
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING THE MINIMUM ACTION DISTANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a state representation framework for Markov decision processes
(MDPs) that can be learned solely from state trajectories, requiring neither reward
signals nor the actions executed by the agent. We propose learning the minimum
action distance (MAD), defined as the minimum number of actions required to
transition between states, as a fundamental metric that captures the underlying
structure of an environment. MAD naturally enables critical downstream tasks
such as goal-conditioned reinforcement learning and reward shaping by providing
a dense, geometrically meaningful measure of progress. Our self-supervised
learning approach constructs an embedding space where the distances between
embedded state pairs correspond to their MAD, accommodating both symmetric
and asymmetric approximations. We evaluate the framework on a comprehensive
suite of environments with known MAD values, encompassing both deterministic
and stochastic dynamics, as well as discrete and continuous state spaces, and
environments with noisy observations. Empirical results demonstrate that the
proposed approach not only efficiently learns accurate MAD representations across
these diverse settings but also significantly outperforms existing state representation
methods in terms of representation quality.

1 INTRODUCTION

In reinforcement learning (Sutton & Barto, 1998), an agent aims to learn useful behaviors through
continuing interaction with its environment. Specifically, by observing the outcomes of its actions,
a reinforcement learning agent learns over time how to select actions in order to maximize the
expected cumulative reward it receives from its environment. An important need in applications of
reinforcement learning is the ability to generalize, not only to previously unseen states, but also to
variations of its environment that the agent has not previously interacted with.

In many applications of reinforcement learning, it is useful to define a metric that measures the
similarity of two states in the environment. Such a metric can be used, e.g., to define equivalence
classes of states in order to accelerate learning, to decompose the problem into a hierarchy of smaller
subproblems that are easier to solve, or to perform transfer learning in case the environment changes
according to some parameters but retains part of the structure of the original environment. Such a
metric can also be used as a heuristic in goal-conditioned reinforcement learning, in which the agent
has to achieve different goals in the same environment.

The Minimum Action Distance (MAD) has proved useful as a similarity metric, with impressive
applications in various areas of reinforcement learning, including policy learning (Wang et al., 2023;
Park et al., 2023), reward shaping (Steccanella & Jonsson, 2022), and option discovery (Park et al.,
2024a;b). While prior work has demonstrated the advantages of using MAD, how best to approximate
it remains an open problem. Existing methods have not been systematically evaluated on their ability
to approximate the MAD function itself, and many rely on symmetric approximations, even though
the true MAD is inherently asymmetric.

We make three main contributions towards fast, accurate approximation of the MAD. First, we
propose two novel algorithms for learning MAD using only state trajectories collected by an agent
interacting with its environment. Unlike previous work, the proposed algorithms naturally support
both symmetric and asymmetric distances, and incorporate both short- and long-term information
about how distant two states are from one another. Secondly, we define a novel quasimetric distance
function that is computationally efficient and that, in spite of its simplicity, outperforms more

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Schematic overview of MAD representation learning. From left to right: (1) the hidden
environment graph, (2) trajectories collected by an unknown policy, (3) the embedding function
ϕ : S → R2 and (4) the resulting MAD embedding space in R2.

elaborate quasimetrics in the existing literature. Finally, we introduce a diverse suite of environments
— including those with discrete and continuous state spaces, stochastic and deterministic dynamics,
and directed and undirected transitions — in which the ground-truth MAD is known, enabling a
systematic and controlled evaluation of different MAD approximation methods.

Figure 1 illustrates the steps of MAD representation learning: an agent collects state trajectories from
an unknown environment, which are used to learn a state embedding that implicitly defines a distance
function between states.

2 RELATED WORK

In applications such as goal-conditioned reinforcement learning (Ghosh et al., 2020) and stochastic
shortest-path problems (Tarbouriech et al., 2021), the temporal distance is measured as the expected
number of steps required to reach one state from another state under some policy. In contrast, the MAD
is a lower bound on the number of steps based solely on the support of the transition function. This
distinction makes the MAD efficient to compute and robust to changes in the transition probabilities
as long as the support over next states remains the same, making it suitable for representation learning
and transfer learning.

Prior work has explored the connection between the MAD and optimal goal-conditioned value
functions (Kaelbling, 1993). Park et al. (2023) highlight this connection and propose a hierarchical
approach that improves distance estimates over long horizons, and Park et al. (2024a) embed states
into a learned latent space where the distance between embedded states directly reflects an on-
policy measure of the temporal distance (Hartikainen et al., 2020). Park et al. (2024b) and Ma
et al. (2022) extend this idea to the offline setting, learning embeddings from arbitrary experience
such that Euclidean distances between state embeddings approximate the MAD. As an alternative
to approximating the MAD using goal-conditioned value functions, Steccanella & Jonsson (2022)
formulate learning a state embedding in which distances approximate the MAD as a constrained
optimization problem, where bounds on the distance between embedded states are derived from state
trajectory data. Although their formulations differ, these approaches ultimately seek to learn the same
underlying quantity: the minimum number of actions required to move between two states.

These existing approaches share a common limitation: they rely on symmetric distance metrics such
as the Euclidean distance between state embeddings to approximate the MAD. As such, they cannot
capture the asymmetry of the true MAD in environments with irreversible dynamics. In contrast, the
approach we develop here supports the use of asymmetric distance metrics (or, quasimetrics), which
can better capture the directional structure in many environments.

Some prior work has already explored the use of quasimetrics in reinforcement learning. Wang
et al. (2023) learn an asymmetric distance function that approximates the MAD by preserving local
structure while maintaining global distances. Their method differs from the one we propose in two
ways. First, their method does not leverage the existing distance along a trajectory as supervision
for the learning process. Secondly, they use the Interval Quasimetric Embedding (IQE) (Wang &
Isola, 2022) to learn the distance function. Dadashi et al. (2021) learn embeddings and define a
pseudometric between states as the Euclidean distance between their embeddings. Unlike our work,
they use loss functions inspired by bisimulation to learn both state and state-action embeddings.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Successor features (Dayan, 1993; Barreto et al., 2017) and time-contrastive representations (Eysen-
bach et al., 2022) have also been used to define notions of temporal distance. Myers et al. (2024)
introduce time-contrastive successor features, defining a distance metric based on the difference
between discounted future occupancies of state features learned via time-contrastive learning. While
their metric satisfies the triangle inequality and naturally handles both stochasticity and asymmetry,
the resulting distances reflect expected discounted state visitations under a specific behavior policy
and lack an intuitive interpretation. In contrast, approaches that approximate the MAD are naturally
interpretable as a lower bound on the number of actions needed to transition between two states.

3 BACKGROUND

In this section, we introduce the notation and concepts used throughout the paper. Given a finite set X ,
we use ∆(X) = {p ∈ RX |

∑
x px = 1, px ≥ 0 (∀x)} to denote the probability simplex (i.e. the set

of all probability distributions over X). A rectified linear unit (ReLU) is a function relu : Rd → Rd

defined on any vector x ∈ Rd as relu(x) = [max(0, xi)]
d
i=1.

Markov Decision Processes (MDPs). An MDP (Bellman, 1957) is a tupleM = ⟨S,A,R,P,D, γ⟩,
where S is the state space, A is the action space, R : S × A → R is the reward function, P :
S×A → ∆(S) is the transition kernel,D ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1] is the
discount factor. At each time t, the learning agent observes a state st ∈ S, selects an action at ∈ A,
receives a reward rt = R(st, at) and transitions to a new state st+1 ∼ P(st, at). The learning agent
selects actions using a policy π : S → ∆(A), a mapping from states to probability distributions over
actions. In our work, the state space S can be either discrete or continuous.

Reinforcement learning (RL). RL (Sutton & Barto, 2018) is a family of algorithms whose purpose
is to learn a policy π that maximizes some measure of expected future reward. In this paper, however,
we consider the problem of representation learning, and hence we are not directly concerned with
the problem of learning a policy. Concretely, we wish to learn a distance function between pairs
of states that can later be used by an RL agent to learn more efficiently. In this setting, we assume
that the learning agent uses a behavior policy πb to collect trajectories. Since we are interested
in learning a distance function over state pairs, actions are relevant only for determining possible
transitions between states, and rewards are not relevant at all. Hence for our purposes a trajectory
τ = (s0, s1, . . . , sn) is simply a sequence of states.

4 THE MINIMUM ACTION DISTANCE

Given an MDPM = ⟨S,A,R,P,D, γ⟩ and a state pair (s, s′) ∈ S2, the Minimum Action Distance,
dMAD(s, s

′), is defined as the minimum number of decision steps needed to transition from s to s′. In
deterministic MDPs, the MAD is always realizable using an appropriate policy; in stochastic MDPs,
the MAD is a lower bound on the actual number of decision steps of any policy. Let R ⊆ S2 be a
relation such that (s, s′) ∈ R if and only if there exists an action a ∈ A that satisfies P(s′|s, a) > 0.
That is, R contains all state pairs (s, s′) such that s′ is reachable in one step from s. We can formulate
the problem of computing dMAD as a constrained optimization problem:

dMAD = argmax
d

∑
(s,s′)∈S2

d(s, s′), (1)

s.t. d(s, s) = 0 ∀s ∈ S,
d(s, s′) ≤ 1 ∀(s, s′) ∈ R,

d(s, s′) ≤ d(s, s′′) + d(s′′, s′) ∀(s, s′, s′′) ∈ S3.
It is straightforward to show that dMAD is the unique solution to equation 1 (see Appendix A).
Concretely, dMAD satisfies the second constraint with equality, i.e. d(s, s′) = 1 for all (s, s′) ∈ R. If
the state space S is finite, the constrained optimization problem is precisely the linear programming
formulation of the all-pairs shortest path problem for the graph (S, R) with edge costs 1. This graph
is itself a determinization of the MDPM (Yoon et al., 2007). In this case we can compute dMAD
exactly using the well-known Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962). If the state
space S is continuous, R is still well-defined, and hence there still exists a solution which satisfies
d(s, s′) = 1 for all (s, s′) ∈ R even though the states can no longer be enumerated.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

An alternative to the MAD is computing the stochastic shortest path (SSP; Tarbouriech et al., 2021)
between each pair of states. In deterministic MDPs, the MAD and SSP are equivalent. In stochastic
MDPs, the SSP can provide more realistic distance estimates than the MAD when some transitions
have very low probabilities. However, computing the all-pairs SSP requires solving a linear program
over transition probabilities, which is computationally demanding. In contrast, the MAD can be
computed efficiently and remains a useful approximation in many domains (e.g. in navigation
problems and when using sticky actions). Moreover, unlike the SSP, the MAD depends only on the
support of the transition kernel and is otherwise robust to changes in transition probabilities, which is
particularly useful for transfer learning.

Even when the state space S is finite, we may not have explicit knowledge of the relation R. In
addition, the time complexity of the Floyd-Warshall algorithm is O(|S|3), and the number of states
may be too large to run the algorithm in practice. If the state space S is continuous, then we cannot
even explicitly form a graph (S, R). Hence we are interested in estimating dMAD in the setting for
which we can access trajectories only through sampling. For this purpose, let us assume that the
learning agent uses a behavior policy πb to collect a dataset of trajectories D = {τ1, . . . , τk}. Define
SD ⊆ S as the subset of states that appear on any trajectory in D. Given a trajectory τ = {s0, ..., sn}
and any two states si and sj on the trajectory such that 0 ≤ i < j ≤ n, it is easy to see that j − i
is an upper bound on dMAD(si, sj), since sj is reachable in j − i steps from si on the trajectory τ .
By an abuse of notation, we often write (si, sj) ∈ τ to refer to a state pair on the trajectory τ with
indices i and j such that i < j, and we write (si, sj) ∼ τ in order to sample two such states from τ .

Steccanella & Jonsson (2022) learn a parameterized state embedding ϕθ : S → Rd and define a
distance function dθ(s, s

′) = d(ϕθ(s), ϕθ(s
′)), where d is any distance metric in Cartesian space.

The parameter vector θ of the state embedding is learned by minimizing the loss function

L = Eτ∼D,(si,sj)∼τ

[
(dθ(si, sj)− (j − i))2 + wc · relu(dθ(si, sj)− (j − i))2

]
, (2)

where wc > 0 is a regularization factor that multiplies a penalty term which substitutes the upper
bound constraints dθ(si, sj) ≤ j − i. If the distance metric d satisfies the triangle inequality (e.g. any
norm d = || · ||p) then the constraints dθ(s, s) = 0 and the triangle inequality automatically hold.
Enforcing the constraint dθ(si, sj) ≤ j − i for each state pair (si, sj) on trajectories, rather than only
consecutive pairs, helps learn better distance estimates, at the cost of a larger number of constraints.

5 ASYMMETRIC DISTANCE METRICS

A limitation of previous work is that the chosen distance metric d is symmetric, while the MAD dMAD
may not be symmetric. In this section, we review several asymmetric distance metrics. Concretely, a
quasimetric is a function dq : Rd × Rd → R+ that satisfies the following three conditions:

• Q1 (Identity): dq(x, x) = 0.
• Q2 (Non-negativity): dq(x, y) ≥ 0.
• Q3 (Triangle inequality): dq(x, z) ≤ dq(x, y) + dq(y, z).

A quasimetric does not require symmetry, i.e. dq(x, y) = dq(y, x) does not hold in general.

We define a simple quasimetric dsimple using rectified linear units:

dsimple(x, y) = αmax(relu(x− y)) + (1− α)
1

d

d∑
i

relu(xi − yi). (3)

This metric is a weighted average of the maximum and average positive difference between the
vectors x and y along any dimension, where α ∈ [0, 1] is a weight. In Appendix B, we show that
dsimple satisfies the triangle inequality and latent positive homogeneity (Wang & Isola, 2022).

The Wide Norm quasimetric (Pitis et al., 2020), dWN, applies a learned transformation to an asym-
metric representation of the difference between two states. The Wide Norm is defined as

dWN(x, y) = ||W (relu(x− y) :: relu(y − x))||2,
where “::” denotes concatenation and W ∈ Rk×2d is a learned weight matrix. This ensures that
dWN(x, y) is non-negative and satisfies the triangle inequality, while concatenation is asymmetric.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The Interval Quasimetric Embedding (IQE) (Wang & Isola, 2022) leverages the Lebesgue measure
of interval unions to capture asymmetric distances. Rather than vectors, IQE is defined on matrices
X,Y ∈ Rk×m. Let xij denote the element in row i and column j of matrix X . For each row i, we
construct an interval by taking the union over the intervals defined by matrices X and Y :

Ii(X,Y) =

m⋃
j=1

[xij , max{xij , yij}] .

The length of this interval, denoted by Li(X,Y), is computed as its Lebesgue measure. The IQE
distance is obtained by aggregating these row-wise lengths. For example, one may define

dIQE(X,Y) =

k∑
i=1

Li(X,Y),

or, alternatively, using a maxmean reduction:

dIQE-mm(X,Y) = α max
1≤i≤k

Li(X,Y) + (1− α)
1

k

k∑
i=1

Li(X,Y),

where α ∈ [0, 1] balances the influence of the maximum and the average. This construction yields a
quasimetric that inherently respects the triangle inequality while accounting for directional differences
between the matrices X and Y .

Given any of the above quasimetrics dq (i.e. dsimple, dWN or dIQE), we can now define an asymmetric
distance function dθ(s, s

′) = dq(ϕθ(s), ϕθ(s
′)). In the case of dIQE, the state embedding ϕ : S →

Rk×m has to produce a matrix rather than a vector. The choice of quasimetric directly shapes the
trade-offs in computational cost and optimization dynamics. In Appendix E, we present an ablation
study examining how this choice affects our algorithms.

6 LEARNING ASYMMETRIC MAD ESTIMATES

Here, we propose two novel variants of the MAD learning approach. Each trains a state encoding ϕθ

that maps states to an embedding space and uses a quasimetric dq to compute distances dθ(s, s′) =
dq(ϕθ(s), ϕθ(s

′)) between pairs of states (s, s′). Both variants support any quasimetric formulation
such as dsimple, dWN and dIQE, and can incorporate additional features such as gradient clipping. A
full derivation of these learning objectives is provided in Appendix C.

6.1 MADDIST: DIRECT DISTANCE LEARNING

The first algorithm, which we call MadDist, learns state distances using an approach similar to prior
work (Steccanella & Jonsson, 2022), but differs in the use of a quasimetric distance function and a
scale-invariant loss. Concretely, MadDist minimizes the following composite loss function:

L = Lo + wrLr + wcLc. (4)

The main objective, Lo, is a scaled version of the square difference in equation 2:

Lo = Eτ∼D,(si,sj)∼τ

[(
dθ(si, sj)

j − i
− 1

)2
]
. (5)

Crucially, scaling makes the loss invariant to the magnitude of the estimation error, which typically
increases as a function of j − i. In other words, states that are further apart on a trajectory do not
necessarily dominate the loss simply because the magnitude of the estimation error is larger.

The second loss term, Lr, which is weighted by a factor wr > 0, is a contrastive loss that encourages
separation between state pairs randomly sampled from all trajectories:

Lr = E(s,s′)∼SD

[
relu

(
1− dθ(s, s

′)

dmax

)2
]

(6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where dmax is a hyperparameter. Finally, the loss term Lc, which is weighted by a factor wc > 0,
enforces the upper bound constraints. Specifically, let D≤Hc

denote the set of state pairs sampled
from trajectories in D such that the index difference satisfies 1 ≤ j − i ≤ Hc (where Hc is a
hyperparameter), i.e.

D≤Hc = {(si, sj) | τ ∈ D, si, sj ∈ τ, 1 ≤ j − i ≤ Hc} .

Then, the constraint loss is defined as:

Lc = E(si,sj)∼D≤Hc

[
relu (dθ(si, sj)− (j − i))

2
]
. (7)

6.2 TDMADDIST: TEMPORAL DIFFERENCE LEARNING

The second algorithm, which we call TDMadDist, incorporates temporal difference learning principles
by maintaining a separate target embedding ϕθ′ and learning via bootstrapped targets. Specifically,
TDMadDist learns by minimizing the loss function L′ = L′

o + wrL′
r + wcLc, where Lc is the loss

term from equation 7 that enforces the upper bound constraints.

The main objective L′
o of TDMadDist is modified to include bootstrapped distances:

L′
o = Eτ∼D,(si,sj)∼τ

[(
dθ(si, sj)

min(j − i, 1 + dθ′(si+1, sj))
− 1

)2
]
. (8)

Hence if the current distance estimate dθ′(si+1, sj) computed using the target embedding ϕθ′ is
smaller than j − (i+ 1), the objective is to make dθ(si, sj) equal to 1 + dθ′(si+1, sj).

We also modify the second loss term L′
r to include bootstrapped distances:

L′
r = Eτ∼D,(si,sj)∼τ,sr∼SD

[(
dθ(si, sr)

1 + dθ′(si+1, sr)
− 1

)2
]
. (9)

Given a state si sampled from a trajectory of D and a random state sr ∈ SD, the objective is to make
dθ(si, sr) equal to 1 + dθ′(si+1, sr).

The target network parameters θ′ are updated in each time step via an exponential moving average
with hyperparameter β ∈ (0, 1):

θ′ ← (1− β)θ′ + βθ. (10)

7 EXPERIMENTS

We evaluate our proposed MAD learning algorithms on a diverse set of environments with varying
characteristics, including deterministic and stochastic dynamics, discrete and continuous state spaces,
and environments with noisy observations. Our analysis is directed by the following questions:

• How accurately do our learned embeddings capture the true minimum action distances?

• How does the performance of our method compare to existing quasimetric learning approaches?

• How robust is our approach to environmental stochasticity and observation noise?

Evaluation Metrics. We evaluate the quality of our learned representations using three metrics:

• Spearman Correlation (ρ): Measures the preservation of ranking relationships between state
pairs. A high Spearman correlation indicates that if state si is farther from state sj than from
state sk in the true environment, our learned metric also predicts this same ordering. Perfect
preservation of distance rankings gives ρ = 1.

• Pearson Correlation (r): Measures the linear relationship between predicted and true distances.
A high Pearson correlation indicates that our learned distances scale proportionally with true
distances (i.e. when true distances increase, our predictions increase linearly as well). Perfect
linear correlation gives r = 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CliffWalking MediumMaze OGBenchGiantMaze

Figure 2: A subset of the environments used in our analysis.

• Ratio Coefficient of Variation (CV): Measures the consistency of our distance scaling across
different state pairs. A low CV indicates that our predicted distances maintain a consistent ratio
to true distances throughout the state space. For example, if we consistently predict distances
that are approximately 1.5 times the true distance, CV will be low. High variation in this ratio
across different state pairs results in high CV. More formally, given a set of ground truth distances
d1, d2, ..., dn and their corresponding predicted distances d̂1, d̂2, ..., d̂n where di > 0, we compute
the ratios ri = d̂i/di. The Ratio CV is given by

CV =
σr

µr
=

√
1
n

∑n
i=1(ri − µr)2

1
n

∑n
i=1 ri

, (11)

Baselines. We compare our methods against QRL (Wang et al., 2023), a recent quasimetric reinforce-
ment learning approach that learns state representations using the Interval Quasimetric Embedding
(IQE) formulation. QRL employs a Lagrangian optimization scheme where the objective maximizes
the distance between states while maintaining locality constraints.

We also compare against the approach by Park et al. (2024b), an offline reinforcement learning
method that embeds states into a learned Hilbert space. In this space, the distance between embedded
states approximates the MAD, leading to a symmetric distance metric that cannot capture the natural
asymmetry of the true MAD. We include this comparison to demonstrate the benefits of methods that
explicitly model the quasimetric nature of the MAD over those that do not.

Environments. To evaluate the proposed methods, we designed a suite of environments where the
true MAD is known, enabling a precise quantitative assessment of our learned representations. This
perfect knowledge of the ground truth distances allows us to rigorously evaluate how well different
algorithms recover the underlying structure of the environment. A subset of the environments are
illustrated in Figure 2, with full details provided in Appendix G.

Our test environments span a comprehensive range of MDP characteristics:

• NoisyGridWorld: A continuous grid world environment with stochastic transitions. The agent
can move in four cardinal directions, but the action may fail with a small probability, causing the
agent to remain in the same state. The initial state is random and the goal is to reach a target state.
The MAD is known and can be computed as the Manhattan distance between states. Moreover we
included random noise in the observations by extending the state (x, y) with a random vector of
size two resulting in a 4-dimensional state space, where the first two dimensions are the original
coordinates and the last two dimensions correspond to noise.

• KeyDoorGridWorld: A discrete grid world environment where the agent must find a key to
unlock a door. The agent can move in four cardinal directions and the state (x, y, k) is represented
by the agent’s position (x, y) and whether or not it has the key (k). The MAD is known and can
be computed as the Manhattan distance between states where the distance between a state without
the key and a state with the key is the sum of the distances to the key. The key can only be picked
up and never dropped creating a strong asymmetry in the distance function.

• CliffWalking: The original CliffWalking environment as described by Sutton & Barto (1998).
The agent starts at the leftmost state and must reach the rightmost state while avoiding falling off
the cliff. If the agent falls it returns to the starting state but the episode is not reset. This creates a
strong asymmetry in the distance function, as the agent can take the shortcut by falling off the
cliff to move between states.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• PointMaze: A continuous maze environment where the agent must navigate through a series
of walls to reach a goal (Fu et al., 2020). The task in the environment is for a 2-DoF ball that
is force-actuated in the Cartesian directions x and y, to reach a target goal in a closed maze.
The underlying maze is a 2D grid with walls and obstacles, that we use in our experiments to
approximate the ground truth MAD, by computing the all pairs shortest path using the Floyd-
Warshall algorithm over the maze graph. We consider two variants of this environment: UMaze
and MediumMaze.

• OGBench PointMaze: A suite of physics-based maze environments that extend the standard
PointMaze to much larger and more challenging layouts (Park et al., 2024c). These environments
are designed to test long-horizon reasoning and provide two types of datasets: navigate, collected
by a noisy expert policy navigating to random goals, and stitch, consisting of short goal-reaching
trajectories that must be combined to solve tasks.

Empirical Setup. We compared our two algorithms MadDist and TDMadDist against the QRL and
Hilbert baselines. Each method was trained for 50,000 gradient steps on an offline dataset gathered
by a random policy. For the CliffWalking, NoisyGridWorld, and KeyDoorGridWorld environments,
we used 100 trajectories; for the PointMaze environments, we increased this to 1000 trajectories. All
reported results are means over five independent runs (random seeds) to ensure statistical robustness.
For full implementation details of our evaluation setup, see Appendix D.

Figure 3 shows the Pearson correlation and coefficient of variation (CV) ratio for KeyDoorGrid-
world, CliffWalking, and the OGBench Giant Maze environments. The full results produced in all
environments, including the Spearman correlations (which we found closely matched the Pearson
correlations) can be found in Appendix F. Appendix E contains additional ablation studies, and
demonstrates that MadDist and TDMadDist are robust to the size of the latent dimension and the
choice of quasimetric, and that their performance degrades gracefully with dataset size.

Table 1 reports additional results on a downstream planning task, where the learned distance embed-
dings are used to guide the agent toward specific goals. A detailed description of the planning setup
is provided in Appendix H.

Environments QRL TDMadDist Hilbert MadDist

PM Giant Navigate 0.87 ± 0.21 0.99 ± 0.05 0.16 ± 0.17 0.93 ± 0.17
PM Giant Stitch 0.95 ± 0.12 0.74 ± 0.26 0.05 ± 0.14 0.99 ± 0.07
PM Large Navigate 0.97 ± 0.09 0.70 ± 0.30 0.22 ± 0.20 1.00 ± 0.00
PM Large Stitch 0.90 ± 0.17 0.73 ± 0.24 0.17 ± 0.20 1.00 ± 0.00
PM Medium Navigate 0.86 ± 0.21 0.92 ± 0.16 0.55 ± 0.27 1.00 ± 0.00
PM Medium Stitch 0.81 ± 0.20 0.74 ± 0.24 0.67 ± 0.28 1.00 ± 0.00

Table 1: Success rates (± standard deviation) across different OGBench PointMaze environments.
Best results per environment are shown in bold.

Discussion. From the results in Figure 3, we can see that our proposed method MadDist outperforms
the QRL and Hilbert baselines in all environments, being able to learn a more accurate approximation
of the MAD. This is likely due to the fact that QRL only uses the locality constraints to learn the
embeddings, while our method leverages the path distances between arbitrary states in a trajectory
to form a more globally coherent representation. Both MadDist and TDMadDist significantly
outperform the Hilbert baseline, particularly in highly asymmetric environments like CliffWalking
and KeyDoorGridWorld. While TDMadDist underperforms the MadDist and QRL algorithm, its
strong performance relative to Hilbert highlights the advantages of our quasimetric approach even
when paired with a TD-based objective. Crucially, the high accuracy of the learned distance metric
directly translates to superior performance in the downstream task of goal-oriented planning, as
detailed in Table 1. MadDist achieves near-perfect or perfect success rates across all PointMaze
environments, decisively outperforming all baselines. Its performance is particularly noteworthy
in the Stitch environments, which require the model to compose information from disconnected
trajectories, and the large-scale Giant environments, which test the ability to handle long-horizon
tasks. This demonstrates that MadDist not only produces a quantitatively accurate distance function
but also an effective and practical representation for planning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Pearson correlation coefficients and coefficient of variation (CV) ratios across a selection
of test environments. Shaded regions minimum and maximum values across three random seeds.

8 CONCLUSION

In this paper, we present two novel algorithms for learning the Minimum Action Distance (MAD)
from state trajectories. We also propose a novel quasimetric for learning asymmetric distance
estimates, and introduce a set of benchmark domains that model several aspects that make distance
learning difficult. In a controlled set of experiments we illustrate that the novel algorithms and
proposed quasimetric outperform state-of-the-art algorithms for learning the MAD.

While this work has concentrated on accurately approximating the MAD as a fundamental stepping
stone, it opens several promising avenues for future research. One of them is the use of MAD estimates
in transfer learning and non-stationary environments, where transition dynamics evolve over time
yet maintain a consistent support. On the same line, MAD can be integrated as a heuristic in search
algorithms, particularly in stochastic domains, to identify the properties that make it a robust and
informative guidance signal under uncertainty. Having established reliable MAD approximation, it can
now be incorporated into downstream tasks, including goal-conditioned planning and reinforcement
learning, to quantify the empirical benefits it brings to complex decision-making problems.

Finally, while MAD can serve as a useful heuristic even in stochastic environments, future work
will explore whether it is possible to recover the Shortest Path Distance (SPD) or identify alternative
quasimetrics that more closely align with it.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor Features for Transfer in Reinforcement Learning. In Advances in Neural
Information Processing Systems, volume 30, pp. 4055–4065. Curran Associates, Inc., 2017.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957.

Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and Matthieu
Geist. Offline Reinforcement Learning with Pseudometric Learning. In Proceedings of the 38th
International Conference on Machine Learning, pp. 2307–2318. PMLR, 2021.

Peter Dayan. Improving Generalization for Temporal Difference Learning: The Successor Represen-
tation. Neural Computation, 5(4):613–624, 1993.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,
35:35603–35620, 2022.

Robert W. Floyd. Algorithm 97: Shortest Path. Communications of the ACM, 5(6):345, June 1962.
ISSN 0001-0782.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning. arXiv preprint arXiv:2004.07219, 2020.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to Reach Goals via Iterated Supervised Learning. In Proceedings of
the 8th International Conference on Learning Representations, 2020.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
JMLR Workshop and Conference Proceedings, pp. 315–323, 2011.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical Distance
Learning for Semi-Supervised and Unsupervised Skill Discovery. In Proceedings of the 8th
International Conference on Learning Representations, 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. arXiv preprint
arXiv:2208.10291, 2022.

Leslie Pack Kaelbling. Learning to Achieve Goals. International Joint Conference on Artificial
Intelligence, 2:1094–1098, August 1993.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations. PMLR, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit
Q-Learning. In Proceedings of the 10th International Conference on Learning Representations,
2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training.
In Proceedings of the 11th International Conference on Learning Representations, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-
Making. In Proceedings of the 41st International Conference on Machine Learning, pp. 37076–
37096. PMLR, 2024.

Whitney K Newey and James L Powell. Asymmetric Least Squares Estimation and Testing. Econo-
metrica: Journal of the Econometric Society, pp. 819–847, 1987.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline Goal-
Conditioned RL with Latent States as Actions. In Advances in Neural Information Processing
Systems, volume 36, pp. 34866–34891. Curran Associates, Inc., 2023.

Seohong Park, Oleh Rybkin, and Sergey Levine. METRA: Scalable Unsupervised RL with Metric-
Aware Abstraction. In Proceedings of the 12th International Conference on Learning Representa-
tions, 2024a.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation Policies with Hilbert Representations.
In Proceedings of the 41st International Conference on Machine Learning, pp. 39737–39761.
PMLR, 2024b.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024c.

Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba. An Inductive Bias for Distances: Neural
Nets that Respect the Triangle Inequality. In Proceedings of the 8th International Conference on
Learning Representations. Curran Associates, Inc., 2020.

Lorenzo Steccanella and Anders Jonsson. State Representation Learning for Goal-Conditioned
Reinforcement Learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 84–99. Springer, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press,
Cambridge, 1998.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2018.

Jean Tarbouriech, Runlong Zhou, Simon S. Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric.
Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret. In Advances
in Neural Information Processing Systems, volume 34, pp. 6843–6855. Curran Associates, Inc.,
2021.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-Learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Tongzhou Wang and Phillip Isola. Improved Representation of Asymmetrical Distances with
Interval Quasimetric Embeddings. In NeurIPS Workshop on Symmetry and Geometry in Neural
Representations. Curran Associates, Inc., 2022.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal Goal-Reaching Reinforce-
ment Learning via Quasimetric Learning. In Proceedings of the 40th International Conference on
Machine Learning, pp. 36411–36430. PMLR, 2023.

Stephen Warshall. A Theorem on Boolean Matrices. Journal of the ACM, 9(1):11–12, January 1962.
ISSN 0004-5411.

Sungwook Yoon, Alan Fern, and Robert Givan. FF-Replan: A baseline for probabilistic planning. In
Proceedings of the 5th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 352–359, 2007.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOF OF UNIQUENESS FOR THE MAD OPTIMIZATION PROBLEM

We begin by formally defining the Minimum Action Distance (MAD) in terms of policies and first
passage times within a Markov Decision Process (MDP).
Definition 1 (Minimum Action Distance). Let T (sj | π, si) be the random variable for the first time
step at which state sj is reached when starting in state si and following policy π. The support of this
random variable, denoted supp(T (sj | π, si)), is the set of all possible first passage times that occur
with non-zero probability. The Minimum Action Distance dMAD : S × S → N ∪ {∞} is defined as:

dMAD(si, sj) := min
π

min [supp(T (sj | π, si))] .

This definition finds the length of the shortest possible trajectory from si to sj . The inner minimum,
min[supp(·)], identifies the shortest-in-time realization possible under a fixed policy π. The outer
minimum, minπ, then finds the policy that makes this shortest possible realization as short as
possible. Note that if the process starts in the target state s0 = sj , the first passage time is zero, i.e.,
0 ∈ supp(T (sj | π, sj)).

Equivalence to Graph Shortest Path Let G = (S, R) be the state-transition graph where an edge
(s, s′) ∈ R exists if and only if there is an action a with P (s′|s, a) > 0. A path of length k from si to
sj in G corresponds to a sequence of actions that can transition between these states with non-zero
probability. We can always construct a policy π that executes this specific sequence. Therefore,
minimizing over all policies is equivalent to finding the length of the shortest path between nodes si
and sj in the graph G. This equivalence allows us to leverage the properties of shortest path distances
in the proof below.
Theorem 1. The Minimum Action Distance, dMAD, as defined above, is the unique solution to the
constrained optimization problem:

maximize
d

∑
(s,s′)∈S2

d(s, s′)

subject to d(s, s) = 0 ∀s ∈ S (C1)

d(s, s′) ≤ 1 ∀(s, s′) ∈ R (C2)

d(s, s′) ≤ d(s, s′′) + d(s′′, s′) ∀(s, s′, s′′) ∈ S3 (C3)

Proof. The proof is structured in two parts. First, we show that dMAD is a feasible solution. Second,
we show that for any other feasible solution d, we must have d(s, s′) ≤ dMAD(s, s

′), establishing
both optimality and uniqueness.

Part 1: Feasibility of dMAD

Using the shortest path interpretation of dMAD, we verify that it satisfies each constraint.

• Constraint (C1) - Identity: The shortest path from any state s to itself is the empty path of
length 0. Thus, dMAD(s, s) = 0.

• Constraint (C2) - One-Step Reachability: If (s, s′) ∈ R, there exists a direct edge from s
to s′ in G. This corresponds to a path of length 1. The shortest path, dMAD(s, s

′), cannot be
longer than this path, so dMAD(s, s

′) ≤ 1.

• Constraint (C3) - Triangle Inequality: This is a fundamental property of shortest paths.
The shortest path from s to s′ is, by definition, no longer than the path formed by concate-
nating the shortest path from s to an intermediate state s′′ and the shortest path from s′′ to
s′. This directly gives the inequality dMAD(s, s

′) ≤ dMAD(s, s
′′) + dMAD(s

′′, s′).

As dMAD satisfies all constraints, it is a feasible solution.

Part 2: Optimality and Uniqueness of dMAD

Let d be an arbitrary feasible solution satisfying (C1), (C2), and (C3). We show by induction on the
shortest path length k = dMAD(s, s

′) that d(s, s′) ≤ dMAD(s, s
′).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Base Case (k = 0): If dMAD(s, s
′) = 0, then s = s′. By constraint (C1), any feasible

solution d must satisfy d(s, s) = 0. Thus, d(s, s′) = 0 = dMAD(s, s
′).

• Inductive Hypothesis: Assume for some integer k ≥ 0 that for all pairs (s, s′) with
dMAD(s, s

′) ≤ k, the inequality d(s, s′) ≤ dMAD(s, s
′) holds.

• Inductive Step: Consider a pair (s, s′) with dMAD(s, s
′) = k + 1. By the shortest path

definition, there must exist a predecessor state s′′ on a shortest path from s to s′ such that
(s′′, s′) ∈ R and dMAD(s, s

′′) = k.

Applying the constraints on d:

d(s, s′) ≤ d(s, s′′) + d(s′′, s′) by (C3), the triangle inequality

≤ dMAD(s, s
′′) + d(s′′, s′) by Inductive Hypothesis, since dMAD(s, s

′′) = k

≤ k + 1 by (C2), since (s′′, s′) ∈ R

Since dMAD(s, s
′) = k + 1, we have shown that d(s, s′) ≤ dMAD(s, s

′).

By induction, we have established that for any feasible solution d, the inequality d(s, s′) ≤
dMAD(s, s

′) holds for all pairs (s, s′) ∈ S2.

• Optimality: The objective is to maximize the sum
∑

(s,s′)∈S2 d(s, s′). Since we have
shown that every term d(s, s′) is less then or equal to the corresponding term dMAD(s, s

′),
the total sum for any feasible solution d cannot exceed the sum for dMAD:∑

(s,s′)∈S2

d(s, s′) ≤
∑

(s,s′)∈S2

dMAD(s, s
′)

Since dMAD is itself a feasible solution, it achieves the maximum possible value, proving it
is an optimal solution.

• Uniqueness: Let’s assume d∗ is another solution that is also optimal.

– For d∗ to be optimal, its total sum must equal the maximum possible sum:∑
(s,s′)∈S2

d∗(s, s′) =
∑

(s,s′)∈S2

dMAD(s, s
′)

– From the induction proof we know that d∗(s, s′) ≤ dMAD(s, s
′) for every single pair

(s, s′).

Therefore d∗(s, s′) = dMAD(s, s
′) ∀(s, s′) ∈ S2.

B QUASIMETRIC CONSTRUCTIONS VIA RELU REDUCTION

Let x, y ∈ Rd. We begin by defining a ReLU-based coordinate reduction, then derive scalar
quasimetrics through several aggregation operators, and finally state general results for convex
combinations.

B.1 COORDINATEWISE RELU REDUCTION

Definition 2 (ReLU Reduction). Define the map r : Rd × Rd → Rd by

r(x, y) = relu(x− y), ri(x, y) = max
{
xi − yi, 0

}
, i = 1, . . . , d.

Proposition 1. For all x, y, z ∈ Rd and λ > 0, each coordinate ri satisfies:

(a) Nonnegativity and identity: ri(x, y) ≥ 0 and ri(x, x) = 0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(b) Asymmetry: ri(x, y) ̸= ri(y, x) unless xi = yi.

(c) Triangle inequality: ri(x, y) ≤ ri(x, z) + ri(z, y).

(d) Positive homogeneity: ri(λx, λy) = λ ri(x, y).

Proof. (a) and (b) follow directly from the definition of the max operation.

(c) Observe that

ri(x, y) = max(xi − yi, 0) = max
(
(xi − zi) + (zi − yi), 0

)
≤ max(xi − zi, 0) + max(zi − yi, 0) = ri(x, z) + ri(z, y).

(d) Linearity of scalar multiplication inside the max gives

ri(λx, λy) = max(λxi − λyi, 0) = λmax(xi − yi, 0) = λri(x, y).

This concludes the proof.

B.2 SCALAR QUASIMETRICS VIA AGGREGATION

We now obtain real-valued quasimetrics by aggregating the vector r(x, y).
Definition 3 (Max Reduction).

dmax(x, y) = max
1≤i≤d

ri(x, y).

Definition 4 (Sum and Mean Reductions).

dsum(x, y) =

d∑
i=1

ri(x, y), dmean(x, y) =
1
d

d∑
i=1

ri(x, y).

Proposition 2. Each of dmax, dsum, and dmean satisfies for all x, y, z ∈ Rd and λ > 0:

(a) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

(b) Positive homogeneity: d(λx, λy) = λ d(x, y).

Proof. (a) follows by combining coordinate-wise triangle bounds with either:

• dmax : maxi[ai + bi] ≤ maxi ai +maxi bi,

• dsum and dmean: term-wise summation.

(b) is immediate from the linearity of scalar multiplication and properties of max/sum.

B.3 CONVEX COMBINATIONS OF QUASIMETRICS

More generally, let d1, . . . , dn be any quasimetrics on Rd each obeying the triangle inequality and
positive homogeneity. For weights α1, . . . , αn ≥ 0 with

∑
k αk = 1, define

dconv(x, y) =

n∑
k=1

αk dk(x, y).

Proposition 3. dconv is a quasimetric satisfying:

(a) Triangle inequality: dconv(x, y) ≤ dconv(x, z) + dconv(z, y).

(b) Positive homogeneity: dconv(λx, λy) = λ dconv(x, y).

Proof. Linearity of the weighted sum together with the corresponding property for each dk yields
(a)–(b).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C DERIVATION OF LEARNING OBJECTIVES FOR MINIMUM ACTION DISTANCE

This appendix details the derivation of the MadDist and TDMadDist loss functions. The derivation
begins with the foundational, but computationally intractable, constrained optimization problem for
the Minimum Action Distance (MAD) and systematically transforms it into a pair of scalable learning
objectives.

C.1 CONSTRAINED OPTIMIZATION PROBLEM FOR MAD

The Minimum Action Distance, dMAD, is the solution to the following constrained optimization
problem. This formulation seeks a distance function that maximizes the sum of all pairwise distances
while remaining consistent with the environment’s one-step transition dynamics.

maximize
d

∑
(s,s′)∈S2

d(s, s′) (Objective 1)

subject to d(s, s) = 0 ∀s ∈ S (Constraint 1: Identity)

d(s, s′) ≤ 1 ∀(s, s′) ∈ R (Constraint 2: One-Step)

d(s, s′) ≤ d(s, s′′) + d(s′′, s′) ∀(s, s′, s′′) ∈ S3 (Constraint 3: Triangle Inequality)

This formulation is computationally intractable for large or continuous state spaces, primarily due to
the triangle inequality (Constraint 3), which must hold for all triplets of states.

C.2 SIMPLIFICATION VIA QUASIMETRIC EMBEDDINGS

To make this problem tractable, we enforce the triangle inequality by construction rather than as an
explicit constraint. We achieve this by learning a state embedding function ϕ : S → Rk and defining
the distance between any two states s, s′ using a quasimetric function dq on their embeddings:

dϕ(s, s
′) := dq(ϕ(s), ϕ(s

′))

A quasimetric function dq(x, y) satisfies the following properties by definition:

1. Identity: dq(x, x) = 0

2. Non-negativity: dq(x, y) ≥ 0

3. Triangle Inequality: dq(x, z) ≤ dq(x, y) + dq(y, z)

By defining dϕ as a quasimetric over the embedding space, the identity (Constraint 1) and triangle
inequality (Constraint 3) properties are satisfied for any choice of embedding function ϕ. This
simplification is crucial, as it removes the most computationally expensive constraint and leaves us
with a more manageable learning problem:

maximize
ϕ

∑
(s,s′)∈S2

dq(ϕ(s), ϕ(s
′))

subject to dq(ϕ(s), ϕ(s
′)) ≤ 1 ∀(s, s′) ∈ R (Constraint 2: One-Step)

C.3 THE MadDist LOSS FUNCTION

We now translate this simplified problem into a loss function suitable for minimization via gradient
descent. Given a dataset of state trajectories D = {(s0, s1, . . . , sn), . . . }, the path length j − i for
any pair of states (si, sj) on a trajectory with i < j provides a valid upper bound on the true MAD,
i.e., dMAD(si, sj) ≤ j − i.

The MadDist loss, L = Lo + wrLr + wcLc, is composed of three terms, each corresponding to a
component of the optimization problem.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Term 1: The Objective Loss (Lo). The original goal is to maximize all pairwise distances. As
a practical proxy, we formulate a loss term that is minimized when the learned distance dϕ(si, sj)
matches its trajectory-based upper bound, j − i. This encourages the learned distances to increase,
directly addressing the maximization objective by using information from the dataset. We use a
scale-invariant squared error to prevent long-horizon pairs from dominating the loss.

Lo = E(si,sj)∼D

[(
dϕ(si, sj)

j − i
− 1

)2
]

Minimizing Lo encourages dϕ(si, sj)→ j − i, serving as a proxy for the maximize objective.

Term 2: The Contrastive Loss (Lr). To further support the global maximization objective, we
introduce a contrastive term. We sample random pairs of states (s, s′) from the dataset and penalize
them for having a small distance. This encourages all states to be far apart, which aligns with the
goal of maximizing the sum of all distances, especially for pairs not on the same trajectory.

Lr = E(s,s′)∼SD

[
relu

(
1− dϕ(s, s

′)

dmax

)2
]

where SD is the set of all states appearing in the dataset D. Minimizing Lr incentivizes dϕ(s, s′) for
random pairs to approach a large value dmax, again serving the maximize objective.

Term 3: The Constraint Loss (Lc). While Lo encourages matching the upper bound, it does
not strictly enforce the inequality. We add an explicit penalty term that penalizes violations of the
trajectory upper bound.

Lc = E(si,sj)∼D<Hc

[
relu(dϕ(si, sj)− (j − i))2

]
This term enforces the constraint dϕ(si, sj) ≤ j − i, which is a generalization of the one-step
constraint (dϕ(s, s′) ≤ 1). The learning process finds an equilibrium where the objective terms
(Lo,Lr) encourage larger distances, while this constraint term (Lc) and the implicit triangle inequality
provide regularization.

C.4 TEMPORAL DIFFERENCE BOOTSTRAPPING (TDMadDist)

TDMadDist integrates principles from Temporal Difference (TD) learning. Instead of relying solely
on the data-driven target j − i, it uses the model’s own predictions to form a potentially tighter,
more informed target. From the Bellman equation for shortest paths, we have dMAD(si, sj) =
1 + dMAD(si+1, sj). We can therefore use the bootstrapped value 1 + dϕ′(si+1, sj) using a stable
target network ϕ′ as the new target for our objective.

The objective terms are modified as follows:

The TD Main Objective (L′
o). The target for dϕ(si, sj) becomes the minimum of the trajectory

upper bound and the bootstrapped target.

L′
o = E(si,sj)∼D

[(
dϕ(si, sj)

min(j − i, 1 + dϕ′(si+1, sj))
− 1

)2
]

Minimizing this loss still serves the maximize objective, but now encourages distances toward a
dynamically updated target.

The TD Contrastive Objective (L′
r). The contrastive term is modified to be consistent with the

one-step Bellman logic, using a bootstrapped target.

L′
r = E(si,sr)∼D

[(
dϕ(si, sr)

1 + dϕ′(si+1, sr)
− 1

)2
]

The constraint loss Lc remains unchanged.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS

In this section, we describe the implementation details of each algorithm included in our evaluation.

D.1 COMPUTER RESOURCES

We run all experiments on a single NVIDIA RTX 4070 GPU with 8GB of VRAM and an Intel
i7-4700-HX with 32GB of RAM. We will provide the code for all experiments upon acceptance of
the paper.

D.2 MADDIST

To train the MadDist distance models, we used the Adam optimizer with a learning rate of 1× 10−4,
a batch size of 256 for the objective (Lo, Lr), and a separate batch of size 1024 for the constraint loss
(Lc). For our main experiment, we used the novel simple quasimetric function and a latent dimension
size of 512. We include an ablation over different quasimetric functions and latent dimension sizes in
Appendix E.

The full set of hyperparameter values used to train the MadDist models can be found in Table 2.

Table 2: Hyperparameters used to train the MadDist algorithm.

Hyperparameter Value
Quasimetric Function dsimple

Optimizer Adam Kingma & Ba (2015)
Learning Rate 1 ×10−4

Batch Size (Lo, Lr) 256
Batch Size (Lc) 1024
Activation Function (Hidden Layers) SELU Klambauer et al. (2017)
Neural Network (512, 512, 256, 128)
wr 1, 10
wc 0.1
dmax 100, 500
Hc 6

D.3 TDMADDIST

To train the TDMadDist distance models, we used the the Adam optimizer with a learning rate of
1 × 10−4, a batch size of 256 for the objective (Lo, Lr), and a separate batch of size 1024 for the
constraint loss (Lc). For our main experiment, we used the novel simple quasimetric function and a
latent dimension size of 512. We include an ablation over different quasimetric functions and latent
dimension sizes in Appendix E.

For TDMadDist, we remove the hyperparameter dmax from the MadDist algorithm, because it is
not included in TDMadDist’s objective (Lr). The temporal-difference update used when training
the TDMadDist distance models involves the use of a target network, dθ′ , which is updated using a
Polyak averaging factor τ = 0.005.

The full set of hyperparameter values used to train the TDMadDist models can be found in Table 3.

D.4 QRL

We trained QRL distance models following the approach of Wang et al. (2023). We used the
Lagrangian formulation

min
θ

max
λ≥0
−Es,s′∼SD

[ϕ(dIQE
θ (s, s′))] + λ

(
E(s,s′)∼ptransition [relu(dIQE

θ (s, s′) + 1)2]
)
, (12)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters used to train the TDMadDist algorithm.

Hyperparameter Value
Quasimetric Function dsimple

Optimizer Adam Kingma & Ba (2015)
Learning Rate 1 ×10−4

Batch Size (Lo, Lr) 256
Batch Size (Lc) 1024
Activation Function (Hidden Layers) SELU Klambauer et al. (2017)
Neural Network (512, 512, 256, 128)
wr 1
wc 0.1
Hc 6
τ 0.005

where ϕ(x) ≜ − softplus(α − x, β) and dIQE
θ (s, s′) is the IQE distance between states s and s′.

Following Wang et al. (2023), we set (α, β) = (15, 0.1) for short-horizon environments and (α, β) =
(500, 0.01) for long-horizon environments. The first term in the objective maximizes the expected
distance between states sampled from the dataset, while the second term penalizes distances between
state–next-state pairs (s, s′) observed in the data.

Through our experiments, we observed that setting the softplus offset to 15 and the steepness to 0.1,
as suggested for short-horizon environments by Wang et al. (2023), led to better performance overall.

For the neural network architecture, we used a multi-layer perceptron with an overall layer structure
of x - 512 - 512 - 128 (where x is the input observation dimension). Its two hidden layers (each of size
512) use ReLU activations, as described for state-based observations environments (i.e., environments
with real vector observations, as opposed to images or other high-dimensional inputs) in the original
paper. For the distance function, the resulting 128-dimensional MLP output is fed into a separate
128-512-2048 projector, followed by an IQE-maxmean head with 64 components each of size 32.

The full set of hyperparameter values used to train the QRL distance models can be found in Table 4.

Table 4: Hyperparameters used to train the QRL model.

Hyperparameter Value
Neural Network State embedding x - 512 - 512 - 128
Neural Network IQE Projector 128-512-2048
Activation Function (Hidden Layers) ReLU Glorot et al. (2011)
Optimizer Adam Kingma & Ba (2015)
λ Learning Rate 0.01
Learning Rate Model 1 ×10−4

Batch Size 256
Quasimetric function IQE
IQE n components 64
IQE Reduction maxmean

D.5 HILBERT REPRESENTATION

A Hilbert representation model is a function ϕ : S → Rd that embeds a state s ∈ S into a d-
dimensional space, such that the Euclidean distance between embedded states approximates the
number of actions required to transition between them under the optimal policy.

We trained Hilbert representation models following the approach of Park et al. (2024b), us-
ing action-free Implicit Q-Learning (IQL) (Park et al., 2023) and Hindsight Experience Re-
play (HER) (Andrychowicz et al., 2017).

We used a dataset of state–next-state pairs (s, s′), which we relabeled using HER to produce state–
next-state–goal tuples (s, s′, g). Goals were sampled from a geometric distribution Geom(γ) over

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

future states in the same trajectory with probability 0.625, and uniformly from the entire dataset with
probability 0.375.

We trained the Hilbert representation model ϕ to minimize the temporal-difference loss

E[lτ (−1(s ̸= g)− γ||ϕ(s′)− ϕ(g)||+ ||ϕ(s)− ϕ(g)||)] , (13)

where lτ denotes the expectile loss (Newey & Powell, 1987), an asymmetric loss function that
approximates the max operator in the Bellman backup (Kostrikov et al., 2022). This objective
naturally supports the use of target networks (Mnih et al., 2015) and double estimators (Van Hasselt
et al., 2016) to improve learning stability. We included both in our implementation, following the
original setup used by Park et al. (2024b).

The full set of hyperparameter values used to train the Hilbert models can be found in Table 5.

Table 5: Hyperparameters used to train the Hilbert representation models.

Hyperparameter Value
Latent Dimension 32
Expectile 0.9
Discount Factor 0.99
Learning Rate 0.0003
Target Network Smoothing Factor 0.005
Multi-Layer Perceptron Dimensions (512, 512) Fully-Connected Layers
Activation Function (Hidden Layers) GELU (Hendrycks & Gimpel, 2016)
Layer Normalization (Hidden Layers) True
Activation Function (Final Layer) Identity
Layer Normalization (Final Layer) False
Optimizer Adam (Kingma & Ba, 2015)
Batch Size 1024

E ABLATION STUDY

In this section, we present additional ablation studies to analyze the performance of our proposed
methods. We evaluate the impact of different hyperparameters and design choices on the performance
of the learned embeddings.

We conduct experiments in the CliffWalking environment, which is a highly asymmetric environment
with a known ground truth MAD. For each experiment we train the MadDist algorithm using the
same hyperparameters from the main experiments, varying only the hyperparameter of interest while
keeping all others fixed. We then evaluate the learned embeddings using Spearman correlation,
Pearson correlation, and Ratio CV metrics.

E.1 EFFECT OF LATENT DIMENSION ON MAD ACCURACY

Figure 4: Impact of latent size on Spearman correlation, Pearson correlation and Ratio CV of the
MadDist and TDMadDist algorithms, evaluated in the CliffWalking environment. Shaded regions
show the range of values across five random seeds, with upper and lower boundaries representing
maximum and minimum values.

Figure 4 shows the impact of the latent dimension size on the performance of our proposed methods.
We can see that increasing the latent dimension size improves the performance of our methods.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We note that the performance starts to saturate after a latent dimension size of 10, but larger latent
dimension sizes still slightly improve the performance and do not harm the performance. This is
likely due to the fact that larger latent dimension sizes allow for more expressive representations,
which can help to better capture the underlying structure of the environment.

E.2 EFFECT OF QUASIMETRIC CHOICE ON MAD ACCURACY

Figure 5: Impact of different quasimetric functions on correlation and Ratio CV of the MadDist
algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
across five random seeds, with upper and lower boundaries representing maximum and minimum
values.

Figure 6: Impact of different quasimetric functions on correlation and Ratio CV of the TDMadDist
algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
across five random seeds, with upper and lower boundaries representing maximum and minimum
values.

Figure 5 shows the impact of different quasimetric functions on the performance of the learned
MadDist model. The novel simple quasimetric (MadDistance-Simple) achieves the best performance,
outperforming both the Wide Norm (MadDistance-WideNorm) and IQE (MadDistance-IQE) variants.
While Wide Norm and IQE perform similarly to each other, they consistently underperform the
simple quasimetric across all three evaluation metrics.

Figure 6 presents the same ablation over quasimetric functions, now applied to learning the TDMad-
Dist model. The results mirror the previous setting: the simple quasimetric (TDMadDist-Simple)
again achieves the strongest performance, while the Wide Norm (TDMadDist-WideNorm) and IQE
(TDMadDist-IQE) variants lag slightly behind and show comparable results to each other.

In this experiment, we used a latent dimension size of 256. For the Wide Norm quasimetric, we
configure the model with 32 components, each having an output component size of 32. For the IQE
quasimetric, we set each component to have a dimensionality of 16. For both quasimetric functions
we use maxmean reduction (Pitis et al., 2020).

E.3 EFFECT OF DATASET SIZE ON MAD ACCURACY

Figure 7 illustrates how dataset size affects the performance of our proposed methods. As the number
of trajectories increases, the dataset provides broader coverage of all the possible transitions in the
environment, leading to a more accurate approximation of the MAD.

F COMPLETE LIST OF RESULTS

In this section, we report the complete list of results, including the Spearman and Pearson Correlation
metrics together with the Ratio Coefficient of Variation. The results appear in Figure 9 and in Figure 9.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: Impact of dataset size on Spearman correlation, Pearson correlation and Ratio CV of the
MadDist and TDMadDist algorithms, evaluated in the CliffWalking environment. Shaded regions
show the range of values across five random seeds, with upper and lower boundaries representing
maximum and minimum values.

Figure 8: Pearson and Spearman correlation coefficients and coefficient of variation (CV) ratios
across test environments. Shaded regions minimum and maximum values across three random seeds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: Pearson and Spearman correlation coefficients and coefficient of variation (CV) ratios
across OGBench test environments. Shaded regions minimum and maximum values values across
three random seeds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G ENVIRONMENTS

Our test environments were specifically chosen to span a comprehensive range of reward-free MDP
characteristics and challenges, ensuring a thorough evaluation. Key design considerations for this
suite include:

• Noisy Observations: To assess robustness to imperfect state information, which can challenge
algorithms relying on precise state identification.

• Stochastic Dynamics: To evaluate if our algorithm can retrieve the MAD even when transitions
are not deterministic. This reflects real-world scenarios where environments have inherent
randomness or agent actions have uncertain outcomes.

• Asymmetric: To test the capability of our algorithm to learn true quasimetric distances that capture
directional dependencies (e.g., one-way paths, key-door mechanisms).

• State Spaces:

– Continuous State Spaces: To demonstrate applicability to problems with real-valued state
representations where function approximation is essential.

– Discrete State Spaces: To provide foundational testbeds with clearly defined structures and
allow for exact MAD computation.

• Action Spaces:

– Continuous Action Spaces: To evaluate performance in environments where actions are
defined by real-valued parameters, common in robotics and physical control tasks.

– Discrete Action Spaces: To ensure applicability to environments with a finite set of distinct
actions.

• Complex Dynamics: Incorporating environments like PointMaze, which feature non-trivial physics
(velocity, acceleration).

• Hard Exploration: Utilizing environments with complex structures (e.g., intricate mazes) that
pose significant exploration challenges for naive data collection policies (like the random policy
we used in our experiments).

NOISYGRIDWORLD

Noisy Observations, Stochastic Dynamics, Continuous State Space, Discrete Action Space

• State space: The agent receives a 4-dimensional observation vector (x, y, n1, n2)at each step. In
this observation, (x, y) are discrete coordinates in a 13× 13 grid, and (n1, n2) ∼ N (0, σ2I) are
i.i.d. Gaussian noise components. The true underlying latent state, which is not directly observed
by the agent in its entirety without noise, is the coordinate pair (x, y). The presence of the noise
components (n1, n2) in the observation makes the sequence of observations non-Markovian with
respect to this true latent state.

• Action space: Four stochastic actions are available in all states: UP, DOWN, LEFT, and RIGHT.

• Transition dynamics: With probability 0.5, the intended action is executed; with probability 0.5,
a random action is applied. Transitions are clipped at grid boundaries.

• Initial state distribution (µ0): The agent’s initial true latent state (x0, y0) is a random real-valued
position sampled uniformly from the grid. The full initial observation is (x0, y0, n1,0, n2,0), where
the initial noise components (n1,0, n2,0) are also sampled i.i.d. from N (0, σ2I). The real-valued
nature of both the initial position and the noise components makes the observed state space
continuous.

• Ground-truth MAD: Since the latent state is deterministic apart from noise, the MAD between
two states (x1, y1) and (x2, y2) is the Manhattan distance |x1−x2|+ |y1−y2|. Noise components
are ignored.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

KEYDOORGRIDWORLD

Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space

• State space: States are triples (x, y, k), where (x, y) is the agent’s position in a 13× 13 grid, and
k ∈ {0, 1} indicates whether the key has been collected.

• Action space: Four deterministic actions are available in all states: UP, DOWN, LEFT, and
RIGHT.

• Transition dynamics: Transitions are deterministic. The agent picks up the key by visiting the
key’s cell; the key cannot be dropped once collected. The door can only be passed if the key has
been collected.

• Initial state distribution (µ0): The agent starts at position (1, 1).

• Ground-truth MAD: Defined as the minimum number of steps to reach the target state, account-
ing for key dependencies. For example, if the agent lacks the key and the goal requires it, the path
must include visiting the key first.

CLIFFWALKING

Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space

• State space: The environment is a 4× 12 grid. Each state corresponds to a discrete cell (x, y).

• Action space: Four deterministic actions are available in all states: UP, DOWN, LEFT, or RIGHT.

• Transition dynamics: Transitions are deterministic unless the agent steps into a cliff cell, in
which case it is returned to the start. The episode is not reset.

• Initial state distribution (µ0): The agent starts at position (1, 1).

• Ground-truth MAD: The MAD is the minimal number of steps required to reach the target state,
allowing for cliff transitions. Since falling into the cliff resets the agent’s position, it can create
shortcuts and lead to strong asymmetries in the distance metric.

POINTMAZE

Continuous State Space, Complex Dynamics, Hard exploration, Continuous Action Space

• State space: The agent observes a 4-dimensional vector (x, y, ẋ, ẏ), where (x, y) is the position of
a green ball in a 2D maze and (ẋ, ẏ) are its linear velocities in the x and y directions, respectively.

• Action space: Continuous control inputs (ax, ay) corresponding to applied forces in the x and y
directions. The applied force is limited to the range [−1, 1] N in each direction.

• Transition dynamics: The system follows simple force-based dynamics within the MuJoCo
physics engine. The applied forces affect the agent’s velocity, which in turn updates its position.
The ball’s velocity is limited to the range [−5, 5] m/s in each direction. Collisions with the maze’s
walls are inelastic: any attempted movement through a wall is blocked.

• Initial state distribution (µ0): The agent starts at a random real-valued position (x, y) sampled
uniformly from valid maze locations. The initial velocities (ẋ0, ẏ0) are set to (0, 0).

• Ground-truth MAD: The maze is discretized into a uniform grid. Using the Floyd-Warshall
algorithm on the resulting connectivity graph, we compute shortest path distances between all
reachable pairs of positions.

OGBENCH POINTMAZE

Continuous State Space, Complex Dynamics, Hard Exploration, Continuous Action Space

This benchmark extends the PointMaze environment to significantly larger and more challenging
mazes, designed to test long-horizon reasoning and exploration capabilities. The controlled agent is
the same 2D ball as in PointMaze, but the scale and complexity of the mazes increase substantially.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Medium: Matches the original medium maze from D4RL.
• Large: Matches the original large maze from D4RL.
• Giant: Twice the size of Large, with a layout adapted from the antmaze-ultra maze of

Jiang et al. (2022). It contains longer paths, requiring up to 1000 environment steps, making it
especially demanding for long-horizon planning.

Two datasets are provided for each maze:

• Navigate: Collected using a noisy expert policy that repeatedly navigates to randomly sampled
goals throughout the maze.

• Stitch: Consists of short, goal-reaching trajectories of at most 4 cell units in length. Solving tasks
requires stitching together multiple short demonstrations (up to 8), testing the agent’s ability to
compose behaviors across long horizons.

H PLANNING EXPERIMENTS

To assess the practical utility of the learned MAD embeddings, we evaluated the performance
of our algorithms and baselines on a downstream goal-reaching task in the OGBench PointMaze
environments.

PLANNING ALGORITHM

We employed a simple planning algorithm based on random shooting, a form of model-predictive
control (MPC), which allows for a direct evaluation of the distance metric as a planning heuristic.
This approach isolates the effectiveness of the learned metric from confounding factors that would be
introduced by more complex planners.

The planning process at each time step t, given a current state st and a goal state g, is as follows:

1. Generate K = 100 candidate action sequences, each of length H , by sampling actions uniformly
at random at each step in the sequence.

2. For each of the K action sequences, use the true environment simulator to roll out the correspond-
ing state trajectory {st+1, . . . , st+H}.

3. Score each trajectory by finding the state within it that minimizes the learned distance to the goal.
The score for a trajectory is given by min0<i≤H dθ(st+i, g), where dθ is the learned distance.

4. Identify the action sequence that achieved the minimum score (i.e., the one that brought the agent
closest to the goal).

5. Execute the first action from this best-scoring sequence to transition to the next state, st+1.

This entire process is repeated at each step in a receding-horizon fashion until the agent reaches the
goal or a maximum episode length is exceeded.

Our choice of this simple planning framework is deliberate. By relying on the true simulator and
random action sampling, the success of the planner depends directly on the metric’s ability to provide
a meaningful and accurate signal for progress toward the goal. This avoids confounding the evaluation
with inaccuracies that might arise from a learned dynamics model or the complexities of a separate
policy optimization algorithm.

It is important to note the limitations of this planner: since actions are sampled randomly, the resulting
trajectories are sub-optimal and tend to explore only a local region around the agent’s current state.
Therefore, success in these long-horizon tasks heavily relies on the learned metric providing a
consistent and reliable global signal toward the goal, guiding the planner effectively even with its
limited local search.

EVALUATION PROTOCOL

Each task in OGBench accompanies five pre-defined state-goal pairs for evaluation. To ensure
statistical robustness, we evaluate over 3 independent random seeds. For each seed and each of

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

the five state-goal pairs, we run 50 evaluation episodes, each with slightly randomized initial and
goal states. Performance, as reported in Table 1, is measured by the average success rate across all
episodes. An episode is considered successful if the agent reaches a state within a small Euclidean
distance of the goal coordinates.

26

	Introduction
	Related Work
	Background
	The Minimum Action Distance
	Asymmetric Distance Metrics
	Learning Asymmetric MAD Estimates
	MadDist: Direct Distance Learning
	TDMadDist: Temporal Difference Learning

	Experiments
	Conclusion
	Proof of Uniqueness for the MAD Optimization Problem
	Quasimetric Constructions via ReLU Reduction
	Coordinatewise ReLU Reduction
	Scalar Quasimetrics via Aggregation
	Convex Combinations of Quasimetrics

	Derivation of Learning Objectives for Minimum Action Distance
	Constrained Optimization Problem for MAD
	Simplification via Quasimetric Embeddings
	The MadDist Loss Function
	Temporal Difference Bootstrapping (TDMadDist)

	Implementation Details
	Computer Resources
	MadDist
	TDMadDist
	QRL
	Hilbert Representation

	Ablation Study
	Effect of Latent Dimension on MAD Accuracy
	Effect of Quasimetric Choice on MAD Accuracy
	Effect of Dataset Size on MAD Accuracy

	Complete list of results
	Environments
	Planning Experiments

