of the noise rate r and the number of classes c. Detailed119

derivations are provided in Appendix D. To ensure robust performance, we require that this probability120

exceeds a predefined threshold α. This criterion yields an upper bound r∗ on the acceptable noise121

rate, dependent on α and c. Comprehensive derivations and closed-form solutions are outlined in122

Appendix D.3, and Fig. 3 illustrates typical operational ranges for various α values.123

2.3 Noise Detection Analysis124

10 20 30 40 50

0.5

1

α = 0.5 α = 0.55

α = 0.6 α = 0.65

Figure 3: r∗ vs. number of classes

Let C and N denote the sets of clean and noisy125

samples, and L and MP the latent-quality and126

performance indicators. Theorem 2.2 shows127

that noisy samples misclassify more often, and128

Appendix A shows noise degrades embeddings,129

raising P(¬L | N).130

Assumption 2.1 (Independence Conditions).131

We assume (i) latent–performance independence,132

P(L ∩MP ) = P(L)P(MP ), and (ii) perfor-133

mance–noise independence, P(MP | N) =134

P(MP | C) = P(MP ).135

Theorem 2.2 (Noise Misclassification Bias).136

Let G(x, ỹ) = 1(argmax fθ(x) = ỹ) denote137

the misclassification indicator. Under Assump-138

tion 2.1, for any noise rate r > 0 and number139

of classes c ≥ 3,140

P(G = 0 | N) > P(G = 0 | C).

Proof. The proof follows from analyzing the probability decomposition of correct classification141

under our decision tree framework (see Appendix E.1 for the complete mathematical derivation).142

Our experimental evaluation in Section 3 empirically validates Theorem 2.2, demonstrating that noisy143

samples indeed exhibit higher misclassification rates than clean samples. Building on this result, we144

further consider the effect of aggregating predictions from multiple models. Moreover, by treating145

the normalized disagreement score 1
m

∑m
j=1 1

(
fj(x) ̸= ỹ

)
as a continuous noise-confidence value,146

we not only rank samples by their likelihood of corruption but, as shown in the reliability diagrams of147

Appendix I, provides a useful approximation of the true noise rate.148

Theorem 2.3 (False-Positive Decay Under Ensemble Prediction). Consider an ensemble of m trained149

Siamese models f1, . . . , fm. For a data point s = (x, y), we classify it as noisy if at least τd models150

misclassify it. Under the clean data condition (s ∈ C), define the total misclassification count151

X =
∑m

i=1 Xi, where each Xi ∈ {0, 1} is an indicator variable for misclassification by the i-th152

model. Let E[Xi] = pC be the expected misclassification rate on clean data, and assume the model153

errors have bounded variance σ2 = E[(Xi − pC)
2]. Then, the probability of false-positive detection154

decays exponentially with the number of models:155

P(X ≥ τd | C) ≤ exp

(
− mϵ2

2σ2 + 2
3ϵ

)
, (3)

where ϵ = τd
m − pC > 0 represents the margin between the threshold rate and the expected156

misclassification rate.157

Proof. A concise proof of this result employs Bernstein’s inequality to accommodate correlated158

model errors; the detailed proof is available in Appendix E.3.159

Based on Theorem 2.3, we establish τd ≥ 0.6m, which guarantees an exponential decay in false-160

positive probability with the increase of m. Specifically, this configuration ensures low false-positive161
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rate when employing m ≥ 10 models, assuming a minimum model accuracy of 75% on clean data162

(corresponding to pC = 0.25). Appendix E.4 derives these bounds mathematically, while Section 3.4163

and Appendix G empirically demonstrates our method’s robust sensitivity trade-off.164

Trade-off between m and k Increasing the number of models m reduces the available data for the165

inner validation set (DIV), necessitating a larger number of folds k to maintain statistical robustness.166

2.4 Quantifying Label Correction Quality167

We evaluate label corrections using a relabeling score. For each data point, we assign +2 points168

for correctly relabeling noisy samples, -2 for incorrectly relabeling clean samples, +1 for properly169

removing noisy samples, -1 for wrongly removing clean samples, and 0 for incorrectly relabeling170

noisy samples. We compute the overall relabeling score by summing these individual scores and171

dividing by the number of relabeled samples, facilitating comparison across datasets. This scoring172

framework is illustrated in Fig. 4. Our evaluation focuses on aggregate performance across samples173

identified as noisy by our method, with class-specific analysis reserved for future work. Further, we174

define relabeling accuracy as the ratio of correctly relabeled samples and relabeling count as the total175

number of relabeled samples; these metrics are detailed in Appendix G.1.2.176

Detected Noise

Clean Sample

Eligible for Relabeling

Assigned Incorrect Label (-2)

Not Eligible for Relabeling

Remove Sample (-1)

Noisy Sample

Eligible for Relabeling

Assigned Incorrect Label (0) Assigned Correct Label (+2)

Not Eligible for Relabeling

Remove Sample (+1)

Figure 4: Scoring system for label corrections: green/red = positive/negative impact.

3 Experiments177

We evaluate noise detection performance on synthetic and real-world benchmarks, assess relabeling178

efficacy via custom metrics, measure downstream classification accuracy after cleaning, and employ179

nested cross-validation with m = k = 10 folds.180

3.1 Implementation Details181

We conducted experiments on a workstation with an AMD Ryzen 9 5950X CPU, 32 GB of system182

RAM, and an AMD Radeon 6900 XT GPU (16 GB VRAM) using PyTorch with ROCm acceleration.183

Due to inefficiencies on non-CUDA hardware, VRAM never exceeded 50%, leading to longer training184

times. We used a batch size of 2048; each CIFAR-10 noise ratio experiment required approximately185

100 hours, while Fashion-MNIST runs completed in approximately 24 hours owing to its lower186

resolution and computational complexity. Training durations remained modest in epochs: each187

CIFAR-10N inner fold converged in under 50 epochs, Fashion-MNIST experiments converged in188

around 30 epochs, and CIFAR-10 runs converged by approximately 70 epochs.189

3.2 Performance Metrics190

Following [20], we treat noise detection as a binary classification task with four key metrics. We191

define Noise Precision as the proportion of true noisy samples among those flagged as noisy and Noise192

Recall as the proportion of noisy samples we detect. Noise F1 is the harmonic mean of precision and193

recall, and Noise Accuracy measures overall detection accuracy (full formulas in Appendix B.2). We194

also use the relabeling score (Sec. 2.4) to evaluate correction quality. Finally, we assess classification195

accuracy on the cleaned data using standard metrics.196

3.3 Datasets197

Experiments cover: (1) Synthetic noise (20–40% in CIFAR-10[21]/Fashion-MNIST[22] using [23]),198

(2) Real noise (CIFAR-10N’s 9.01% annotation errors [24]).199
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3.4 Noise Detection Results200

Figure 5 breaks down, for each dataset and noise level, the counts of noisy versus clean samples201

before and after applying our cleaning procedure. For example, on CIFAR-10 with 20% injected202

noise, the noisy-sample count drops from 10, 208 to 1, 333 (≈ 3.2%); similarly, on Fashion-MNIST203

with 40% noise it falls from 24, 189 to 1, 810 (≈ 4.6%). This figure shows that our approach not only204

lowers the number of noisy samples but also (in all but two cases) raises the count of clean samples,205

emphasizing its overall effectiveness.206

Since the bar chart shows only counts, it does not distinguish correctly-removed noisy labels (true-207

positives) from mistakenly-removed clean labels (false-positives). Table 1 fills this gap by reporting208

Noise Accuracy, Precision, Recall, and F1-Score, along with the Relabeling Score. A high Noise209

Precision (e.g. 0.798 on 20% Fashion-MNIST) means we remove few clean labels, whereas Noise210

Recall (e.g. 0.915 on 20% CIFAR-10) shows our ability to catch injected noise. The table also lists211

the optimal detection threshold τd and relabeling threshold τr chosen via grid search; the full-tuning212

results appear in Appendix G.1. When facing real-world datasets where ground-truth clean labels are213

unavailable, we propose a practical threshold selection methodology in Appendix H. By combining214

raw count reductions (Fig. 5) with precision/recall metrics (Table 1), we demonstrate both the extent215

of noise removal and the preservation of clean data. Researchers can use Table 1 as a reference for216

comparing new noise-detection methods against our optimal thresholds and performance metrics.217
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Figure 5: Comparison of noisy and clean samples before and after identifying noise.

Table 1: Optimal Configurations and Evaluation Metrics of the Noise Detection
CIFAR-10 Fashion-MNIST

Noise Ratio CIFAR-10N 20% 30% 40% 20% 30% 40%
τd (Detection Threshold) 10 8 7 6 9 9 7
τr (Relabeling Threshold) 10 10 10 10 10 10 10

Noise Accuracy 0.9451 0.8999 0.8069 0.6115 0.9358 0.9216 0.8787
Noise Precision 0.6999 0.6932 0.6386 0.5069 0.7981 0.8502 0.7958
Noise Recall 0.6848 0.9149 0.8188 0.7021 0.9258 0.9003 0.9402
Noise F1-Score 0.6922 0.7887 0.7176 0.5887 0.8572 0.8746 0.8620
Relabeling Score 1.13 1.87 2.51 0.68 2.07 2.43 3.17

3.5 Classification Performance on Noise-Corrected Datasets218

We assess the performance of models trained on our refined data partitions across both synthetic and219

real-world noise conditions. The outcomes are summarized in Table 2 and Table 3.220

Synthetic noise (20–40% IDN) Our preprocessing yields the largest absolute and relative gains at221

all noise levels:222
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• CIFAR-10 (IDN-20/30/40%): Accuracy improves from 76.05% to 88.17% at 20% noise223

(+12.12 pp), from 72.28% to 83.63% at 30% noise (+11.35 pp), and from 58.62% to 71.16%224

at 40% noise (+12.54 pp). Not only are these increases the biggest margins against the strongest225

prior (PTD-R-V [23]), but our standard deviations (± 0.28–1.38 pp) remain low, indicating stable226

performance across trials.227

• Fashion-MNIST (IDN-20/30/40 %): At milder noise (20%), we edge past the best baseline228

(PTD-R-V [23]) by 0.23 pp (91.31% vs. 91.08%), while at higher noise (40%) the lead grows to229

2.23 pp (87.92% vs. 85.69%), demonstrating robust correction even when nearly half the labels230

are corrupted.231

These results reveal two critical trends: (i) Noise-Robust Consistency: On CIFAR-10, our method232

improves previous results by approximately 12 pp regardless of noise rate, demonstrating the reliability233

of ensemble-driven detection even as corruption intensifies. (ii) Dataset Complexity Adaptation:234

Fashion-MNIST, being simpler, sees smaller absolute gains at low noise but still benefits substantially235

at high noise, indicating the relabeling mechanism dynamically adjusts to data complexity.236

Real-world noise (9.01% CIFAR-10N) On CIFAR-10N’s 9.01% natural noise, cleaning reduces237

corruption to 3.7% and boosts ResNet-34 accuracy to 88.51% (± 0.50 pp), a 0.26 pp improve-238

ment over the best reported result (88.25%)[25], despite using fewer ensemble members and folds239

(m and k) due to hardware constraints (Sec. 3.1). This smaller yet significant gain reflects the lower240

initial noise rate, but confirms that our framework generalizes beyond synthetic settings.241

Our results reveal three main trends. First, the roughly 12pp improvement on CIFAR-10 is virtually242

unchanged across the 20–40% noise range, demonstrating that our approach scales robustly with243

noise severity. Second, the low run-to-run variance (standard deviation ≤ 1.4pp) highlights the244

reliability of the produces cleaned datasets. Third, simpler image domains such as Fashion-MNIST245

benefit most under extreme noise—exhibiting larger relative gains—indicating that the relabeling246

threshold dynamically adapts to dataset complexity. Further ablation experiments, including dataset247

analysis that illustrates the contributions of its key components under label uncertainty (Appendix F).248

Table 2: CIFAR-10 and Fashion-MNIST Classification Accuracy
CIFAR-10 Fashion-MNIST

Method IDN-20% IDN-30% IDN-40% IDN-20% IDN-30% IDN-40%

CE 68.21 ± 0.72 60.48 ± 0.62 49.84 ± 1.27 88.38 ± 0.42 84.22 ± 0.35 68.86 ± 0.78
Decoupling[26] 70.01 ± 0.66 63.05 ± 0.65 44.27 ± 1.91 86.50 ± 0.35 85.33 ± 0.47 78.54 ± 0.53
MentorNet[6] 70.56 ± 0.34 65.42 ± 0.79 46.22 ± 0.98 87.02 ± 0.41 86.02 ± 0.82 80.12 ± 0.76
Co-teaching[27] 72.99 ± 0.45 67.22 ± 0.64 49.25 ± 1.77 87.89 ± 0.41 86.88 ± 0.32 82.78 ± 0.95
Co-teaching+[28] 71.07 ± 0.77 64.77 ± 0.58 47.73 ± 2.32 89.77 ± 0.45 88.52 ± 0.45 83.57 ± 1.77
Joint[29] 73.89 ± 0.34 69.03 ± 0.79 54.75 ± 5.98 56.83 ± 0.45 51.27 ± 0.67 44.24 ± 0.78
DMI[30] 69.89 ± 0.33 61.88 ± 0.64 51.23 ± 1.18 90.33 ± 0.21 84.81 ± 0.44 69.01 ± 1.87
Forward[31] 68.99 ± 0.62 60.21 ± 0.75 47.17 ± 2.96 88.61 ± 0.43 84.27 ± 0.46 70.25 ± 1.28
Reweight[32] 68.42 ± 0.75 62.58 ± 0.46 50.12 ± 0.96 89.70 ± 0.35 87.04 ± 0.35 80.29 ± 0.89
T-Revision[33] 69.32 ± 0.64 64.09 ± 0.37 50.38 ± 0.87 90.68 ± 0.66 89.46 ± 0.45 84.01 ± 1.24
PTD-F[23] 73.45 ± 0.62 65.25 ± 0.84 49.88 ± 0.85 90.01 ± 0.31 87.42 ± 0.65 83.89 ± 0.49
PTD-R[23] 75.02 ± 0.73 71.86 ± 0.42 56.15 ± 0.45 90.03 ± 0.32 87.68 ± 0.42 84.03 ± 0.52
PTD-F-V[23] 73.88 ± 0.61 69.01 ± 0.47 50.43 ± 0.62 90.79 ± 0.29 89.33 ± 0.33 85.32 ± 0.36
PTD-R-V[23] 76.05 ± 0.53 72.28 ± 0.49 58.62 ± 0.88 91.08 ± 0.46 89.66 ± 0.43 85.69 ± 0.77

Ours 88.17 ± 0.28 83.63 ± 0.34 71.16 ± 1.38 91.31 ± 0.49 90.47 ± 0.13 87.92 ± 0.66

4 Discussion249

Our framework has two principal limitations. First, computational overhead stems from the nested250

cross-validation scheme (Sec. 2), which requires training m× k models. This overhead increases251

substantially for larger datasets. For example, applying our method to CIFAR-100, which comprises252

100 classes, would necessitate increasing both m and k (e.g., to 20 folds each) to preserve detection253

power; consequently, computational cost would be at least four times that incurred on CIFAR-10. In254

our current study, hardware constraints precluded experiments on CIFAR-100; future work could255

explore optimizations such as grouped class sampling or distributed training to alleviate this burden.256
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Table 3: CIFAR-10N Classification Accuracy
Method CIFAR-10N Method CIFAR-10N Method CIFAR-10N

Co-teaching+[28] 82.31 ± 0.89 DoctorNet[34] 84.52 ± 0.69 CoDis[35] 87.23 ± 0.45
BLTM[36] 82.62 ± 0.17 Max-MIG[37] 85.12 ± 0.36 GCNet(F)[38] 87.70 ± 0.51
CrowdLayer[39] 82.84 ± 0.24 MBEM[40] 85.49 ± 0.43 GCNet(W)[38] 87.84 ± 0.21
CoNAL[41] 83.01 ± 0.21 Co-teaching[27] 85.90 ± 0.50 BayesianIDNT[42] 88.19 ± 0.47
CE(EM)[43] 83.14 ± 0.80 LogitClip[44] 86.37 ± 0.43 AdaptCDRP[25] 88.25 ± 0.34
TraceReg[45] 83.16 ± 0.24 CCC[46] 86.45 ± 0.53

Ours 88.51 ± 0.50

Second, consensus relabeling can reinforce class imbalances or mislabel ambiguous samples. Our257

experiments cover up to ten classes (CIFAR-10, Fashion-MNIST, CIFAR-10N), but scaling to258

high-cardinality benchmarks (e.g., CIFAR-100, ImageNet) will require more efficient pair selection259

strategies—such as grouping similar classes or calibrating thresholds per class—to maintain accuracy260

without prohibitive computational cost.261

From an ethical perspective, our method carries three potential risks: (i) bias amplification, whereby262

minority classes become underrepresented after relabeling; (ii) dataset distortion, in which valid263

edge cases or outliers may be overwritten; and (iii) ambiguity exclusion, when confidently relabeling264

uncertain samples reduces dataset diversity. We propose mitigating these risks through fairness-aware265

thresholds, diversity-preserving sampling, and the release of audit logs to ensure transparency.266

5 Future Directions267

Future research avenues include iterative refinement through repeated relabeling cycles, enabling the268

model to progressively de-noise more challenging instances (guided by our reliability analysis of269

ensemble disagreement in Appendix I). Extending the framework to multi-modal data (e.g., image-270

text or audio-visual) could broaden its applicability. To further mitigate relabeling bias, fairness-aware271

consensus mechanisms, such as class-conditional thresholds, warrant in-depth exploration. On the272

technical side, promising directions include analyzing the impact of false positives on downstream273

robustness (Appendix J) and adapting the detection pipeline to identify adversarially perturbed or274

out-of-distribution samples.275

6 Conclusion276

In this paper, we proposed a novel framework for robust learning under instance-dependent label277

noise by leveraging a Siamese network trained with contrastive learning to extract visually coherent278

representations. Our method reliably distinguishes noisy labels by analyzing embedding variability279

across perturbations and is supported by theoretical guarantees and extensive empirical validation.280

Experiments on both synthetic and real-world benchmarks demonstrate significant improvements in281

noise detection (up to 80.2 percentage points) and downstream classification accuracy (up to 12.5282

percentage points F1-score gain) compared to prior methods. The approach is model-agnostic, easy283

to integrate, and complemented by interpretable uncertainty estimates. These contributions establish284

a practical framework for learning with corrupted labels.285
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A Visual Motivation: How Label Noise Affects Embedding Structure434

To illustrate the impact of label noise on representation quality, Figure 6 compares t-SNE embeddings435

of the Fashion-MNIST dataset with 20% instance-dependent noise to the raw feature space. In436

the raw feature space (Figure 6a), the classes heavily overlap, and the noisy samples (circled) are437

intermingled with clean clusters, making them indistinguishable. However, after applying Siamese438

contrastive learning (Figure 6b), the clean samples form tight, well-separated clusters, while the439

noisy points are positioned on the periphery or between the clusters. This behavior is precisely what440

we leverage for noise detection. This visual evidence motivated our ensemble Siamese design. By441

enforcing consistency among clean examples and amplifying the disagreements on mislabeled data,442

we can reliably identify and correct noisy labels, even in the presence of severe instance-dependent443

corruption.444

(a) Embeddings from the raw feature space show over-
lapping class clusters, with noisy samples (circled) in-
distinguishable from clean ones.

(b) Embeddings after Siamese training: clean samples
form compact, well-separated clusters, while noisy sam-
ples shift to the periphery or inter-class regions.

Figure 6: t-SNE visualization of Fashion-MNIST embeddings with 20% instance-dependent noise,
where noisy samples are circled in black.

B Notations and Definitions445

B.1 Notations446

Table 4 summarizes the notation used throughout this paper.447

B.2 Definitions448

Let N be the total number of samples, yn the true label, ỹn the observed (noisy) label, vn ∈ {0, 1}449

the model’s noise flag (with vn = 1 indicating a predicted noisy sample), and 1(·) the indicator450

function. We then define the following metrics for evaluating noise detection:451

• Noise Precision: Correctly flagged noisy samples among all flagged452 ∑
1(vn=1 ∧ ỹn ̸=yn)∑

1(vn=1)
(4)

• Noise Recall: True noisy samples detected453 ∑
1(vn=1 ∧ ỹn ̸=yn)∑

1(ỹn ̸=yn)
(5)
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Table 4: Notation Summary
Symbol Description Symbol Description

r Noise rate c Number of classes
k Number of outer folds m Number of inner folds
y True label ỹ Noisy label
D Dataset Dclean Cleaned Dataset
Dtrain Train set Dvalidation Validation set
DOT Outer training set DOV Outer validation set
DIT Inner training set DIV Inner validation set
C Clean sample subset N Noisy sample subset
1 Indicator function P Probability
τd Detection threshold τr Relabeling threshold
τ∗d Optimal detection threshold τ∗r Optimal relabeling threshold
fθ Model function fj(x) Output of the j-th model
P Prediction matrix r(x) Disagreement count of a sample
α Min. pair selection success probability r∗ Max. permissible noise rate
L Latent representation quality MP Model performance
G Classification Result

• Noise F1-Score: Harmonic mean of noise precision/recall454

2 · Noise Precision · Noise Recall
Noise Precision + Noise Recall

(6)

• Noise Accuracy: Overall correct decisions455 ∑
1(vn=1 ∧ ỹn ̸=yn) +

∑
1(vn=0 ∧ ỹn=yn)

N
(7)

C Algorithm Details of Stratified Splitting456

Here we provide the algorithm for stratified split used in Algorithm 1.457

Algorithm 3 Stratified Split Function
Inputs: Dataset D, fold number, total folds k
Outputs: Training set Dtrain, validation set Dvalidation

1: function STRATIFIEDSPLIT(D, fold, k)
2: Group samples by class labels
3: for each class c do
4: nc ← |Dc| ▷ Number of samples in class c
5: fold_sizec ← ⌊nc/k⌋ ▷ Size of each fold for class c
6: startc ← (fold− 1)× fold_sizec ▷ Start index for validation
7: endc ← startc + fold_sizec ▷ End index for validation
8: Add samples Dc[startc : endc] to Dvalidation

9: Add remaining samples to Dtrain

10: end for
11: return Dtrain,Dvalidation

12: end function
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D Impact of Label Noise on Pair Selection for Contrastive Learning458

D.1 Interpreting the Pair Selection Tree under Label Noise459

We formalize the impact of label noise on pair selection using a probabilistic decision tree (Fig. 7).460

Let:461

• r ∈ [0, 1] denotes the noise rate (probability of a sample’s label being corrupted),462

• c denotes the number of classes,463

• A positive pair contains samples intended to be from the same class,464

• A negative pair contains samples intended to be from different classes.465

Pairs

Positive Samples

0 Noise (I) 1 Noise (II) 2 Noise

Same Class (III) Different Classes (IV)

Negative Samples

0 Noise (V) 1 Noise

Same Class (VI) Different Classes (VII)

2 Noise

Same Class (VIII) Different Classes (IX)

0.5

(1− r)2 2r(1− r) r2

1
c−1

c−2
c−1

0.5

(1− r)2 2r(1− r)

1
c−1

c−2
c−1

r2

1
c−2

c−3
c−2

Figure 7: Pair Selection Tree Under Label Noise. Green/red leaves denote favorable/unfavorable
pairs. Edge probabilities depend on noise rate r and class count c.

We explicitly categorize pairs into two groups based on their intended training signal (observed466

labels), then analyze their validity under noise:467

• Positive Pairs (Leaves I–IV): Pairs labeled as belonging to the same class.468

• Negative Pairs (Leaves V–IX): Pairs labeled as belonging to different classes.469

A leaf is considered valid only if its observed label (same vs. different class) matches the samples’470

true class relationship, as detailed below:471

Positive Pairs (Leaves I–IV)472

I. Valid Positive: Both clean, same true class. (Favorable)473

II. Corrupted Positive: One noisy label creates mismatch. (Unfavorable)474

III. Lucky Positive: Both corrupted to the same (wrong) class. (Favorable)475

IV. Collapsed Positive: Both corrupted to different classes. (Unfavorable)476

Negative Pairs (Leaves V–IX)477

V. Valid Negative: Both clean, different classes. (Favorable)478

VI. False Negative: One corrupted label matches true class. (Unfavorable)479

VII. Honest Negative: One corrupted label preserves dissimilarity. (Favorable)480

VIII. Corrupted Negative: Both corrupted to same class. (Unfavorable)481

IX. Resilient Negative: Both corrupted but preserve dissimilarity. (Favorable)482

Key Insight: Favorable leaves preserve true class relationships despite noise, while unfavorable ones483

introduce spurious mismatches or false agreements.484
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D.2 Deriving Probabilities for Valid and Invalid Pairings485

Let r be the corruption probability and c ≥ 3 the number of classes in a balanced dataset. We486

derive probabilities for good/poor latent representations by summing contributions from favor-487

able/unfavorable leaves.488

Probability of Good Latent Representation:489

P(L) =
∑

favorable leaves

P(leaf) = 0.5× (1− r)2︸ ︷︷ ︸
Leaf 1

+0.5× r2 × 1

c− 1︸ ︷︷ ︸
Leaf 3

+0.5× (1− r)2︸ ︷︷ ︸
Leaf 5

(8)

+ 0.5× 2r(1− r)× c− 2

c− 1︸ ︷︷ ︸
Leaf 7

+0.5× r2 × c− 3

c− 2︸ ︷︷ ︸
Leaf 9

(9)

= (1− r)2 +
r2

2(c− 1)
+

r(1− r)(c− 2)

c− 1
+

r2(c− 3)

2(c− 2)
(Combine terms) (10)

=
(c2 − c− 3)r2 + 2(2c− c2)r + 2(c2 − 3c+ 2)

2(c− 2)(c− 1)
. (11)

Probability of Poor Latent Representation:490

P(¬L) =
∑

unfavorable leaves

P(leaf) = 0.5× 2r(1− r)︸ ︷︷ ︸
Leaf 2

+0.5× r2 × c− 2

c− 1︸ ︷︷ ︸
Leaf 4

(12)

+ 0.5× 2r(1− r)× 1

c− 1︸ ︷︷ ︸
Leaf 6

+0.5× r2 × 1

c− 2︸ ︷︷ ︸
Leaf 8

(13)

= r(1− r) +
r2(c− 2)

2(c− 1)
+

r(1− r)

c− 1
+

r2

2(c− 2)
(Expand) (14)

=
(−c2 + c+ 3)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
. (15)

D.3 Computing the Noise Threshold for Reliable Pair Selection491

The maximum permissible noise rate r∗ is the largest noise level r at which the probability of492

sampling pairs that preserve true class relationships (favorable leaves in Appendix D.1) exceeds a493

user-defined threshold α ∈ [0, 1). This ensures the Siamese network retains sufficient valid training494

signals for robust learning.495

Derivation of r∗ The total probability of favorable pairs (green leaves in Fig. 7) is:496

Pfavorable(r, c) =
(c2 − c− 3)r2 + 2(2c− c2)r + 2(c2 − 3c+ 2)

2(c− 2)(c− 1)
. (16)

• At r = 0:497

Pfavorable(0, c) =
2(c2 − 3c+ 2)

2(c− 2)(c− 1)
= 1 > α (since α ∈ [0, 1)). (17)

• At r = 1:498

Pfavorable(1, c) =
c2 − 3c+ 1

2(c− 2)(c− 1)
. (18)

For c ≥ 3, Pfavorable(1, c) < 1. For example, c = 3 gives Pfavorable(1, 3) =
1
4 < α if α > 0.25.499

• Monotonicity: Pfavorable is continuous and strictly decreasing in r.500

By the Intermediate Value Theorem, there exists a unique α ∈ (0, 1) where Pfavorable(r
∗) = α. To501

guarantee Pfavorable > α, we solve:502

(c2 − c− 3)r2 + 2(2c− c2)r +
[
2(c2 − 3c+ 2)− 2α(c− 2)(c− 1)

]
> 0. (19)
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Quadratic Solution Let coefficients be defined as:503

A = c2 − c− 3, B = 2(2c− c2), C = 2(c2 − 3c+ 2)− 2α(c− 2)(c− 1). (20)

For c ≥ 3, the quadratic coefficient A = c2 − c− 3 is positive, meaning the parabola is convex. The504

roots of Ar2 +Br + C = 0 are:505

r1 =
−B −

√
B2 − 4AC

2A
, r2 =

−B +
√
B2 − 4AC

2A
. (21)

By noting that A > 0, B < 0 and C > 0, we can conclude that 0 < r1 ≤ 1 ≤ r2. Consequently for506

r ∈ [0, 1] (noise rate), the inequality Ar2 +Br + C > 0 holds for r < r∗ := r1.507

508

Closed-Form Expression Substituting A, B, and C yields:509

r∗ =
c2 − 2c−

√
(c− 2)Ψ

c2 − c− 3
, Ψ = −6 + 4c+ 2c2 − c3 + 2α(3− 2c− 2c2 + c3). (22)

Real solutions require (c− 2)Ψ ≥ 0, constraining α to:510

α ≥ αmin(c) =
c3 − 2c2 − 4c+ 6

2(c3 − 2c2 − 2c+ 3)
. (23)

This bound reaches its minimum value 1/4 at c = 3, so we restrict α to the interval [0.25, 1).511

E Proofs512

E.1 Proof of Theorem 2.2513

We prove that noisy samples incur a higher misclassification probability than clean samples under514

the assumptions of our framework. Let G = 1/0 denote a correct/incorrect classification, and N/C515

denote noisy/clean samples. The model’s performance (MP ) and latent representation quality (L) are516

independent and MP is defined regardless of noise. We model successful classification as requiring517

both high-quality latent representations and proper model performance, under Assumption 2.1:518

P(G = 1) = P(L ∩MP ) = P(L) · P(MP ), (24)

with L = latent representation quality, MP = intrinsic model performance.519

Step 1: Decomposing Misclassification Probability. Misclassification probability by the law of520

total probability is:521

P(G = 0) = 1− P(G = 1) = 1− P(L)P(MP ). (25)

Equivalently, misclassification occurs if either the latent representation is poor (¬L) or the model522

fails (¬MP ):523

P(G = 0) = P(¬L ∪ ¬MP ) = P(¬L) + P(¬MP )− P(¬L)P(¬MP ). (26)

Conditioning on noise (N) and cleanliness (C), and using the assumption P(¬MP | N) = P(¬MP |524

C) = P(¬MP ), we derive:525

P(G = 0 | N) = P(¬L | N) + P(¬MP )− P(¬L | N)P(¬MP ), (27)
P(G = 0 | C) = P(¬L | C) + P(¬MP )− P(¬L | C)P(¬MP ). (28)

Step 2: Difference in Misclassification Rates. Subtracting the two equations:526

P(G = 0 | N)− P(G = 0 | C) = [P(¬L | N)− P(¬L | C)]︸ ︷︷ ︸
Noise effect on L

· (1− P(¬MP ))︸ ︷︷ ︸
>0

. (29)

Since 1−P(¬MP ) > 0 (as P(¬MP ) ∈ [0, 1)), the inequality P(G = 0 | N) > P(G = 0 | C) holds527

if:528

P(¬L | N) > P(¬L | C). (30)
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Step 3: Quantifying P(¬L | N) and P(¬L | C). We compute these probabilities using the529

tree structure in Fig. 7, which models the latent representation process. Here, r is the corruption530

probability, and c ≥ 3 is the number of classes. A "poor" latent representation (¬L) occurs when531

samples in a pair map to inconsistent clusters.532

Case 1: Noisy Samples (N). The probability P(¬L | N) aggregates contributions from four disjoint533

events:534

• One corrupted, one clean: Probability 2r(1− r), leading to a mismatch.535

• Both corrupted, different classes: Probability r2 · c−2
c−1 .536

• One corrupted, one clean mis-clustered: Probability 2r(1− r) · 1
c−1 .537

• Both corrupted, same incorrect class: Probability r2 · 1
c−1 .538

Summing these terms (see Appendix E.2 for algebra):539

P(¬L | N) = (−c2 + c+ 3)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
. (31)

Case 2: Clean Samples (C). For clean samples, corruption is absent. P(¬L | C) includes:540

• Both clean but mis-clustered: Probability 2r(1− r).541

• One clean mis-clustered: Probability 2r(1− r) · 1
c−1 .542

Summing these terms:543

P(¬L | C) = (4c− 2c2)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
. (32)

Step 4: Final Inequality. Substituting into P(¬L | N) > P(¬L | C):544

(−c2 + c+ 3)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
>

(4c− 2c2)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
. (33)

Subtracting the right-hand side from the left:545

(c2 − 3c+ 3)r2

2(c− 2)(c− 1)
> 0. (34)

The denominator 2(c− 2)(c− 1) is positive for c ≥ 3. The numerator c2 − 3c+ 3 has discriminant546

∆ = (−3)2 − 4(1)(3) = −3 < 0, so it is positive for all real c. Since r > 0, the inequality holds.547

Boundary Cases. If P(¬MP ) ≈ 1, the model is fundamentally flawed, and noise has negligible548

impact. Our framework assumes P(¬MP ) < 1, which holds for non-trivial models.549

Conclusion. Thus, P(G = 0 | N) > P(G = 0 | C), proving that noisy samples exhibit higher550

misclassification rates due to biased latent representations.551

E.2 Detailed Probability Calculations552

Noisy Case (N):553

P(¬L | N) = 1

2
· 2r(1− r) +

1

2
· r2 · c− 2

c− 1
+

1

2
· 2r(1− r) · 1

c− 1
+

1

2
· r2 · 1

c− 1
(35)

= r(1− r) +
r2(c− 2)

2(c− 1)
+

r(1− r)

c− 1
+

r2

2(c− 1)
(36)

=
2r(1− r)(c− 1) + r2(c− 2) + 2r(1− r) + r2

2(c− 1)
(37)

=
(−c2 + c+ 3)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
. (38)
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Clean Case (C):554

P(¬L | C) = 1

2
· 2r(1− r) +

1

2
· 2r(1− r) · 1

c− 1
= r(1− r) +

r(1− r)

c− 1
(39)

=
(c− 1)r(1− r) + r(1− r)

c− 1
(40)

=
(4c− 2c2)r2 + (2c2 − 4c)r

2(c− 2)(c− 1)
. (41)

E.3 Proof of Theorem 2.3555

We bound the false-positive probability P(X ≥ τd | C) when models may be correlated. Let556

X =
∑m

i=1 Xi, where Xi ∈ {0, 1} indicates misclassification by model i for a clean sample, with557

E[Xi] = pC . Unlike Chernoff, Bernstein’s inequality does not strictly require independence but558

instead bounds deviations using variance. We use the following generalized version for dependent559

variables:560

Generalized Bernstein Inequality: For random variables X1, . . . , Xm with |Xi − E[Xi]| ≤ 1, let561

S =
∑m

i=1 Xi and σ2 =
∑m

i=1 Var(Xi) +
∑

i̸=j Cov(Xi, Xj). Then, for t > 0,562

P (S − E[S] ≥ t) ≤ exp

(
− t2

2σ2 + 2
3 t

)
. (42)

Step 1: Applying the Generalized Bound. For Xi ∼ Bernoulli(pC), we have E[X] = mpC and563

Var(X) =
∑m

i=1 pC(1− pC) +
∑

i̸=j Cov(Xi, Xj). Let σ2
total = Var(X). Applying the inequality564

to S = X with t = τd −mpC = mϵ:565

P(X ≥ τd | C) ≤ exp

(
− m2ϵ2

2σ2
total +

2
3mϵ

)
. (43)

Step 2: Bounding the Total Variance. Assume pairwise correlations satisfy Cov(Xi, Xj) ≤566

ρpC(1− pC) for some ρ < 1. Then:567

σ2
total ≤ mpC(1− pC) +m(m− 1)ρpC(1− pC) ≤ mpC(1− pC)(1 + ρm). (44)

For weakly correlated models (for example ρ = O(1/m)), σ2
total = O(m), preserving the exponential568

decay rate. Substituting into the bound:569

P(X ≥ τd | C) ≤ exp

(
− mϵ2

2pC(1− pC)(1 + ρm) + 2
3ϵ

)
. (45)

Step 3: Exponential Decay. For ρ = o(1) (decaying correlations), the dominant term in the570

denominator is 2pC(1− pC). Thus, the probability decays exponentially with m:571

P(X ≥ τd | C) = O
(
e−qm

)
, q =

ϵ2

2pC(1− pC) +
2
3ϵ

. (46)

Conclusion. Even with bounded correlations, the false-positive rate diminishes exponentially in m,572

provided correlations do not grow with m.573

E.4 Threshold Derivation574

Corollary (Practical Threshold Selection Under Worst-Case Variance). Assume deep learning575

models exhibit a worst-case clean-data misclassification rate of pC = 0.25, with variance bounded576

by σ2 = pC(1− pC) = 0.1875. To ensure exponential decay of false-positives (Theorem 2.3), the577

detection threshold τd must satisfy:578

τd

m
≥ pC +

√
2σ2 ln(1/δ)

m
, (47)
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where δ is the desired confidence level (δ = 0.05 for 95% confidence for example). Substituting579

pC = 0.25 and σ2 = 0.1875:580

τd

m
≥ 0.25 +

√
0.375 ln(1/δ)

m
. (48)

For practical deployment with m ≥ 10, we adopt the conservative heuristic:581

τd

m
≥ 0.6, (49)

ensuring ϵ = τd
m −pC ≥ 0.35 for m ≥ 10. This guarantees a decay rate k = ϵ2

2σ2+ 2
3 ϵ
≈ 0.2, yielding582

P(False-Positive) ≤ e−0.2m, which decays to < 0.14 for m = 10 and < 0.001 for m = 30.583

F Implementation details584

Key Libraries Used in All Experiments:585

• torch == 2.6.0586

• torchvision == 0.20.1587

• numpy == 2.2.4588

• scikit-learn == 1.6.1589

• matplotlib == 3.10.0590

• seaborn == 0.13.2591

• tqdm == 4.67.1592

Key Parameters For Training Siamese Network on CIFAR-10:593

• Feature extractor: ResNet50 (pre-trained)594

• Learning rate: 5× 10−5 (Adam), Weight decay: 5× 10−4595

• Batch size: 2,048, Epochs: 1,000 (early stopping patience=8)596

• Loss: Cross-entropy (label smoothing=0.1)597

• Contrastive margin: 2.0598

• Embedding dimension: 64599

• Training pairs: 200,000, Validation pairs: 20,000600

• Dropout probability: 0.5601

• Cross-validation: 10 inner folds, 10 outer folds602

Note: These parameters were obtained through trial and error.603

Key Parameters For Training Classification Model on CIFAR-10:604

• Base model: Pre-ActResNet34605

• Batch size: 256 (train/val/test)606

• Learning rate: 0.001, Weight decay: 5.46e-5607

• Epochs: 200 (Early Stopping Patience=20)608

• Loss: Cross-entropy (Label Smoothing=0.1)609

Note: These parameters were obtained via grid search using Optuna [47].610

Key Parameters For Training Siamese Network on Fashion-MNIST:611

• Feature extractor: ResNet34612

• Learning rate: 5× 10−5 (Adam), Weight decay: 1× 10−3613

• Batch size: 2,048, Epochs: 1,000 (early stopping patience=8)614
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• Loss: Cross-entropy (label smoothing=0.1)615

• Contrastive margin: 1.0616

• Embedding dimension: 128617

• Training pairs: 200,000, Validation pairs: 20,000618

• Dropout probability: 0.5619

• Cross-validation: 10 inner folds, 10 outer folds620

Note: These parameters were obtained through trial and error.621

Key Parameters For Training Classification Model on Fashion-MNIST:622

• Base model: Pre-ActResNet34623

• Batch size: 256 (train/val/test)624

• Learning rate: 0.0002, Weight decay: 1.12× 10−6625

• Epochs: 200 (Early Stopping Patience=20)626

• Loss: Cross-entropy (Label Smoothing=0.1)627

Note: These parameters obtained via grid search using Optuna [47].628

G Additional experimental results629

G.1 Detailed Experimental Results and Threshold Selection630

We present comprehensive results from our grid search for determining the optimal detection threshold631

(τd), which serves as the noise confidence cutoff, and the relabeling threshold (τr), which represents632

the minimum agreement required for clean labels. The selection process aims to balance two key633

objectives:634

• Primary Objective: Maximize the Noise F1-Score (which balances precision and recall) to635

ensure the detection of as many noisy labels as possible.636

• Secondary Objective: Maintain a high Relabeling Score to effectively adjust the noisy labels.637

G.1.1 Threshold Selection Strategy638

1. Grid Search Space: τd ∈ {6, 7, 8, 9, 10}, τr ∈ {6, 7, 8, 9, 10} (discrete confidence levels)639

2. Metric Prioritization:640

• Primary: Noise F1-Score for τd641

• Secondary: Relabeling Score for τr642

3. Trade-off Analysis:643

• Higher τd: Increases precision but reduces recall644

• Lower τr: Increases relabeling but risks error propagation645

Warning: This strategy relies on clean validation data. For real-world datasets without ground-truth646

clean labels, we propose a practical threshold-selection methodology in Appendix H. This approach647

enables effective noise detection and correction without requiring access to clean validation data.648

Note: Fortunately, our Siamese model does not require to be trained each time for different649

hyperparameters. We only need to train the model once and then use the same model to detect and650

relabel noisy samples with different hyperparameters.651
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Table 5: Noise Detection Performance with different hyper-parameters for CIFAR-10
Noise Ratio τ d Noise Accuracy Noise Precision Noise Recall Noise F1-Score

CIFAR-10N

6 0.8972 0.4628 0.8792 0.6064
7 0.9119 0.5066 0.8519 0.6354
8 0.9244 0.5544 0.8182 0.6609
9 0.9358 0.6135 0.7758 0.6852

10 0.9451 0.6999 0.6848 0.6922

IDN-20%

6 0.8676 0.6098 0.9760 0.7506
7 0.8864 0.6510 0.9560 0.7746
8 0.8999 0.6932 0.9149 0.7887
9 0.9070 0.7408 0.8375 0.7862

10 0.8955 0.7887 0.6671 0.7228

IDN-30%

6 0.7873 0.5979 0.8847 0.7136
7 0.8069 0.6386 0.8188 0.7176
8 0.8160 0.6791 0.7310 0.7041
9 0.8124 0.7194 0.6123 0.6616

10 0.7889 0.7606 0.4307 0.5500

IDN-40%

6 0.6115 0.5069 0.7021 0.5887
7 0.6326 0.5309 0.6217 0.5727
8 0.6530 0.5655 0.5343 0.5495
9 0.6652 0.6084 0.4342 0.5068

10 0.6663 0.6748 0.3041 0.4193

Table 6: Noise Detection Performance with different hyper-parameters for Fashion-MNIST
Noise Ratio τ d Noise Accuracy Noise Precision Noise Recall Noise F1-Score

IDN-20%

6 0.8723 0.6227 0.9810 0.7618
7 0.8962 0.6741 0.9714 0.7959
8 0.9194 0.7353 0.9577 0.8319
9 0.9358 0.7981 0.9258 0.8572

10 0.9395 0.8714 0.8325 0.8515

IDN-30%

6 0.8715 0.7091 0.9780 0.8221
7 0.8943 0.7544 0.9667 0.8474
8 0.9125 0.8008 0.9473 0.8679
9 0.9216 0.8502 0.9003 0.8746

10 0.9026 0.9044 0.7597 0.8257

IDN-40%

6 0.8631 0.7591 0.9677 0.8508
7 0.8787 0.7958 0.9402 0.8620
8 0.8821 0.8307 0.8887 0.8587
9 0.8667 0.8662 0.7917 0.8273

10 0.8093 0.9033 0.5902 0.7140
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G.1.2 Dataset-Specific Analysis652

In Tables 5 and 6, we summarize the grid search over detection thresholds τd for CIFAR-10 and653

Fashion-MNIST. Then, fixing the best τd from that search, Tables 7 and 8 present our sweep over654

relabeling thresholds τr. For each τr we report:655

• the total number of relabeled samples (“Count”),656

• the relabeling accuracy (“Accuracy”),657

• the relabeling score (see Section 2.4),658

• the resulting noise ratio,659

• the size of the dataset remaining after cleaning.660

Table 7: CIFAR-10 Relabeling Threshold Results
Relabeling

Noise Ratio
Before τ d τ r Score Distribution

Count Accuracy Score
Noise Ratio

After
Remaining

Samples
-2 -1 0 1 2

CIFAR-10N 10

6 1159 164 399 248 2438 3996 61.01 0.66 6.01% 49588
7 1044 279 306 440 2339 3689 63.40 0.75 5.62% 49281
8 932 391 222 647 2216 3370 65.75 0.84 5.26% 48962
9 798 525 166 871 2048 3012 67.99 0.94 4.90% 48604

10 613 710 103 1241 1741 2457 70.85 1.13 4.45% 48049

20% 8

6 2695 1439 704 772 7863 11262 69.82 0.86 8.93% 47789
7 2031 2103 500 1273 7566 10097 74.93 1.01 7.29% 46624
8 1414 2720 330 1866 7143 8887 80.37 1.19 5.75% 45414
9 866 3268 195 2908 6236 7297 85.45 1.42 4.40% 43824

10 379 3755 85 4832 4422 4886 90.50 1.87 3.22% 41413

30% 7

6 3742 3199 826 1770 9667 14235 67.91 0.73 16.17% 45031
7 2525 4416 514 2780 8969 12008 74.69 0.94 13.44% 42804
8 1321 5620 302 4537 7424 9047 82.06 1.23 10.88% 39843
9 566 6375 131 6684 5448 6145 88.66 1.64 9.23% 36941

10 178 6763 47 9204 3012 3237 93.05 2.51 8.63% 34033

40% 6

6 8613 4910 1315 3367 9221 19149 48.15 -0.02 37.94% 41723
7 5713 7810 778 5786 7339 13830 53.07 0.09 34.04% 36404
8 3323 10200 403 8070 5430 9156 59.31 0.23 30.34% 31730
9 1606 11917 165 10246 3492 5263 66.35 0.40 27.56% 27837

10 494 13029 44 12204 1655 2193 75.47 0.68 25.99% 24767

Table 8: Fashion-MNIST Relabeling Threshold Results
Relabeling

Noise Ratio
Before τ d τ r Score Distribution

Count Accuracy Score
Noise Ratio

After
Remaining

Samples
-2 -1 0 1 2

20% 9

6 2094 833 876 959 9734 12704 76.62 1.21 6.69% 58208
7 1752 1175 621 1620 9328 11701 79.72 1.33 5.77% 57205
8 1436 1491 434 2321 8814 10684 82.49 1.46 4.98% 56188
9 865 1875 268 3235 8066 9386 85.93 1.64 4.09% 54890

10 462 2465 122 5035 6412 6996 91.65 2.07 2.88% 52500

30% 9

6 2043 847 1223 1624 13560 16826 80.59 1.42 8.83% 57529
7 1662 1228 857 2638 12912 15431 83.68 1.55 7.72% 56134
8 1273 1617 582 3704 12121 13976 86.72 1.70 6.71% 54679
9 865 2025 361 5145 10901 12127 89.89 1.91 5.76% 52830

10 353 2537 170 8044 8193 8716 93.99 2.43 4.73% 49419

40% 7

6 2806 3028 1639 3598 17506 21951 79.75 1.37 11.04% 53374
7 1917 3917 1100 5375 16268 19285 84.36 1.56 8.80% 50708
8 1148 4686 681 7887 14175 16004 88.57 1.83 6.91% 47427
9 604 5230 372 11106 11265 12241 92.03 2.22 5.55% 43664

10 231 5603 133 15508 7102 7466 95.12 3.17 4.65% 38889

Tables 7 and 8 demonstrate that increasing the relabeling threshold τr yields steadily higher relabeling661

accuracy and score, while reducing the number of samples corrected. This trade-off highlights a662

fundamental balance in our method: higher τr values produce more reliable corrections on fewer663

samples, whereas lower thresholds cover more samples with lower confidence. Moreover, as τr664
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increases, the remaining dataset after cleaning diminishes, which must be considered when selecting665

τr. Finally, the strong correlation between the relabeling score and the post-cleaning noise ratio666

confirms the score’s effectiveness as an indicator of correction quality.667

These results serve as a benchmark for future methods in noisy-label detection. We recommend668

reporting the relabeling score—alongside precision and recall— as a clear, interpretable metric for669

assessing the quality of label corrections.670

G.2 Understanding How the Detection Threshold Affects Noise Detection671

Figure 8 shows how adjusting the detection threshold (τd) impacts the performance of our noise672

detection method. Think of τd as a "knob" that controls how strict the model is when deciding whether673

a data sample is noisy:674

• Higher τ d (stricter):675

– Reduces false alarms (incorrectly flagging clean data as noisy).676

– Also reduces correct detections (missing some actual noisy data).677

• Lower τ d (looser):678

– Increases correct detections.679

– Increases false alarms.680

G.2.1 Key Observations681

• CIFAR-10 Results (Figure 8a):682

– At moderate noise levels (20–30%): A threshold of τd/m ≥ 0.6 keeps false alarms between683

2%–25%, while catching most true noise.684

– At 40% noise: Performance drops (more false alarms and missed detections), showing the685

challenge of extreme noise.686

• Fashion-MNIST Results (Figure 8b):687

– Simpler data allows better performance: False alarms stay below 21% even at 40% noise with688

τd/m ≥ 0.6.689

• Theoretical Agreement: The sharp drop in false alarms as τd increases matches our mathematical690

predictions (Corollary E.4 & Theorem 2.3).691
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Figure 8: ROC curves for noise detection on CIFAR-10 and Fashion-MNIST datasets.
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H Threshold Selection Without Ground-Truth Labels692

In many real-world scenarios, clean labels are unavailable for tuning detection and relabeling693

thresholds. We propose a simple calibration protocol that requires training the Siamese ensemble694

only once (Algorithm 4):695

1. Single-Pass Embedding Extraction. Train the Siamese ensemble on the full noisy dataset to696

compute each sample’s disagreement count:697

r(x) =

m∑
j=1

1
(
fj(x) ̸= ỹ

)
∈ {0, 1, . . . ,m}.

2. Detection Threshold Grid. Define candidate detection thresholds:698

τd ∈ {⌈0.6m⌉, ⌈0.7m⌉, . . . ,m}.
Lower values favor recall (flagging more potential noise), while higher values favor precision.699

3. Relabeling Threshold Grid. For each τd, define relabeling thresholds:700

τr ∈ {⌈0.5m⌉, ⌈0.6m⌉, . . . , τd}.
Lower τr relabels more samples (risking mis-corrections); higher τr is more conservative.701

4. Calibration Loop. For each (τd, τr) pair:702

(a) Use the model to obtain a cleaned dataset without any extra training.703

(b) Train a lightweight downstream classifier for a few epochs.704

(c) Evaluate validation performance (e.g., accuracy or F1 score).705

Select (τd, τr) that maximizes the chosen metric.706

5. Final Deployment. Re-clean the full dataset with the selected thresholds and train the target707

model at scale.708

Algorithm 4 Threshold Calibration without Clean Labels
Inputs: Siamese ensemble of size m, noisy dataset D = (xi, ỹi), number of outer folds k
Output: Optimal thresholds (τ∗d , τ

∗
r )

1: function CALIBRATETHRESHOLDS(D,m, k)
2: P = CollectPredictions(D, k,m) ▷ Algorithm 1
3: Td = ⌈0.6m⌉, . . . ,m
4: best_score = 0
5: for τd in Td do
6: Tr = {⌈0.5m⌉, . . . ,m}
7: for τr in Tr do
8: Dclean = DetectAndRelabel(P,D, τd, τr) ▷ Algorithm 2
9: Train classifier on Dclean for few epochs

10: score = Validate classifier on held-out set
11: if score > best_score then
12: best_score = score
13: (τ∗d , τ

∗
r ) = (τd, τr)

14: end if
15: end for
16: end for
17: return (τ∗d , τ

∗
r )

18: end function
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I Reliability Analysis of Ensemble Disagreement709

Our model naturally yields a probabilistic estimate of label noise by interpreting the raw disagree-710

ment count:711

r(x) =

m∑
j=1

1
(
fj(x) ̸= ỹ

)
, (50)

not as a hard decision but as a noise score:712

p̂(x) = P
(
x ∈ N | r(x)

)
=

r(x)

m
∈ [0, 1]. (51)

Figure 9 then plots, for each predicted noise probability p̂, the observed fraction of truly noisy labels713

among all samples with that score. Concretely, each marker at p̂ shows714 ∣∣{x : p̂(x) = p̂ ∧ x ∈ N}
∣∣∣∣{x : p̂(x) = p̂}

∣∣ . (52)

This is exactly a reliability diagram: horizontal axis = predicted noise probability, vertical axis =715

empirical noise rate. From the curves we observe:716

• Strong discrimination. In all subplots and noise regimes, the curves rise monotonically, confirm-717

ing that higher p̂(x) reliably ranks samples by corruption likelihood.718

• Systematic overconfidence. Every curve lies below the diagonal (except for CIFAR-10 40%).719

For example, on CIFAR-10N at p̂ = 0.6, only ≈ 20% of those samples are actually noisy. Thus720

p̂ = r/m overestimates the true noise probability.721

• Noise-level dependence. As the true noise rate increases (20%–40%), the curves move closer to722

the diagonal-yet even at 40% noise, p̂ = 0.8 corresponds to only ≈ 43% actual corruption.723

Theoretical guarantee. Under Theorem 2.2 and its ensemble-size corollaries, as the number of724

models m grows, the distributions of p̂(x) = r(x)/m for clean and noisy samples concentrate around725

two well-separated values. A threshold chosen between these values yields exponentially vanishing726

false-positive and false-negative rates.727

Practical implication. To avoid excessive false positives, detection thresholds should be chosen by728

consulting these curves (e.g. pick the p̂ where the empirical curve crosses the desired noise rate) or by729

applying a lightweight calibration method (such as isotonic regression) to correct the overconfidence730

before using p̂(x) as a probability.731

Future directions. Having access to clean validation data and a calibrated noise score enables732

several new strategies:733

• Soft sample weighting: Rather than a hard discard, downstream losses can be re-weighted by734

1− p̂(x) for robust training under uncertainty.735

• Data-driven thresholding: Users can pick τd by consulting the calibration curves to meet target736

precision or recall.737

• Active cleansing: Samples with intermediate p̂(x) can be triaged for human review, maximizing738

annotation efficiency.739

• Calibration: Learning a lightweight calibration transform (e.g. via isotonic regression) could740

correct residual bias in p̂(x).741

• Dynamic thresholding: One could also explore dynamic thresholding schemes that adapt to742

class imbalances or domain shifts by re-estimating calibration on the fly.743
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Figure 9: Fraction of noisy samples vs. P
(
x ∈ N | r(x)

)
. Higher ensemble disagreement correlates

strongly with label noise.

J Discussion on False-Positive Cases744

False-positives are clean samples mistakenly flagged as noisy. These often include ambiguous745

examples like blurry images or objects with unusual angles (Fig. 10) that confuse both AI models746

and human annotators. While problematic for training, removing these challenging samples can747

paradoxically improve model performance by:748

• Focusing learning on clearer examples first (like teaching addition before calculus)749

• Reducing exposure to confusing patterns early in training750

• Aligning with curriculum learning principles [48] (gradual difficulty increase)751

Bird Cat Bird Deer Cat Bird

Dog Airplane Airplane Horse Cat Horse

Figure 10: Examples of confusing clean images from CIFAR-10 that our model mistakenly flagged
as noisy. These contain unusual angles, partial objects, or blurry textures that challenge both humans
and algorithms.
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