

000
001
002
003

LEARNING THE MINIMUM ACTION DISTANCE

004 **Anonymous authors**
005
006
007
008
009010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

This paper presents a state representation framework for Markov decision processes (MDPs) that can be learned solely from state trajectories, requiring neither reward signals nor the actions executed by the agent. We propose learning the *minimum action distance* (MAD), defined as the minimum number of actions required to transition between states, as a fundamental metric that captures the underlying structure of an environment. MAD naturally enables critical downstream tasks such as goal-conditioned reinforcement learning and reward shaping by providing a dense, geometrically meaningful measure of progress. Our self-supervised learning approach constructs an embedding space where the distances between embedded state pairs correspond to their MAD, accommodating both symmetric and asymmetric approximations. We evaluate the framework on a comprehensive suite of environments with known MAD values, encompassing both deterministic and stochastic dynamics, as well as discrete and continuous state spaces, and environments with noisy observations. Empirical results demonstrate that the proposed approach not only efficiently learns accurate MAD representations across these diverse settings but also significantly outperforms existing state representation methods in terms of representation quality.

1 INTRODUCTION

In reinforcement learning (Sutton & Barto, 1998), an agent aims to learn useful behaviors through continuing interaction with its environment. Specifically, by observing the outcomes of its actions, a reinforcement learning agent learns over time how to select actions in order to maximize the expected cumulative reward it receives from its environment. An important need in applications of reinforcement learning is the ability to generalize, not only to previously unseen states, but also to variations of its environment that the agent has not previously interacted with.

In many applications of reinforcement learning, it is useful to define a metric that measures the similarity of two states in the environment. Such a metric can be used, e.g., to define equivalence classes of states in order to accelerate learning, to decompose the problem into a hierarchy of smaller subproblems that are easier to solve, or to perform transfer learning in case the environment changes according to some parameters but retains part of the structure of the original environment. Such a metric can also be used as a heuristic in goal-conditioned reinforcement learning, in which the agent has to achieve different goals in the same environment.

The Minimum Action Distance (MAD) has proved useful as a similarity metric, with impressive applications in various areas of reinforcement learning, including policy learning (Wang et al., 2023b; Park et al., 2023), reward shaping (Steccanella & Jonsson, 2022), and option discovery (Park et al., 2024a;b). While prior work has demonstrated the advantages of using MAD, how best to approximate it remains an open problem. Existing methods have not been systematically evaluated on their ability to approximate the MAD function itself, and many rely on symmetric approximations, even though the true MAD is inherently asymmetric.

We make three main contributions towards fast, accurate approximation of the MAD. First, we propose two novel algorithms for learning MAD using only state trajectories collected by an agent interacting with its environment. Unlike previous work, the proposed algorithms naturally support both symmetric and asymmetric distances, and incorporate both short- and long-term information about how distant two states are from one another. Secondly, we define a novel quasimetric distance function that is computationally efficient and that, in spite of its simplicity, outperforms more

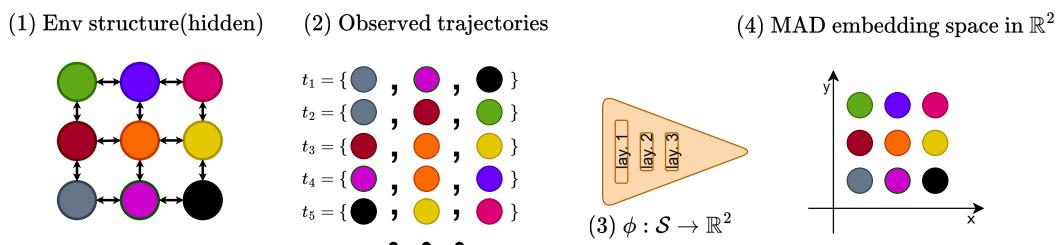


Figure 1: Schematic overview of MAD representation learning. From left to right: (1) the hidden environment graph, (2) trajectories collected by an unknown policy, (3) the embedding function $\phi : S \rightarrow \mathbb{R}^2$ and (4) the resulting MAD embedding space in \mathbb{R}^2 .

elaborate quasimetrics in the existing literature. Finally, we introduce a diverse suite of environments — including those with discrete and continuous state spaces, stochastic and deterministic dynamics, and directed and undirected transitions — in which the ground-truth MAD is known, enabling a systematic and controlled evaluation of different MAD approximation methods.

Figure 1 illustrates the steps of MAD representation learning: an agent collects state trajectories from an unknown environment, which are used to learn a state embedding that implicitly defines a distance function between states.

2 RELATED WORK

In applications such as goal-conditioned reinforcement learning (Ghosh et al., 2020) and stochastic shortest-path problems (Tarbouriech et al., 2021), the temporal distance is measured as the expected number of steps required to reach one state from another state under some policy. In contrast, the MAD is a lower bound on the number of steps based solely on the support of the transition function. This distinction makes the MAD efficient to compute and robust to changes in the transition probabilities as long as the support over next states remains the same, making it suitable for representation learning and transfer learning.

Prior work has explored the connection between the MAD and optimal goal-conditioned value functions (Kaelbling, 1993). Park et al. (2023) highlight this connection and propose a hierarchical approach that improves distance estimates over long horizons, and Park et al. (2024a) embed states into a learned latent space where the distance between embedded states directly reflects an on-policy measure of the temporal distance (Hartikainen et al., 2020). Park et al. (2024b) and Ma et al. (2022) extend this idea to the offline setting, learning embeddings from arbitrary experience such that Euclidean distances between state embeddings approximate the MAD. As an alternative to approximating the MAD using goal-conditioned value functions, Steccanella & Jonsson (2022) formulate learning a state embedding in which distances approximate the MAD as a constrained optimization problem, where bounds on the distance between embedded states are derived from state trajectory data. Although their formulations differ, these approaches ultimately seek to learn the same underlying quantity: the minimum number of actions required to move between two states.

These existing approaches share a common limitation: they rely on symmetric distance metrics such as the Euclidean distance between state embeddings to approximate the MAD. As such, they cannot capture the asymmetry of the true MAD in environments with irreversible dynamics. In contrast, the approach we develop here supports the use of asymmetric distance metrics (or, *quasimetrics*), which can better capture the directional structure in many environments.

Some prior work has already explored the use of quasimetrics in reinforcement learning. Wang et al. (2023b) learn an asymmetric distance function that approximates the MAD by preserving local structure while maintaining global distances. Their method differs from the one we propose in two ways. First, their method does not leverage the existing distance along a trajectory as supervision for the learning process. Secondly, they use the Interval Quasimetric Embedding (IQE) (Wang & Isola, 2022) to learn the distance function. Dadashi et al. (2021) and Agarwal et al. (2021) learn embeddings and define a pseudometric between states as the Euclidean distance between their

108 embeddings. Unlike our work, they use loss functions inspired by bisimulation to learn both state and
 109 state-action embeddings.

110 Successor features (Dayan, 1993; Barreto et al., 2017), and time-contrastive representations (Eysenbach et al., 2022) have also been used to define notions of temporal distance. Myers et al. (2024) introduces time-contrastive successor features, defining a distance metric based on the difference between discounted future occupancies of state features learned via time-contrastive learning. While their metric satisfies the triangle inequality and naturally handles both stochasticity and asymmetry, the resulting distances reflect expected discounted state visitations under a specific behavior policy and lack an intuitive interpretation. In contrast, approaches that approximate the MAD are naturally interpretable as a lower bound on the number of actions needed to transition between two states.

118 Laplacian-based representation learning methods (Wu et al., 2019; Machado, 2019; Wang et al.,
 119 2021; 2023a) learn embeddings from the spectral structure of random walks over the transition graph,
 120 producing representations that reflect global connectivity in the state space. However, these methods
 121 are typically defined on a symmetrized transition operator or undirected Laplacian, and the induced
 122 geometry measures diffusion-based similarity rather than directed reachability. As a result, distances
 123 in these embeddings are fundamentally symmetric and do not correspond to the minimum number
 124 of actions required to move between two states, making them poorly suited to environments with
 125 irreversible or asymmetric dynamics.

3 BACKGROUND

131 In this section, we introduce the notation and concepts used throughout the paper. Given a finite set \mathcal{X} ,
 132 we use $\Delta(\mathcal{X}) = \{p \in \mathbb{R}^{\mathcal{X}} \mid \sum_x p_x = 1, p_x \geq 0 (\forall x)\}$ to denote the probability simplex (i.e. the set
 133 of all probability distributions over \mathcal{X}). A rectified linear unit (ReLU) is a function $\text{relu} : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}^d$
 134 defined on any vector $x \in \mathbb{R}^d$ as $\text{relu}(x) = [\max(0, x_i)]_{i=1}^d$.

135 **Markov Decision Processes (MDPs).** An MDP (Bellman, 1957) is a tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \mathcal{D}, \gamma \rangle$,
 136 where \mathcal{S} is the state space, \mathcal{A} is the action space, $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function, $\mathcal{P} :
 137 \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is the transition kernel, $\mathcal{D} \in \Delta(\mathcal{S})$ is the initial state distribution, and $\gamma \in [0, 1]$ is the
 138 discount factor. At each time t , the learning agent observes a state $s_t \in \mathcal{S}$, selects an action $a_t \in \mathcal{A}$,
 139 receives a reward $r_t = \mathcal{R}(s_t, a_t)$ and transitions to a new state $s_{t+1} \sim \mathcal{P}(s_t, a_t)$. The learning agent
 140 selects actions using a policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$, a mapping from states to probability distributions over
 141 actions. In our work, the state space \mathcal{S} can be either discrete or continuous.

142 **Reinforcement learning (RL).** RL (Sutton & Barto, 2018) is a family of algorithms whose purpose
 143 is to learn a policy π that maximizes some measure of expected future reward. In this paper, however,
 144 we consider the problem of representation learning, and hence we are not directly concerned with
 145 the problem of learning a policy. Concretely, we wish to learn a distance function between pairs
 146 of states that can later be used by an RL agent to learn more efficiently. In this setting, we assume
 147 that the learning agent uses a behavior policy π_b to collect trajectories. Since we are interested
 148 in learning a distance function over state pairs, actions are relevant only for determining possible
 149 transitions between states, and rewards are not relevant at all. Hence for our purposes a trajectory
 150 $\tau = (s_0, s_1, \dots, s_n)$ is simply a sequence of states.

4 THE MINIMUM ACTION DISTANCE

154 Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \mathcal{D}, \gamma \rangle$ and a state pair $(s, s') \in \mathcal{S}^2$, the Minimum Action Distance,
 155 $d_{\text{MAD}}(s, s')$, is defined as the minimum number of decision steps needed to transition from s to s' . In
 156 deterministic MDPs, the MAD is always realizable using an appropriate policy; in stochastic MDPs,
 157 the MAD is a lower bound on the actual number of decision steps of any policy. Let $R \subseteq \mathcal{S}^2$ be a
 158 relation such that $(s, s') \in R$ if and only if there exists an action $a \in \mathcal{A}$ that satisfies $\mathcal{P}(s'|s, a) > 0$.
 159 That is, R contains all state pairs (s, s') such that s' is reachable in one step from s . We can formulate

162 the problem of computing d_{MAD} as a constrained optimization problem:
 163

$$\begin{aligned}
 164 \quad d_{\text{MAD}} &= \arg \max_d \sum_{(s, s') \in \mathcal{S}^2} d(s, s'), \\
 165 \\
 166 \quad \text{s.t.} \quad d(s, s) &= 0 \quad \forall s \in \mathcal{S}, \\
 167 \quad d(s, s') &\leq 1 \quad \forall (s, s') \in R, \\
 168 \quad d(s, s') &\leq d(s, s'') + d(s'', s') \quad \forall (s, s', s'') \in \mathcal{S}^3.
 \end{aligned} \tag{1}$$

170 It is straightforward to show that d_{MAD} is the unique solution to equation 1 (see Appendix A).
 171 Concretely, d_{MAD} satisfies the second constraint with equality, i.e. $d(s, s') = 1$ for all $(s, s') \in R$. If
 172 the state space \mathcal{S} is finite, the constrained optimization problem is precisely the linear programming
 173 formulation of the all-pairs shortest path problem for the graph (\mathcal{S}, R) with edge costs 1. This graph
 174 is itself a determinization of the MDP \mathcal{M} (Yoon et al., 2007). In this case we can compute d_{MAD}
 175 exactly using the well-known Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962). If the state
 176 space \mathcal{S} is continuous, R is still well-defined, and hence there still exists a solution which satisfies
 177 $d(s, s') = 1$ for all $(s, s') \in R$ even though the states can no longer be enumerated.

178 An alternative to the MAD is computing the stochastic shortest path (SSP; Tarbouriech et al., 2021)
 179 between each pair of states. In deterministic MDPs, the MAD and SSP are equivalent. In stochastic
 180 MDPs, the SSP can provide more realistic distance estimates than the MAD when some transitions
 181 have very low probabilities. However, computing the all-pairs SSP requires solving a linear program
 182 over transition probabilities, which is computationally demanding. In contrast, the MAD can be
 183 computed efficiently and remains a useful approximation in many domains (e.g. in navigation
 184 problems and when using sticky actions). Moreover, unlike the SSP, the MAD depends only on the
 185 support of the transition kernel and is otherwise robust to changes in transition probabilities, which is
 186 particularly useful for transfer learning.

187 Even when the state space \mathcal{S} is finite, we may not have explicit knowledge of the relation R . In
 188 addition, the time complexity of the Floyd-Warshall algorithm is $O(|\mathcal{S}|^3)$, and the number of states
 189 may be too large to run the algorithm in practice. If the state space \mathcal{S} is continuous, then we cannot
 190 even explicitly form a graph (\mathcal{S}, R) . Hence we are interested in estimating d_{MAD} in the setting for
 191 which we can access trajectories only through sampling. For this purpose, let us assume that the
 192 learning agent uses a behavior policy π_b to collect a dataset of trajectories $\mathcal{D} = \{\tau_1, \dots, \tau_k\}$. Define
 193 $\mathcal{S}_{\mathcal{D}} \subseteq \mathcal{S}$ as the subset of states that appear on any trajectory in \mathcal{D} . Given a trajectory $\tau = \{s_0, \dots, s_n\}$
 194 and any two states s_i and s_j on the trajectory such that $0 \leq i < j \leq n$, it is easy to see that $j - i$
 195 is an upper bound on $d_{\text{MAD}}(s_i, s_j)$, since s_j is reachable in $j - i$ steps from s_i on the trajectory τ .
 196 By an abuse of notation, we often write $(s_i, s_j) \in \tau$ to refer to a state pair on the trajectory τ with
 197 indices i and j such that $i < j$, and we write $(s_i, s_j) \sim \tau$ in order to sample two such states from τ .

198 Steccanella & Jonsson (2022) learn a parameterized state embedding $\phi_{\theta} : \mathcal{S} \rightarrow \mathbb{R}^d$ and define a
 199 distance function $d_{\theta}(s, s') = d(\phi_{\theta}(s), \phi_{\theta}(s'))$, where d is any distance metric in Cartesian space.
 200 The parameter vector θ of the state embedding is learned by minimizing the loss function

$$\mathcal{L} = \mathbb{E}_{\tau \sim \mathcal{D}, (s_i, s_j) \sim \tau} [(d_{\theta}(s_i, s_j) - (j - i))^2 + w_c \cdot \text{relu}(d_{\theta}(s_i, s_j) - (j - i))^2], \tag{2}$$

201 where $w_c > 0$ is a regularization factor that multiplies a penalty term which substitutes the upper
 202 bound constraints $d_{\theta}(s_i, s_j) \leq j - i$. If the distance metric d satisfies the triangle inequality (e.g. any
 203 norm $d = \|\cdot\|_p$) then the constraints $d_{\theta}(s, s) = 0$ and the triangle inequality automatically hold.
 204 Enforcing the constraint $d_{\theta}(s_i, s_j) \leq j - i$ for each state pair (s_i, s_j) on trajectories, rather than only
 205 consecutive pairs, helps learn better distance estimates, at the cost of a larger number of constraints.

208 5 ASYMMETRIC DISTANCE METRICS

210 A limitation of previous work is that the chosen distance metric d is symmetric, while the MAD d_{MAD}
 211 may not be symmetric. In this section, we review several asymmetric distance metrics. Concretely, a
 212 quasimetric is a function $d_q : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+$ that satisfies the following three conditions:
 213

- 214 • **Q1 (Identity):** $d_q(x, x) = 0$.
- 215 • **Q2 (Non-negativity):** $d_q(x, y) \geq 0$.

216 • **Q3** (Triangle inequality): $d_q(x, z) \leq d_q(x, y) + d_q(y, z)$.
 217

218 A quasimetric does not require symmetry, i.e., $d_q(x, y) = d_q(y, x)$ does not hold in general.
 219

220 We define a simple quasimetric d_{simple} using rectified linear units:
 221

$$222 d_{\text{simple}}(x, y) = \alpha \max(\text{relu}(x - y)) + (1 - \alpha) \frac{1}{d} \sum_i^d \text{relu}(x_i - y_i). \quad (3)$$

223

224 This metric is a weighted average of the maximum and average positive difference between the
 225 vectors x and y along any dimension, where $\alpha \in [0, 1]$ is a weight. In Appendix B, we show that
 226 d_{simple} satisfies the triangle inequality and latent positive homogeneity (Wang & Isola, 2022).
 227

228 The Wide Norm quasimetric (Pitis et al., 2020), d_{WN} , applies a learned transformation to an asymmetric
 229 representation of the difference between two states. The Wide Norm is defined as
 230

$$231 d_{\text{WN}}(x, y) = \|W(\text{relu}(x - y) :: \text{relu}(y - x))\|_2,$$

232

233 where “ $::$ ” denotes concatenation and $W \in \mathbb{R}^{k \times 2d}$ is a learned weight matrix. This ensures that
 234 $d_{\text{WN}}(x, y)$ is non-negative and satisfies the triangle inequality, while concatenation is asymmetric.
 235

236 The Interval Quasimetric Embedding (IQE) (Wang & Isola, 2022) leverages the Lebesgue measure of
 237 interval unions to capture asymmetric distances. IQE interprets the latent embeddings as matrices
 238 $X, Y \in \mathbb{R}^{k \times m}$ (typically obtained by reshaping a flat output vector of dimension $d = k \cdot m$). Let x_{ij}
 239 denote the element in row i and column j of matrix X . For each row i , we construct an interval by
 240 taking the union over the intervals defined by matrices X and Y :
 241

$$242 I_i(X, Y) = \bigcup_{j=1}^m [x_{ij}, \max\{x_{ij}, y_{ij}\}].$$

243

244 The length of this interval, denoted by $L_i(X, Y)$, is computed as its Lebesgue measure. The IQE
 245 distance is obtained by aggregating these row-wise lengths. For example, one may define
 246

$$247 d_{\text{IQE}}(X, Y) = \sum_{i=1}^k L_i(X, Y),$$

248

249 or, alternatively, using a maxmean reduction:
 250

$$251 d_{\text{IQE-mm}}(X, Y) = \alpha \max_{1 \leq i \leq k} L_i(X, Y) + (1 - \alpha) \frac{1}{k} \sum_{i=1}^k L_i(X, Y),$$

252

253 where $\alpha \in [0, 1]$ balances the influence of the maximum and the average. This construction yields a
 254 quasimetric that inherently respects the triangle inequality while accounting for directional differences
 255 between the matrices X and Y .
 256

257 Given any of the above quasimetrics d_q (i.e., d_{simple} , d_{WN} or d_{IQE}), we can now define an asymmetric
 258 distance function $d_\theta(s, s') = d_q(\phi_\theta(s), \phi_\theta(s'))$. In the case of d_{IQE} , the state embedding $\phi : \mathcal{S} \rightarrow \mathbb{R}^d$
 259 produces an output that is reshaped into a $k \times m$ matrix structure to parameterize the intervals. The
 260 choice of quasimetric directly shapes the trade-offs in computational cost and optimization dynamics.
 261 In Appendix E, we present an ablation study examining how this choice affects our algorithms.
 262

263 6 LEARNING ASYMMETRIC MAD ESTIMATES

264

265 Here, we propose two novel variants of the MAD learning approach. Each trains a state encoding ϕ_θ
 266 that maps states to an embedding space and uses a quasimetric d_q to compute distances $d_\theta(s, s') =$
 267 $d_q(\phi_\theta(s), \phi_\theta(s'))$ between pairs of states (s, s') . Both variants support any quasimetric formulation
 268 such as d_{simple} , d_{WN} and d_{IQE} , and can incorporate additional features such as gradient clipping. A
 269 full derivation of these learning objectives is provided in Appendix C.

270 6.1 MADDIST: DIRECT DISTANCE LEARNING
271

272 The first algorithm, which we call *MadDist*, learns state distances using an approach similar to prior
273 work (Steccanella & Jonsson, 2022), but differs in the use of a quasimetric distance function and a
274 scale-invariant loss. Concretely, MadDist minimizes the following composite loss function:

$$275 \quad \mathcal{L} = \mathcal{L}_o + w_r \mathcal{L}_r + w_c \mathcal{L}_c. \quad (4)$$

277 The main objective, \mathcal{L}_o , is a scaled version of the square difference in equation 2:
278

$$279 \quad \mathcal{L}_o = \mathbb{E}_{\tau \sim \mathcal{D}, (s_i, s_j) \sim \tau} \left[\left(\frac{d_\theta(s_i, s_j)}{j - i} - 1 \right)^2 \right]. \quad (5)$$

282 Crucially, scaling makes the loss invariant to the magnitude of the estimation error, which typically
283 increases as a function of $j - i$. In other words, states that are further apart on a trajectory do not
284 necessarily dominate the loss simply because the magnitude of the estimation error is larger.

285 The second loss term, \mathcal{L}_r , which is weighted by a factor $w_r > 0$, is a contrastive loss that encourages
286 separation between state pairs randomly sampled from all trajectories:
287

$$288 \quad \mathcal{L}_r = \mathbb{E}_{(s, s') \sim \mathcal{S}_D} \left[\left(\text{relu} \left(1 - \frac{d_\theta(s, s')}{d_{\max}} \right) \right)^2 \right] \quad (6)$$

291 where d_{\max} is a hyperparameter. Finally, the loss term \mathcal{L}_c , which is weighted by a factor $w_c > 0$,
292 enforces the upper bound constraints. Specifically, let $\mathcal{D}_{\leq H_c}$ denote the set of state pairs sampled
293 from trajectories in \mathcal{D} such that the index difference satisfies $1 \leq j - i \leq H_c$ (where H_c is a
294 hyperparameter), i.e.

$$296 \quad \mathcal{D}_{\leq H_c} = \{(s_i, s_j) \mid \tau \in \mathcal{D}, s_i, s_j \in \tau, 1 \leq j - i \leq H_c\}.$$

298 Then, the constraint loss is defined as:
299

$$300 \quad \mathcal{L}_c = \mathbb{E}_{(s_i, s_j) \sim \mathcal{D}_{\leq H_c}} [(\text{relu} (d_\theta(s_i, s_j) - (j - i)))^2]. \quad (7)$$

302 6.2 TDMADDIST: TEMPORAL DIFFERENCE LEARNING
303

304 The second algorithm, which we call *TDMadDist*, incorporates temporal difference learning principles
305 by maintaining a separate target embedding $\phi_{\theta'}$ and learning via bootstrapped targets. Specifically,
306 TDMadDist learns by minimizing the loss function $\mathcal{L}' = \mathcal{L}'_o + w_r \mathcal{L}'_r + w_c \mathcal{L}_c$, where \mathcal{L}_c is the loss
307 term from equation 7 that enforces the upper bound constraints.

308 The main objective \mathcal{L}'_o of TDMadDist is modified to include bootstrapped distances:
309

$$310 \quad \mathcal{L}'_o = \mathbb{E}_{\tau \sim \mathcal{D}, (s_i, s_j) \sim \tau} \left[\left(\frac{d_\theta(s_i, s_j)}{\min(j - i, 1 + d_{\theta'}(s_{i+1}, s_j))} - 1 \right)^2 \right]. \quad (8)$$

313 Hence if the current distance estimate $d_{\theta'}(s_{i+1}, s_j)$ computed using the target embedding $\phi_{\theta'}$ is
314 smaller than $j - (i + 1)$, the objective is to make $d_\theta(s_i, s_j)$ equal to $1 + d_{\theta'}(s_{i+1}, s_j)$.

315 We also modify the second loss term \mathcal{L}'_r to include bootstrapped distances:
316

$$317 \quad \mathcal{L}'_r = \mathbb{E}_{\tau \sim \mathcal{D}, (s_i, s_j) \sim \tau, s_r \sim \mathcal{S}_D} [(d_\theta(s_i, s_{i+1})$$

319 $\overline{1 + d_{\theta'}(s_{i+1}, s_r) - 1^2} (9)$ Given a state s_i sampled from a trajectory of \mathcal{D} and a random state $s_r \in \mathcal{S}_D$,
320 the objective is to make $d_\theta(s_i, s_r)$ equal to $1 + d_{\theta'}(s_{i+1}, s_r)$.

322 The target network parameters θ' are updated in each time step via an exponential moving average
323 with hyperparameter $\beta \in (0, 1)$:

$$324 \quad \theta' \leftarrow (1 - \beta)\theta' + \beta\theta. \quad (10)$$

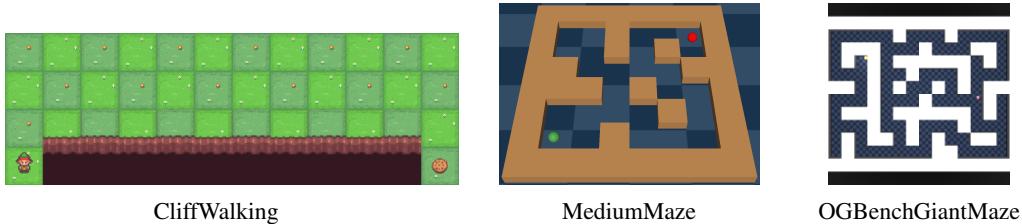


Figure 2: A subset of the environments used in our analysis.

7 EXPERIMENTS

We evaluate our proposed MAD learning algorithms on a diverse set of environments with varying characteristics, including deterministic and stochastic dynamics, discrete and continuous state spaces, and environments with noisy observations. Our analysis is directed by the following questions:

- How accurately do our learned embeddings capture the true minimum action distances?
- How does the performance of our method compare to existing quasimetric learning approaches?
- How robust is our approach to environmental stochasticity and observation noise?

Evaluation Metrics. We evaluate the quality of our learned representations using three metrics:

- **Spearman Correlation (ρ):** Measures the preservation of ranking relationships between state pairs. A high Spearman correlation indicates that if state s_i is farther from state s_j than from state s_k in the true environment, our learned metric also predicts this same ordering. Perfect preservation of distance rankings gives $\rho = 1$.
- **Pearson Correlation (r):** Measures the linear relationship between predicted and true distances. A high Pearson correlation indicates that our learned distances scale proportionally with true distances (i.e. when true distances increase, our predictions increase linearly as well). Perfect linear correlation gives $r = 1$.
- **Ratio Coefficient of Variation (CV):** Measures the consistency of our distance scaling across different state pairs. A low CV indicates that our predicted distances maintain a consistent ratio to true distances throughout the state space. For example, if we consistently predict distances that are approximately 1.5 times the true distance, CV will be low. High variation in this ratio across different state pairs results in high CV. More formally, given a set of ground truth distances d_1, d_2, \dots, d_n and their corresponding predicted distances $\hat{d}_1, \hat{d}_2, \dots, \hat{d}_n$ where $d_i > 0$, we compute the ratios $r_i = \hat{d}_i/d_i$. The Ratio CV is given by

$$CV = \frac{\sigma_r}{\mu_r} = \frac{\sqrt{\frac{1}{n} \sum_{i=1}^n (r_i - \mu_r)^2}}{\frac{1}{n} \sum_{i=1}^n r_i}, \quad (11)$$

Baselines. We compare our methods against QRL (Wang et al., 2023b), a recent quasimetric reinforcement learning approach that learns state representations using the Interval Quasimetric Embedding (IQE) formulation. QRL employs a Lagrangian optimization scheme where the objective maximizes the distance between states while maintaining locality constraints.

We also compare against the approach by Park et al. (2024b), an offline reinforcement learning method that embeds states into a learned Hilbert space. In this space, the distance between embedded states approximates the MAD, leading to a symmetric distance metric that cannot capture the natural asymmetry of the true MAD. We include this comparison to demonstrate the benefits of methods that explicitly model the quasimetric nature of the MAD over those that do not.

Environments. To evaluate the proposed methods, we designed a suite of environments where the true MAD is known, enabling a precise quantitative assessment of our learned representations. This perfect knowledge of the ground truth distances allows us to rigorously evaluate how well different algorithms recover the underlying structure of the environment. A subset of the environments are illustrated in Figure 2, with full details provided in Appendix G.

Our test environments span a comprehensive range of MDP characteristics:

- 378 • **NoisyGridWorld**: A continuous grid world environment with stochastic transitions. The agent
379 can move in four cardinal directions, but the action may fail with a small probability, causing the
380 agent to remain in the same state. The initial state is random and the goal is to reach a target state.
381 The MAD is known and can be computed as the Manhattan distance between states. Moreover we
382 included random noise in the observations by extending the state (x, y) with a random vector of
383 size two resulting in a 4-dimensional state space, where the first two dimensions are the original
384 coordinates and the last two dimensions correspond to noise.
- 385 • **KeyDoorGridWorld**: A discrete grid world environment where the agent must find a key to
386 unlock a door. The agent can move in four cardinal directions and the state (x, y, k) is represented
387 by the agent’s position (x, y) and whether or not it has the key (k) . The MAD is known and can
388 be computed as the Manhattan distance between states where the distance between a state without
389 the key and a state with the key is the sum of the distances to the key. The key can only be picked
390 up and never dropped creating a strong asymmetry in the distance function.
- 391 • **CliffWalking**: The original CliffWalking environment as described by Sutton & Barto (1998).
392 The agent starts at the leftmost state and must reach the rightmost state while avoiding falling off
393 the cliff. If the agent falls it returns to the starting state but the episode is not reset. This creates a
394 strong asymmetry in the distance function, as the agent can take the shortcut by falling off the
395 cliff to move between states.
- 396 • **PointMaze**: A continuous maze environment where the agent must navigate through a series
397 of walls to reach a goal (Fu et al., 2020). The task in the environment is for a 2-DoF ball that
398 is force-actuated in the Cartesian directions x and y, to reach a target goal in a closed maze.
399 The underlying maze is a 2D grid with walls and obstacles, that we use in our experiments to
400 approximate the ground truth MAD, by computing the all pairs shortest path using the Floyd-
401 Warshall algorithm over the maze graph. We consider two variants of this environment: **UMaze**
402 and **MediumMaze**.
- 403 • **OGBench PointMaze**: A suite of physics-based maze environments that extend the standard
404 PointMaze to much larger and more challenging layouts (Park et al., 2024c). These environments
405 are designed to test long-horizon reasoning and provide two types of datasets: *navigate*, collected
406 by a noisy expert policy navigating to random goals, and *stitch*, consisting of short goal-reaching
407 trajectories that must be combined to solve tasks.

408 **Empirical Setup.** We compared our two algorithms MadDist and TDMadDist against the QRL and
409 Hilbert baselines. Each method was trained for 50,000 gradient steps on an offline dataset gathered
410 by a random policy. For the CliffWalking, NoisyGridWorld, and KeyDoorGridWorld environments,
411 we used 100 trajectories; for the PointMaze environments, we increased this to 1000 trajectories. All
412 reported results are means over five independent runs (random seeds) to ensure statistical robustness.
413 For full implementation details of our evaluation setup, see Appendix D.

414 Figure 3 shows the Pearson correlation and coefficient of variation (CV) ratio for KeyDoorGrid-
415 world, CliffWalking, and the OGBench Giant Maze environments. The full results produced in all
416 environments, including the Spearman correlations (which we found closely matched the Pearson
417 correlations) can be found in Appendix F. Appendix E contains additional ablation studies, and
418 demonstrates that MadDist and TDMadDist are robust to the size of the latent dimension and the
419 choice of quasimetric, and that their performance degrades gracefully with dataset size.

420 Table 1 reports additional results on a downstream planning task, where the learned distance embed-
421 dings are used to guide the agent toward specific goals. A detailed description of the planning setup
422 is provided in Appendix H.

423 **Discussion.** From the results in Figure 3, we can see that our proposed method MadDist outperforms
424 the QRL and Hilbert baselines in all environments, being able to learn a more accurate approximation
425 of the MAD. This is likely due to the fact that QRL only uses the locality constraints to learn the
426 embeddings, while our method leverages the path distances between arbitrary states in a trajectory
427 to form a more globally coherent representation. Both MadDist and TDMadDist significantly
428 outperform the Hilbert baseline, particularly in highly asymmetric environments like CliffWalking
429 and KeyDoorGridWorld. While TDMadDist underperforms the MadDist and QRL algorithm, its
430 strong performance relative to Hilbert highlights the advantages of our quasimetric approach even
431 when paired with a TD-based objective. Crucially, the high accuracy of the learned distance metric
432 directly translates to superior performance in the downstream task of goal-oriented planning, as

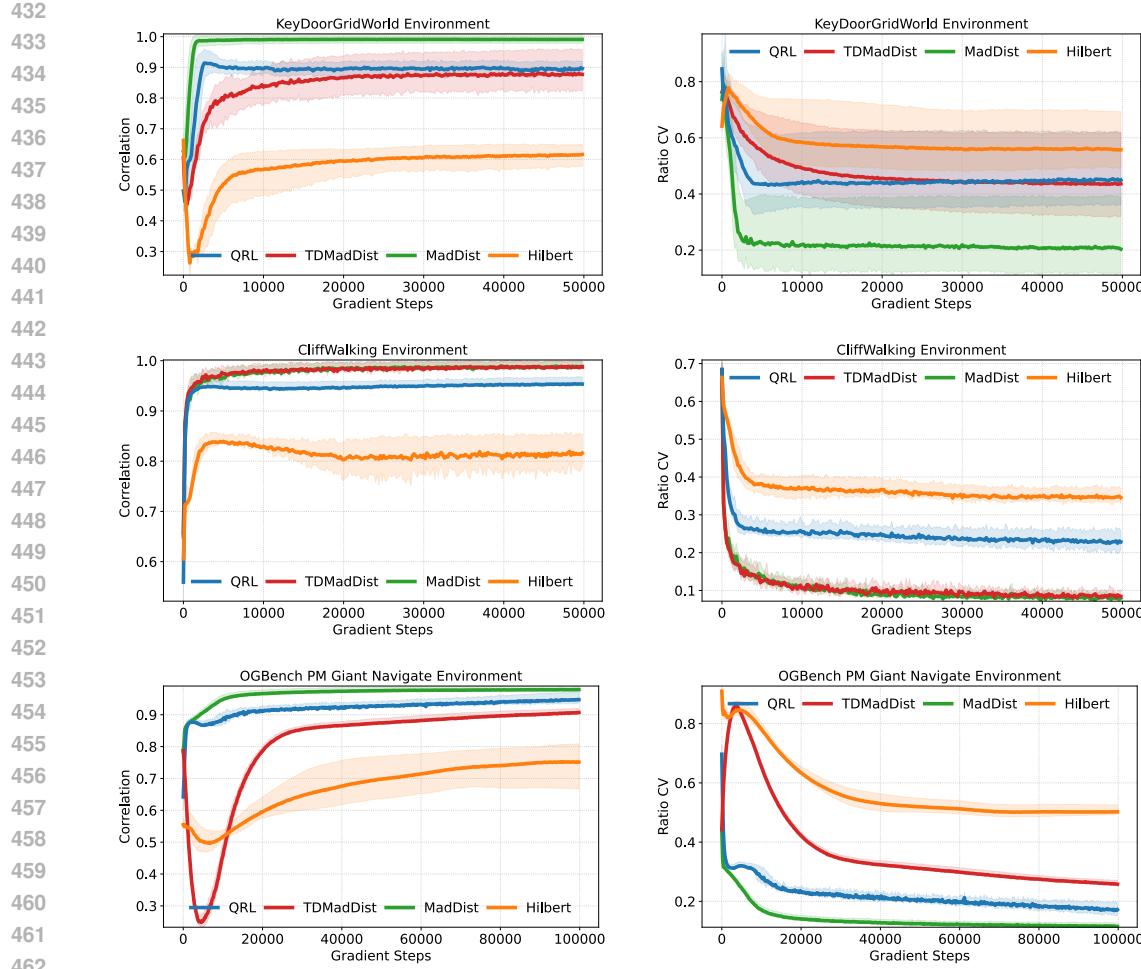


Figure 3: Pearson correlation coefficients and coefficient of variation (CV) ratios across a selection of test environments. Shaded regions minimum and maximum values across three random seeds.

Environments	QRL	TDMadDist	Hilbert	MadDist
PM Giant Navigate	0.87 ± 0.21	0.99 ± 0.05	0.16 ± 0.17	0.93 ± 0.17
PM Giant Stitch	0.95 ± 0.12	0.74 ± 0.26	0.05 ± 0.14	0.99 ± 0.07
PM Large Navigate	0.97 ± 0.09	0.70 ± 0.30	0.22 ± 0.20	1.00 ± 0.00
PM Large Stitch	0.90 ± 0.17	0.73 ± 0.24	0.17 ± 0.20	1.00 ± 0.00
PM Medium Navigate	0.86 ± 0.21	0.92 ± 0.16	0.55 ± 0.27	1.00 ± 0.00
PM Medium Stitch	0.81 ± 0.20	0.74 ± 0.24	0.67 ± 0.28	1.00 ± 0.00

Table 1: Success rates (\pm standard deviation) across different OGBench PointMaze environments. Best results per environment are shown in bold.

detailed in Table 1. MadDist achieves near-perfect or perfect success rates across all PointMaze environments, decisively outperforming all baselines. Its performance is particularly noteworthy in the Stitch environments, which require the model to compose information from disconnected trajectories, and the large-scale Giant environments, which test the ability to handle long-horizon tasks. This demonstrates that MadDist not only produces a quantitatively accurate distance function but also an effective and practical representation for planning.

486 8 CONCLUSION
487488 In this paper, we present two novel algorithms for learning the Minimum Action Distance (MAD)
489 from state trajectories. We also propose a novel quasimetric for learning asymmetric distance
490 estimates, and introduce a set of benchmark domains that model several aspects that make distance
491 learning difficult. In a controlled set of experiments we illustrate that the novel algorithms and
492 proposed quasimetric outperform state-of-the-art algorithms for learning the MAD.493 While this work has concentrated on accurately approximating the MAD as a fundamental stepping
494 stone, it opens several promising avenues for future research. One of them is the use of MAD estimates
495 in transfer learning and non-stationary environments, where transition dynamics evolve over time
496 yet maintain a consistent support. On the same line, MAD can be integrated as a heuristic in search
497 algorithms, particularly in stochastic domains, to identify the properties that make it a robust and
498 informative guidance signal under uncertainty. Having established reliable MAD approximation, it can
499 now be incorporated into downstream tasks, including goal-conditioned planning and reinforcement
500 learning, to quantify the empirical benefits it brings to complex decision-making problems.501 Finally, while MAD can serve as a useful heuristic even in stochastic environments, future work
502 will explore whether it is possible to recover the Shortest Path Distance (SPD) or identify alternative
503 quasimetrics that more closely align with it.504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
543 Behavioral Similarity Embeddings for Generalization in Reinforcement Learning. In *Proceedings
544 of the 9th International Conference on Learning Representations*, 2021.

545 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
546 McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. In
547 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

548 Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
549 David Silver. Successor Features for Transfer in Reinforcement Learning. In *Advances in Neural
550 Information Processing Systems*, volume 30, pp. 4055–4065. Curran Associates, Inc., 2017.

551 Richard Bellman. A Markovian Decision Process. *Journal of Mathematics and Mechanics*, 6(5):
552 679–684, 1957.

553 Robert Dadashi, Shideh Rezaifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and Matthieu
554 Geist. Offline Reinforcement Learning with Pseudometric Learning. In *Proceedings of the 38th
555 International Conference on Machine Learning*, pp. 2307–2318. PMLR, 2021.

556 Peter Dayan. Improving Generalization for Temporal Difference Learning: The Successor Represen-
557 tation. *Neural Computation*, 5(4):613–624, 1993.

558 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
559 as goal-conditioned reinforcement learning. *Advances in Neural Information Processing Systems*,
560 35:35603–35620, 2022.

561 Robert W. Floyd. Algorithm 97: Shortest Path. *Communications of the ACM*, 5(6):345, June 1962.
562 ISSN 0001-0782.

563 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
564 Data-Driven Reinforcement Learning. *arXiv preprint arXiv:2004.07219*, 2020.

565 Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach,
566 and Sergey Levine. Learning to Reach Goals via Iterated Supervised Learning. In *Proceedings of
567 the 8th International Conference on Learning Representations*, 2020.

568 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
569 *Proceedings of the fourteenth international conference on artificial intelligence and statistics*,
570 JMLR Workshop and Conference Proceedings, pp. 315–323, 2011.

571 Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical Distance
572 Learning for Semi-Supervised and Unsupervised Skill Discovery. In *Proceedings of the 8th
573 International Conference on Learning Representations*, 2020.

574 Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). *arXiv preprint
575 arXiv:1606.08415*, 2016.

576 Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
577 stette, and Yuandong Tian. Efficient planning in a compact latent action space. *arXiv preprint
578 arXiv:2208.10291*, 2022.

579 Leslie Pack Kaelbling. Learning to Achieve Goals. *International Joint Conference on Artificial
580 Intelligence*, 2:1094–1098, August 1993.

581 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings of
582 the 3rd International Conference on Learning Representations*. PMLR, 2015.

583 Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
584 neural networks. *Advances in neural information processing systems*, 30, 2017.

585 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit
586 Q-Learning. In *Proceedings of the 10th International Conference on Learning Representations*,
587 2022.

594 Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
 595 Zhang. VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training.
 596 In *Proceedings of the 11th International Conference on Learning Representations*, 2022.

597

598 Marlos C. Machado. *Efficient Exploration in Reinforcement Learning through Time-Based Representations*. PhD thesis, University of Alberta, 2019.

599

600 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 601 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 602 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

603

604 Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
 605 Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-
 606 Making. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 37076–
 607 37096. PMLR, 2024.

608

609 Whitney K Newey and James L Powell. Asymmetric Least Squares Estimation and Testing. *Econometrica: Journal of the Econometric Society*, pp. 819–847, 1987.

610

611 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline Goal-
 612 Conditioned RL with Latent States as Actions. In *Advances in Neural Information Processing Systems*, volume 36, pp. 34866–34891. Curran Associates, Inc., 2023.

613

614 Seohong Park, Oleh Rybkin, and Sergey Levine. METRA: Scalable Unsupervised RL with Metric-
 615 Aware Abstraction. In *Proceedings of the 12th International Conference on Learning Representations*, 2024a.

616

617 Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation Policies with Hilbert Representations.
 618 In *Proceedings of the 41st International Conference on Machine Learning*, pp. 39737–39761.
 619 PMLR, 2024b.

620

621 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
 622 offline goal-conditioned rl. *arXiv preprint arXiv:2410.20092*, 2024c.

623

624 Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba. An Inductive Bias for Distances: Neural
 625 Nets that Respect the Triangle Inequality. In *Proceedings of the 8th International Conference on Learning Representations*. Curran Associates, Inc., 2020.

626

627 Lorenzo Steccanella and Anders Jonsson. State Representation Learning for Goal-Conditioned
 628 Reinforcement Learning. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 84–99. Springer, 2022.

629

630 Richard S. Sutton and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT Press,
 631 Cambridge, 1998.

632

633 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press,
 634 Cambridge, MA, 2018.

635

636 Jean Tarbouriech, Runlong Zhou, Simon S. Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric.
 637 Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret. In *Advances in Neural Information Processing Systems*, volume 34, pp. 6843–6855. Curran Associates, Inc., 2021.

638

639 Hado Van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
 640 Q-Learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

641

642 Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards better
 643 laplacian representation in reinforcement learning with generalized graph drawing. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139, pp. 11003–11012. PMLR,
 644 2021.

645

646 Kaixin Wang, Kuangqi Zhou, Jiashi Feng, Bryan Hooi, and Xinchao Wang. Reachability-aware
 647 Laplacian representation in reinforcement learning. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202, pp. 36670–36693. PMLR, 2023a.

648 Tongzhou Wang and Phillip Isola. Improved Representation of Asymmetrical Distances with
 649 Interval Quasimetric Embeddings. In *NeurIPS Workshop on Symmetry and Geometry in Neural*
 650 *Representations*. Curran Associates, Inc., 2022.

651 Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal Goal-Reaching Reinforce-
 652 ment Learning via Quasimetric Learning. In *Proceedings of the 40th International Conference on*
 653 *Machine Learning*, pp. 36411–36430. PMLR, 2023b.

654 Stephen Warshall. A Theorem on Boolean Matrices. *Journal of the ACM*, 9(1):11–12, January 1962.
 655 ISSN 0004-5411.

656 Yifan Wu, George Tucker, and Ofir Nachum. The Laplacian in RL: Learning Representations
 657 with Efficient Approximations. In *Proceedings of the 7th International Conference on Learning*
 658 *Representations*, 2019.

659 Sungwook Yoon, Alan Fern, and Robert Givan. FF-Replan: A baseline for probabilistic planning. In
 660 *Proceedings of the 5th International Conference on Automated Planning and Scheduling (ICAPS)*,
 661 pp. 352–359, 2007.

662 A PROOF OF UNIQUENESS FOR THE MAD OPTIMIZATION PROBLEM

663 We begin by formally defining the Minimum Action Distance (MAD) in terms of policies and first
 664 passage times within a Markov Decision Process (MDP).

665 **Definition 1** (Minimum Action Distance). *Let $T(s_j \mid \pi, s_i)$ be the random variable for the first time*
 666 *step at which state s_j is reached when starting in state s_i and following policy π . The support of this*
 667 *random variable, denoted $\text{supp}(T(s_j \mid \pi, s_i))$, is the set of all possible first passage times that occur*
 668 *with non-zero probability. The Minimum Action Distance $d_{\text{MAD}} : \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{N} \cup \{\infty\}$ is defined as:*

$$669 \quad d_{\text{MAD}}(s_i, s_j) := \min_{\pi} \min_{\cdot} [\text{supp}(T(s_j \mid \pi, s_i))].$$

670 This definition finds the length of the shortest possible trajectory from s_i to s_j . The inner minimum,
 671 $\min[\text{supp}(\cdot)]$, identifies the shortest-in-time realization possible under a fixed policy π . The outer
 672 minimum, \min_{π} , then finds the policy that makes this shortest possible realization as short as
 673 possible. Note that if the process starts in the target state $s_0 = s_j$, the first passage time is zero, i.e.,
 674 $0 \in \text{supp}(T(s_j \mid \pi, s_j))$.

675 **Equivalence to Graph Shortest Path** Let $G = (\mathcal{S}, \mathcal{R})$ be the state-transition graph where an edge
 676 $(s, s') \in \mathcal{R}$ exists if and only if there is an action a with $P(s'|s, a) > 0$. A path of length k from s_i to
 677 s_j in G corresponds to a sequence of actions that can transition between these states with non-zero
 678 probability. We can always construct a policy π that executes this specific sequence. Therefore,
 679 minimizing over all policies is equivalent to finding the length of the shortest path between nodes s_i
 680 and s_j in the graph G . This equivalence allows us to leverage the properties of shortest path distances
 681 in the proof below.

682 **Theorem 1.** *The Minimum Action Distance, d_{MAD} , as defined above, is the unique solution to the*
 683 *constrained optimization problem:*

$$684 \quad \underset{d}{\text{maximize}} \quad \sum_{(s, s') \in \mathcal{S}^2} d(s, s') \quad (C1)$$

$$685 \quad \text{subject to} \quad d(s, s) = 0 \quad \forall s \in \mathcal{S} \quad (C2)$$

$$686 \quad d(s, s') \leq 1 \quad \forall (s, s') \in \mathcal{R} \quad (C3)$$

$$687 \quad d(s, s') \leq d(s, s'') + d(s'', s') \quad \forall (s, s', s'') \in \mathcal{S}^3$$

688 *Proof.* The proof is structured in two parts. First, we show that d_{MAD} is a feasible solution. Second,
 689 we show that for any other feasible solution d , we must have $d(s, s') \leq d_{\text{MAD}}(s, s')$, establishing
 690 both optimality and uniqueness.

691 Part 1: Feasibility of d_{MAD}

692 Using the shortest path interpretation of d_{MAD} , we verify that it satisfies each constraint.

- **Constraint (C1) - Identity:** The shortest path from any state s to itself is the empty path of length 0. Thus, $d_{\text{MAD}}(s, s) = 0$.
- **Constraint (C2) - One-Step Reachability:** If $(s, s') \in R$, there exists a direct edge from s to s' in G . This corresponds to a path of length 1. The shortest path, $d_{\text{MAD}}(s, s')$, cannot be longer than this path, so $d_{\text{MAD}}(s, s') \leq 1$.
- **Constraint (C3) - Triangle Inequality:** This is a fundamental property of shortest paths. The shortest path from s to s' is, by definition, no longer than the path formed by concatenating the shortest path from s to an intermediate state s'' and the shortest path from s'' to s' . This directly gives the inequality $d_{\text{MAD}}(s, s') \leq d_{\text{MAD}}(s, s'') + d_{\text{MAD}}(s'', s')$.

As d_{MAD} satisfies all constraints, it is a feasible solution.

Part 2: Optimality and Uniqueness of d_{MAD}

Let d be an arbitrary feasible solution satisfying (C1), (C2), and (C3). We show by induction on the shortest path length $k = d_{\text{MAD}}(s, s')$ that $d(s, s') \leq d_{\text{MAD}}(s, s')$.

- **Base Case ($k = 0$):** If $d_{\text{MAD}}(s, s') = 0$, then $s = s'$. By constraint (C1), any feasible solution d must satisfy $d(s, s) = 0$. Thus, $d(s, s') = 0 = d_{\text{MAD}}(s, s')$.
- **Inductive Hypothesis:** Assume for some integer $k \geq 0$ that for all pairs (s, s') with $d_{\text{MAD}}(s, s') \leq k$, the inequality $d(s, s') \leq d_{\text{MAD}}(s, s')$ holds.
- **Inductive Step:** Consider a pair (s, s') with $d_{\text{MAD}}(s, s') = k + 1$. By the shortest path definition, there must exist a predecessor state s'' on a shortest path from s to s' such that $(s'', s') \in R$ and $d_{\text{MAD}}(s, s'') = k$.

Applying the constraints on d :

$$\begin{aligned} d(s, s') &\leq d(s, s'') + d(s'', s') && \text{by (C3), the triangle inequality} \\ &\leq d_{\text{MAD}}(s, s'') + d(s'', s') && \text{by Inductive Hypothesis, since } d_{\text{MAD}}(s, s'') = k \\ &\leq k + 1 && \text{by (C2), since } (s'', s') \in R \end{aligned}$$

Since $d_{\text{MAD}}(s, s') = k + 1$, we have shown that $d(s, s') \leq d_{\text{MAD}}(s, s')$.

By induction, we have established that for any feasible solution d , the inequality $d(s, s') \leq d_{\text{MAD}}(s, s')$ holds for all pairs $(s, s') \in \mathcal{S}^2$.

- **Optimality:** The objective is to maximize the sum $\sum_{(s, s') \in \mathcal{S}^2} d(s, s')$. Since we have shown that every term $d(s, s')$ is less than or equal to the corresponding term $d_{\text{MAD}}(s, s')$, the total sum for any feasible solution d cannot exceed the sum for d_{MAD} :

$$\sum_{(s, s') \in \mathcal{S}^2} d(s, s') \leq \sum_{(s, s') \in \mathcal{S}^2} d_{\text{MAD}}(s, s')$$

Since d_{MAD} is itself a feasible solution, it achieves the maximum possible value, proving it is an optimal solution.

- **Uniqueness:** Let's assume d^* is another solution that is also optimal.

– For d^* to be optimal, its total sum must equal the maximum possible sum:

$$\sum_{(s, s') \in \mathcal{S}^2} d^*(s, s') = \sum_{(s, s') \in \mathcal{S}^2} d_{\text{MAD}}(s, s')$$

– From the induction proof we know that $d^*(s, s') \leq d_{\text{MAD}}(s, s')$ for every single pair (s, s') .

Therefore $d^*(s, s') = d_{\text{MAD}}(s, s') \quad \forall (s, s') \in \mathcal{S}^2$.

□

756 B QUASIMETRIC CONSTRUCTIONS VIA RELU REDUCTION
757758 Let $x, y \in \mathbb{R}^d$. We begin by defining a ReLU-based coordinate reduction, then derive scalar
759 quasimetrics through several aggregation operators, and finally state general results for convex
760 combinations.
761762 B.1 COORDINATEWISE RELU REDUCTION
763764 **Definition 2** (ReLU Reduction). Define the map $r : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ by
765

766
$$r(x, y) = \text{relu}(x - y), \quad r_i(x, y) = \max\{x_i - y_i, 0\}, \quad i = 1, \dots, d.$$

767

768 **Proposition 1.** For all $x, y, z \in \mathbb{R}^d$ and $\lambda > 0$, each coordinate r_i satisfies:
769770 (a) Nonnegativity and identity: $r_i(x, y) \geq 0$ and $r_i(x, x) = 0$.
771 (b) Asymmetry: $r_i(x, y) \neq r_i(y, x)$ unless $x_i = y_i$.
772 (c) Triangle inequality: $r_i(x, y) \leq r_i(x, z) + r_i(z, y)$.
773 (d) Positive homogeneity: $r_i(\lambda x, \lambda y) = \lambda r_i(x, y)$.
774775 *Proof.* (a) and (b) follow directly from the definition of the max operation.
776777 (c) Observe that
778

779
$$\begin{aligned} r_i(x, y) &= \max(x_i - y_i, 0) = \max((x_i - z_i) + (z_i - y_i), 0) \\ 780 &\leq \max(x_i - z_i, 0) + \max(z_i - y_i, 0) = r_i(x, z) + r_i(z, y). \end{aligned}$$

781

782 (d) Linearity of scalar multiplication inside the max gives
783

784
$$r_i(\lambda x, \lambda y) = \max(\lambda x_i - \lambda y_i, 0) = \lambda \max(x_i - y_i, 0) = \lambda r_i(x, y).$$

785 This concludes the proof. □
786787 B.2 SCALAR QUASIMETRICS VIA AGGREGATION
788789 We now obtain real-valued quasimetrics by aggregating the vector $r(x, y)$.
790791 **Definition 3** (Max Reduction).
792

793
$$d_{\max}(x, y) = \max_{1 \leq i \leq d} r_i(x, y).$$

794 **Definition 4** (Sum and Mean Reductions).
795

796
$$d_{\text{sum}}(x, y) = \sum_{i=1}^d r_i(x, y), \quad d_{\text{mean}}(x, y) = \frac{1}{d} \sum_{i=1}^d r_i(x, y).$$

797

798 **Proposition 2.** Each of d_{\max} , d_{sum} , and d_{mean} satisfies for all $x, y, z \in \mathbb{R}^d$ and $\lambda > 0$:
799800 (a) Triangle inequality: $d(x, y) \leq d(x, z) + d(z, y)$.
801 (b) Positive homogeneity: $d(\lambda x, \lambda y) = \lambda d(x, y)$.
802803 *Proof.* (a) follows by combining coordinate-wise triangle bounds with either:
804805 • d_{\max} : $\max_i[a_i + b_i] \leq \max_i a_i + \max_i b_i$,
806 • d_{sum} and d_{mean} : term-wise summation.
807808 (b) is immediate from the linearity of scalar multiplication and properties of max/sum. □
809

B.3 CONVEX COMBINATIONS OF QUASIMETRICS

More generally, let d_1, \dots, d_n be any quasimetrics on \mathbb{R}^d each obeying the triangle inequality and positive homogeneity. For weights $\alpha_1, \dots, \alpha_n \geq 0$ with $\sum_k \alpha_k = 1$, define

$$d_{\text{conv}}(x, y) = \sum_{k=1}^n \alpha_k d_k(x, y).$$

Proposition 3. d_{conv} is a quasimetric satisfying:

- (a) Triangle inequality: $d_{\text{conv}}(x, y) \leq d_{\text{conv}}(x, z) + d_{\text{conv}}(z, y)$.
- (b) Positive homogeneity: $d_{\text{conv}}(\lambda x, \lambda y) = \lambda d_{\text{conv}}(x, y)$.

Proof. Linearity of the weighted sum together with the corresponding property for each d_k yields (a)–(b). \square

C DERIVATION OF LEARNING OBJECTIVES FOR MINIMUM ACTION DISTANCE

This appendix details the derivation of the *MadDist* and *TDMadDist* loss functions. The derivation begins with the foundational, but computationally intractable, constrained optimization problem for the Minimum Action Distance (MAD) and systematically transforms it into a pair of scalable learning objectives.

C.1 CONSTRAINED OPTIMIZATION PROBLEM FOR MAD

The Minimum Action Distance, d_{MAD} , is the solution to the following constrained optimization problem. This formulation seeks a distance function that maximizes the sum of all pairwise distances while remaining consistent with the environment's one-step transition dynamics.

$$\begin{aligned}
& \underset{d}{\text{maximize}} \quad \sum_{(s,s') \in \mathcal{S}^2} d(s, s') && \text{(Objective 1)} \\
& \text{subject to} \quad d(s, s) = 0 \quad \forall s \in \mathcal{S} && \text{(Constraint 1: Identity)} \\
& \quad d(s, s') \leq 1 \quad \forall (s, s') \in R && \text{(Constraint 2: One-Step)} \\
& \quad d(s, s') \leq d(s, s'') + d(s'', s') \quad \forall (s, s', s'') \in \mathcal{S}^3 && \text{(Constraint 3: Triangle Inequality)}
\end{aligned}$$

Although the formulation uses a global maximization, the solution corresponds exactly to the *minimum* number of actions required to transition between states. The constraints enforce the correct dynamical structure:

- The one-step constraint enforces that any directly connected states must lie within distance 1, effectively *pulling* them close.
- The triangle inequality propagates this local structure globally, ensuring consistency across multi-step paths.
- The maximization objective *pushes* all state pairs as far apart as the constraints allow, yielding distances that exactly match the smallest number of steps connecting them.

This formulation is computationally intractable for large or continuous state spaces, primarily due to the triangle inequality (Constraint 3), which must hold for all triplets of states.

C.2 SIMPLIFICATION VIA QUASIMETRIC EMBEDDINGS

To make this problem tractable, we enforce the triangle inequality *by construction* rather than as an explicit constraint. We achieve this by learning a state embedding function $\phi : \mathcal{S} \rightarrow \mathbb{R}^k$ and defining the distance between any two states s, s' using a **quasimetric** function d_q on their embeddings:

$$d_\phi(s, s') := d_a(\phi(s), \phi(s'))$$

A quasimetric function $d_a(x, y)$ satisfies the following properties by definition:

864 1. **Identity:** $d_q(x, x) = 0$
 865 2. **Non-negativity:** $d_q(x, y) \geq 0$
 866 3. **Triangle Inequality:** $d_q(x, z) \leq d_q(x, y) + d_q(y, z)$

867 By defining d_ϕ as a quasimetric over the embedding space, the identity (Constraint 1) and triangle
 868 inequality (Constraint 3) properties are satisfied for any choice of embedding function ϕ . This
 869 simplification is crucial, as it removes the most computationally expensive constraint and leaves us
 870 with a more manageable learning problem:
 871

872
$$\begin{aligned} \text{maximize}_{\phi} \quad & \sum_{(s, s') \in \mathcal{S}^2} d_q(\phi(s), \phi(s')) \\ \text{subject to} \quad & d_q(\phi(s), \phi(s')) \leq 1 \quad \forall (s, s') \in R \end{aligned} \quad (\text{Constraint 2: One-Step})$$

873 C.3 THE *MadDist* LOSS FUNCTION

874 We now translate this simplified problem into a loss function suitable for minimization via gradient
 875 descent. Given a dataset of state trajectories $\mathcal{D} = \{(s_0, s_1, \dots, s_n), \dots\}$, the path length $j - i$ for
 876 any pair of states (s_i, s_j) on a trajectory with $i < j$ provides a valid upper bound on the true MAD,
 877 i.e., $d_{\text{MAD}}(s_i, s_j) \leq j - i$.
 878

879 The *MadDist* loss, $\mathcal{L} = \mathcal{L}_o + w_r \mathcal{L}_r + w_c \mathcal{L}_c$, is composed of three terms, each corresponding to a
 880 component of the optimization problem.
 881

882 **Term 1: The Objective Loss (\mathcal{L}_o).** The original goal is to maximize all pairwise distances. As
 883 a practical proxy, we formulate a loss term that is minimized when the learned distance $d_\phi(s_i, s_j)$
 884 matches its trajectory-based upper bound, $j - i$. This encourages the learned distances to increase,
 885 directly addressing the maximization objective by using information from the dataset. We use a
 886 scale-invariant squared error to prevent long-horizon pairs from dominating the loss.
 887

$$\mathcal{L}_o = \mathbb{E}_{(s_i, s_j) \sim \mathcal{D}} \left[\left(\frac{d_\phi(s_i, s_j)}{j - i} - 1 \right)^2 \right]$$

888 Minimizing \mathcal{L}_o encourages $d_\phi(s_i, s_j) \rightarrow j - i$, serving as a proxy for the **maximize** objective.
 889

890 **Term 2: The Contrastive Loss (\mathcal{L}_r).** To further support the global maximization objective, we
 891 introduce a contrastive term. We sample random pairs of states (s, s') from the dataset and penalize
 892 them for having a small distance. This encourages all states to be far apart, which aligns with the
 893 goal of maximizing the sum of all distances, especially for pairs not on the same trajectory.
 894

$$\mathcal{L}_r = \mathbb{E}_{(s, s') \sim \mathcal{S}_{\mathcal{D}}} \left[\text{relu} \left(1 - \frac{d_\phi(s, s')}{d_{\max}} \right)^2 \right]$$

895 where $\mathcal{S}_{\mathcal{D}}$ is the set of all states appearing in the dataset \mathcal{D} . Minimizing \mathcal{L}_r incentivizes $d_\phi(s, s')$ for
 896 random pairs to approach a large value d_{\max} , again serving the **maximize** objective.
 897

898 **Term 3: The Constraint Loss (\mathcal{L}_c).** While \mathcal{L}_o encourages matching the upper bound, it does
 899 not strictly enforce the inequality. We add an explicit penalty term that penalizes violations of the
 900 trajectory upper bound.
 901

$$\mathcal{L}_c = \mathbb{E}_{(s_i, s_j) \sim \mathcal{D}_{\leq H_c}} [\text{relu}(d_\phi(s_i, s_j) - (j - i))^2]$$

902 This term enforces the constraint $d_\phi(s_i, s_j) \leq j - i$, which is a generalization of the one-step
 903 constraint $(d_\phi(s, s') \leq 1)$. The learning process finds an equilibrium where the objective terms
 904 $(\mathcal{L}_o, \mathcal{L}_r)$ encourage larger distances, while this constraint term (\mathcal{L}_c) and the implicit triangle inequality
 905 provide regularization.
 906

918 C.4 TEMPORAL DIFFERENCE BOOTSTRAPPING (*TDMadDist*)
919920 *TDMadDist* integrates principles from Temporal Difference (TD) learning. Instead of relying solely
921 on the data-driven target $j - i$, it uses the model’s own predictions to form a potentially tighter,
922 more informed target. From the Bellman equation for shortest paths, we have $d_{\text{MAD}}(s_i, s_j) =$
923 $1 + d_{\text{MAD}}(s_{i+1}, s_j)$. We can therefore use the bootstrapped value $1 + d_{\phi'}(s_{i+1}, s_j)$ using a stable
924 target network ϕ' as the new target for our objective.925 The objective terms are modified as follows:
926927 **The TD Main Objective (\mathcal{L}'_o).** The target for $d_{\phi}(s_i, s_j)$ becomes the minimum of the trajectory
928 upper bound and the bootstrapped target.

929
930
$$\mathcal{L}'_o = \mathbb{E}_{(s_i, s_j) \sim \mathcal{D}} \left[\left(\frac{d_{\phi}(s_i, s_j)}{\min(j - i, 1 + d_{\phi'}(s_{i+1}, s_j))} - 1 \right)^2 \right]$$

931

932 Minimizing this loss still serves the **maximize** objective, but now encourages distances toward a
933 dynamically updated target.
934935 **The TD Contrastive Objective (\mathcal{L}'_r).** The contrastive term is modified to be consistent with the
936 one-step Bellman logic, using a bootstrapped target.

937
938
$$\mathcal{L}'_r = \mathbb{E}_{(s_i, s_r) \sim \mathcal{D}} \left[\left(\frac{d_{\phi}(s_i, s_r)}{1 + d_{\phi'}(s_{i+1}, s_r)} - 1 \right)^2 \right]$$

939

940 The constraint loss \mathcal{L}_c remains unchanged.
941942 D IMPLEMENTATION DETAILS
943944 In this section, we describe the implementation details of each algorithm included in our evaluation.
945946 D.1 COMPUTER RESOURCES
947948 We run all experiments on a single NVIDIA RTX 4070 GPU with 8GB of VRAM and an Intel
949 i7-4700-HX with 32GB of RAM. We will provide the code for all experiments upon acceptance of
950 the paper.951 D.2 MADDIST
952953 To train the MadDist distance models, we used the Adam optimizer with a learning rate of 1×10^{-4} ,
954 a batch size of 256 for the objective (\mathcal{L}_o , \mathcal{L}_r), and a separate batch of size 1024 for the constraint loss
955 (\mathcal{L}_c). For our main experiment, we used the novel simple quasimetric function and a latent dimension
956 size of 512. We include an ablation over different quasimetric functions and latent dimension sizes in
957 Appendix E.
958959 The full set of hyperparameter values used to train the MadDist models can be found in Table 2.
960961 D.3 TDMADDIST
962963 To train the TDMadDist distance models, we used the the Adam optimizer with a learning rate of
964 1×10^{-4} , a batch size of 256 for the objective (\mathcal{L}_o , \mathcal{L}_r), and a separate batch of size 1024 for the
965 constraint loss (\mathcal{L}_c). For our main experiment, we used the novel simple quasimetric function and a
966 latent dimension size of 512. We include an ablation over different quasimetric functions and latent
967 dimension sizes in Appendix E.968 For TDMadDist, we remove the hyperparameter d_{max} from the MadDist algorithm, because it is
969 not included in TDMadDist’s objective (\mathcal{L}_r). The temporal-difference update used when training
970 the TDMadDist distance models involves the use of a target network, $d_{\phi'}$, which is updated using a
971 Polyak averaging factor $\tau = 0.005$.

972 The full set of hyperparameter values used to train the TDMadDist models can be found in Table 3.

972
973
974 Table 2: Hyperparameters used to train the MadDist algorithm.
975
976
977
978
979
980
981
982
983
984
985
986
987

Hyperparameter	Value
Quasimetric Function	d_{simple}
Optimizer	Adam Kingma & Ba (2015)
Learning Rate	1×10^{-4}
Batch Size ($\mathcal{L}_o, \mathcal{L}_r$)	256
Batch Size (\mathcal{L}_c)	1024
Activation Function (Hidden Layers)	SELU Klambauer et al. (2017)
Neural Network	(512, 512, 256, 128)
w_r	1, 10
w_c	0.1
d_{max}	100, 500
H_c	6

988
989
990
991
992
993
994
995
996
997
998
999 Table 3: Hyperparameters used to train the TDMadDist algorithm.
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Hyperparameter	Value
Quasimetric Function	d_{simple}
Optimizer	Adam Kingma & Ba (2015)
Learning Rate	1×10^{-4}
Batch Size ($\mathcal{L}_o, \mathcal{L}_r$)	256
Batch Size (\mathcal{L}_c)	1024
Activation Function (Hidden Layers)	SELU Klambauer et al. (2017)
Neural Network	(512, 512, 256, 128)
w_r	1
w_c	0.1
H_c	6
τ	0.005

D.4 QRL

We trained QRL distance models following the approach of [Wang et al. \(2023b\)](#). We used the Lagrangian formulation

$$\min_{\theta} \max_{\lambda \geq 0} -\mathbb{E}_{s, s' \sim S_D} [\phi(d_{\theta}^{\text{IQE}}(s, s'))] + \lambda \left(\mathbb{E}_{(s, s') \sim p_{\text{transition}}} [\text{relu}(d_{\theta}^{\text{IQE}}(s, s') + 1)^2] \right), \quad (12)$$

where $\phi(x) \triangleq -\text{softplus}(\alpha - x, \beta)$ and $d_{\theta}^{\text{IQE}}(s, s')$ is the IQE distance between states s and s' . Following [Wang et al. \(2023b\)](#), we set $(\alpha, \beta) = (15, 0.1)$ for short-horizon environments and $(\alpha, \beta) = (500, 0.01)$ for long-horizon environments. The first term in the objective maximizes the expected distance between states sampled from the dataset, while the second term penalizes distances between state–next-state pairs (s, s') observed in the data.

Through our experiments, we observed that setting the softplus offset to 15 and the steepness to 0.1, as suggested for short-horizon environments by [Wang et al. \(2023b\)](#), led to better performance overall.

For the neural network architecture, we used a multi-layer perceptron with an overall layer structure of x - 512 - 512 - 128 (where x is the input observation dimension). Its two hidden layers (each of size 512) use ReLU activations, as described for state-based observations environments (i.e., environments with real vector observations, as opposed to images or other high-dimensional inputs) in the original paper. For the distance function, the resulting 128-dimensional MLP output is fed into a separate 128-512-2048 projector, followed by an IQE-maxmean head with 64 components each of size 32.

The full set of hyperparameter values used to train the QRL distance models can be found in Table 4.

1026
1027
1028 Table 4: Hyperparameters used to train the QRL model.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Hyperparameter	Value
Neural Network State embedding	$x - 512 - 512 - 128$
Neural Network IQE Projector	128-512-2048
Activation Function (Hidden Layers)	ReLU Glorot et al. (2011)
Optimizer	Adam Kingma & Ba (2015)
λ Learning Rate	0.01
Learning Rate Model	1×10^{-4}
Batch Size	256
Quasimetric function	IQE
IQE n components	64
IQE Reduction	maxmean

D.5 HILBERT REPRESENTATION

A Hilbert representation model is a function $\phi : \mathcal{S} \rightarrow \mathbb{R}^d$ that embeds a state $s \in \mathcal{S}$ into a d -dimensional space, such that the Euclidean distance between embedded states approximates the number of actions required to transition between them under the optimal policy.

We trained Hilbert representation models following the approach of [Park et al. \(2024b\)](#), using action-free Implicit Q-Learning (IQL) ([Park et al., 2023](#)) and Hindsight Experience Replay (HER) ([Andrychowicz et al., 2017](#)).

We used a dataset of state–next-state pairs (s, s') , which we relabeled using HER to produce state–next-state–goal tuples (s, s', g) . Goals were sampled from a geometric distribution $\text{Geom}(\gamma)$ over future states in the same trajectory with probability 0.625, and uniformly from the entire dataset with probability 0.375.

We trained the Hilbert representation model ϕ to minimize the temporal-difference loss

$$\mathbb{E}[l_\tau(-\mathbf{1}(s \neq g) - \gamma \|\phi(s') - \phi(g)\| + \|\phi(s) - \phi(g)\|)], \quad (13)$$

where l_τ denotes the expectile loss ([Newey & Powell, 1987](#)), an asymmetric loss function that approximates the max operator in the Bellman backup ([Kostrikov et al., 2022](#)). This objective naturally supports the use of target networks ([Mnih et al., 2015](#)) and double estimators ([Van Hasselt et al., 2016](#)) to improve learning stability. We included both in our implementation, following the original setup used by [Park et al. \(2024b\)](#).

The full set of hyperparameter values used to train the Hilbert models can be found in Table 5.

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079 Table 5: Hyperparameters used to train the Hilbert representation models.

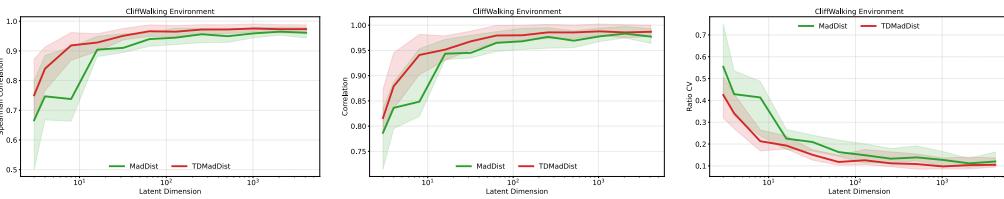
Hyperparameter	Value
Latent Dimension	32
Expectile	0.9
Discount Factor	0.99
Learning Rate	0.0003
Target Network Smoothing Factor	0.005
Multi-Layer Perceptron Dimensions	(512, 512) Fully-Connected Layers
Activation Function (Hidden Layers)	GELU (Hendrycks & Gimpel, 2016)
Layer Normalization (Hidden Layers)	True
Activation Function (Final Layer)	Identity
Layer Normalization (Final Layer)	False
Optimizer	Adam (Kingma & Ba, 2015)
Batch Size	1024

1080 E ABLATION STUDY

1081
 1082 In this section, we present additional ablation studies to analyze the performance of our proposed
 1083 methods. We evaluate the impact of different hyperparameters and design choices on the performance
 1084 of the learned embeddings.

1085 We conduct experiments in the CliffWalking environment, which is a highly asymmetric environment
 1086 with a known ground truth MAD. For each experiment we train the *MadDist* algorithm using the
 1087 same hyperparameters from the main experiments, varying only the hyperparameter of interest while
 1088 keeping all others fixed. We then evaluate the learned embeddings using Spearman correlation,
 1089 Pearson correlation, and Ratio CV metrics.

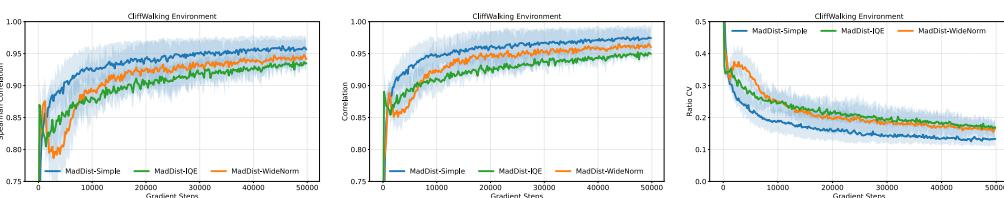
1091 E.1 EFFECT OF LATENT DIMENSION ON MAD ACCURACY



1100 Figure 4: Impact of latent size on Spearman correlation, Pearson correlation and Ratio CV of the
 1101 *MadDist* and *TDMadDist* algorithms, evaluated in the CliffWalking environment. Shaded regions
 1102 show the range of values across five random seeds, with upper and lower boundaries representing
 1103 maximum and minimum values.

1104 Figure 4 shows the impact of the latent dimension size on the performance of our proposed methods.
 1105 We can see that increasing the latent dimension size improves the performance of our methods.
 1106 We note that the performance starts to saturate after a latent dimension size of 10, but larger latent
 1107 dimension sizes still slightly improve the performance and do not harm the performance. This is
 1108 likely due to the fact that larger latent dimension sizes allow for more expressive representations,
 1109 which can help to better capture the underlying structure of the environment.

1112 E.2 EFFECT OF QUASIMETRIC CHOICE ON MAD ACCURACY



1121 Figure 5: Impact of different quasimetric functions on correlation and Ratio CV of the *MadDist*
 1122 algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
 1123 across five random seeds, with upper and lower boundaries representing maximum and minimum
 1124 values.

1125 Figure 5 shows the impact of different quasimetric functions on the performance of the learned
 1126 *MadDist* model. The novel simple quasimetric (*MadDistance-Simple*) achieves the best performance,
 1127 outperforming both the Wide Norm (*MadDistance-WideNorm*) and IQE (*MadDistance-IQE*) variants.
 1128 While Wide Norm and IQE perform similarly to each other, they consistently underperform the
 1129 simple quasimetric across all three evaluation metrics.

1131 Figure 6 presents the same ablation over quasimetric functions, now applied to learning the *TDMad*-
 1132 *Dist* model. The results mirror the previous setting: the simple quasimetric (*TDMadDist-Simple*)
 1133 again achieves the strongest performance, while the Wide Norm (*TDMadDist-WideNorm*) and IQE
 (*TDMadDist-IQE*) variants lag slightly behind and show comparable results to each other.

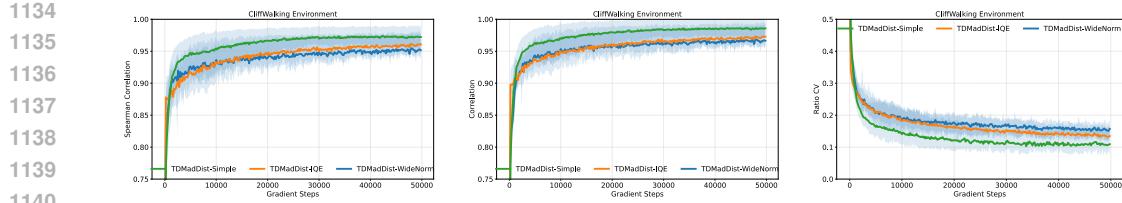


Figure 6: Impact of different quasimetric functions on correlation and Ratio CV of the TDMadDist algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values across five random seeds, with upper and lower boundaries representing maximum and minimum values.

In this experiment, we used a latent dimension size of 256. For the Wide Norm quasimetric, we configure the model with 32 components, each having an output component size of 32. For the IQE quasimetric, we set each component to have a dimensionality of 16. For both quasimetric functions we use maxmean reduction (Pitis et al., 2020).

E.3 EFFECT OF DATASET SIZE ON MAD ACCURACY

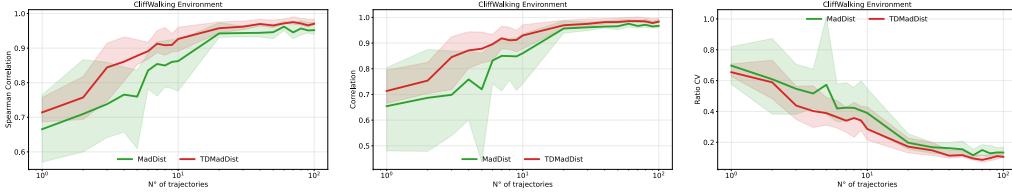


Figure 7: Impact of dataset size on Spearman correlation, Pearson correlation and Ratio CV of the MadDist and TDMadDist algorithms, evaluated in the CliffWalking environment. Shaded regions show the range of values across five random seeds, with upper and lower boundaries representing maximum and minimum values.

Figure 7 illustrates how dataset size affects the performance of our proposed methods. As the number of trajectories increases, the dataset provides broader coverage of all the possible transitions in the environment, leading to a more accurate approximation of the MAD.

E.4 NEURAL NETWORK SIZE CHOICE FOR QRL AND HILBERT

In this section, we present ablation studies examining how the size of the neural network affects performance for both QRL and Hilbert. For QRL, we evaluate three architectures, each consisting of an embedding network followed by a projection network used with the IQE quasimetric as described in Wang et al. (2023b):

- QRL_nn_1: (512, 512, 128) embedding + (128, 512, 2048) projection.
- QRL_nn_2: (512, 512, 256, 128) embedding + (128, 512, 2048) projection.
- QRL_nn_3: (1024, 1024, 256) embedding + (1024, 1024, 1024, 2048) projection.

QRL_nn_1 corresponds to the architecture used for state-based observations in Wang et al. (2023b), while QRL_nn_2 shares the same embedding network as MAD and TDMAD. QRL_nn_3 represents the larger architecture considered in Wang et al. (2023b). As shown in Figure 8, performance differences across these architectures are minor, with QRL_nn_1 achieving the best results.

For the Hilbert algorithm, we compare two fully connected architectures:

- HILBERT_nn_1: (512, 512), as used in the original paper Park et al. (2024b).
- HILBERT_nn_2: (512, 512, 256, 128), matching the architecture used for MAD and TD-MAD.

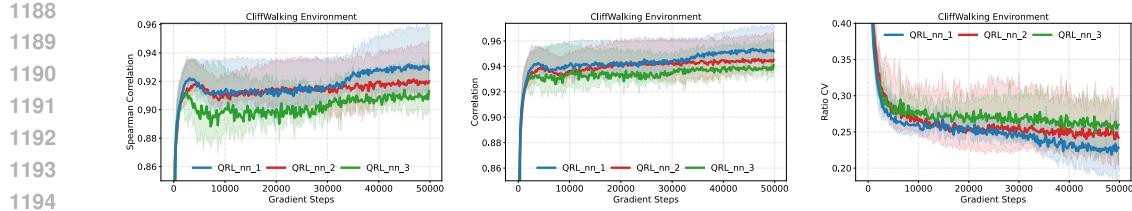


Figure 8: Impact of neural network size on Spearman correlation, Pearson correlation, and Ratio CV for the QRL algorithm in the CliffWalking environment. Shaded regions indicate variation across three random seeds, with upper and lower bounds corresponding to maximum and minimum values.

As shown in Figure 9, HILBERT_nn_1 performs at best in our evaluation.

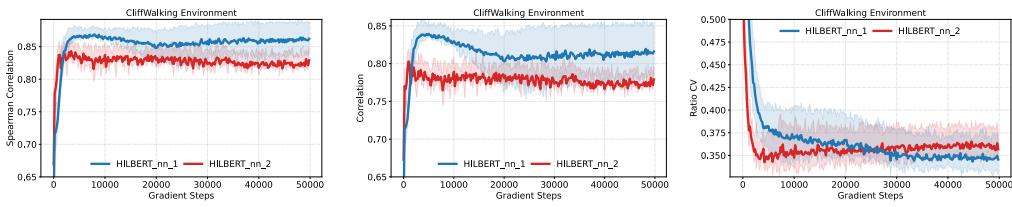


Figure 9: Impact of neural network size on Spearman correlation, Pearson correlation, and Ratio CV for the Hilbert algorithm in the CliffWalking environment. Shaded regions indicate variation across three random seeds.

F COMPLETE LIST OF RESULTS

In this section, we report the complete list of results, including the Spearman and Pearson Correlation metrics together with the Ratio Coefficient of Variation. The results appear in Figure 12 and in Figure 12.

F.1 QUALITATIVE EVALUATION

In this section, we present a qualitative evaluation of the MadDist algorithm within the MediumMaze environment. We visualize the learned geometry of the state space to demonstrate how the metric captures the underlying structure of the maze.

G ENVIRONMENTS

Our test environments were specifically chosen to span a comprehensive range of reward-free MDP characteristics and challenges, ensuring a thorough evaluation. Key design considerations for this suite include:

- *Noisy Observations*: To assess robustness to imperfect state information, which can challenge algorithms relying on precise state identification.
- *Stochastic Dynamics*: To evaluate if our algorithm can retrieve the MAD even when transitions are not deterministic. This reflects real-world scenarios where environments have inherent randomness or agent actions have uncertain outcomes.
- *Asymmetric*: To test the capability of our algorithm to learn true quasimetric distances that capture directional dependencies (e.g., one-way paths, key-door mechanisms).
- *State Spaces*:
 - *Continuous State Spaces*: To demonstrate applicability to problems with real-valued state representations where function approximation is essential.

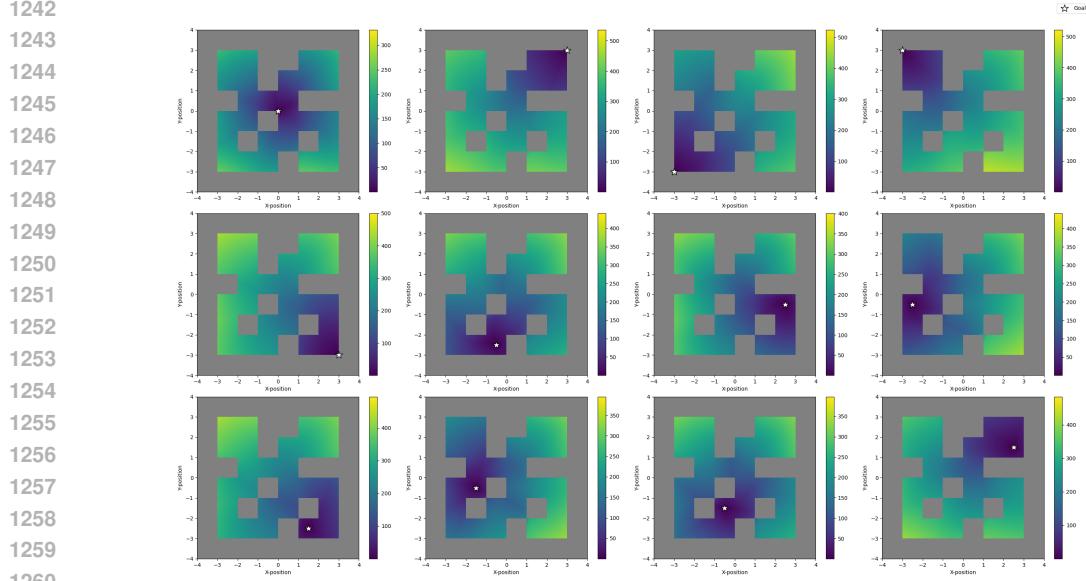


Figure 10: Visualization of the learned MAD landscape using MadDist on the MediumMaze environment. The heatmap represents the predicted distance from a fixed goal state to every other point in the maze

- *Discrete State Spaces*: To provide foundational testbeds with clearly defined structures and allow for exact MAD computation.

- Action Spaces:

- *Continuous Action Spaces*: To evaluate performance in environments where actions are defined by real-valued parameters, common in robotics and physical control tasks.

- *Discrete Action Spaces*: To ensure applicability to environments with a finite set of distinct actions.

- *Complex Dynamics*: Incorporating environments like PointMaze, which feature non-trivial physics (velocity, acceleration).

- *Hard Exploration*: Utilizing environments with complex structures (e.g., intricate mazes) that pose significant exploration challenges for naive data collection policies (like the random policy we used in our experiments).

NOISYGRIDWORLD

Noisy Observations, Stochastic Dynamics, Continuous State Space, Discrete Action Space

- **State space**: The agent receives a 4-dimensional observation vector (x, y, n_1, n_2) at each step. In this observation, (x, y) are discrete coordinates in a 13×13 grid, and $(n_1, n_2) \sim \mathcal{N}(0, \sigma^2 I)$ are i.i.d. Gaussian noise components. The true underlying latent state, which is not directly observed by the agent in its entirety without noise, is the coordinate pair (x, y) . The presence of the noise components (n_1, n_2) in the observation makes the sequence of observations non-Markovian with respect to this true latent state.

- **Action space**: Four stochastic actions are available in all states: UP, DOWN, LEFT, and RIGHT.

- **Transition dynamics**: With probability 0.5, the intended action is executed; with probability 0.5, a random action is applied. Transitions are clipped at grid boundaries.

- **Initial state distribution** (μ_0): The agent’s initial true latent state (x_0, y_0) is a random real-valued position sampled uniformly from the grid. The full initial observation is $(x_0, y_0, n_{1,0}, n_{2,0})$, where the initial noise components $(n_{1,0}, n_{2,0})$ are also sampled i.i.d. from $\mathcal{N}(0, \sigma^2 I)$. The real-valued nature of both the initial position and the noise components makes the observed state space continuous.

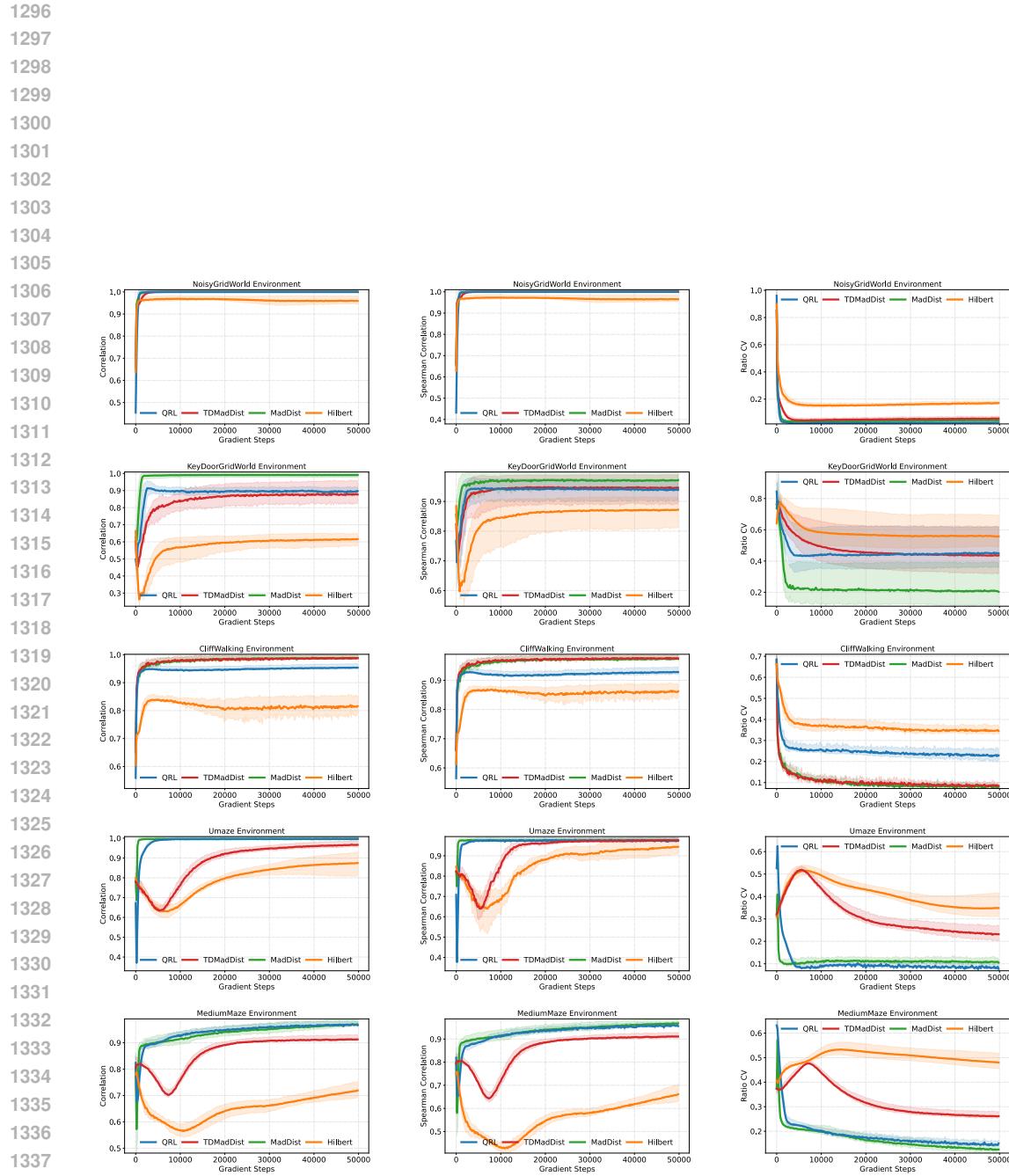


Figure 11: Pearson and Spearman correlation coefficients and coefficient of variation (CV) ratios across test environments. Shaded regions minimum and maximum values across three random seeds.

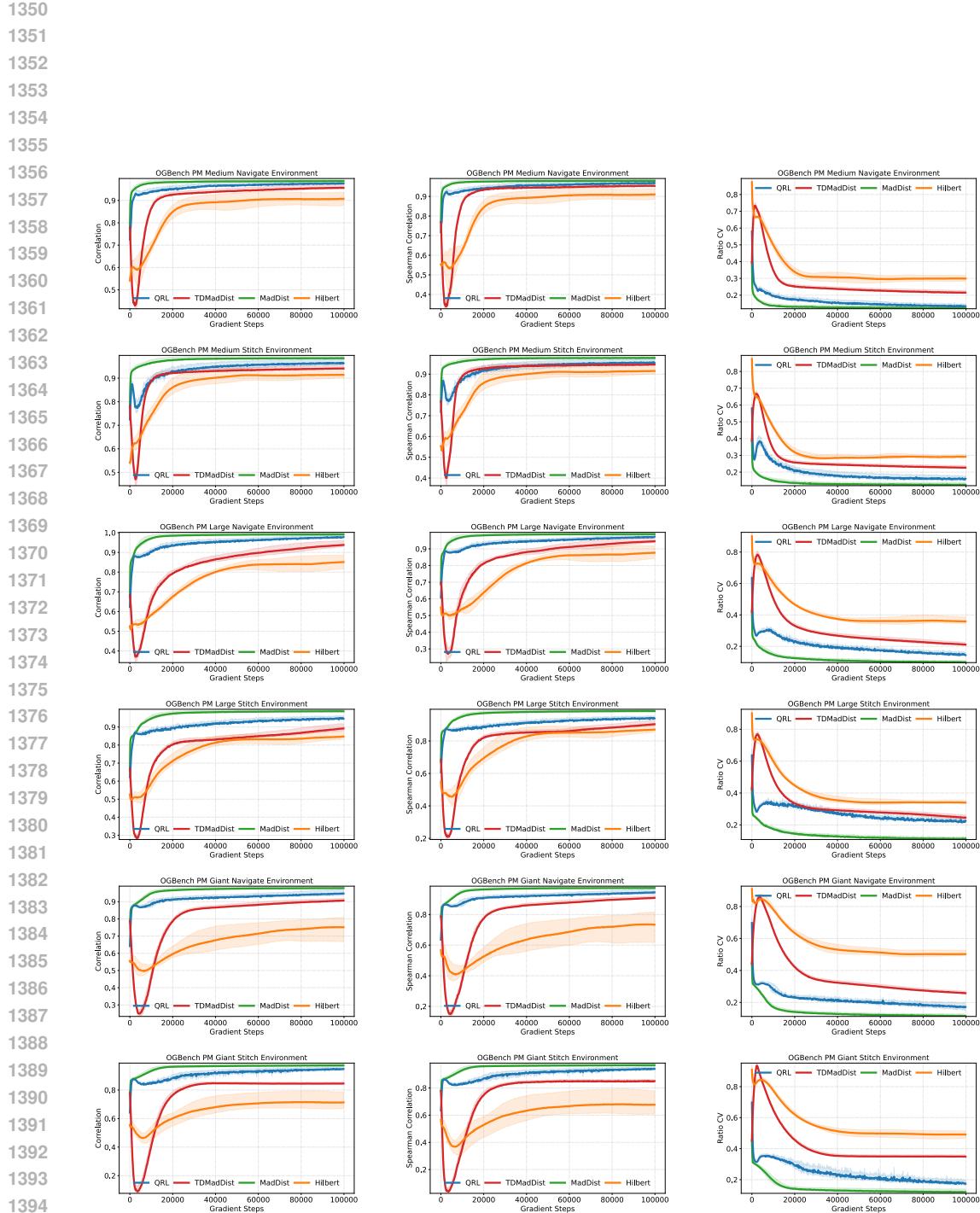


Figure 12: Pearson and Spearman correlation coefficients and coefficient of variation (CV) ratios across OGBench test environments. Shaded regions minimum and maximum values values across three random seeds.

1404
 1405 • **Ground-truth MAD:** Since the latent state is deterministic apart from noise, the MAD between
 1406 two states (x_1, y_1) and (x_2, y_2) is the Manhattan distance $|x_1 - x_2| + |y_1 - y_2|$. Noise components
 1407 are ignored.

1408 **KEYDOORGRIDWORLD**

1410 *Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space*

1412
 1413 • **State space:** States are triples (x, y, k) , where (x, y) is the agent’s position in a 13×13 grid, and
 1414 $k \in \{0, 1\}$ indicates whether the key has been collected.

1415 • **Action space:** Four deterministic actions are available in all states: UP, DOWN, LEFT, and
 1416 RIGHT.

1417 • **Transition dynamics:** Transitions are deterministic. The agent picks up the key by visiting the
 1418 key’s cell; the key cannot be dropped once collected. The door can only be passed if the key has
 1419 been collected.

1420 • **Initial state distribution** (μ_0): The agent starts at position $(1, 1)$.

1421 • **Ground-truth MAD:** Defined as the minimum number of steps to reach the target state, account-
 1422 ing for key dependencies. For example, if the agent lacks the key and the goal requires it, the path
 1423 must include visiting the key first.

1425 **CLIFFWALKING**

1427 *Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space*

1429
 1430 • **State space:** The environment is a 4×12 grid. Each state corresponds to a discrete cell (x, y) .

1431 • **Action space:** Four deterministic actions are available in all states: UP, DOWN, LEFT, or RIGHT.

1432 • **Transition dynamics:** Transitions are deterministic unless the agent steps into a cliff cell, in
 1433 which case it is returned to the start. The episode is not reset.

1434 • **Initial state distribution** (μ_0): The agent starts at position $(1, 1)$.

1435 • **Ground-truth MAD:** The MAD is the minimal number of steps required to reach the target state,
 1436 allowing for cliff transitions. Since falling into the cliff resets the agent’s position, it can create
 1437 shortcuts and lead to strong asymmetries in the distance metric.

1440 **POINTMAZE**

1442 *Continuous State Space, Complex Dynamics, Hard exploration, Continuous Action Space*

1444
 1445 • **State space:** The agent observes a 4-dimensional vector (x, y, \dot{x}, \dot{y}) , where (x, y) is the position of
 1446 a green ball in a 2D maze and (\dot{x}, \dot{y}) are its linear velocities in the x and y directions, respectively.

1447 • **Action space:** Continuous control inputs (a_x, a_y) corresponding to applied forces in the x and y
 1448 directions. The applied force is limited to the range $[-1, 1]$ N in each direction.

1449 • **Transition dynamics:** The system follows simple force-based dynamics within the MuJoCo
 1450 physics engine. The applied forces affect the agent’s velocity, which in turn updates its position.
 1451 The ball’s velocity is limited to the range $[-5, 5]$ m/s in each direction. Collisions with the maze’s
 1452 walls are inelastic: any attempted movement through a wall is blocked.

1453 • **Initial state distribution** (μ_0): The agent starts at a random real-valued position (x, y) sampled
 1454 uniformly from valid maze locations. The initial velocities (\dot{x}_0, \dot{y}_0) are set to $(0, 0)$.

1455 • **Ground-truth MAD:** The maze is discretized into a uniform grid. Using the Floyd-Warshall
 1456 algorithm on the resulting connectivity graph, we compute shortest path distances between all
 1457 reachable pairs of positions.

1458 OGBENCH POINTMAZE

1459

1460 *Continuous State Space, Complex Dynamics, Hard Exploration, Continuous Action Space*

1461

1462 This benchmark extends the PointMaze environment to significantly larger and more challenging
1463 mazes, designed to test long-horizon reasoning and exploration capabilities. The controlled agent is
1464 the same 2D ball as in PointMaze, but the scale and complexity of the mazes increase substantially.

1465

- **Medium:** Matches the original medium maze from D4RL.
- **Large:** Matches the original large maze from D4RL.
- **Giant:** Twice the size of Large, with a layout adapted from the antmaze-ultra maze of
Jiang et al. (2022). It contains longer paths, requiring up to 1000 environment steps, making it
especially demanding for long-horizon planning.

1466

1467 Two datasets are provided for each maze:

1468

- **Navigate:** Collected using a noisy expert policy that repeatedly navigates to randomly sampled
goals throughout the maze.
- **Stitch:** Consists of short, goal-reaching trajectories of at most 4 cell units in length. Solving tasks
requires stitching together multiple short demonstrations (up to 8), testing the agent’s ability to
compose behaviors across long horizons.

1469

1470

H PLANNING EXPERIMENTS

1471

1472

1473 To assess the practical utility of the learned MAD embeddings, we evaluated the performance
1474 of our algorithms and baselines on a downstream goal-reaching task in the OGBench PointMaze
1475 environments.

1476

1477

PLANNING ALGORITHM

1478

1479

1480 We employed a simple planning algorithm based on random shooting, a form of model-predictive
1481 control (MPC), which allows for a direct evaluation of the distance metric as a planning heuristic.
1482 This approach isolates the effectiveness of the learned metric from confounding factors that would be
1483 introduced by more complex planners.

1484

1485 The planning process at each time step t , given a current state s_t and a goal state g , is as follows:

1486

1. Generate $K = 100$ candidate action sequences, each of length H , by sampling actions uniformly
at random at each step in the sequence.
2. For each of the K action sequences, use the true environment simulator to roll out the correspond-
ing state trajectory $\{s_{t+1}, \dots, s_{t+H}\}$.
3. Score each trajectory by finding the state within it that minimizes the learned distance to the goal.
The score for a trajectory is given by $\min_{0 < i \leq H} d_\theta(s_{t+i}, g)$, where d_θ is the learned distance.
4. Identify the action sequence that achieved the minimum score (i.e., the one that brought the agent
closest to the goal).
5. Execute the first action from this best-scoring sequence to transition to the next state, s_{t+1} .

1487

1488

1489 This entire process is repeated at each step in a receding-horizon fashion until the agent reaches the
1490 goal or a maximum episode length is exceeded.

1491

1492

1493 Our choice of this simple planning framework is deliberate. By relying on the true simulator and
1494 random action sampling, the success of the planner depends directly on the metric’s ability to provide
1495 a meaningful and accurate signal for progress toward the goal. This avoids confounding the evaluation
1496 with inaccuracies that might arise from a learned dynamics model or the complexities of a separate
1497 policy optimization algorithm.

1498

1499

1500 It is important to note the limitations of this planner: since actions are sampled randomly, the resulting
1501 trajectories are sub-optimal and tend to explore only a local region around the agent’s current state.

1502

1503

1512 Therefore, success in these long-horizon tasks heavily relies on the learned metric providing a
1513 consistent and reliable global signal toward the goal, guiding the planner effectively even with its
1514 limited local search.

1515

1516 EVALUATION PROTOCOL

1517

1518 Each task in OGBench accompanies five pre-defined state-goal pairs for evaluation. To ensure
1519 statistical robustness, we evaluate over 3 independent random seeds. For each seed and each of
1520 the five state-goal pairs, we run 50 evaluation episodes, each with slightly randomized initial and
1521 goal states. Performance, as reported in Table 1, is measured by the average success rate across all
1522 episodes. An episode is considered successful if the agent reaches a state within a small Euclidean
1523 distance of the goal coordinates.

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565