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Abstract

Foundation models in speech are often trained using many GPUs, which implicitly leads to
large effective batch sizes. In this paper we study the effect of batch size on pre-training
with the contrastive method wav2vec 2.0, both in terms of statistics that can be monitored
during pre-training, and in the effect on the performance of downstream fine-tuning tasks.
By using batch sizes varying from 87.5 seconds to 80 minutes of speech we show that, for a
fixed amount of iterations, larger batch sizes result in better pre-trained models, with an
upper limit for effectiveness. We then show that the quality of the pre-trained model depends
mainly on the amount of speech data seen during training, i.e., on the product of batch size
and number of iterations. Our extensions can help researchers choose effective operating
conditions when studying self-supervised learning in speech, and hint towards benchmarking
self-supervision with a fixed amount of seen data. Code and model checkpoints are available
at https://github.com/anonymous/available-after-review.

1 Introduction

Foundation models have become the norm in deep learning research. In the audio domain, popular models
with open weights include wav2vec 2.0 (Baevski et al., 2020; Conneau et al., 2021), HuBERT (Hsu et al.,
2021), and WavLM (Chen et al., 2022b). These transformer models all use a form of self-supervised learning
(SSL) with the use of a pretext task to learn (“pre-train”) speech representations. The models can then
be fine-tuned on a myriad of downstream tasks (Yang et al., 2021), including speech recognition, speaker
recognition, emotion recognition, and intent classification. However, self-supervised pre-training takes a
tremendous amount of resources, exceeding high-end consumer grade hardware at the time of writing. First,
due to the unlabeled nature of self-supervision, it is relatively cheap to increase the dataset size. Over a
span of two years, we have seen public training datasets increase by two orders of magnitude1, with wav2vec
2.0 using 1 k hours of audio (circa 100 GB) from Librispeech (Panayotov et al., 2015), to WavLM using
94 k hours (circa 10 TB) by combining Libri-light (Kahn et al., 2020), GigaSpeech (Chen et al., 2021) and
VoxPopuli (Wang et al., 2021). Secondly, the seminal works mentioned above all report results of models
trained with large batch sizes using data parallelism across many GPUs. For example, for models with
94 M parameters, WavLM and HuBERT use 32 GPUs, and wav2vec 2.0 uses 64 GPUs, with batch sizes of
respectively 3 hours, 45 minutes, and 90 minutes of audio. The number of GPUs needed to work with these
large batches in a timely manner, as well as the required disk space for the datasets, make it non-trivial to
apply these algorithms.

While the effect of dataset size on performance is (at least partially) known (Baevski et al., 2020; Conneau
et al., 2021), to our knowledge there are no studies on the scaling behaviour of SSL algorithms with respect
to the batch size and number of training iterations. This can be of interest to researchers who do not have
the resources to study these algorithms under large batch size conditions, or practitioners who need to make
a trade-off between time, computational budget, and desired performance. Given a fixed model complexity,
dataset size, and number of training iterations, how much is gained by increasing the batch size? How well

1Leaving aside Whisper (Radford et al., 2023) and Google USM (Zhang et al., 2023), with respectively 680 k hours and 12 M
hours of private training datasets.
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do these techniques work with fewer resources, and can the academic community do meaningful experiments
without industrial-scale data centers? While we aim to answer these questions generally, for precisely the
reason of available computational resources, we limit ourselves to studying the wav2vec 2.0 (Baevski et al.,
2020) model extensively, leaving other SSL methods for future work. Concretely, we set out to address the
following research questions:

RQ 1: How does the batch size affect the pre-training procedure of wav2vec 2.0?

RQ 2: How does the batch size during pre-training of wav2vec 2.0 affect downstream fine-tuning?

RQ 3: Can we compensate for a reduction of the batch size by increasing the amount of training iterations
by the same factor?

Regarding all three RQs, and given the existing literature on speech SSL (Baevski et al., 2020; Hsu et al.,
2021; Chen et al., 2022b), our hypothesis is that large batch sizes are essential for pre-training convergence
and the model’s ability to be properly fine-tuned to the downstream task. For RQ 1, we are interested in
knowing whether a large batch size is a necessity for optimizing the objective. It would be valuable to know
the smallest possible converging batch size, and how optimization behaves with this batch size compared to
the canonical, large batch size. For RQ 2, we expect that a larger batch size will lead to better downstream
task performance, but we are especially interested in how much the performance improves with each doubling
of the batch size. What is the minimum batch size at which we see that fine-tuning is possible, and how
does this depend on the amount of data available for fine-tuning? For RQ 3, we are interested in knowing
whether training twice as long with half the batch size results in the same performance. There is evidence
that contrastive methods benefit from large batch sizes (Chen et al., 2022a), although in wav2vec 2.0 the
quantity of potential negatives samples does not increase with the batch size, only with the sequence length.
Moreover, according to work on optimizer scaling laws (Goyal et al., 2018; Malladi et al., 2022), with a fixed
number of epochs, learning rates can be adjusted accordingly with the batch size to obtain a very similar
optimization trajectory. Therefore, we hypothesize that performance for wav2vec 2.0 is only a function of
how much data is seen during self-supervision, and that with patience, people with fewer resources can also
carry out pre-training.

To answer these questions, we pre-train wav2vec 2.0 with batch sizes ranging from 87.5 seconds to 80 minutes.
We then fully fine-tune these models for speech recognition (updating most weights), with 10 minutes to 960
hours of labeled speech. To include other speech technology tasks, we also fine-tune following the SUPERB
benchmark protocol, where small downstream models are trained on different categories of speech tasks.
Here, the foundation model weights are frozen, and the (trainable) weighted sum of all layer outputs of the
foundation model are used as input. Hereby, we make the following contributions:

1. We perform a comprehensive study of the effect of batch size and amount of training iterations for
pre-training wav2vec 2.0, helping practitioners to make trade-offs when deciding on downstreak task
performance.

2. We show that the most important factor for the downstream task performance is the amount of data
seen during self-supervision, indicating that fixing the product of batch size and training iterations
in a benchmark can provide valuable information.

3. We provide the pre-training model checkpoints with an interval of 5 k steps for further analysis.2

The rest of this article is structured as follows. First, we will cover related work in Section 2, including studies
on batch sizes with stochastic gradient descent, (contrastive) SSL (in speech) and its scaling behaviour, and
research on SSL with smaller budgets. Then, Section 3 will explain wav2vec 2.0 pre-training and fine-tuning,
followed by experimental setup and results in Section 4, and we will close with a discussion and conclusion in
Section 5.

2See the code repository for a link to the model checkpoints.

2



Under review as submission to TMLR

2 Related work

Stochastic gradient descent and large batch sizes McCandlish et al. (2018) study the trade-off
between time and computational resources when choosing a batch size. It is argued that a small batch size
leads to gradients dominated by noise, which is averaged out by consecutive update steps, or more efficiently,
by using data parallelism. However, when a batch size is very large, the gradient estimate contains little
noise, and therefore sampling two batches and averaging their gradient will not lead to a significantly better
estimate. In this case doubling the batch size does not serve a practical purpose anymore. Thus, there is a
critical batch size, the exact value varying for each task and domain, after which an increase in batch size
has strongly diminishing returns. Complementary, Shallue et al. (2019) conducted a study on the batch size
affecting generalization performance, across multiple datasets (5 vision, 2 text), neural network families (FC,
3 CNNs, LSTM, Transformer) and optimizers (SGD, with (Nesterov) momentum). They experimentally
confirm the existence of a critical batch size, and observe the magnitude of this critical batch size depends
on the dataset, neural network type, and optimizer, but no clear relationship is found. With respect to the
optimization trajectory, Smith et al. (2018) showed that a decaying learning rate schedule is equivalent to
increasing the batch size during training, up to a batch size around 10 % of the training dataset size. There is
also work on a linear scaling law for SGD by Goyal et al. (2018) and square root scaling law for adaptive
methods such as Adam by Malladi et al. (2022). These laws suggest that, for a fixed number of epochs, the
same optimization trajectory can be obtained with different batch sizes by adjusting the learning rate.

Scaling self-supervised representation learning Kaplan et al. (2020) analyse the scaling behavior of
pre-training large language models, with respect to model size, dataset size, and the number of training steps.
Their primary finding is that the test loss follows a power law in relation to all three aspects, as long as model
size is increased according to the dataset size, and training length is not made a bottleneck. It is also found
that very large models are more sample efficient, i.e., fewer iteration or less data is required compared to
smaller models. Goyal et al. (2019) study the scaling behavior of visual representation learning, with respect
to model size, dataset size, and complexity of the pretext task. They find that increasing both the dataset
size, and complexity of the pretext task, is beneficial, as long as the model size is large enough. For speech
SSL, the scaling behavior of the model size and the fine-tuning dataset size is studied in Pu et al. (2021).
They use the reconstructive pretext task Mockingjay (Liu et al., 2020), and their results match Kaplan et al.
(2020); larger model size leads to better performance, and larger models require less fine-tuning data.

Contrastive learning and batch size Contrastive self-supervision benefits from large batch sizes, as
ablated in SimCLR (Chen et al., 2020), and shown by, e.g., CLIP (Radford et al., 2021) and Florence (Yuan
et al., 2021). A hypothesis for this observation is that distractors are often sampled within the same mini-batch,
and thus more (and potentially better) distractors are available as the batch size increases. However, Mitrovic
et al. (2020) show that computing the contrastive objective with fewer (e.g., only two) distractors per anchor
leads to better performance, indicating that large batch sizes are the key factor of improved performance, and
not the amount of available negative samples. Chen et al. (2022a) argue that small batch sizes in contrastive
learning suffer from a gradient bias, which large batches sizes alleviate. Note that in wav2vec 2.0, negative
samples are only taken from the same utterance. The batch size does not have any effect on the quality and
quantity of negative samples, so there might be a gradient bias even with large batch sizes.

Self-supervised learning with academic budget The apparent effectiveness of large batch sizes makes
it difficult to do research without a large computational budget. There has been some work on trying to
reduce the resources required to do pre-training. For example, Izsak et al. (2021) pre-trained a BERT model
to nearly equivalent performance with only 8 GPUs (with 12 GB VRAM) in 1 day, compared to 4 days
with 16 TPUs (having 32 GB RAM) in the original work (Devlin et al., 2019). This was done by reducing
the maximum sequence length, focusing on large models, pre-masking data, and using specialised software
packages such as DeepSpeed (Rajbhandari et al., 2020) and Apex (Micikevicius et al., 2018). Similar work
has been done for the HuBERT model in Chen et al. (2023). They show that using target representations
from a fine-tuned ASR model in the first iteration of HuBERT pre-training (instead of MFCCs) leads to
better performance, while needing fewer GPU hours. Another line of thinking is presented by Cao & Wu
(2021), where it is shown that self-supervised learning in vision can be done on small datasets, with low
resolution images, and with models with relatively few parameters.
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3 Methodology

Wav2vec 2.0 model architecture In this work we use the standard architectural setup for self-supervised
learning with audio (Baevski et al., 2020; Hsu et al., 2021; Chen et al., 2022b). First, the raw 16 kHz sampled
audio X = {x1, . . . , xr} is processed with a 1-d CNN into local speech representations Z = {z1, . . . , zT },
T = ⌊r/320⌋. For each respective layer, the kernel sizes are [10, 3, 3, 3, 3, 2, 2] with strides [5, 2, 2, 2, 2, 2, 2],
with GELU activation, 512 output channels, and GroupNorm once after the first convolution.

The CNN is followed by a gradient scaling layer with the constant set to 1
10 , then Z is projected to Z′,

with 768 dimensions, and LayerNorm is applied. Then, a relative positional embedding is added using a
convolution with kernel size 128, weight normalization (Salimans & Kingma, 2016) on the kernel weights,
padding of 64 on both sides, and 16 groups. A vanilla encoder-only transformer network is used to create
contextualized representations C = {c1, . . . , cT }. The transformer network has 12 layers, with an hidden
dimension of 768 in the self-attention module, 12 attention heads, and a scale-up to 3072 dimensions in the
feed-forward network, with GELU activation.

3.1 Self-supervised pre-training

Quantization Each zt in a sequence Z is individually classified to a quantized vector qt, thereby creating
Q = {q1, . . . , qT }. The possible quantized vectors are learned, and represented by codebooks, discrete sets of
real-valued vectors. A codebook G is a set of V entries (vectors) of a particular dimension dG, representable
as a matrix of size V × dG. A single linear layer with gumbel-softmax (Jang et al., 2017) activation can be
used to get a probability distribution over V different classes. The class with maximum probability can then
be used to determine qt from zt. In wav2vec 2.0 there are two codebooks with each V = 320 entries of size
dG = 128, resulting in V 2 = 102 400 quantized vectors with dimensionality dq = 256. During pre-training, a
temperature τ = 2 in the gumbel softmax is gradually decreased to τ = 0.5 with a factor 0.999995 every
iteration.

Masking The masking is done after the projection and normalization, but before the relative positional
embedding. The mask consists of multiple regions of Lm = 10 consecutive latent speech vectors which are all
replaced by the same learned mask vector. In total pm = 50% of the latent vector sequence Z′ are masked to
Ẑ′, with possible overlap, and excluding padding. The set of time steps where masking is applied is indicated
by M.

Objective function The objective function during SSL pre-training consists of a weighted sum of the main
contrastive loss Lc, together with an auxiliary diversity loss Ld with weighing λd, and an auxiliary L2 penalty
loss Lp with weighting λp:

Lssl = Lc + λdLd + λpLp (1)

The contrastive loss Lc encapsulates the pretext task, where the transformer has to predict the cluster
centroids Q of the projected and masked values Ẑ′ in the output C. The network is explicitly penalized if ct

is similar to any distractors sampled from Q. Similarity is measured with the cosine similarity, written as
s(a, b). The loss can then be defined as

Lc(C, Q, M) =
∑
t∈M

− log
(

exp
(
s(c′

t, q′
t)/τc

)∑
d∈Dt∪{t}

exp
(
s(c′

t, q′
d)/τc

)) (2)

where ′ implies a linear projection layer to 256 dimensions, and Dt is random sample of k = 100 values from
M\{t}. A temperature τc = 0.1 leads to a hard softmax distribution. The contrastive loss can be interpreted
as a standard 1 + k classification task with the sum-reduced cross-entropy criterion, where the target is always
the class index of qt.

Diversity loss A shortcut to optimizing the contrastive loss is to map all values in Z to the same quantized
vector. To prevent this, a diversity loss is applied, which encourages uniform predictions over the codebook
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entries. A codebook G with V entries has classified the sequence Z to Q, using logits from a softmax
activations of a linear layer P = {p1, . . . , pT }. For uniform predictions the average probability distribution
p̄ = T −1∑T

t=1 pt should be flat. In this best case, the entropy H(p̄) = log V , and the perplexity eH(p̄) = V .
In the case of shortcut, a single class has probability 1, which means the entropy H(p̄) = 0 and the perplexity 1.
Therefore, the diversity loss minimizes the number of the entries in a codebook subtracted by the perplexity
of the predictions:

Ld(P) = V − exp
(
−

S∑
j=1

p̄(j) log p̄(j)), (3)

where p̄(j) is the jth component of p̄. The weighting λd = 1
10 throughout this work unless specified otherwise.

L2 penalty loss The third loss is a regularization term, which keeps the values of Z as small as possible.
This loss is defined as

Lp(Z) = 1
Tdz

T∑
t=1

dz∑
j=1

(
z

(j)
t

)2
, (4)

where z
(j)
t is the jth component of zt, and dz = 512. The weighting λp = 10 throughout this work.

3.2 Batch creation

The methodology descriptions have assumed a single utterance X, while training is done with a batch of the
dataset, split into multiple gpu-batches for distributed data-parallel training. The LibriSpeech dataset is
used, implying utterances have variable lengths, at minimum 0.83 seconds, and at most 30 seconds. As each
utterance in a gpu-batch needs to have the same length, all but the longest raw waveform in a batch are
padded with zeros. To minimize the amount of padding, the utterances are sorted by length, and put into
bins of 5000 utterances. Each gpu-batch is sampled from only a single bin. Random samples from the bin feed
a priority queue of length 50, from which gpu-batches are formed by taking samples prioritized by shortest
duration, until the total speech duration in the gpu-batch exceeds a threshold, in our case 2.4 M samples.
Because of limitation in GPU memory caching, a gpu-batch is discarded if the difference between the shortest
and longest utterance is more than 10 seconds. This helped alleviate spontaneous CUDA out-of-memory
errors.

The CNN also processes the padded part of utterances. However, every vector zt which results purely from
padding in the raw waveform are ignored in the self-attention of the transformer by setting their attention
score to −∞. When creating the mask M, the padded vectors zt are also not considered part of the utterance.
The contrastive loss is computed independently for each masked token in each utterance of the gpu-batch,
and summed afterwards. For the diversity loss, the probability distribution p̄ is computed by averaging
over the predictions of all tokens of all utterances in the gpu-batch, before computing the perplexity. The
L2-penalty loss is simply the mean of each representation value in the gpu-batch. The gradient resulting
from each gpu-batch are averaged before the weights of the networks are updated.

3.3 Full fine-tuning for speech recognition with subsets of LibriSpeech

To fine-tune a pre-trained model for speech recognition, Z and C can be computed from X, disregarding
the quantization. The network still applies a mask, but only pm = 5% of the utterance is replaced with the
learned masking vector. This acts as a regularization method, similar to SpecAugment (Park et al., 2019).
Each vector in C can be separately classified to a character (or blank) with a softmax-activated linear layer,
and optimized with CTC (Graves et al., 2006) loss. The CNN is not updated during fine-tuning, and the
transformer network is only updated after the first 5 k iterations. We fine-tune on 10 min, 1 hour, 10 hours,
100 hours and 960 hours of LibriSpeech following Baevski et al. (2020).

3.4 Frozen fine-tuning for various speech technology tasks using the SUPERB benchmark

Another fine-tuning strategy is used in the SUPERB benchmark, where the (upstream) CNN and transformer
layers will be frozen and used only to generate input features for a task-dependent, small downstream model,
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Table 1: All batch sizes used for SSL pre-training, together with the number of GPUs, the number of gradient
accumulation steps (acc), the runtime, in days and hours, of a single run, and three possible learning rate
heuristics. The bold learning rates resulted in the lowest validation loss. For the 80 minute batch size setting
we only tried one learning rate.

batch size used learning rates
sec min GPUs acc. runtime hconst hsqrt hlin
87.5 1.5 1 1 1d 13h 5.00 × 10−4 6.04 × 10−5 7.29 × 10−6

150 2.5 1 1 2d 4h 5.00 × 10−4 7.91 × 10−5 1.25 × 10−5

300 5 1 2 3d 22h 5.00 × 10−4 1.12 × 10−4 2.50 × 10−5

600 10 4 1 2d 14h 5.00 × 10−4 1.58 × 10−4 5.00 × 10−5

1200 20 2 4 7d 20h 5.00 × 10−4 2.24 × 10−4 1.00 × 10−4

2400 40 4 4 7d 18h 5.00 × 10−4 3.16 × 10−4 2.00 × 10−4

4800 80 8 4 7d 19h 5.00 × 10−4 - -

e.g., a 2-layer biLSTM for speech recognition, or a single dense layer followed by mean pooling for speaker
identification. The input features F = {f1, ..., fT } are a weighted-sum of Z′ and C, i.e., ft = w0z′

t+
∑12

i=1 wic
(i)
t ,

where (i) indicates the ith transformer layer output sequence, and wi is learned during fine-tuning. We use
a subset of tasks to limit computational resources, while including at least one task from 4 out of the 5
categories: phoneme recognition (content), ASR in English (content), out-of-distribution ASR in Mandarin
(content), speaker verification (speaker), emotion recognition (prosody), and intent classification (semantics).
We use the default downstream model for each task, and keep most settings to the default value. We make
the following modifications to reduce the run-time: half- instead of single-precision floats, 200k instead of
500k train steps for mandarin ASR, and gradient accumulation of 1 for all tasks, while increasing the batch
size such that the effective batch size is equal to the default settings. A learning rate of 10−4 is used for all
tasks.

4 Experiments

4.1 Pre-training with different batch sizes

The first experiment aims to directly answer RQ 1, and is a prerequisite for answering all others.

Setup We pre-train the BASE wav2vec 2.0 network with batch sizes ranging from 87.5 seconds to 80 minutes
of audio, as seen in Table 1. Each pre-training starts with the same initial weights, and we use all 960 hours
of training data in LibriSpeech (Panayotov et al., 2015) (CC-BY 4.0 licence), with 5% held-out randomly as
a validation set. We validate and store a checkpoint every 5 k steps. We adhere to the hyperparameters as
published in the seminal paper (Baevski et al., 2020) as much as possible. We use 400 k training iterations
with AdamW and a weight decay of 10−2, and scan over 3 learning rates (LRs), based on choices explained
below. We change to a 8-cycle triangular learning rate schedule, where one cycle has 25 k linear steps up and
25 k linear steps down. This allows us to fairly compare fine-tuning results of checkpoints at multiples of
50 k iterations. The minimum LR of the cycle is 100 times smaller than the maximum LR. We show the
maximum LRs in Table 1. We also use GPUs (A5000) with at least 24 GB of VRAM , and therefore fill
each GPU with a maximum of 2.4 M audio samples (150 seconds) for full utilization of the device, which
compares to 1.4 M samples (87.5 seconds, 90 minutes batch size with 64 GPUs) in Baevski et al. (2020). The
experiments, including initial development runs, took 246 days of GPU time.

For each batch size of duration s, we need to find a well-performing maximum learning rate (LR) for the
cyclic schedule. As a full hyperparameter search would exceed our computational budget, we use heuristics
to choose three different learning rates, and settle on a run with the lowest overall validation loss. The first
heuristic is the linear scaling law from Goyal et al. (2018). As a reference, a maximum learning rate of
mlr = 5 × 10−4 was used in Baevski et al. (2020) together with a batch size of circa 1.6 hours. Therefore we
use hlin(s) = mlrs/sorig as the first heuristic for the learning rate, with sorig = 6000 seconds. In Baevski et al.
(2020) a batch size of 5600 seconds is used, but we use 6000 seconds for this heuristic calculation so that
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Figure 1: Various metrics on validation data (interval of 5 k training steps) during self-supervised pre-training
with different batch sizes, namely all three losses (A, B, C), the accuracy of predicting the correct masked
quantized vector (D), and the perplexity of codebook 1 (E) and codebook 2 (F). We also show the average,
minimum, and maximum value of the pair-wise cosine similarity of all codewords in codebook 1 (G, H, I)
with an interval of 100 training steps.

hlin rounds nicely. We still find well-performing LRs. The second heuristic hsqrt(s) = mlr
√

s/sorig applies
the square root scaling law according to Malladi et al. (2022). For each batch size we also try the constant
hconst(s) = mlr, although this led to divergence for s ≤ 600 seconds. Moreover, we initially used a diversity
loss weight λd = 0.1 as in Baevski et al. (2020), but found this led to divergence of the diversity loss for the
batch size of 87.5 seconds. By decreasing λd from 0.1 to 0.05, with the reasoning that the contrastive loss
is almost twice as small (only 1.4 M samples instead of 2.4 M), and the ratio between the contrastive loss
and the diversity loss should stay the same, we managed to get converging results for the batch size of 87.5
seconds. This does seem counter-intuitive as the original work uses 1.4 M samples on each of the 64 GPUs
together with λd = 0.1.

Results We show various metrics during the training procedure in Figure 1. For each batch size, the
metrics of the run with the lowest validation loss are displayed. For the contrastive loss (A), we see that
overall a larger batch size leads to a lower contrastive loss. Note that the smallest batch size, 87.5 seconds, has
a different range because the loss is sum-reduced over 1.4 M sampled instead of 2.4 M samples, we corrected
for this by multiplying the values by 1.71. For the diversity loss (B), we see that a large batch size (40, 80
min) causes the loss to drop quickly, but then plateau. The other batch sizes steadily decrease. Notably, for
batch sizes of 10 and 20 minutes the diversity loss surpassed the values of batch sizes 40 and 80 minutes after
150 k to 200 k steps. The scale of the lowest batch size, 87.5 seconds, is twice as small due to the λd = 0.05,
we corrected for this by multiplying the values by 2. The same patterns visible in the diversity loss are also
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seen in the perplexity of the codebooks (H and I, with the vertical scale reversed). For accuracy (D), a larger
batch size leads to higher accuracies. For the similarity of codewords within the codebooks, we see that the
average (G) and minimum (I) cosine similarity between codebooks only go down steeply with large batch sizes
(40 and 80 min). For the maximum similarity values, we observe that they stay relatively stable, although for
the larger batch sizes they increase slightly at the start of training, but decrease again during the training
procedure, which can be related to the decay strategy of τ used in the gumbel-softmax.

4.2 ASR fine-tuning with varying amounts of labels

The second experiment focuses on RQ 2. How is downstream fine-tuning affected by the batch size during
pre-training?

Setup For each batch size in Table 1 we have self-supervised training runs of 400 k steps, with checkpoints
saved every 5 k steps. For each setting we select the run (and step) with the lowest overall validation loss,
resulting in a single checkpoint which is used as initialization for training a speech recognition system. This is
the checkpoint at step 400 k for all runs, expect for batch size of 32 GPUs (80 minutes), which had the lowest
validation loss at step 305 k. For each of these selected checkpoints we perform a fine-tuning on 10 minutes, 1
hour, 10 hours, 100 hours, and 960h hours of labeled LibriSpeech data, with hyperparameters detailed in
Appendix A.3. We use the same number of steps as in Baevski et al. (2020). We show results with greedy
letter decoding and word decoding using a 4-gram LibriSpeech language model. For word decoding we use
use a beam size and threshold of 50, a language model weight of 2, and a word insertion score of 0 for all
settings. These experiments were done using one A5000 GPU, with a maximum run-time of 2 days when
fine-tuning with 960h of labels (320k steps). In total 205 days of GPU time was used, including experiments
in section 4.3.2.

Results We show the word-error-rate (WER), evaluated on LibriSpeech test-clean and test-other, for each
fine-tuning condition in Figure 2 and in tabular format in Appendix A.4. Two clear patterns are visible. First,
independent of the amount of labels available, we observe that fine-tuning a random initialization leads to the
highest WER. Then, each consecutive increase in the batch size during self-supervised learning leads to lower
WERs after fine-tuning. There is one exception: on test-other, the 40 min batch size initialization performs
better than the 80 min batch size initialization, but only when fine-tuning with 10 or more hours of labeled
data. We observed similar degraded performance after fine-tuning the 400 k checkpoint with batch size of 80
minutes (not shown in Figure 2). Secondly, having more labeled data for fine-tuning leads to a lower WER
for each self-supervised batch size. However, the larger the batch size, the smaller the difference in WER
between the amount of labels available during fine-tuning. Notably, Baevski et al. (2020) reports 9%/47%
WER on test-clean with/without a language model when fine-tuning with 10 minutes of labeled audio. In
this experiment we observe a WER of 24%/41% instead, the large difference in LM performance we attribute
to our much smaller beam size in decoding. Finally, we see diminishing returns at a batch size of 80 min.

4.3 Analysis on effectiveness of large batch sizes

So far, we have observed that larger batch sizes lead to a lower contrastive validation loss, and less similarity
between codewords. We have also seen that larger batch result in better fine-tuning performance for speech
recognition, irrespective of the amount of labels available. Why are large batch sizes more effective? Are
better gradients approximations beneficial, or is the amount of observed data an explaining factor?

4.3.1 Variance of gradients

First, we compare the gradient between different batch sizes. If the gradients are more precise, and less
noisy, with increased batch sizes, we expect the variance between gradients to decrease. To verify this we use
the saved checkpoints (every 5 k steps) during pre-training. For each checkpoint, we compute 10 gradient
vectors using new, independently sampled batches from the training set. These 10 batches are kept constant
over all checkpoints of the same batch size. We do not update the weights during this process, and we
do not use the AdamW optimizer state nor the learning rate to scale the gradients. For each parameter,
we separately compute the standard deviation between gradient vectors, after which we average over the
parameters to a get a standard deviation of the whole gradient, shown in Figure 3. We observe that the
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standard deviation decreases as the batch size increases. For the smallest batch size, the training run with
λd = 1

20 has a significantly lower gradient variance compared to λd = 1
10 . Further, at a critical batch size of 40

minutes the standard deviation barely decreases when the batch size is doubled to 80 minutes. Furthermore,
for small batch sizes the standard deviation increases over the training procedure, while it stays constant for
large batch sizes. Moreover, we observe that the batch sizes of 87.5 (with λd = 1

10 ) and 150 seconds converge
at the end of training. Finally, the cyclic learning rate schedule seems to affect the gradient variance, as the
standard deviation peeks for all batch sizes when the cycle is at the minimum learning rate (every interval of
50k steps).

4.3.2 Fine-tuning after observing specific amounts of data during pre-training

We will now focus on RQ 3. We compare the performance of batch sizes at different stages during pre-training.
Because we use a cyclic learning rate, there are equivalences at each end of a cycle, namely at multiples of
50 k steps. Different batch sizes overlap on the amount data seen at particular checkpoints. For example,
16.7 k hours of data was observed with batch sizes of 150 sec, 5 min, 10 min, and 20 min respectively at 400 k,
200 k, 100 k, and 50 k steps. If less noisy gradient approximations are beneficial to learning, we expect a
performance difference when we compare the fine-tuning performance of these checkpoints, in favor of larger
batch sizes. However, if all that matters is observing more data, we should see no difference in performance.

Setup and results For each batch size, we fine-tune the checkpoints with an interval of 50 k steps, resulting
in 8 checkpoints per batch size. We use the training methodology as described in Section 4.2. For this
experiment we focus on fine-tuning on 10 minutes and 100 hours of labeled data, with letter decoding,
evaluating on the test-clean set. The results are shown in Figure 4 and in tabular form in Appendix A.5.
We observe a direct relationship between the amount data observed during pre-traing and the WER after
fine-tuning. There are only minor differences between the WER of different checkpoints with the same
amount of data, which we attribute to noise. The curves for each batch size blend into each other, especially
for the case of fine-tuning with 100 hours of data. With 10 minutes of data we observe that a batch size
of 40 minutes has slightly better performance at the start of training, and worse performance at the end of
training, compared to batches of 20 minutes and 80 minutes. Also, we see that a batch size of 87.5 seconds
performs slightly better than the batch size of 150 seconds. We hypothesise that the diversity weight λd = 1

20
generalized slightly better than λd = 1

10 . Note that we used the naive, upper bound of the amounts of data
hours observed. The measured amount of hours are shown in Appendix A.1.
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Figure 5: The performance of 6 SUPERB tasks against the hours of data processed during self-supervision.
For each SSL batch size we fine-tune the checkpoints at step 100k, 200k, 300k and 400k with learning rate
10−4.

4.4 SUPERB fine-tuning

To further strengthen the observation that the amount of hours seen during pre-training is the main indicator
of downstream task performance, we repeat the experiment in Section 4.3.2 on 6 tasks in the SUPERB
benchmark (Yang et al., 2021), namely phoneme recognition, speech recognition in English and Mandarin,
speaker verification, emotion recognition, and intent classification. There are 3 important differences. First,
we are interested to see whether the pattern holds for tasks other than (English) speech recognition. Secondly,
the speech representation features are frozen during fine-tuning, so the quality of the representations are
more fairly judged. Thirdly, other than phoneme recognition and English ASR, these tasks fine-tune on
out-of-domain data with respect to the pre-training, so that we can see whether the observation holds in
cross-domain adaptation. Note that following datasets are used: phoneme recognition and English ASR are
fine-tuned on the train-clean-100h set of LibriSpeech (Panayotov et al., 2015), mandarin ASR is fine-tuned on
Mozilla Common Voice (Ardila et al., 2020), speaker verification is fine-tuned on VoxCeleb1 (Nagrani et al.,
2017), intent classification is fine-tuned on Fluent speech commands (Lugosch et al., 2019), and emotion
recognition is fine-tuned on IEMOCAP (Busso et al., 2008).

Setup and results For each of the 6 tasks, we fine-tune with 4 checkpoints of each SSL batch size, namely
the checkpoint at 100k, 200k, 300k and 400k steps. We use a learning rate of 10−4 for each fine-tuning,
and keep all other hyperparameters equal to the default value for the task, expect that mandarin ASR is
fine-tuned for 200k steps instead of 500k steps. We show the results in Figure 5, and in tabular format in
Appendix A.6. In general, we observe similar patterns compared to Figure 4, meaning curves blending into
each other, and following the pattern of better performance after seeing more data. We also see signs of
overfitting with the batch size of 80 minutes at 400k steps. We observe that the in-domain tasks (English
ASR, and phoneme recognition) have the smoothest curve, followed by mandarin ASR. The other 3 tasks
seem more noisy, where sometimes there is no improvement following a consecutive checkpoint of the same
batch size, e.g., this is visible for speaker and emotion recognition at 10 k hours, and intent classification
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while pre-training on the VoxCeleb2 dataset. Each checkpoint is fine-tuned with LR 10−4.
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Figure 7: The performance of three SUPERB tasks against the hours of data processed during self-supervision
with the LARGE model. Each checkpoint is fine-tuned with LR 10−4.

at 30 k hours. Also, emotion recognition is the only task where there is no clear upward trend with more
observed data. For emotion recognition, the best performance was obtained with the checkpoint at 300 k
steps with the batch size of 20 minutes, and the batch sizes of 40 and 80 minutes perform noticeably worse.

4.5 Increasing model capacity or changing pre-training dataset

All experiments so far have used the BASE wav2vec 2.0 network alongside pre-training on Librispeech 960h.
In this section we will verify whether our observations generalize to a larger model capacity or a different
pre-training dataset.

Setup We pre-train with batch sizes of 5 minutes, 10 minutes, and 40 minutes of audio. For BASE,
we use VoxCeleb2 (Chung et al., 2018), which differs from Librispeech in that it is primarily designed for
speaker recognition and created by automatically extracting utterances from YouTube videos. Compared to
Librispeech it has more speakers (2338 versus 5994) and high intra-speaker variability. We split the VoxCeleb2
development set into a train and validation partition. The train partition has approximately 1 M utterances,
with a duration ranging from 4 to 30 seconds averaging at 7.8 seconds, and a total of 2300 hours of audio.
The validation partition is created by randomly selecting 2 utterances from each speaker session, and has
a total of 23 hours of data. For pre-training we do not make any changes to the network or optimization
procedure detailed in Subsection 4.1, other than performing a learning rate scan. For each batch size we
perform a grid search in the range 10−4 to 7 × 10−4 with increments of 5 × 10−5.

For LARGE with Librispeech, we change the network to use 24 transformer layers, with 16 heads, and a
hidden dimensionality of 1024 which is scaled up to 4096 in the feed-forward network. Furthermore, the
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codeword dimensionality is increased from 128 to 384, hence the dimensionality of the projection s(c′
t, q′

d) in
the contrastive loss is increased from 256 to 768. These modifications increase the amount of parameters from
95 M to 316 M. Finally, the floor of the gumbel softmax temperature of the diversity loss is decreased from 0.5
to 0.1. We also changed the diversity loss weighting from λd = 0.1 to λd = 0.01, because we observed that for
all learning rates λd = 0.1 resulted in the diversity loss immediately converging and the contrastive loss never
improving. We trained for 400 k steps with a batch size of 5 minutes and 250 k steps for batch sizes of 10 and
40 minutes. As in Subsection 4.1, we performed a learning rate scan for each batch size using the 3 heuristics
hconst, hsqrt, and hlin. We used mlr = 3 × 10−4 and sorig = 9600 seconds taken from Baevski et al. (2020).

Results For BASE with VoxCeleb2, we found the best performing LR for batch size 5, 10 and 40 minutes
to be respectively 2 × 10−4, 3 × 10−4 and 5 × 10−4, and for LARGE with Librispeech respectively 5.3 × 10−5,
7.5 × 10−5 and 1.5 × 10−4. We fine-tune consecutive checkpoints (50 k steps for LARGE, and 100 k steps
for VoxCeleb2) on 3 SUPERB tasks, namely English phoneme recognition on Librispeech, Mandarin speech
recognition on CommonVoice, and speaker recognition on VoxCeleb1. Each checkpoint is fine-tuned with
learning rate 10−4. We show the results with VoxCeleb2 as pre-training data in Figure 6 and for LARGE
in Figure 7. For both settings we confirm the general trend of better performance as the visible training
hours during pre-training increases. We observe for Mandarin speech recognition, and pre-training with
VoxCeleb2, that the batch size of 40 minutes has slightly better performance across the amount of data
observed, compared to the batch sizes of 5 and 10 minutes. For the speaker recognition task, we see for both
VoxCeleb2 and LARGE that the performance does not monotonically decrease with the amount of hours of
observed data within the optimization trajectory of a single batch size. This is consistent with observations in
Figure 5. We see better EERs for speaker recognition with the BASE model pre-trained on in-domain data
(VoxCeleb2) compared to the BASE and LARGE model pre-trained on out-of-domain data (Librispeech).
Finally, for the phoneme recognition task, we see, for both conditions, the least amount of noise in the trend
of performance versus amount of data seen.

5 Discussion and conclusions

Research questions From the extensive search of batch sizes reported in Figure 1, we see that larger
batch sizes result in better pre-training convergence, if given the same amount of iteration. This is consistent
with the hypothesis of RQ 1 and 2. We were surprised to observe convergence with all batch size, with the
caveat that we had to change the diversity loss weighting for the smallest batch size of 87.5 seconds. It seems
this problem with the loss weighting parameter choice could have been prevented if the contrastive loss would
be mean-reduced instead of sum-reduced, but in this work we followed the implementation of Baevski et al.
(2020) as closely as possible. A good indicator for well chosen hyperparameters is a continuous increase of the
perplexity of the codebook logits (Figure 1E–F). With larger batch sizes, the similarity of codebook vectors
decreases, which is an indication of the diversity of the learnt representations.

Regarding RQ 2 and Figure 2, we show, for the first time, how pre-training batch size affects the downstream
ASR performance: with a fixed number of iterations, the performance increases with larger batch size. All
results with the 80 min batch size are in accordance with the original paper Baevski et al. (2020), except for
the 10 minute fine-tuning results, where they decoded using the (impractical) beam size of 500. Our cyclic
LR schedule does not perform worse than Baevski et al. (2020), while allowing for a fair comparison when
conducting fine-tuning experiments at regular intervals. The largest batch size we investigated showed a
little worse performance. We might have reached a limit of the generalization ability of the pretext task, as
corroborated by the minimum validation loss at 305 k steps. We expect this limit can be increased by more
regularization, e.g., using a larger data set (Conneau et al., 2021; Radford et al., 2023), or, to a lesser extent,
higher dropout rates or higher value of λp and pm.

In looking for an answer to why larger batch sizes are more effective, we saw in Figure 3 that the standard
deviation of the gradients reduces almost consistently with larger batch size, up to a value of 40 min. However,
we do not see an indication that this has an effect on downstream task performance, cf. Figure 4 and 5. The
reduced variance in the gradient as a result of a larger batch size does not appear to be the reason for better
performance. Rather, we found that the most important factor for downstream task performance is the total
amount of data seen during pre-training, i.e., the product of batch size and number of iterations (RQ 3), as
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shown convincingly in Figure 4 and Figure 5 as well as Figure 6 and Figure 7. This means that it still is
possible to carry out pre-training with limited amount of GPUs and/or memory, but one needs to be more
patient or accept a penalty in performance, where Figure 2 can help in decision making.

For the non-content tasks in Figure 5, namely speaker, emotion and intent recognition, there appears to be
more noise in relation between amount of data seen and performance. This noise is strongest for emotion
recognition, however, the results lie in a 10 % accuracy bandwidth, which is similar to the range of worst to
best systems in the SUPERB leaderboard (Yang et al., 2021). The small size of the IEMOCAP dataset (10
speakers with 5-fold cross validation) probably adds to the noisy behaviour. We believe this task may not
be the best to indicate the quality of the learned speech representations. When the pre-training dataset is
out-of-domain with respect to the fine-tuning dataset, we also see more noisy behaviour, cf. Figure 6, however,
the general trend still is visible. Finally, we see that the trend also holds when we increase the model capacity,
cf. Figure 7.

Broader impact Based on these results, we believe that it could benefit the community to benchmark
SSL algorithms (in speech) by constraining the amount of data seen in training, e.g., to 100 k hours. In
experiments with different algorithms, one might use 10 k hours of seen data to reduce the computational
burden, and verify conclusions at the 100 k hours pre-training condition.

Conclusion and limitations We conclude that the batch size during contrastive pre-training can be
varied over a large range of values without a performance penalty, but only if hyperparameters like the
learning rate are adapted accordingly. As a caveat, our results have only looked at contrastive algorithms
where distractors are not taken from other samples in the batch. Future work could look at algorithms where
this is the case, such as SimCLR, or a modified wav2ec 2.0, paying special attention to the square root
scaling law of the learning rate (Malladi et al., 2022) such that all batch sizes have similar well-performing
optimization trajectories. Moreover, other speech representation learning algorithms could be considered,
such as predictive methods like HuBERT (Hsu et al., 2021), WavLM (Chen et al., 2022b) and DinoSR (Liu
et al., 2023), and reconstructive methods like VQ-VAE (Oord et al., 2017) and DeCoAR (Ling et al., 2020).
The range of the batch sizes we found effective for wav2vec 2.0 may be specific to the architecture (wav2vec
2.0 base, with approximately 95 M parameters) and our pre-training datasets, but we have shown that also a
larger model, and a different pre-training dataset, shows a dependence on the amount of data seen, as shown
in Figure 6 and Figure 7, in terms of the fine-tuning performance.
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A Appendix

A.1 Measured hours of observed data during pre-training

Table 2: The number of epochs and total amount of data observed throughout pre-training for each batch
size. The training dataset contains 912 hours of data and we train for 400 k iterations. Note that the batch
size is an upper bound as they are constructed with variable length samples.

batch size upper bound measured

sec min epochs observed
data (h)

max. repeats
of sample

observed
data (h)

87.5 1.5 11 10 k 11 9 k
150 2.5 18 17 k 18 16 k
300 5 37 33 k 36 31 k
600 10 73 67 k 71 62 k

1200 20 146 133 k 140 124 k
2400 40 292 267 k 277 248 k
4800 80 585 533 k 554 497 k

Due to fact that audio samples in LibriSpeech are varied, batch sizes are filled up to a specific threshold, as
explained in Section 3.2. The product of the batch size and number of iterations is therefore an upper bound
on the amount and duration of samples observed. Moreover, we discard some batches when the difference
between the minimum and maximum file is larger than 10 seconds, as this prevented GPU out-of-memory
errors. During pre-training, we stored the identifiers of every utterance in all 400 k batches. Afterwards, we
could compute the actual amount of data observed, looking up the length of each utterance without padding.
The results are shown in Table 2. We can see that the largest batch size has actually seen only 497k hours of
data, instead of the theoretical 533 k hours. This shows the importance of creating batches with as little
length variability as possible, because our results have shown that seeing more hours of data in the same
amount of iterations matters for downstream performance.

A.2 Pre-training plots with visible hours as x-axis

Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13 show the plots of Figure 1 with the amount
of data seen as x-axis instead of the amount of iterations. To correct for the different gpu-batch sizes (1.4 M
samples instead of 2.4 M samples) and diversity loss weighting (0.05 instead of 0.10), we multiple the values
of batch size 87.5 seconds with a factor 1.71 for the constrastive loss and 2 for the diversity loss.

A.3 Hyperparameter details for full fine-tuning

We use similar fine-tuning parameters for each labeled data condition as stated in Baevski et al. (2020), but
make some changes such that the only variation is in the number of iterations. We use 12 k, 13 k, 20 k, 80 k and
320 k iterations, respectively for 10 minutes, 1 hour, 10 hours, 100 hours, and 960h hours of labeled fine-tuning
data. We use a learning rate of 5 × 10−5 with Adam, not using weight decay. We use the same tri-stage
learning rate schedule, where the first 10% of iterations warm up the LR linearly from 5 × 10−7 to 5 × 10−5,
the next 40% of iterations keep the LR constant at 5 × 10−5, and the last 50% iterations exponentially decay
the learning rate from 5 × 10−5 to 2.5 × 10−6. We fine-tune with a single GPU, using a batch size of 3.2M
samples (200 seconds). The CNN network is frozen for all iterations, while the Transformer network is frozen
for the first 5 k iterations. Masking is applied on the Z sequence, but only 5% of the sequence is masked. We
do not apply masking on the feature dimension. We also do not use LayerDrop, as we didn’t use LayerDrop
during pre-training to simplify data-parallelism. Dropout is set to 10% in the Transformer layer (also during
SSL).
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Figure 8: Validation contrastive loss
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Figure 9: Validation diversity loss
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Figure 10: Validation L2-penalty loss
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Figure 11: Validation accuracy
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Figure 12: Validation perplexity of codebook 1
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Figure 13: The average similarity between codewords in codebook 1 throughout the pre-training procedure.
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A.4 Tabular data for Figure 2

In Table 3 we show the data in Figure 2 in tabular format.

Table 3: The data seen in Figure 2. It shows WER after fine-tuning the best SSL checkpoint for each batch
size. Fine-tuning is done on 5 different amounts of label conditions. Decoding is done with letter decoding as
well as 4-gram word decoding with beam size 50. Scratch indicates a random initialization.

letter decoding 4-gram word decoding
labeled data SSL batch size test-clean test-other test-clean test-other
10 min scratch 129.45 129.47 111.17 111.95

87.5 sec 85.98 91.80 72.67 82.14
150 sec 72.07 82.02 54.44 68.26
5 min 61.26 71.06 40.96 53.53
10 min 50.39 59.45 32.06 42.32
20 min 47.04 54.67 27.3 35.96
40 min 45.44 52.05 26.89 34.35
80 min 41.64 50.06 24.38 34.47

1 hour scratch 106.68 104.76 101.23 100.09
87.5 sec 70.5 83.49 51.93 70.58
150 sec 53.28 68.37 34.00 52.00
5 min 39.04 53.57 22.31 37.11
10 min 28.83 41.47 15.69 27.03
20 min 25.12 35.23 13.14 22.25
40 min 23.26 31.75 11.90 19.52
80 min 21.94 31.30 11.80 20.72

10 hours scratch 105.59 104.03 100.56 99.25
87.5 sec 47.74 67.98 29.81 53.69
150 sec 34.53 54.43 20.20 39.96
5 min 23.24 40.24 13.42 28.07
10 min 16.27 29.51 9.46 20.27
20 min 13.26 23.83 7.66 16.31
40 min 11.11 19.78 6.59 13.46
80 min 10.38 19.56 6.28 13.67

100 hours scratch 69.02 84.70 50.36 73.44
87.5 sec 21.31 48.15 12.33 35.99
150 sec 16.68 40.41 9.93 29.63
5 min 12.38 31.43 7.72 22.66
10 min 9.10 23.43 5.93 16.87
20 min 7.41 18.93 5.12 13.72
40 min 6.24 14.87 4.38 10.88
80 min 5.86 15.97 4.45 12.05

960 hours scratch 25.45 48.65 12.62 32.20
87.5 sec 7.94 21.78 4.69 14.41
150 sec 7.05 19.60 4.35 12.77
5 min 6.01 16.84 4.12 11.45
10 min 5.27 13.91 3.74 9.66
20 min 4.44 12.53 3.33 8.90
40 min 4.12 10.62 3.20 7.87
80 min 4.22 11.58 3.34 8.68
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A.5 Tabular data for Figure 4

In Table 4 we show the data in Figure 4 in tabular format, where at least 2 batch sizes match exactly in the
amount of data seen during self-supervision. We observe some variation between checkpoints of different
batch sizes at the same amount of data seen. However, it is not evident that the larger batch size has a better
WER. For example, at 16.7 k hours seen, a batch size of 150 sec has the best performance in both fine-tuning
conditions, and at 50 k hours, a 10 minutes batch size outperforms 20 min batch size slightly. Except for
the big performance difference at 33 k hours for the 40 minute batch size, we alleviate these differences to
random noise. We hypothesize that the 40 min batch size condition performs better because we simply used
a better learning rate while having minor differences in the implementation of wav2vec 2.0. We noticed after
having conducted the experiments that the original wav2vec 2.0 implementation in Fairseq uses Dropout on
the local speech representations before quantiziation. The original implementation also use LayerDrop on the
Transformer layers, which we disabled due to it significantly slowing down the gradient synchronisation in
distributed data-parallel training.

A.6 Tabular data for Figure 5

We show the data from Figure 5 in Table 5.
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Table 4: Data from Figure 4. We show the WER after fine-tuning SSL checkpoints with overlapping amount
of hour seen during self-supervision, but using a different batch size and number of iterations.

during self-supervised learning
fine-tuning with

10 minutes of labels
(WER in %)

fine-tuning with
100 hours of labels

(WER in %)
hours seen batch size iteration test-clean test-other test-clean test-other

4.17 k 150 sec 100 k 99.16 101.33 29.79 57.52
4.17 k 5 min 50 k 98.55 100.04 30.25 58.14
8.33 k 150 sec 200 k 88.71 94.32 22.98 50.31
8.33 k 5 min 100 k 90.23 95.29 22.98 50.57
8.33 k 10 min 50 k 88.35 93.96 22.35 49.56
12.5 k 150 sec 300 k 80.83 88.28 19.23 44.77
12.5 k 5 min 150 k 81.17 89.71 19.27 45.25
16.7 k 150 sec 400 k 72.00 82.15 16.49 40.18
16.7 k 5 min 200 k 73.63 83.54 16.71 41.17
16.7 k 10 min 100 k 73.17 84.01 16.83 40.63
16.7 k 20 min 50 k 72.95 83.12 16.89 41.09

25 k 5 min 300 k 64.40 75.36 14.21 35.51
25 k 10 min 150 k 63.73 74.55 13.97 35.50

33.3 k 5 min 400 k 60.96 70.61 12.24 31.49
33.3 k 10 min 200 k 59.00 69.44 12.46 31.39
33.3 k 20 min 100 k 59.76 70.14 12.30 31.22
33.3 k 40 min 50 k 53.70 63.52 10.94 27.53

50 k 10 min 300 k 53.32 63.30 10.21 25.99
50 k 20 min 150 k 54.04 63.91 10.47 26.55

66.7 k 10 min 400 k 50.71 60.05 9.07 23.06
66.7 k 20 min 200 k 51.64 60.64 9.28 23.97
66.7 k 40 min 100 k 50.80 58.74 8.63 21.26
66.7 k 80 min 50 k 51.26 60.42 9.29 23.20
100 k 20 min 300 k 48.61 56.51 8.09 20.75
100 k 40 min 150 k 48.04 55.41 7.63 18.67
133 k 20 min 400 k 47.43 54.71 7.40 19.04
133 k 40 min 200 k 48.06 55.66 7.11 17.25
133 k 80 min 100 k 45.40 53.46 7.31 18.32
200 k 40 min 300 k 46.35 53.42 6.58 15.74
200 k 80 min 150 k 42.84 51.20 6.58 16.70
267 k 40 min 400 k 45.57 52.50 6.26 15.10
267 k 80 min 200 k 42.40 50.34 6.27 15.85
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Table 5: SUPERB fine-tuning results shown in Figure 5.

during self-supervision PR ASR
(en)

ASR
(zh) ASV ER IC

batch size steps hours seen PER WER CER EER acc acc
87.5 sec 100 k 2.4 k 46.87 25.64 37.94 13.88 57.67 73.66
87.5 sec 200 k 4.8 k 39.74 21.87 34.22 11.15 58.24 77.25
87.5 sec 300 k 7.3 k 34.30 19.63 32.68 9.95 58.28 81.41
87.5 sec 400 k 9.7 k 28.29 18.45 31.41 10.13 59.45 84.92
150 sec 100 k 4.2 k 39.71 22.74 35.05 11.73 60.35 76.14
150 sec 200 k 8.3 k 30.42 18.81 31.68 9.70 58.97 81.89
150 sec 300 k 12.5 k 22.87 16.85 29.66 8.82 60.68 89.80
150 sec 400 k 16.7 k 18.43 15.03 29.08 8.19 61.90 92.01
5 min 100 k 8.3 k 30.36 18.75 31.66 9.33 59.60 82.44
5 min 200 k 16.7 k 19.22 15.37 28.84 7.35 60.64 88.27
5 min 300 k 25 k 14.69 13.62 27.60 7.30 61.60 93.75
5 min 400 k 33.3 k 12.41 12.03 26.55 6.69 63.12 94.36
10 min 100 k 16.7 k 17.57 14.72 27.82 7.67 62.11 91.51
10 min 200 k 33.3 k 12.01 11.90 26.08 6.81 61.98 94.12
10 min 300 k 50 k 9.71 10.90 25.29 6.47 62.69 95.97
10 min 400 k 66.7 k 8.41 9.79 24.69 6.18 63.05 96.52
20 min 100 k 33.3 k 12.06 11.85 26.16 6.80 63.00 96.20
20 min 200 k 66.7 k 8.84 9.87 24.70 6.37 63.11 97.31
20 min 300 k 100 k 7.55 8.84 24.22 6.15 63.71 97.36
20 min 400 k 133.3 k 6.98 8.12 23.83 5.96 63.13 97.36
40 min 100 k 66.7 k 7.94 9.19 24.76 5.96 61.88 96.81
40 min 200 k 133.3 k 6.50 7.81 24.16 5.87 61.57 97.13
40 min 300 k 200 k 6.37 7.29 23.97 5.76 62.57 96.63
40 min 400 k 266.7 k 6.08 7.01 23.73 5.60 62.33 95.86
80 min 100 k 133.3 k 6.70 8.02 23.94 6.08 62.09 97.50
80 min 200 k 266.7 k 5.96 7.07 23.46 5.54 63.00 97.39
80 min 300 k 400 k 5.99 7.11 23.53 5.58 62.33 96.41
80 min 400 k 533.3 k 6.84 7.25 23.47 5.77 63.07 96.81
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