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ABSTRACT

Event cameras exhibit remarkable attributes such as high dynamic range, asyn-1

chronicity, and low latency, making them highly suitable for vision tasks that in-2

volve high-speed motion in challenging lighting conditions. These cameras im-3

plicitly capture movement and depth information in events, making them appeal-4

ing sensors for Camera Pose Relocalization (CPR) tasks. Nevertheless, existing5

CPR networks based on events neglect the pivotal fine-grained temporal infor-6

mation in events, resulting in unsatisfactory performance. Moreover, the energy-7

efficient features are further compromised by the use of excessively complex mod-8

els, hindering efficient deployment on edge devices. In this paper, we introduce9

PEPNet, a lightweight point-based network designed to regress six degrees of free-10

dom (6-DOFs) event camera poses. We rethink the relationship between the event11

camera and CPR tasks, leveraging the raw point cloud directly as network input12

to harness the high-temporal resolution and inherent sparsity of events. PEPNet13

is adept at abstracting the spatial and implicit temporal features through hierar-14

chical structure and explicit temporal features by Attentive Bi-directional Long15

Short-Term Memory (A-Bi-LSTM). By employing a carefully crafted lightweight16

design, PEPNet delivers state-of-the-art (SOTA) performance on public datasets17

with meager computational resources. Specifically, PEPNet attains a significant18

38% performance improvement on the random split DAVIS 240C CPR Dataset,19

utilizing merely 6% of the parameters compared to traditional frame-based ap-20

proaches. Moreover, the lightweight design version PEPNettiny accomplishes21

results comparable to the SOTA while employing a mere 0.5% of the parameters.22

1 INTRODUTION23

Event cameras are a type of bio-inspired vision sensor that responds to local changes in illumination24

that exceed a predefined threshold (Lichtsteiner et al., 2008). Differing from conventional frame-25

based cameras, event cameras independently and asynchronously emit pixel-level events. Notably,26

event cameras boast an exceptional triad: high dynamic range, low latency, and ultra-high temporal27

resolution. This unique combination empowers superior performance under challenging light con-28

ditions, adeptly capturing the swift scene and rapid motion changes in near-microsecond precision29

(Posch et al., 2010). Additionally, event cameras boast remarkably low power consumption. Due30

to their inherent hardware attributes, event cameras have garnered significant attention in the fields31

of computer vision and robotics in recent years, positioning them as a popular choice for many32

power-constrained devices like wearable devices, mobile drones, and robots (Delbruck & Lang,33

2013; Gallego et al., 2020; Mitrokhin et al., 2019). Camera Pose Relocalization (CPR) is such an34

example. CPR facilitates the accurate estimation of a camera’s pose within the world coordinate35

system (Sünderhauf et al., 2015). It is extensively employed in numerous applications, including36

Virtual Reality (VR), Augmented Reality (AR), and robotics (Shavit & Ferens, 2019).37

CPR tasks using event cameras significantly diverge from their conventional CPR counterpart that38

employs frame-based cameras, primarily due to the inherent dissimilarity in data output mecha-39

nisms between these two camera types. Furthermore, events inherently encompass information40

regarding object motion and depth changes across precise temporal and spatial dimensions at-41

tributes of paramount significance within the domain of CPR tasks (Rebecq et al., 2018; Gallego42
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et al., 2017). Regrettably, existing event-based CPR networks often derive from the conventional43

camera network paradigms and inadequately address the unique attributes of event data. More44

specifically, events are transformed into various representations such as event images (Nguyen45

et al., 2019), time surfaces (Lin et al., 2022), and other representations(Lin et al., 2022), lead-46

ing to the loss of their fine-grained temporal information. Furthermore, most event-based meth-47

ods tend to overlook the computational load of the network, only prioritizing elevated accuracy,48

which contradicts the fundamental design principles of event cameras (Gallego et al., 2020).49

Figure 1: The average results using the
random split method benchmarked on
the CPR dataset (Mueggler et al., 2017).
The vertical axis represents the com-
bined rotational and translational errors
(m+rad). PEPNet is the first point-based
CPR network for event cameras.

50

Point Cloud is a collection of 3D points (x, y, z) that rep-51

resents the shape and surface of an object or environment52

and is often used in lidar and depth cameras (Guo et al.,53

2020). Event Cloud is a collection of events (x, y, t, p)54

generated by event cameras, t represents timestamps and55

p is the polarity. By treating each event’s temporal infor-56

mation as the third dimension, event inputs (x, y, t) can57

be transformed into points and aggregated into a pseudo-58

Point Cloud (Wang et al., 2019; Qi et al., 2017a;b). How-59

ever, a direct transplantation of the Point Cloud network60

has not yet exhibited an amazing performance advantage61

in processing event data. Given that the t dimension of62

Event Cloud is not strictly equivalent to the spatial di-63

mensions (x, y, z), customizing the Point Cloud network64

becomes imperative to adequately capture the temporal65

information of events.66

In this study, we introduce PEPNet, an innovative end-67

to-end CPR network designed to harness the attributes68

of event cameras. A comparison of our method to other69

event-based methods is illustrated Figure 2 in in red and blue, respectively. Our main contributions70

are as follows: First, PEPNet directly processes the raw data obtained from the event cameras, metic-71

ulously preserving the fine-grained temporal information and the order inherent in the data. Second,72

PEPNet proficiently captures spatial features and implicit temporal patterns through its hierarchical73

structure with temporal aggregation. Additionally, it effectively incorporates explicit temporal fea-74

tures using A-Bi-LSTM. This architecture is tailored to accommodate the high temporal resolution75

and sparse characteristics inherent in event cameras. Third, PEPNet not only attains SOTA results76

on a public dataset (Mueggler et al., 2017) but also can be executed in real-time with a lightweight77

design as shown in Figure 1. Diverging from other point-based approaches in event data processing78

(Wang et al., 2019; Ren et al., 2023), PEPNet stands out by meticulously considering the distinction79

between Event Cloud and Point Cloud in its design. This thoughtful approach enables the precise80

extraction of spatio-temporal features and facilitates solutions for a spectrum of event-based tasks.81

2 RELATED WORK82

2.1 FRAME-BASED CPR LEARNING METHODS83

Deep learning, crucial for vision tasks like classification and object detection (LeCun et al., 2015),84

has seen advancements such as PoseNet’s innovative transfer learning (Kendall et al., 2015). Uti-85

lizing VGG, ResNet (Simonyan & Zisserman, 2014; He et al., 2016), LSTM, and customized loss86

functions (Walch et al., 2017; Wu et al., 2017; Naseer & Burgard, 2017), researchers enhanced this87

approach. Auxiliary Learning methods further improved performance (Valada et al., 2018; Radwan88

et al., 2018; Lin et al., 2019), although overfitting remains a challenge. Hybrid pose-based meth-89

ods, combining learning with traditional pipelines (Laskar et al., 2017; Balntas et al., 2018), offer90

promise. DSAC series, for instance, achieve high pose estimation accuracy (Brachmann & Rother,91

2021; Brachmann et al., 2017), but come with increased computational costs and latency, especially92

for edge devices.93

2.2 EVENT-BASED CPR LEARNING METHODS94
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Figure 2: Two different event-based processing
methods, frame-based and point-based.

Event-based CPR methods often derive from95

the frame-based CPR network. SP-LSTM96

(Nguyen et al., 2019) employed the stacked97

spatial LSTM networks to process event im-98

ages, facilitating a real-time pose estimator. To99

address the inherent noise in event images, (Jin100

et al., 2021) proposed a network structure com-101

bining denoise networks, convolutional neural102

networks, and LSTM, achieving good perfor-103

mance under complex working conditions. In104

contrast to the aforementioned methods, a novel105

representation named Reversed Window En-106

tropy Image (RWEI) (Lin et al., 2022) is intro-107

duced, which is based on the widely used event108

surface (Mitrokhin et al., 2020) and serves as109

the input to an attention-based DSAC* pipeline (Brachmann & Rother, 2021) to achieve SOTA110

results. However, the computationally demanding architecture involving representation transforma-111

tion and hybrid pipeline poses challenges for real-time execution. Additionally, all existing methods112

ignore the fine-grained temporal feature of the event cameras, and accumulate events into frames for113

processing, resulting in unsatisfactory performance.114

2.3 POINT CLOUD NETWORK115

Point-based methodologies have transformed the direct processing of Point Cloud, with PointNet (Qi116

et al., 2017a) as a standout example. Taking a step beyond, PointNet++ (Qi et al., 2017b) introduced117

a Set Abstraction module. While it initially employed a straightforward MLP in the feature extractor,118

recent advancements have seen the development of more sophisticated feature extractors to enhance119

Point Cloud processing (Wu et al., 2019; Zhao et al., 2021; Ma et al., 2021; Dosovitskiy et al.,120

2020). When extending these techniques to Event Cloud, Wang et al. (Wang et al., 2019) were121

the first to address the temporal information processing challenge while maintaining representation122

in both the x and y axes, enabling gesture recognition using PointNet++. Further enhancements123

came with PAT (Yang et al., 2019), which incorporated self-attention and Gumbel subset sampling,124

leading to improved performance in recognition tasks. However, existing point-based models still125

fall short in performance compared to frame-based methods. This phenomenon can be attributed to126

the distinctively different characteristics of Point Cloud and Event Cloud. Event Cloud contradicts127

the permutation and transformation invariance present in Point Cloud due to its temporal nature.128

Additionally, the Point Cloud network is not equipped to extract explicit temporal features.129

3 PEPNET130

PEPNet pipeline consists of four essential modules: (1) a preprocessing module for the origi-131

nal Event Cloud, (2) a hierarchical point cloud feature extraction structure, (3) an Attentive Bi-132

directional LSTM, and (4) a 6-DOFs pose regressor, as illustrated in Figure 3. In the following133

sections, we will provide detailed descriptions and formulations for each module.134

3.1 EVENT CLOUD135

To preserve the fine-grained temporal information and original data distribution attributes from136

the Event Cloud, the 2D-spatial and 1D-temporal event information is constructed into a three-137

dimensional representation to be processed in Point Cloud. Event Cloud consists of time-series data138

capturing spatial intensity changes of images in chronological order, and an individual event is de-139

noted as ek = (xk, yk, tk, pk), where k is the index representing the kth element in the sequence.140

Consequently, the set of events within a single sequence (E) in the dataset can be expressed as:141

E = {ek = (xk, yk, tk, pk) | k = 1, . . . , n} (1)

For a given pose in the dataset, the ground truth resolution is limited to 5 ms, while the event142

resolution is 1 µs. Therefore, it is necessary to acquire the events that transpire within the time143
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Figure 3: PEPNet overall architecture. The input Event Cloud undergoes direct handling through
a sliding window, sampling, and normalization, eliminating the need for any format conversion.
Sequentially, the input passes through Snum hierarchy structures for spatial feature abstraction and
extraction. It further traverses a bidirectional LSTM for temporal feature extraction, culminating in
a regressor responsible for 6-DOFs camera pose relocalization.

period we call it sliding window corresponding to the poses, which will serve as the input for the144

model, as depicted by the following equation:145

Pi = {ej→l | tl − tj = R} i = 1, . . . ,M (2)

The symbol R represents the time interval of the sliding window, where j and l denote the start146

and end event index of the sequence, respectively. The variable M represents the number of sliding147

windows into which the sequence of events E is divided. Before being fed into the neural network,148

Pi also needs to undergo sampling and normalization. Sampling is to unify the number of points149

N as network inputs. We set N = 1024 in PEPNet. Additionally, as the spatial coordinates are150

normalized by the camera’s resolution w and h. The normalization process is described by the151

following equation:152

PNi = (
Xi

w
,
Yi

h
,
Ti − tj
tl − tj

) (3)
153

Xi, Yi, Ti = {xj , . . . , xl}, {yj , . . . , yl}, {tj , . . . , tl} (4)
The X,Y is divided by the resolution of the event camera. To normalize T , we subtract the smallest154

timestamp tj of the window and divide it by the time difference tl−tj , where tl represents the largest155

timestamp within the window. After pre-processing, Event Cloud is converted into the pseudo-Point156

Cloud, which comprises explicit spatial information (x, y) and implicit temporal information t.157

3.2 HIERARCHY STRUCTURE158

The hierarchy structure is the backbone for processing the pseudo-3D point cloud and is composed159

of four primary modules: grouping and sampling, standardization, feature extractor, and aggre-160

gation, as described in the following subsection. To efficiently extract deeper explicit spatial and161

implicit temporal features, the hierarchical structure is tailored and differs from conventional hier-162

archical structure in a few ways: First, we no longer force permutation invariance as usually done163

in mainstream point-based methods (Qi et al., 2017a; Ma et al., 2021), as the motion information164

is inherently related to the sequential order of events. Instead, we keep the sequence of all events165

strictly in the same order as they are generated to preserve the temporal information to be used166

in the next stage. Second, we replace MaxPooling in aggregation and deploy temporal aggregation167

which leverages the attention mechanism with softmax, which improves the effective assimilation168

of temporal information into the resultant feature vectors.169

3.2.1 GROUPING AND SAMPLING170

Aligned with the frame-based design concept, our focus is to capture both local and global infor-171

mation. Local information is acquired by leveraging Farthest Point Sampling (FPS) and K-Nearest172

Neighbors (KNN), while global information is obtained through a dedicated aggregation module.173

PSi = FPS(PNi) PGi = KNN(PNi, PSi) (5)

The input dimension PNi is [N, 3 + D], and the centroid dimension PSi is [N
′
, 3 + D] and the174

group dimension PGi is [N
′
,K, 3 + 2 ∗D]. K represents the nearest K points of the center point175
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(centroid), D is the feature dimension of the points of the current stage, and 3 is the most original176

(X,Y, T ) coordinate value. Importantly, it should be noted that the ordering of all points in the177

grouping and sampling process strictly adheres to the timestamp (T).178

3.2.2 STANDARDIZATION179

Next, each group undergoes a standardization process to ensure consistent variability between points180

within the group, as illustrated in this formula:181

PGS =
PG− PS

Std(PG)
Std(PGi) =

√∑3n−1
j=0 (gj − ḡ)2

3n− 1
(6)

182
g = [x0, y0, t0, . . . , xn, yn, tn] (7)

Where PGi and PSi are the subsets of PG and PS, Std is the standard deviation, the dimension183

of Std(PG) is [M ] which is consistent with the number of sliding windows, and g is the set of184

coordinates of all points in the PGi.185

3.2.3 FEATURE EXTRACTOR186

Following the standardization of PG by dividing the variance by the subtracted mean, the feature187

extraction is performed using a Multi-Layer Perceptron (MLP) with a residual connection. This188

process encompasses two steps: local feature extraction and global feature extraction. The feature189

extractor with a bottleneck can be mathematically represented as:190

I(x) = f(BN(MLP1(x))) (8)
191

O(x) = BN(MLP2(x)) (9)
192

Ext(x) = f(x+O(I(x))) (10)
BN represents batch normalization layer, while f signifies the nonlinear activation function. Both193

local feature extraction and global feature extraction maintain identical input and output dimensions.194

The dimension increase occurs solely when combining the feature dimension D of the current point195

with the feature dimension D of the centroid during grouping, resulting in a final dimension of196

2 ∗D. The feature extractor takes an input dimension of [B,N,K,D], and following local feature197

extraction, the dimension remains [B,N,K,D], B represents batch size. We adopt the attention198

mechanism for aggregation, yielding an aggregated feature dimension of [B,N,D]. Subsequently,199

the aggregated feature map of [B,N,D] is then processed through the global feature extractor,200

completing the feature extraction for the current stage.201

3.2.4 TEMPORAL AGGREGATION202

Conventional Point Cloud methods favor MaxPooling operations for feature aggregation because203

it is efficient in extracting the feature from one point among a group of points and discarding the204

rest. However, MaxPooling involves extracting only the maximum value along each dimension of205

the temporal axis. It is robust to noise perturbation but also ignores the temporal nuances embedded206

within the features. Conversely, the integration of attention mechanisms enhances the preserva-207

tion of those nuanced but useful temporal attributes by aggregating features along the temporal axis208

through the attention value. To provide a more comprehensive exposition, we employ a direct at-209

tention mechanism within the K temporal dimensions to effectively aggregate features as shown in210

Figure 3. This mechanism enables the explicit integration of temporal attributes, capitalizing on the211

inherent strict ordering of the K points. The ensuing formula succinctly elucidates the essence of212

this attention mechanism:213

Flocal = Ext(x) = (St1, St2, . . . , Stk) (11)
214

A = SoftMax(MLP (Flocal)) = (at1, at2, . . . , atk) (12)
215

Faggre = A · Flocal = St1 · at1 + St2 · at2 + · · ·+ Stk · atk (13)
Upon the application of the local feature extractor, the ensuing features are denoted as Flocal, and216

Stk mean the extracted feature of kth point in a group. The attention mechanism comprises an MLP217

layer with an input layer dimension of D and an output atk dimension of 1, along with softmax218

layers. Subsequently, the attention mechanism computes attention values, represented as A. These219

attention values are then multiplied with the original features through batch matrix multiplication,220

resulting in the aggregated feature Faggre.221
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3.3 A-BI-LSTM222

The temporal features extracted through the hierarchical structure are independent and parallel, lack-223

ing recurrent mechanisms within the network. This distinctive attribute, referred to as ’implicit’,224

contrasts with the conventional treatment of temporal information as an indexed process. Conse-225

quently, implicit temporal features inadequately capture the interrelations among events along226

the timeline, whereas explicit temporal features assume a pivotal role in facilitating the CPR task.227

To explicitly capture temporal patterns, we introduce the LSTM network, which has been proven228

effective in learning temporal dependencies. For optimal network performance, controlled feature229

dimensionality, and comprehensive capture of bidirectional relationships in pose context, we adopt a230

bi-directional LSTM network with a lightweight design. The integration of bidirectional connections231

into the recurrent neural network (RNN) is succinctly presented through the following equation:232

ht = f(Wh · xt +Uh · ht−1 + bh) (14)
233

h′
t = f(W′

h · xt +U′
h · h′

t+1 + b′
h) (15)

234
yt = V · ht + by (16)

235
y′
t = V′ · h′

t + b′
y (17)

Algorithm 1 PEPNet pipeline
Input: Raw Event Cloud E
Parameters: Np = 1024, R = 5e+ 3, Snum = 3
Output: 6-DOFs pose (p̂, q̂)

1: Preprocessing
2: for j in len(E) do
3: Pi.append(ej→l) ; j = l; where tl − tj = R
4: if (len(Pi) > Np): i = i+ 1;
5: end for
6: PN = Normalize(Sampling(P ))
7:
8: Hierarchy structure
9: for stage in range(Snum) do

10: Grouping and Sampling(PN )
11: Get PGS ∈ [B,Nstage,K, 2 ∗Dstage−1]
12: Local Extractor(PGS)
13: Get Flocal ∈ [B,Nstage,K,Dstage]
14: Attentive Aggregate(Flocal)
15: Get Faggre ∈ [B,Nstage, Dstage]
16: Global Extractor(Faggre)
17: Get PN = Fglobal ∈ [B,Nstage, Dstage]
18: end for
19:
20: A-Bi-LSTM
21: Forward Get yt ∈ [B,N3, DSnum

/2]
22: Reverse Get y′t ∈ [B,N3, DSnum/2]
23: Attention Get Ya ∈ [B,DSnum ]
24:
25: Regressor
26: Get 6-DOFs pose (p̂, q̂)

xt represents the feature vector at the t-236

th time step of the input sequence, while237

ht−1 and h′
t+1 correspond to the hid-238

den states of the forward and backward239

RNN units, respectively, from the previ-240

ous time step. The matrices Wh, Uh,241

and bh denote the weight matrix and242

bias vector of the forward RNN unit,243

while V and by represent the weight244

matrix and bias vector of its output245

layer. Similarly, W′
h, U′

h, and b′
h are246

associated with the weight matrix and247

bias vector of the backward RNN unit,248

and V′ and b′
y pertain to the weight ma-249

trix and bias vector of its output layer.250

The activation function, denoted as f(·),251

can be chosen as sigmoid or tanh or252

other functions. The final output Ya is253

aggregated at each moment using the at-254

tention mechanism, and ⊕ means concat255

operation.256

Yt = yt ⊕ y′t (18)
257

A = SoftMax(MLP (Yt)) (19)
258

Ya = A · Yt (20)

3.4 LOSS FUNCTION259

A fully connected layer with a hidden260

layer is employed to address the final261

6-DOFs pose regression task. The dis-262

placement vector of the regression is de-263

noted as p̂ representing the magnitude264

and direction of movement, while the rotational Euler angles are denoted as q̂ indicating the ro-265

tational orientation in three-dimensional space.266

Loss = α||p̂− p||2 + β||q̂ − q||2 + λ
∑n

i=0w
2
i (21)

p and q represent the ground truth obtained from the dataset, while α, β, and λ serve as weight267

proportion coefficients. In order to tackle the prominent concern of overfitting, especially in the268

end-to-end setting, we propose the incorporation of L2 regularization into the loss function. This269

regularization, implemented as the second paradigm for the network weights w, effectively mitigates270

the impact of overfitting.271
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Figure 4: Event-based CPR Dataset visualization.

3.5 OVERALL ARCHITECTURE272

Next, we will present the PEPNet pipeline in pseudo-code, utilizing the previously defined variables273

and formulas as described in Algorithm 1.274

4 EXPERIMENT275

In this section, we present an extensive and in-depth analysis of PEPNet’s performance on a public276

dataset, encompassing evaluations based on rotational and translational mean squared error (MSE),277

model parameters, floating-point operations (FLOPs), and inference time. Through a series of sys-278

tematic ablation experiments, we experimentally validate the efficacy of each module. PEPNet’s279

training and testing are performed on a server furnished with an AMD Ryzen 7950X CPU, an RTX280

GeForce 4090 GPU, and 32GB of memory.281

4.1 DATASET282

We employ the widely evaluated event-based CPR dataset (Mueggler et al., 2017) collected using283

the DAVIS 240C. This dataset encompasses a diverse set of multimodal information, comprising284

events, images, IMU measurements, camera calibration, and ground truth information acquired from285

a motion capture system operating at an impressive frequency of 200 Hz, thereby ensuring sub-286

millimeter precision. We visualized various types of sequences as shown in Figure 4.287

Two distinct methods to partition the dataset (Nguyen et al., 2019) have been benchmarked: random288

split and novel split. In the random split approach, the dataset is randomly selected 70% of all289

sequences for training and allocated the remaining sequences for testing. On the other hand, in the290

novel split, we divide the data chronologically, using the initial 70% of sequences for training and291

the subsequent 30% for testing.292

4.2 BASELINE293

We perform a thorough evaluation of our proposed method by comparing it with SOTA event-294

based approaches, namely CNN-LSTM (Tabia et al., 2022) and AECRN (Lin et al., 2022). More-295

over, we present results derived from other well-established computer vision methods, including296

PoseNet(Kendall et al., 2015), Bayesian PoseNet (Kendall & Cipolla, 2016), Pairwise-CNN (Laskar297

et al., 2017), LSTM-Pose (Walch et al., 2017), and SP-LSTM(Nguyen et al., 2019).298

4.3 RANDOM SPLIT RESULTS299

Based on the findings presented in Table 1, it is apparent that PEPNet surpasses other models con-300

cerning both rotation and translation errors across all sequences. Notably, PEPNet achieves these301

impressive results despite utilizing significantly fewer model parameters and FLOPs compared to302

the frame-based approach. Moreover, PEPNet not only exhibits a remarkable 38% improvement in303

the average error compared to the SOTA CNN-LSTM method but also attains superior results across304

nearly all sequences.In addressing the more intricate and challenging hdr poster sequences, while305

the frame-based approach relies on a denoising network to yield improved results (Jin et al., 2021),306

PEPNet excels by achieving remarkable performance without any additional processing. This ob-307

servation strongly implies that PEPNet’s point cloud approach exhibits greater robustness compared308

to the frame-based method, highlighting its inherent superiority in handling complex scenarios.309

Furthermore, we introduce an alternative variant, PEPNettiny , which integrates a lighter model ar-310

chitecture while preserving relatively strong performance. As depicted in Figure 3, PEPNet consists311
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Network PoseNet Bayesian PoseNet Pairwise-CNN LSTM-Pose SP-LSTM CNN-LSTM PEPNet PEPNettiny
Parameter 12.43M 22.35M 22.34M 16.05M 135.25M 12.63M 0.774M 0.064M

FLOPs 1.584G 3.679G 7.359G 1.822G 15.623G 1.960G 0.459G 0.033G
shapes rotation 0.109m,7.388◦ 0.142m,9.557◦ 0.095m,6.332◦ 0.032m,4.439◦ 0.025m,2.256◦ 0.012m,1.652◦ 0.005m,1.372◦ 0.006m,1.592◦

box translation 0.193m,6.977◦ 0.190m,6.636◦ 0.178m,6.153◦ 0.083m,6.215◦ 0.036m,2.195◦ 0.013m,0.873◦ 0.017m,0.845◦ 0.031m,1.516◦

shapes translation 0.238m,6.001◦ 0.264m,6.235◦ 0.201m,5.146◦ 0.056m,5.018◦ 0.035m,2.117◦ 0.020m,1.471◦ 0.011m,0.582◦ 0.013m, 0.769◦

dynamic 6dof 0.297m,9.332◦ 0.296m,8.963◦ 0.245m,5.962◦ 0.097m,6.732◦ 0.031m,2.047◦ 0.016m,1.662◦ 0.015m,1.045◦ 0.018m,1.144◦

hdr poster 0.282m,8.513◦ 0.290m,8.710◦ 0.232m,7.234◦ 0.108m,6.186◦ 0.051m,3.354◦ 0.033m,2.421◦ 0.016m,0.991◦ 0.028m,1.863◦

poster translation 0.266m,6.516◦ 0.264m,5.459◦ 0.211m,6.439◦ 0.079m,5.734◦ 0.036m,2.074◦ 0.020m,1.468◦ 0.012m,0.588◦ 0.019m,0.953◦

Average 0.231m,7.455◦ 0.241m,7.593◦ 0.194m,6.211◦ 0.076m,5.721◦ 0.036m,2.341◦ 0.019m,1.591◦ 0.013m,0.904◦ 0.019m,1.306◦

Table 1: Random split results. The table presents the median error for each sequence, as well as
the average error across the six sequences. It also presents the number of parameters and FLOPs
for each model. Bold indicates the most advanced result, while underline signifies the second-best
result.

Network PoseNet Bayesian PoseNet Pairwise-CNN LSTM-Pose SP-LSTM DSAC* AECRN PEPNet
shapes rotation 0.201m,12.499◦ 0.164m,12.188◦ 0.187m,10.426◦ 0.061m,7.625◦ 0.045m,5.017◦ 0.029m,2.3◦ 0.025m,2.0◦ 0.016m,1.745◦

shapes translation 0.198m,6.696◦ 0.213m,7.441◦ 0.225m,11.627◦ 0.108m,8.468◦ 0.072m,4.496◦ 0.038m,2.2◦ 0.029m,1.7◦ 0.026m,1.659◦

shapes 6dof 0.320m,13.733◦ 0.326m,13.296◦ 0.314m,13.245◦ 0.096m,8.973◦ 0.078m,5.524◦ 0.054m,3.1◦ 0.052m,3.0◦ 0.045m,2.984◦

Average 0.240m,11.067◦ 0.234m,10.975◦ 0.242m,11.766◦ 0.088m,8.355◦ 0.065m,5.012◦ 0.040m,2.53◦ 0.035m,2.23◦ 0.029m,2.13◦

Inference time 5ms 6ms 12ms 9.49ms 4.79ms 30ms 30ms 6.7ms

Table 2: Novel split results. Referred to as Table I, showcases identical information. To assess the
model’s runtime, we conduct tests on a server platform, specifically focusing on the average time
required for inference on a single sample.

of three stages, and the model’s size is contingent upon the dimensionality of MLPs at each stage.312

The dimensions for the standard structure are [64, 128, 256], whereas those for the tiny structure313

are [16, 32, 64]. As indicated in Table 1, even with a mere 0.5% of the CNN-LSTM’s parame-314

ter, PEPNettiny achieves comparable and even slightly superior results. This remarkable outcome315

emphasizes the superiority of leveraging event cloud data processing directly.316

Figure 5: Error distribution of event-based CPR
results achieved by PEPNet using a random split.
(a) Translation errors. (b) Rotation errors.

Although PEPNettiny demonstrates the poten-317

tial to outperform previous SOTA results in318

terms of the final average performance, it re-319

veals evident weaknesses and underfitting when320

handling more complex sequences, such as321

hdr poster and box translation. The limitations322

in the abstraction ability of PEPNettiny become323

apparent. It is important to acknowledge that324

PEPNet’s results might improve with a larger325

dataset, indicating the significant impact of data326

size on the model’s performance.327

4.4 ERROR DISTRIBUTION328

Figure 5 illustrates the error distribution of329

PEPNet across six distinct sequences using the random split method, specifically: shape rotation,330

box translation, shape translation, dynamic 6-dof, hdr poster, and poster translation. To enhance331

clarity, the top and bottom boundaries of the box represent the first and third quartiles, respectively,332

indicating the inter-quartile range (IQR). The median is denoted by the band within the box. It is333

observed that the IQR of the translation error approximately locates between 0.004m and 0.024m,334

while the orientation error ranges from 0.4◦ to 1.9◦.335

Among the six sequences, shape rotation and box translation display the poorest results in rotation336

and translation, respectively, primarily due to the inherent complexity of the dataset. As the scene337

becomes more intricate and the resolution increases, such as in the hdr poster, the model is chal-338

lenged to exhibit its robustness. Notably, PEPNet demonstrates enhancements of approximately339

50% compared to the SOTA model in this scenario.340

4.5 NOVEL SPLIT RESULTS341

To assess the model’s robustness, we adopt the novel split as an evaluation criterion, as shown342

in Table 2. During the training process, we observe a more pronounced overfitting phenomenon343

in PEPNet compared to the random split. We attribute this observation to the disparities in data344

distributions between the trainset and the testset, as well as the limited data size. Contrary to the345
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Condition HS LSTM Bi-LSTM Aggregation Translation Rotation T+R
1 ✓ Max 0.015m 0.884◦ 3.04
2 ✓ Temporal 0.014m 0.786◦ 2.77
3 ✓ ✓ Max 0.014m 0.833◦ 2.85
4 ✓ ✓ Max 0.014m 0.813◦ 2.82
5 ✓ ✓ Temporal 0.011m 0.582◦ 2.12

Table 3: Abalation Study for three key modules. T+R = Translation + Rotation·π/180 (m+rad)

methods we compared, PEPNet does not necessitate pre-trained weights. For instance, SP-LSTM346

relies on pre-trained VGG19 weights from Imagenet, while AECRN requires synthetic heuristic347

depth and an extensive pretraining process.348

To address overfitting, PEPNet employs conventional methods that yield consistent and comparable349

results with the SOTA on three shape sequences that are displayed in the network column of Table 2.350

It is essential to note that AECRN adopts a hybrid approach, combining neural network regression351

for scene coordinates with derivable RANSAC for pose estimation. Moreover, this method incurs352

significant time consumption, with even the SOTA DSAC* algorithm taking nearly 30ms, excluding353

additional time for format conversion. This time constraint presents compatibility challenges with354

the low-latency nature of event cameras. In contrast, PEPNet can execute on a server in just 6.7ms,355

with the main time-consuming module being grouping and sampling. Furthermore, with potential356

field programmable gate array (FPGA) or application-specific integrated chip (ASIC) support for357

these operations, PEPNet’s performance can be further accelerated.358

4.6 ATTENTION VISUALIZATION359

As shown in Figure 6, We observe that the values exhibit larger at both the start and end. Our conjec-360

ture posits that during the process of camera pose relocalization, the model may intensify its empha-361

sis on the distinctions in features between the initial and terminal points, and regress the 6DOFs pose362

through the differences, similar to geometric methods Mueggler et al. (2018); Gallego et al. (2015).363

Figure 6: Visualization of the attention values in
the time domain. 128 points in chronological or-
der on the horizontal axis and the attention values
of the corresponding point on the vertical axis.

364

4.7 ABLATION STUDY365

In order to validate the efficacy of key modules,366

we conducted ablation experiments focusing on367

three primary components: hierarchy structure,368

Bi-LSTM, and attention. These experiments369

are designed to evaluate rotation and transla-370

tion errors on the shape translation sequence371

with random split. The combined error (T+R)372

is measured after processing.373

Our experimental setup comprises four distinct374

conditions, as illustrated in Table 3. Condition375

1 represents the sole utilization of the hierarchy376

structure (HS), while Condition 2 combines the ordinary LSTM. Condition 3 incorporates the bidi-377

rectional LSTM, and Condition 4 integrates the attention mechanism for feature aggregation.378

The ablation experiments reveal significant insights. Experiments 1 and 2 demonstrate that aug-379

menting LSTM enhances the extraction of explicit temporal features. Moreover, experiments 2 and380

3 reveal the effectiveness of the bidirectional LSTM in extracting motion information. Additionally,381

experiments 3 and 4 confirm the notable impact of attention in feature aggregation, resulting in a382

substantial reduction in error rates.383

5 CONCLUSION384

In this paper, we introduce an end-to-end CPR network that operates directly on raw event clouds385

without frame-based preprocessing. PEPNet boasts an impressively lightweight framework that386

adeptly extracts spatial and temporal features, leading to SOTA outcomes on publicly accessible387

datasets. Diverging from traditional frame-based approaches, our method prioritizes preserving388

the inherent distribution of the event camera output, capitalizing on its sparse nature to achieve389

extraordinary capabilities for ultra-low-power CPR applications.390
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