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Abstract
Reinforcement Learning (RL) with linear tran-
sition kernels and reward functions has recently
attracted growing attention due to its computa-
tional efficiency and theoretical advancements.
However, prior theoretical research in RL has
primarily focused on single-objective problems,
resulting in limited theoretical development for
multi-objective reinforcement learning (MORL).
To bridge this gap, we examine MORL under
lexicographic reward structures, where rewards
comprise m hierarchically ordered objectives. In
this framework, the agent maximizes objectives
sequentially, prioritizing the highest-priority ob-
jective before considering subsequent ones. We
introduce the first MORL algorithm with prov-
able regret guarantees. For any objective i ∈
{1, 2, . . . ,m}, our algorithm achieves a regret
bound of Õ(Λi(λ) ·

√
d2H4K), where Λi(λ) =

1 + λ + · · · + λi−1, λ quantifies the trade-off
between conflicting objectives, d is the feature
dimension, H is the episode length, and K is the
number of episodes. Furthermore, our algorithm
can be applied in the misspecified setting, where
the regret bound for the i-th objective becomes
Õ(Λi(λ) · (

√
d2H4K + εdH2K)), with ε denot-

ing the degree of misspecification.

1. Introduction
Reinforcement Learning (RL) is a powerful paradigm
wherein an agent learns to solve tasks through iterative trial
and error with an unknown environment, dynamically ad-
justing its actions based on received reward signals (Sutton
& Barto, 2018). This framework has proven effective in
tackling complex decision-making challenges across var-
ious domains, including robotics (Kober et al., 2013), fi-
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nance (Liu et al., 2022), healthcare (Yu et al., 2021), and
autonomous systems (Merkle et al., 2024). Therefore, es-
tablishing a solid theoretical foundation for RL is crucial.
Over the years, significant advancements have been made in
understanding RL with linear transition kernels and reward
functions, a subfield often referred to as linear RL or linear
Markov Decision Process (MDP) (Zhang et al., 2024a; Zhou
& Gu, 2022; Zhang et al., 2024b; Vial et al., 2022; He et al.,
2021; Cassel et al., 2024; Xiong et al., 2023; Jin et al., 2020;
Li & Sun, 2024; Li et al., 2024a). Nevertheless, these stud-
ies have primarily concentrated on single-objective prob-
lems, where a single reward function is optimized during
the agent’s interactions with the environment.

In contrast, many real-world decision-making problems re-
quire the simultaneous optimization of multiple, often con-
flicting objectives. For example, in autonomous driving,
systems must simultaneously optimize safety and efficiency
(Zhang et al., 2023), while energy management systems face
trade-offs between cost and sustainability (Qiao et al., 2023).
Traditional single-objective RL methods are are insufficient
for handling the complexities arising from multiple objec-
tives, motivating the development of Multi-objective Re-
inforcement Learning (MORL) (Gábor et al., 1998; Roi-
jers et al., 2013; Abdolmaleki et al., 2020; Xu et al., 2020;
Momma et al., 2022; Skalse et al., 2022; Cai et al., 2023).

Recent work in MORL extends conventional RL frame-
works to accommodate multiple objectives through two pri-
mary approaches: (1) reward aggregation, which combine
multiple objectives into a single objective using weighted
sums or other scalarization techniques (Roijers et al., 2013).
However, this method is highly sensitive to the choice of
weights and requires precise knowledge of the relative im-
portance of the objectives, which may not always be avail-
able or straightforward. (2) Pareto front construction, which
assumes all objectives hold equal importance and employs
Pareto dominance to identify Pareto-optimal decisions (Xu
et al., 2020). Although this method does not require knowl-
edge of objective importance, it may lack practical appli-
cability in cases where the objectives are not of equal im-
portance. For example, a hotel recommendation system
must prioritize price, location, and service according to user
preferences (Yager et al., 2011).

To overcome these limitations, a growing line of MORL
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research has introduced lexicographic reward structures that
enforce hierarchical optimization of objectives (Gábor et al.,
1998; Wray & Zilberstein, 2015; Skalse et al., 2022; Ter-
can & Prabhu, 2024). This approach optimizes objectives
hierarchically, ensuring that the most critical objectives are
prioritized while still enabling effective optimization of sec-
ondary objectives. Such a hierarchical structure offers a
more flexible and practical solution for decision-making in
complex scenarios where the relative importance of objec-
tives is partially known.

Although algorithmic advances has been made in MORL
concerning scalarization methods (Roijers et al., 2013),
Pareto front construction (Xu et al., 2020) and lexicographic
rewards (Skalse et al., 2022), most of them heavily focused
on empirical evaluations, with limited attention given to
theoretical guarantees. This lack of analysis has hindered
the development of principled algorithms with provable
performance bounds. To bridge this gap, we leverage es-
tablished theoretical foundations in single-objective linear
reinforcement learning (He et al., 2023; Jin et al., 2020)
and extend them to the finite-horizon MORL framework,
specifically focusing on environments with linear transition
kernels and reward functions. We term this framework as
Multi-Objective Linear Reinforcement Learning (MOLRL).
Our work provides a comprehensive theoretical analysis of
regret bounds, thereby contributing to the development of
more robust and scalable solutions in this field.

To the best of our knowledge, this is the first work to address
MOLRL with lexicographic rewards. A key challenge in
this setting is that the Bellman optimality equation (Sutton
& Barto, 2018) does not hold, which invalidates greedy
action-selection strategies, such as LSVI-UCB (Jin et al.,
2020) and LSVI-UCB++ (He et al., 2023). We tackle this
challenge and make the following contributions:

• We propose an MOLRL algorithm that decomposes the
action-selection process into multiple stages, enabling
a more refined balance between conflicting objectives.
This approach prioritizes higher-level objectives while
effectively managing lower-level ones.

• For the proposed algorithm, we derive a regret bound
of Õ(Λi(λ) ·

√
d2H4K) for any objective i ∈

{1, 2, . . . ,m}, where m is the number of objectives
and Λi(λ) = 1+λ+· · ·+λi−1. λ depicts the trade-off
between conflicting objectives, d is the feature vector
dimension, H denotes the episode length, and K is the
total number of episodes.

• Our algorithm can be applied in the misspecified
MOLRL setting, where the transition kernel and reward
function of the true environment are approximated by
linear functions with a misspecification level of ε ≥ 0.
In this setting, our algorithm achieves a regret bound

Table 1. Comparisons of the regret bounds for linear RL.

Algorithm Objectives Regret

Jin et al. (2020) Single Õ(
√
d3H4K)

Zanette et al. (2020) Single Õ(
√
d4H4K + d4H5)

He et al. (2023) Single Õ(
√
d2H3K + d7H8)

This work Multiple Õ(Λi(λ) ·
√
d2H4K)

of Õ(Λi(λ) · (
√
d2H4K + εdH2K)), maintaining ro-

bustness to model inaccuracies.

• As shown in Table 1, our algorithm achieves a regret
bound comparable to single-objective RL algorithms
in terms of the leading-order term K, while simultane-
ously optimizing multiple objectives.

2. Related Work
In this section, we briefly review the development of linear
RL and multi-objective RL.

2.1. Linear Reinforcement Learning

The existing literature on linear reinforcement learning can
be broadly categorized into two main research directions.
The first direction focuses on establishing minimax-type re-
gret bounds for proposed algorithms. Yang & Wang (2019)
assumed linearity in both the reward function and transition
probabilities and analyzed the complexity of finding an ε-
optimal policy. Later, Jin et al. (2020) focused on regret
minimization, proposing a linear RL algorithm that achieves
a regret bound of Õ(

√
d3H4K). Their algorithm can also be

applied to misspecified linear RL, attaining a regret bound
of Õ(

√
d3H4K + εdH2K). In an improved approach, Vial

et al. (2022) introduced a parameter-free algorithm for the
misspecified linear RL problem, which does not require
knowledge of the misspecification level ε. Zanette et al.
(2020) applied the Thompson sampling approach to linear
RL, achieving a regret bound of Õ(

√
d4H5K). He et al.

(2023) developed a computationally efficient algorithm with
a regret bound of Õ(

√
d2H3K + d7H8) for linear RL.

The second research direction emphasizes deriving gap-
dependent regret bounds for linear RL. He et al. (2021)
established a regret bound of Õ(d3H5/∆ log(K)) for the
algorithm of Jin et al. (2020), where ∆ is the minimal sub-
optimality gap. More recently, Zhang et al. (2024a) pro-
posed an improved algorithm that achieves a regret bound
of Õ(d3H5/∆), which is independent of the episode num-
ber K. Additionally, other studies have explored linear RL
in various settings. Zhou et al. (2021) achieved a nearly opti-
mal minimax regret bound for RL with linear mixture MDPs,
where the transition probability is a linear combination of
several base models. Li et al. (2024b) analyzed dynamic
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regret bounds for adversarial linear mixture MDPs, where
optimal policies change over time. Dai et al. (2024) stud-
ied multi-agent linear RL, in which multiple agents share
a common state space but have independent action spaces.
However, these studies mainly address single-objective set-
tings and do not extend to multi-objective problems.

2.2. Multi-objective Reinforcement Learning

Early approaches to MORL employed scalarization meth-
ods, which aggregate the reward vector into a single scalar
through a weighted sum (Roijers et al., 2013; Van Moffaert
et al., 2013; Agarwal et al., 2022). Although these meth-
ods are simple and intuitive, they require careful tuning of
the weights (Abels et al., 2019; Yang et al., 2019). More
recent MORL research has explored alternative strategies to
address these challenges. For instance, Abdolmaleki et al.
(2020) proposed encoding preferences via constraints on
each objective, enabling the specification of desired prefer-
ences in a scale-invariant manner. Xu et al. (2020) incor-
porated the multi-objective policy gradient method into an
evolutionary framework to identify a set of Pareto-optimal
policies, where no objective can be improved without de-
grading another. Momma et al. (2022) introduced a general
framework capable of incorporating multiple forms of pref-
erences to identify Pareto-optimal policies.

In the context of MORL with lexicographic rewards, Gábor
et al. (1998) first formalized this problem and introduced
a greedy-based algorithm to solve it. Wray et al. (2015)
introduced the slack-based Lexicographic RL, which allows
for deviations from the optimal policy rather than adhering
to absolute thresholds. More recently, Skalse et al. (2022)
presented a family of algorithms based on action-value and
policy gradient methods for solving lexicographic MORL.
In the simplified setting of lexicographic bandits (i.e., RL
with horizon H = 1), related work has been conducted on
multi-armed bandits (Hüyük & Tekin, 2021), contextual
bandits (Turgay et al., 2018), Lipschitz bandits (Xue et al.,
2024), and linear bandits (Xue et al., 2025).

While many existing MORL studies focus primarily on em-
pirical evaluations, several also offer valuable theoretical
insights, such as convergence analyses and structural re-
sults (e.g., (Gábor et al., 1998)). However, formal regret
guarantees, particularly in the setting of linear MDPs, re-
main underexplored. To address this gap, we present a
comprehensive theoretical analysis of regret bounds within
the MORL framework, thereby paving the way for more
robust and scalable solutions in this domain.

3. Preliminaries
Notation. For any positive integer N ∈ Z+, we define
[N ] , {1, 2, . . . , N}. The superscript i ∈ [m] distinguishes

symbols associated with different objectives and the symbol
(̂·) signifies that the variable is an estimate, e.g., Q̂i(·, ·) is
the estimated action-value function for the i-th objective.
The Euclidean norm of a vector φ ∈ Rd is denoted by ‖φ‖.
The norm induced by a positive-definite matrix U ∈ Rd×d
is defined by ‖φ‖U =

√
φ>U−1φ.

MORL. MORL is a framework in which an agent interacts
with an environment to learn an optimal policy. Formally,
MORL is modeled as a Multi-Objective Markov Decision
Process (MOMDP), defined by the tuple (S,A, H,P, r),
where S is the state space,A is the action space, H ∈ Z+ is
the length of each episode. P = {Ph}Hh=1 and r = {rh}Hh=1

are the transition probability functions and reward functions
for each h ∈ H . Specifically, Ph(x′|x, a) represents the
probability of transitioning from state x ∈ S to state x′ ∈ S
after taking action a at step h ∈ [H]. The reward function
at step h, rh : S ×A → [0, 1]m, is a deterministic function
that maps state-action pair (x, a) in to a reward vector

rh(x, a) = [r1h(x, a), r2h(x, a), . . . , rmh (x, a)],

where rih(x, a) is the reward corresponding to the objective
i ∈ [m], and m is the number of objectives.

A policy of an agent is a function π : S × [H]→ A, where
π(x, h) specifies the action that the agent takes at state
x ∈ S and step h ∈ [H]. For each objective i ∈ [m] and
state-action pair (x, a) ∈ S ×A, the action-value function
Qiπ,h(x, a) (also known as the Q-function) and the value
function V iπ,h(x) of a policy π are defined as

Qiπ,h(x, a) = rih(x, a)+

E

[
H∑

h′=h+1

rih′(xh′ , π(xh′ , h
′)) | xh = x, ah = a

]

V iπ,h(x) = E

[
H∑

h′=h

rih′(xh′ , ah′) | xh = x

]

Let [PhV ](x, a) = Ex′∼Ph(·|x,a)[V (x′)] denote the ex-
pected value of function V under the transition dynamics
Ph. The Bellman equation for objective i ∈ [m] is

Qiπ,h(x, a) = rih(x, a) + [PhV iπ,h+1](x, a),

V iπ,h(x) = Qiπ,h(x, π(x, h)).
(1)

This formulation provides a recursive relationship between
the Q-function and the value function, which is fundamental
to the analysis and optimization of policies in RL.

The Learning Process. The learning process in MORL
comprises K episodes. At the start of each episode k =
1, 2, . . . ,K, the agent selects a policy πk based on data
collected from the previous k − 1 episodes. The agent then
interacts with the environment following πk over H time

3



Multi-objective Linear Reinforcement Learning with Lexicographic Rewards

steps. At each step h = 1, 2, . . . ,H , the agent observes
the environment state xk,h and selects an action ak,h =
πk(xk,h, h). Subsequently, the environment transitions to a
new state xk,h+1 ∼ Ph(·|xk,h, ak,h) and provides the agent
with a reward vector rk,h. After completing all H steps, the
agent collects the data {xk,h, ak,h, rk,h}Hh=1 and uses it to
refine its policy, thereby improving future decision-making.

How to evaluate policies in a multi-objective context re-
mains an open issue. Since conflicting objectives cannot be
maximized simultaneously, multi-objective work defines a
notion of dominance to compare reward vectors and assess
policies, such as Pareto dominance (Xu et al., 2020) and
lexicographic dominance (Skalse et al., 2022). In this pa-
per, we adopt the lexicographic order, where objectives are
prioritized. The formal definition is as follows.
Definition 1 (Lexicographic Order). Consider two vec-
tors u = [u1, . . . , um],v = [v1, . . . , vm] ∈ Rm. u lexi-
cographically dominates v if and only if there exists some
i∗ ∈ [m] such that ui = vi for i ∈ [i∗ − 1] and ui

∗
> vi

∗
.

Lexicographic order compares vectors element-wise, start-
ing from the first and proceeding sequentially to the last.
For example, [5, 3, 4] lexicographically dominates [5, 2, 5]
and [4, 8, 1]. Based on this ordering, we define the lexico-
graphically optimal policy (Skalse et al., 2022).
Definition 2 (Lexicographically Optimal Policy). A pol-
icy π∗ is lexicographically optimal if and only if, for any x ∈
S , its vector of values [V 1

π∗,1(x), V 2
π∗,1(x), . . . , V mπ∗,1(x)] is

not lexicographically dominated by that of any other policy.

A lexicographically optimal policy ensures that the most
important objective is maximized, while still allowing some
optimization of the lower-priority objectives.

Following single-objective RL (Jin et al., 2020), we evaluate
the performance of the agent by regret, which quantifies the
difference between the accumulated rewards of the agent’s
policy and those of a lexicographically optimal policy, i.e.,

Ri(K) =

K∑
k=1

V iπ∗,1(xk,1)− V iπk,1(xk,1), i ∈ [m].

To establish a regret bound for MORL, we quantify the
trade-offs among conflicting objectives as follows.
Assumption 1. Let Q̃ih(x, a) = rih(x, a) + [PhṼ ih+1](x, a)
for any i ∈ [m] and (x, a, h) ∈ S ×A× [H]. Let π∗(x, h)
denote the action chosen by a lexicographically optimal
policy at (x, h). We assume π∗(x, h) is the lexicographic
optimal action for Q̃ih(x, a) and the trade-off among objec-
tives is governed by λ ≥ 0, such that for all h ∈ [H] and
i ∈ [m],

Q̃ih(x, a)− Q̃ih(x, π∗(x, h))

≤ λ · max
j∈[i−1]

{
Q̃jh(x, π∗(x, h))− Q̃jh(x, a)

}
.

Here, Ṽ ih(x) = 〈w(x), rih:H〉, wherew(x) ∈ RH−h+1 is a
shared weighting vector across all objectives, and rih:H =
[rih(·, ·), rih+1(·, ·), . . . , riH(·, ·)].

Here, λ bounds the improvement in the value of the i-th
objective for each unit decrease in the preceding i− 1 ob-
jectives. In multi-objective optimization, objectives often
conflict, thus it is common to introduce parameters to quan-
tify trade-offs, such as the global trade-off (Miettinen, 1999),
the marginal rate of substitution (Miettinen, 1999), and the
allowable trade-off (Wiecek, 2007).

In this paper, we focus on the linear MOMDP, a natural ex-
tension of linear MDP (Jin et al., 2020), defined as follows:

Definition 3. M(S,A, H,P, r) is a linear MOMDP with
a feature map φ : S × A → Rd, if for any h ∈ [H], there
exist unknown measures µh(·) : S → Rd and unknown
vectors θih ∈ Rd, such that for any (x, a) ∈ S ×A,

Ph(·|x, a) = 〈φ(x, a),µh(·)〉, rih(x, a) = 〈φ(x, a),θih〉,

where ‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S × A, and
max{‖µh(·)‖, ‖θih‖} ≤

√
d for all h ∈ [H] and i ∈ [m].

In environments with large state and action spaces, linear
structure significantly reduces computational complexity,
and well-established mathematical techniques and tools for
the liner model facilitate rigorous analysis. Regarding the
relationship between general and linear MDP, any MDP with
a finite state space S and action space A can be represented
as a linear MDP by encoding each state-action pair (x, a) as
a one-hot feature vector in Rd, where d = |S| × |A|. The
transition kernel Ph(· | x, a) and reward function rih(x, a)
can be expressed as inner products between the feature
vector of (x, a) and learnable parameters.

4. Algorithm
In this section, we present the Lexicographic Linear Rein-
forcement Learning (LLRL) algorithm, which effectively
combines the computational efficiency of linear MOMDPs
with the hierarchical prioritization inherent in lexicographic
rewards, ensuring that higher-priority objectives are maxi-
mized before considering lower-priority ones.

Initialization. LLRL learns the optimal policy over K
episodes, with each episode comprises H interaction steps
with the environment. Initially, the covariance matrix Uh is
initialized as the identity matrix I ∈ Rd×d for all h ∈ [H].
Similarly, the Q-functions Q̂ih(·, ·) are initialized to zero for
all objectives i ∈ [m] and time steps h ∈ [H]. Both the
covariance matrix and Q-functions are updated iteratively
across episodes based on the rewards received at each step.
At the terminal stepH+1, the Q-functions for all objectives
are set to zero, as no further rewards can be obtained.
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Algorithm 1 Lexicographic Linear Reinforcement Learning
Input: δ, d,m,K,H, λ, {βk}k∈[K]

1: Initialize Uh = I, Q̂1
h(·, ·) = · · · = Q̂mh (·, ·) = 0,

∀h ∈ [H], Q̂1
H+1(·, ·) = · · · = Q̂mH+1(·, ·) = 0

2: for k = 1, 2, . . . ,K do
3: Receive the initial state xk,1
4: for h = 1, 2, . . . ,H do
5: Initialize s = 1,As = A
6: repeat
7: if ‖φ(xk,h, a)‖Uh ≤ 1/

√
K,∀a ∈ As then

8: Run Algorithm 2 to refine actions: AK =
LAE({Q̂ih(xk,h, ·)}i∈[m], βk,As, 1/

√
K)

9: Randomly take an action ak,h ∈ AK
10: else if ‖φ(xk,h, ak,h)‖Uh > 2−s,∃ak,h ∈ As

then
11: Take the action ak,h
12: else
13: Run Algorithm 2 to refine actions: As+1 =

LAE({Q̂ih(xk,h, ·)}i∈[m], βk,As, 2−s)
14: Update s = s+ 1
15: end if
16: until an action ak,h is taken
17: Observe rewards rk,h and next state xk,h+1

18: end for
19: for h = H,H − 1, . . . , 1 do
20: Uh =

∑k
τ=1 φ(xτ,h, aτ,h)φ(xτ,h, aτ,h)> + I

21: r̂iτ,h = riτ,h + Q̂ih+1(xτ,h+1, aτ,h+1),∀τ ∈ [k]
and i ∈ [m]

22: ŵi
h = U−1h

∑k
τ=1 φ(xτ,h, aτ,h) · r̂iτ,h,∀i ∈ [m]

23: Update the estimated Q-function: Q̂ih(x, a) =
〈ŵi

h, φ(x, a)〉,∀(x, a) ∈ S ×A and i ∈ [m]
24: end for
25: end for

Decision-making. In each episode, LLRL begins by receiv-
ing an initial state xk,1 and then enters into H interaction
steps. At each step h = 1, 2, . . . ,H , LLRL selects an action
by balancing exploration (i.e., acquiring information about
rarely observed actions) and exploitation (i.e., choosing the
most promising action ). To manage trade-offs among differ-
ent objectives, the decision-making process is divided into
multiple stages. Actions are refined based on uncertainty
checks and lexicographic prioritization.

Before the decision-making process begins, LLRL initial-
izes the stage index s = 1 and the candidate action set
As = A. Then, LLRL iteratively refines the candidate ac-
tions until a final action is chosen. For the given state xk,h
of current step, LLRL considers three scenarios:

(i) If ‖φ(xk,h, a)‖Uh ≤ 1√
K

for all a ∈ As, this indicates
that all actions inAs have been sufficiently explored. In this
case, LLRL invokes the Lexicographic Action Elimination

Algorithm 2 Lexicographic Action Elimination

Input: {Q̂ih(xk,h, ·)}i∈[m], βk,As, C
1: Initialize A0

s = As
2: for i = 1, 2, . . . ,m do
3: âik,h = argmaxa∈Ai−1

s
Q̂ih(xk,h, a)

4: Ais = {a ∈ Ai−1s |Q̂ih(xk,h, â
i
k,h) − Q̂ih(xk,h, a) ≤

(2 + 4λ+ · · ·+ 4λi−1) · βk · C}
5: end for
6: Return Ams

(LAE) algorithm (Algorithm 2) to refine the candidate action
set, producing a smaller subset of promising actionsAK . An
action ak,h is then randomly selected from AK . LAE uses
the estimated Q-functions Q̂ih(xk,h, ·) and the uncertainty
bound 1/

√
K to sequentially eliminate suboptimal actions

from As by the priority of objectives. Further details on the
LAE are provided in the following content.

(ii) If ‖φ(xk,h, ak,h)‖Uh > 2−s for some action ak,h ∈ As,
this action is directly selected due to its high uncertainty,
which requires further exploration.

(iii) If all actions a ∈ As satisfy ‖φ(xk,h, a)‖Uh ≤ 2−s, it
implies that the uncertainty in the estimated Q-functions for
all a ∈ As is bounded by 2−s. In this case, LAE is invoked
again to refine the candidate set, using the uncertainty bound
2−s as the exploration threshold. The stage index s is then
incremented to s+ 1 for a more refined elimination process.

This iterative process continues until an action is selected.
Once an action ak,h is chosen, LLRL observes the corre-
sponding reward rk,h = [r1k,h, r

2
k,h, . . . , r

m
k,h] and transi-

tions to the next state xk,h+1. The episode concludes after
all H steps are completed. The intuition behind this policy
design is further discussed in Section 6.

Lexicographic Action Elimination. LAE plays a crucial
role in balancing trade-offs among conflicting objectives. It
iteratively refines the action set by prioritizing objectives
sequentially, from the first to the last. Initially, LAE defines
the action set as A0

s = As, which contains all candidate
actions of the current stage. For each objective i ∈ [m],
LAE selects the action âik,h ∈ Ai−1s that maximizes the
estimated Q-value Q̂ih(xk,h, a), i.e.,

âik,h = argmax
a∈Ai−1

s

Q̂ih(xk,h, a).

This action, âik,h, serves as the reference point to eliminate
suboptimal actions. Precisely, LAE removes actions whose
estimated Q-values deviate significantly from âik,h, i.e.,

Ais = {a ∈ Ai−1s |Q̂ih(xk,h, â
i
k,h)− Q̂ih(xk,h, a)

≤ (2 + 4λ+ · · ·+ 4λi−1) · βk · C},
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where C is a dynamically adjusted threshold to balance
exploration and exploitation. Specifically, C = 1/

√
K in

case (i), and C = 2−s in case (iii) of the s-th stage.

After processing all m objectives, the final set Ams consists
of actions deemed promising across all objectives and can
be returned to LLRL for a more refined decision-making
process in the next stage s+ 1.

Policy Update. In each episode k, after completing its inter-
actions with the environment, the agent gathers the dataset
{xk,h, ak,h, rk,h}Hh=1 and initiates a backward update pro-
cedure. Owing to the linear structure of the linear MDP,
the inherent Q-function Qiπ,h(·, ·) for any objective i ∈ [m]
and policy π exhibits linearity with respect to the feature
vector φ(x, a). This property is formally expressed in the
following proposition, which generalizes Proposition 2.3 of
Jin et al. (2020) to a multi-objective context.
Proposition 1. In a linear MOMDP, for any objective i ∈
[m] and any policy π, there exist weights {wi

π,h}h∈[H] such
that for any (x, a, h) ∈ S ×A× [H], we have

Qiπ,h(x, a) = 〈φ(x, a),wi
π,h〉.

Based on Proposition 1, LLRL estimates Qiπ,h(x, a) follow-
ing the procedure of least-squares estimation. According to
the Bellman equation (Eq. (1)), the Q-function at the h-th
step Qiπ,h is influenced by the future value function V iπ,h+1.
Therefore, the estimation process starts from the final step
h = H and proceeds backward to the first step h = 1.

During the backward pass, for each step h = H, . . . , 1,
LLRL first updates the covariance matrix Uh using the fea-
ture vectors observed at the h-th step of previous episodes:

Uh =

k∑
τ=1

φ(xτ,h, aτ,h)φ(xτ,h, aτ,h)> + I. (2)

Subsequently, to perform least-squares estimation for ob-
jective i ∈ [m], LLRL combines the immediate reward
rik,h and the future Q-value Q̂ih+1(xk,h+1, ak,h+1) to form
a surrogate reward, given by:

r̂ik,h = rik,h + Q̂ih+1(xk,h+1, ak,h+1). (3)

This bootstrapping procedure integrates immediate rewards
with long-term Q-values, aligning with the principle of Bell-
man equation (1).

LLRL then estimates the parameter wi
π,h for objective i ∈

[m] using least-squares estimation, formulated as:

ŵi
h = argmin

w∈Rd

k∑
τ=1

(
〈φ(xτ,h, aτ,h),w〉 − r̂iτ,h)

)2
+ ‖w‖2

= U−1h

k∑
τ=1

r̂iτ,h · φ(xτ,h, aτ,h).

(4)

Finally, the estimated Q-function Q̂ih(·, ·) for objective i ∈
[m] is updated using the newly obtained parameter ŵi

h, i.e.,

Q̂ih(x, a) = 〈ŵi
h, φ(x, a)〉,∀(x, a) ∈ S ×A. (5)

The steps outlined in Eqs. (2), (3), (4), and (5) constitute the
core of the backward pass in the LLRL algorithm. By iter-
atively updating the Q-functions of each objective, LLRL
reduces uncertainty in parameter estimation and progres-
sively improves the agent’s policies over time.

5. Theoretical Guarantees
In this section, we provide the regret bounds for LLRL to rig-
orously analyze its performance. We establish two theorems
that offer theoretical guarantees for different models. Specif-
ically, Theorem 1 characterizes the performance of LLRL in
the linear MOMDP setting, while Theorem 2 examines its
behavior in the ε-approximate linear MOMDP. These results
not only validate the reliability of LLRL across different
scenarios but also provide insights into its limitations.
Theorem 1. Let Λi(λ) = 1 + λ + · · · + λi−1 for i ∈
[m]. For a linear MOMDP, if LLRL is run with βk =

3H
√
d log

(
2mkH
δ

)
, then with probability at least 1 − 2δ,

the regret for any objective i ∈ [m] satisfies

Ri(K) ≤ Õ
(

Λi(λ) ·
√
d2H4K

)
.

Remark 1. Theorem 1 states that for linear MOMDPs
with lexicographic rewards, LLRL achieves a regret bound
of Õ

(
Λi(λ) ·

√
d2H4K

)
for any objective i ∈ [m]. This

matches the near-optimal dependence on feature dimension
d and time horizon K observed in single-objective RL (He
et al., 2023). The multiplicative factor Λi(λ) quantifies
the trade-off in lexicographic optimization: for the primary
objective, Λ1(λ) = 1 leads to an improved bound compared
to single-objective baselines (Jin et al., 2020) in terms of
d, while lower-priority objectives incur increasing regret as
Λi(λ) grows with their position i in the priority hierarchy.

Theorem 1 relies on the linear structure of the MDP. How-
ever, real-world applications often involve nonlinear MDPs,
leading to potential misspecification when assuming linear-
ity. To address this, we first introduce an approximate linear
model and then establish the regret bounds of LLRL under
such misspecified conditions.
Definition 4. M(S,A, H,P, r) is an ε-approximate linear
MOMDP with a feature map φ : S × A → Rd, if for any
h ∈ [H], there exist unknown measures µh(·) : S → Rd
and unknown vectors θih ∈ Rd, such that for any (x, a) ∈
S ×A,

‖Ph(·|x, a)− 〈φ(x, a),µh(·)〉‖1 ≤ ε,
|rih(x, a)− 〈φ(x, a),θih〉| ≤ ε,

(6)
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where ‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S × A, and
max{‖µh(·)‖, ‖θih‖} ≤

√
d for all h ∈ [H] and i ∈ [m].

Theorem 2. Let Λi(λ) = 1 + λ + · · · + λi−1 for i ∈ [m].
For an ε-approximate linear MOMDP, if LLRL is run with

βk = 3H
√
d log

(
2mkH
δ

)
+ 2Hε

√
kd and the threshold C

in LAE is modified by C + 2Hε, then with probability at
least 1− δ, the regret for any objective i ∈ [m] satisfies

Ri(K) ≤ Õ
(

Λi(λ) ·
(√

d2H4K + εdH2K
))

.

Remark 2. Theorem 2 states that for ε-approximate linear
MOMDPs with lexicographic rewards, LLRL achieves a re-
gret bound of Õ

(
Λi(λ) ·

(√
d2H4K + εdH2K

))
for any

objective i ∈ [m]. This matches the dependence on ε,H ,
and K observed in single-objective RL (Jin et al., 2020),
while improving the dependence on d. The linear model
serves as an approximation of the true environment. Com-
pared to Theorem 1, the additional regret term Õ(εdH2K)
stems from approximation error, which decreases as model
accuracy improves.

Complexity Analysis. We provide a detailed complexity
analysis of Algorithm 1 and discuss its computational limi-
tations. In Step 7, the complexity is O(d2|A|), while Step 8
requiresO(md|A|) computations due to the LAE procedure.
Step 22 incurs a computational cost of O(mkd+md2), pri-
marily driven by the matrix inversion of Uh (O(d2)) and the
computation of m linear regressions (i.e., O(mkd+md2)).
Summing over all H layers of the MDP, the overall com-
plexity becomesO(Hmd|A|+Hd2|A|+Hmkd+Hmd2).
When aggregated over K rounds, the total computational
complexity is O(KHd|A|(m+d)+K2Hmd+KHmd2).
Notably, theO(K2) term results in significantly higher com-
plexity compared to standard bandit algorithms (Xue et al.,
2025). Nevertheless, our approach remains competitive with
existing methods for single-objective MDP (Jin et al., 2020;
Zanette et al., 2020; He et al., 2023).

Further Improvements. As summarized in Table 1, our al-
gorithm’s regret bound remains slightly higher than the near-
optimal Õ(

√
d2H3K + d7H8) bound for single-objective

linear MDPs in terms of H (He et al., 2023). This gap
does not stem from a fundamental limitation but our cur-
rent policy update mechanism, which employs a simpler
approach compared to advanced methods. By incorporat-
ing the LSVI-UCB++ update framework (He et al., 2023),
we anticipate refining LLRL to achieve an improved regret
bound of Õ

(
Λi(λ) ·

(√
d2H3K + d7H8

))
. We plan to

investigate this promising direction in future research.

6. Challenges and Key Techniques
In this section, we analyze the main challenges in designing
algorithms for linear MOMDPs with lexicographic rewards

and highlight our techniques to resolve them.

6.1. Challenges

Optimal Action Preservation Dilemma. The first chal-
lenge in the lexicographic setting is how to keep the optimal
action during action elimination procedures. Lexicographic
RL requires sequential elimination across objectives, but
uncertainty in transition dynamics Ph(·|x, a) brings optimal
action preservation risks during confidence interval-based
elimination. Precisely, when addressing the i-th objective,
the agent constructs the confidence intervals of Q-values and
eliminates actions whose Q-value intervals do not overlap
with that of the most promising action. In the lexicographic
setting, however, the confidence interval of the lexicograph-
ically optimal action may not overlap with that of the most
promising action, leading to the loss of the optimal action.
An example is provided to illustrate this issue.
Example 1. Suppose there are three Q-value vectors:
[5, 5, 5], [1, 5, 5] and [4, 10, 1] for actions a1, a2 and a3, re-
spectively. a1 is the lexicographically optimal action. When
eliminating actions based on the first objective, a2 is elim-
inated because 1 is far from 5, but a3 is kept as 4 is close
to 5. After this step, only actions {a1, a3} are contained in
the candidate action. Next, the agent proceeds to eliminate
actions based on the second objective. Since 10 is much big-
ger than 5, thus the optimal action a1 is eliminated, which
is disappointing because a3 is awful for the third objective.

This demonstrates that standard elimination techniques may
discard the lexicographically optimal action, necessitating
novel preservation mechanisms.

Failure of Bellman Optimality. Another challenge is to
develop a decision-making approach that progressively con-
verges to the optimal policy. In single-objective RL, the
Bellman optimality equation serves as a foundation for al-
gorithm design and theoretical analysis. It characterizes the
optimal value function through an intuitive decision-making
process and a recursive relationship, i.e.,

Vπ∗,h(x) = max
a∈A

Qπ∗,h(x, a),

Qπ∗,h(x, a) = rh(x, a) + [PhVπ∗,h+1](x, a),
(7)

where we omit the superscript for single-objective notation.
This framework enables straightforward policies like:

ak,h = argmax
a∈A

Q̂h(xk,h, a), (8)

as employed in LSVI-UCB (Jin et al., 2020) and LSVI-
UCB++ (He et al., 2023).

In the lexicographic setting, this structure breaks down for
secondary objectives, as shown in the following example.
Example 2. Let [Q1

π∗,h
(x, a1), Q2

π∗,h
(x, a1)] = [2, 3] and

[Q1
π∗,h

(x, a2), Q2
π∗,h

(x, a2)] = [1, 4] for actions a1, a2 ∈
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A and x ∈ S . Since [2, 3] lexicographically dominates [1, 4],
the lexicographically optimal action π∗(x, h) = a1. Ac-
cording to the Bellman equation (1), we obtain V 2

π∗,h
(x) =

Q2
π∗,h

(x, π∗(x, h)) = 3. However, for the second objective,
the maximum Q-value is maxa∈{a1,a2}Q

2
π∗,h

(x, a) = 4,
which does not equal to V 2

π∗,h
(x).

This example establishes the following proposition.
Proposition 2. There exists an MOMDP with lexicographic
rewards problem, where for some (x, a) ∈ S × A and
i ∈ [m],

V iπ∗,h(x) 6= max
a∈A

Qiπ∗,h(x, a)

for the lexicographically optimal poliy π∗.

This divergence from Bellman optimality complicates both
algorithm design and theoretical analysis, precluding the
direct methods like Eq. (8).

6.2. Key Techniques

In this part, we highlight the key techniques used to address
the aforementioned challenges.

For clarity, we denote Uk,h, ŵi
k,h, and Q̂ik,h as the param-

eters and the estimated Q-function at episode k, with πk
representing the policy at k-th episode. The estimated value
function V̂ ik,h is defined as V̂ ik,h(x) = Q̂ik,h(x, πk(x, h)).
For any (x, a, k, h) ∈ S × A × [K] × [H], we define the
surrogate Q-function for objective i ∈ [m] as

Q̄ik,h(x, a) = rih(x, a) +

∫
x′∈S

V̂ ik,h+1(x′)Ph(x′|x, a)dx′.

Since rih(x, a) and Ph(x′|x, a) depend on the unknown pa-
rameters θih and µh(x′), respectively, we first provide con-
fidence intervals for the surrogate Q-functions.

Lemma 1. Let βk = 3H
√
d log

(
2mkH
δ

)
. With probability

at least 1− δ, for all (x, a, k, h) ∈ S ×A× [K]× [H] and
i ∈ [m], we have

|〈φ(x, a), ŵi
k,h〉 − Q̄ik,h(x, a)| ≤ βk‖φ(x, a)‖Uk,h .

Building on this, we analyze the discrepancy between esti-
mated and inherent value functions under policy πk:
Lemma 2. Let δik,h = V̂ ik,h(xk,h)−V iπk,h(xk,h) and ζik,h =

δik,h − E[δik,h|xk,h, ak,h]. With probability at least 1 − δ,
for any (k, h) ∈ [K]× [H] and i ∈ [m], we have

V̂ ik,h(xk,h)− V iπk,h(xk,h)

≤
H∑

h′=h

2βk · 2−sk,h′ (xk,h′ ) +

H∑
h′=h+1

ζik,h′ ,

where sk,h′(xk,h′) denotes the stage at which LLRL selects
the action for state xk,h′ .

Now, we highlight how to avoid losing the lexicographically
optimal action. Lemma 1 reveals that all objectives share
a common confidence term βk‖φ(x, a)‖Uk,h , a distinctive
feature of MOMDPs. To ensure the overlap between con-
fidence intervals of lexicographically optimal actions and
the most promising action of current round, we scale the
confidence term. As detailed in Algorithm 2, the confidence
term C is scaled by the following factor:

2 + 4λ+ · · ·+ 4λi−1,

which is specially designed to guarantee the confidence
intervals of the lexicographic optimal action and the most
promising action of current round overlap. Therefore, the
lexicographically optimal action is preserved, as formalized
in the following lemma:

Lemma 3. For Algorithm 2, if π∗(x, h) ∈ As, then with
probability at least 1 − δ, for any objective i ∈ [m] and
action a ∈ Ais, we have

π∗(x, h) ∈ Ais, and

Q̄ik,h(x, π∗(x, h))− Q̄ik,h(x, a) ≤ 4Λi(λ) · βk · C.

Finally, we highlight the basic idea of dealing with the
failure of Bellman optimality in MORL. Since the Bellman
optimality equation does not hold, direct maximization of Q-
values fails to recover lexicographically optimal actions due
to conflicting objectives and environment uncertainty. As an
alternative, LLRL initiates a multi-stage action refinement
process, which progressively eliminates suboptimal actions
using geometrically decreasing confidence thresholds 2−s.
This mechanism operates in three regimes: 1) Aggressive
pruning under low uncertainty, 2) Exploration prioritiza-
tion for high-uncertainty actions ‖φ(x, a)‖Uh > 2−s, and
3) Confidence-constrained elimination via the LAE sub-
routine for intermediate uncertainty As+1 = LAE(·, 2−s).
Crucially, lexicographic optimality is preserved through
overlapping confidence intervals, ensuring the retention of
lexicographically optimal actions despite Bellman equation
violations. By replacing Q-maximization with a threshold-
adaptive elimination paradigm, LLRL decouples action
selection from Bellman optimality assumptions while con-
trolling cumulative suboptimality via geometrically tighten-
ing thresholds. The resultant value function gap, formalized
in Lemma 4, quantifies how uncertainty reduction across
stages drives convergence to near-optimal policies.

Lemma 4. With probability at least 1 − δ, for all
(x, a, k, h) ∈ S ×A× [K]× [H] and i ∈ [m], we have

V iπ∗,h(xk,h)−V̂ ik,h(xk,h) ≤
H∑

h′=h

10Λi(λ)·βk·2−sk,h′ (xk,h′ )

where sk,h′(xk,h′) denotes the stage at which LLRL selects
the action for state xk,h′ .
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As the learning process advances, the uncertainty in value
estimation diminishes geometrically, evidenced by the ex-
ponential decay of the term 2−sk,h′ (xk,h′ ). This ensures
the estimated value functions V̂ ik,h converge toward their
optimal counterparts V iπ∗,h. By combining Lemma 2 and
Lemma 4, we can bound the per-episode instantaneous re-
gret V iπ∗,h(xk,1) − V iπk,h(xk,1) at each episode k ∈ [K],
leading to the regret bound Õ(Λi(λ) ·

√
d2H4K) in Theo-

rem 1. Please refer to appendix for more details.

7. Conclusion and Future Work
This work establishes the first theoretical regret guaran-
tee for MORL. We propose the LLRL algorithm, which
addresses the failure of Bellman optimality through a multi-
stage confidence-guided elimination strategy. By decompos-
ing action selection into refined phases with geometrically
decaying thresholds 2−s, LLRL attains a regret bound of
Õ(Λi(λ) ·

√
d2H4K) for all objectives i ∈ [m], matching

single-objective baselines (Jin et al., 2020; He et al., 2023)
in leading K-dependence. Meanwhile, Λ1(λ) = 1 indi-
cates LLRL recover the near-optimal regret bounds of He
et al. (2023) for the first objective in terms of both d and
K. Furthermore, LLRL naturally extends to misspecified
settings through minor algorithmic modifications, maintain-
ing Õ(Λi(λ) · (

√
d2H4K + εdH2K)) regret — a crucial

robustness property for practical applications.

While our analysis relies on Assumption 1 to manage inter-
objective trade-offs, a fundamental open question is whether
comparable regret bounds can be derived without this as-
sumption. Additional directions include improving the re-
gret bound of our algorithm by employing the policy update
mechanism of He et al. (2023).
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A. Proof of Theorem 1
Notation. We denote Uk,h, ŵi

k,h, and Q̂ik,h as the parameters and the estimated Q-function at episode k, with πk representing
the policy at k-th episode. The estimated value function V̂ ik,h is defined as V̂ ik,h(x) = Q̂ik,h(x, πk(x, h)). For notational
simplicity, we let φk,h = φ(xk,h, ak,h). For any (x, a, k, h) ∈ S ×A× [K]× [H], the surrogate Q-function for objective
i ∈ [m] is defined as

Q̄ik,h(x, a) = rih(x, a) +

∫
x′∈S

V̂ ik,h+1(x′)Ph(x′|x, a)dx′. (9)

Equipped with Lemma 2 and Lemma 4, we decompose the regret for objective i ∈ [m] as

Ri(K) =

K∑
k=1

V iπ∗,1(xk,1)− V iπk,1(xk,1)

=

K∑
k=1

V iπ∗,1(xk,1)− V̂ ik,1(xk,1) +

K∑
k=1

V̂ ik,1(xk,1)− V iπk,1(xk,1).

(10)

Lemma 2 establishes that

V̂ ik,1(xk,1)− V iπk,1(xk,1) ≤
H∑
h=1

2βk · 2−sk,h(xk,h) +

H∑
h=2

ζik,h, (11)

while Lemma 4 implies

V iπ∗,1(xk,1)− V̂ ik,1(xk,1) ≤
H∑
h=1

10Λi(λ) · βk · 2−sk,h(xk,h). (12)

Substituting (11) and (12) into (10), we obtain with probability at least 1− δ, for any i ∈ [m],

Ri(K) ≤
K∑
k=1

H∑
h=1

12Λi(λ) · βk · 2−sk,h(xk,h) +

K∑
k=1

H∑
h=2

ζik,h

≤
H∑
h=1

S∑
s=1

12Λi(λ) · βK · |ψh,s| · 2−s +

K∑
k=1

H∑
h=2

ζik,h,

(13)

where ψh,s =
{
k ∈ [K]|2−s+1 ≥ ‖φk,h‖Uh > 2−s

}
. The bound S ≤ log(K) arises from the termination threshold1/

√
K

in Step 7 of ALgorithm 1, as 2− log(K) ≤ 1/
√
K.

By Lemma 13, ∑
τ∈ψh,s

‖φτ,h‖Uτ ≤ 5
√
d|ψh,s| log(|ψh,s|).

Since ‖φτ,h‖Uτ > 2−s for τ ∈ ψh,s, this implies to

2−s|ψh,s| ≤ 5
√
d|ψh,s| log(|ψh,s|).

Thus,
S∑
s=1

12Λi(λ) · βK · |ψh,s| · 2−s ≤
S∑
s=1

60Λi(λ) · βK ·
√
d|ψh,s| log(|ψh,s|)

≤ 60Λi(λ) · βK log(K)
√
dK,

(14)

where the last inequality follows from the Cauchy–Schwarz inequality and
∑S
s=1 |ψh,s| = K.

12
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For the term
∑K
k=1

∑H
h=2 ζ

i
k,h in Eq. (13), observe that ζik,h = δik,h − E[δik,h|xk,h, ak,h] forms a martingale difference

sequence with |ζik,h| ≤ 2H for all (k, h). By the Azuma-Hoeffding inequality, with probability at least 1 − δ, for any
i ∈ [m],

K∑
k=1

H∑
h=2

ζik,h ≤
√

2KH3 · log(m/δ). (15)

Combining Eq. (14) and Eq. (15) in Eq. (13), we conclude with probability at least 1− 2δ, for all i ∈ [m],

Ri(K) ≤ 60Λi(λ) · βK log(K)
√
dH2K +

√
2KH3 · log(m/δ).

Substituting βK = 3H
√
d log(2mKH/δ), this yields

Ri(K) ≤ Õ
(

Λi(λ) ·
√
d2H4K

)
,

completing the proof of Theorem 1. �

B. Proof of Proposition 1
For any objective i ∈ [m] and timestep h ∈ [H], the Bellman equation (1) implies:

Qiπ,h(x, a) = rih(x, a) + [PhV iπ,h+1](x, a)

= rih(x, a) + Ex′∼Ph(·|x,a)[V
i
π,h+1(x′)]

= rih(x, a) +

∫
x′∈S

V iπ,h+1(x′)Ph(x′|x, a)dx′.

(16)

By the definition of a linear MOMDP, the reward and transition functions satisfy:

rih(x, a) = 〈φ(x, a),θih〉, Ph(x′|x, a) = 〈φ(x, a),µh(x′)〉.

Substituting these expressions into Eq. (16) yields:

Qiπ,h(x, a) = 〈φ(x, a),θih〉+

∫
x′∈S

V iπ,h+1(x′) · 〈φ(x, a),µh(x′)〉dx′

= 〈φ(x, a),θih +

∫
x′∈S

V iπ,h+1(x′)µh(x′)dx′〉.

Letting wi
π,h = θih +

∫
x′∈S V

i
π,h+1(x′)dµh(x′) finishes the proof of Proposition 1. �

C. Proof of Lemma 1
Following a similar proof of Proposition 1, we derive

Q̄ik,h(x, a) = rih(x, a) + [PhV̂ ik,h+1](x, a) = 〈φ(x, a), w̄i
k,h〉, (17)

where w̄i
k,h = θih +

∫
x′∈S V̂

i
k,h+1(x′)dµh(x′). Therefore, the equation in Lemma 1 can be rewritten as

〈φ(x, a), ŵi
k,h〉 − Q̄ik,h(x, a) = 〈φ(x, a), ŵi

k,h − w̄i
k,h〉. (18)

Recalling the expression for ŵi
k,h from Eq. (4), we obtain

ŵi
k,h − w̄i

k,h = U−1k,h

k∑
τ=1

φτ,h · r̂iτ,h − w̄i
k,h.
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Eq. (3) indicates that r̂iτ,h = riτ,h + Q̂ik,h+1(xτ,h+1, aτ,h+1) for all τ ∈ [k]. Substituting this yields

ŵi
k,h − w̄i

k,h = U−1k,h

(
k∑
τ=1

φτ,h ·
(
riτ,h + Q̂ik,h+1(xτ,h+1, aτ,h+1)

)
−Uk,hw̄

i
k,h

)

= U−1k,h

(
k∑
τ=1

φτ,h ·
(
riτ,h + V̂ ik,h+1(xτ,h+1)

)
−Uk,hw̄

i
k,h

)
.

From Eq. (17), we observe that riτ,h = 〈φτ,h, w̄i
k,h〉 − [PhV̂ ik,h+1](xτ,h, aτ,h). Substituting this into the above equation

gives

ŵi
k,h − w̄i

k,h = U−1k,h

(
k∑
τ=1

φτ,h · (〈φτ,h, w̄i
k,h〉 − [PhV̂ ik,h+1](xτ,h, aτ,h) + V̂ ik,h+1(xτ,h+1))−Uk,hw̄

i
k,h

)

= U−1k,h

(
−w̄i

k,h +

k∑
τ=1

φτ,h ·
(
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

)) (19)

where the final equality follows from Uk,h =
∑k
τ=1 φ(xτ,h, aτ,h)φ(xτ,h, aτ,h)> + I.

Substituting Eq. (19) into Eq. (18), we decompose the bound into two terms:∣∣〈φ(x, a), ŵi
k,h − w̄i

k,h

〉∣∣
≤
∣∣∣〈φ(x, a),U−1k,hw̄

i
k,h

〉∣∣∣︸ ︷︷ ︸
A1

+

∣∣∣∣∣
〈
φ(x, a),U−1k,h

k∑
τ=1

φτ,h ·
(
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

)〉∣∣∣∣∣︸ ︷︷ ︸
A2

. (20)

To bound A1 and A2, we introduce two lemmas:
Lemma 5. Let w̄i

k,h denote the corresponding weights satisfying Q̄ik,h(x, a) = 〈φ(x, a), w̄i
k,h〉 for all (x, a, h) ∈ S ×A×

[H] and i ∈ [m]. Then, ‖w̄i
k,h‖ ≤ 2H

√
d.

Lemma 6. With probability at least 1− δ, for any (k, h) ∈ [K]× [H] and i ∈ [m],∥∥∥∥∥
k∑
τ=1

φτ,h

(
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

)∥∥∥∥∥
2

Uk,h

≤ dH2 log

(
2mkH

δ

)
.

Applying Lemma 5, we bound A1 as

A1 = |〈φ(x, a),U−1k,hw̄
i
k,h〉| ≤ ‖φ(x, a)‖Uk,h · ‖w̄i

k,h‖Uk,h ≤ ‖φ(x, a)‖Uk,h · ‖w̄i
k,h‖ ≤ 2H

√
d · ‖φ(x, a)‖Uk,h . (21)

For A2, Lemma 6 and the Cauchy-Schwarz inequality imply

A2 ≤ ‖φ(x, a)‖Uk,h ·

∥∥∥∥∥
k∑
τ=1

φτ,h ·
(
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

)∥∥∥∥∥
Uk,h

≤ H

√
d log

(
2mkH

δ

)
· ‖φ(x, a)‖Uk,h

(22)

Taking Eq. (21) and Eq. (22) into Eq. (20), we obtain

|〈φ(x, a), ŵi
k,h〉 − Q̄ik,h(x, a)| ≤

(
2H
√
d+H

√
d log

(
2mkH

δ

))
· ‖φ(x, a)‖Uk,h ,

which concludes the proof of Lemma 1 since βk = 3H
√
d log

(
2mkH
δ

)
. �
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D. Proof of Lemma 2
To bound the term V̂ ik,h(xk,h)− V iπk,h(xk,h) in Lemma 2, we begin by decomposing it as follows:

V̂ ik,h(xk,h)− V iπk,h(xk,h) = V̂ ik,h(xk,h)− Q̄ik,h(xk,h, πk(xk,h, h))︸ ︷︷ ︸
B3

+ Q̄ik,h(xk,h, πk(xk,h, h))− V iπk,h(xk,h)︸ ︷︷ ︸
B4

. (23)

Analysis of B3: By Lemma 1, with probability at least 1− δ, for any (x, k, h) ∈ S × [K]× [H] and i ∈ [m], we have∣∣〈φ(x, πk(x, h)), ŵi
k,h〉 − Q̄ik,h(x, πk(x, h))

∣∣ ≤ βk‖φ(x, πk(x, h))‖Uk,h .

Since V̂ ik,h(x) = Q̂ik,h(x, πk(x, h)) = 〈φ(x, πk(x, h)), ŵi
k,h〉, it follows that∣∣∣V̂ ik,h(x)− Q̄ik,h(x, πk(x, h))

∣∣∣ ≤ βk‖φ(x, πk(x, h))‖Uk,h . (24)

Let sk,h(x) denotes the stage at which Algorithm 1 selects the action for state x ∈ S. From Step 10 of Algorithm 1, we
have 2−sk,h(x) ≤ ‖φ(x, πk(x, h))‖Uk,h ≤ 2−sk,h(x)+1. Substituting this into Eq. (24) yields∣∣∣V̂ ik,h(x)− Q̄ik,h(x, πk(x, h))

∣∣∣ ≤ 2βk · 2−sk,h(x).

Thus, term B3 satisfies

B3 = V̂ ik,h(xk,h)− Q̄ik,h(xk,h, πk(xk,h, h)) ≤ 2βk · 2−sk,h(xk,h). (25)

Analysis of B4: Using the definition of Q̄ik,h(·, ·) in Eq. (9) and the Bellman equation, we observe:

Q̄ik,h(x, a) = rih(x, a) +

∫
x′∈S

V̂ ik,h+1(x′)Ph(x′|x, a)dx′,

V iπ,h(x) = Qiπ,h(x, π(x, h)), Qiπ,h(x, a) = rih(x, a) +

∫
x′∈S

V iπ,h+1(x′)Ph(x′|x, a)dx′.

This implies B4 can be expressed as

B4 = Q̄ik,h(xk,h, πk(xk,h, h))− V iπk,h(xk,h) =

∫
x′∈S

(
V̂ ik,h+1(x′)− V ik,h+1(x′)

)
Ph(x′|xk,h, πk(xk,h, h))dx′. (26)

Combining results: Substituting (25) and (26) into (23) gives

V̂ ik,h(xk,h)− V iπk,h(xk,h) ≤ 2βk · 2−sk,h(xk,h) +

∫
x′∈S

(V̂ ik,h+1(x′)− V ik,h+1(x′))Ph(x′|xk,h, πk(xk,h, h))dx′.

Recalling the notation δik,h = V̂ ik,h(xk,h)− V iπk,h(xk,h) and ζik,h = δik,h − E[δik,h|xk,h, ak,h] from Lemma 2, we obtain

V̂ ik,h(xk,h)− V iπk,h(xk,h) ≤ 2βk · 2−sk,h(xk,h) + δik,h+1 + ζik,h+1

≤
H∑

h′=h

2βk · 2−sk,h′ (xk,h′ ) +

H∑
h′=h+1

ζik,h′ ,

where the second inequality follows by a simple inductive argument. The proof of Lemma 2 is finished. �

E. Proof of Lemma 3
We prove this lemma by mathematical induction on the objective index i ∈ [m] to prove this lemma. First, we note that in
Algorithm 2, the confidence terms of all actions are bounded by C. By Lemma 1, for any (x, a) ∈ S ×As and objective
i ∈ [m], we have

|Q̂ik,h(x, a)− Q̄ik,h(x, a)| ≤ βk · C. (27)
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Base case i = 1: The candidate action set A0
s = As and the refined set A1

s is constructed as

A1
s = {a ∈ A0

s|Q̂1
h(xk,h, â

1
k,h)− Q̂1

h(xk,h, a) ≤ 2βk · C}. (28)

Since π∗(x, h) ∈ As and â1k,h ∈ A0
s = As, Eq. (27) implies

Q̂1
k,h(x, π∗(x, h)) + βk · C ≥ Q̄1

k,h(x, π∗(x, h)) ≥ Q̄1
k,h(x, â1k,h) ≥ Q̂1

k,h(x, â1k,h)− βk · C,

where the inequality Q̄1
k,h(x, π∗(x, h)) ≥ Q̄1

k,h(x, â1k,h) follows from Assumption 1 and the optimality of π∗(x, h).
Substituting these bounds into Eq. (28), we conclude π∗(x, h) ∈ A1

s.

For any a ∈ A1
s, applying the confidence interval in Eq. (27) and the refined operation in Eq. (28) gives

Q̄1
k,h(x, a) ≥ Q̂1

k,h(x, a)− βk · C ≥ Q̂1
h(xk,h, â

1
k,h)− 3βk · C.

Since â1k,h = argmaxa∈A0
s
Q̂1
k,h(x, a) and π∗(x, h) ∈ A0

s, we further derive

Q̄1
k,h(x, a) ≥ Q̂1

h(xk,h, â
1
k,h)− 3βk · C ≥ Q̂1

h(xk,h, π∗(x, h))− 3βk · C ≥ Q̄1
h(xk,h, π∗(x, h))− 4βk · C.

Thus, Q̄1
h(xk,h, π∗(x, h))− Q̄1

k,h(x, a) ≤ 4βk · C.

Inductive step: Assume for any j ∈ [i− 1] that:

π∗(x, h) ∈ Ajs, and

Q̄jk,h(x, π∗(x, h))− Q̄jk,h(x, a) ≤ 4Λj(λ) · βk · C,
(29)

then we prove the following statements hold for the objective i:

π∗(x, h) ∈ Ais, and

Q̄ik,h(x, π∗(x, h))− Q̄ik,h(x, a) ≤ 4Λi(λ) · βk · C.

By, Assumption 1, the trade-off among different objectives are bounded by λ, which implies that

Q̄ik,h(x, âik,h)− Q̄ik,h(x, π∗(x, h)) ≤ λ · max
j∈[i−1]

{Q̄jk,h(x, π∗(x, h))− Q̄jk,h(x, âik,h)}.

Substituting Eq. (29) into the right-hand side yields

Q̄ik,h(x, âik,h)− Q̄ik,h(x, π∗(x, h)) ≤ λ · 4Λi−1(λ) · βk · C. (30)

Applying the confidence intervals from Eq. (27) to bound Q̄ik,h(x, âik,h) and Q̄ik,h(x, π∗(x, h)), we rewrite Eq. (30) as

Q̂ik,h(x, âik,h)− Q̂ik,h(x, π∗(x, h)) ≤ 2βk · C + λ · 4Λi−1(λ) · βk · C. (31)

Given Λi(λ) = 1 + λ+ · · ·+ λi−1 for i ∈ [m] and Step 4 of Algorithm 2, which constructs,

Ais = {a ∈ Ai−1s |Q̂ih(xk,h, â
i
k,h)− Q̂ih(xk,h, a) ≤ (2 + 4λ+ · · ·+ 4λi−1) · βk · C},

Eq. (31) ensures π∗(x, h) ∈ Ais.

Since âik,h = argmaxa∈Ai−1
s

Q̂ih(xk,h, a) and π∗(x, h) ∈ Ai−1s , the construction of Ais implies

Q̂ih(xk,h, π∗(x, h))− Q̂ih(xk,h, a) ≤ Q̂ih(xk,h, â
i
k,h)− Q̂ih(xk,h, a) ≤ (2 + 4λ+ · · ·+ 4λi−1) · βk · C. (32)

By the confidence interval in Eq. (27), we have

Q̄ih(xk,h, π∗(x, h)) ≤ Q̂ih(xk,h, π∗(x, h)) + βk · C, Q̂ih(xk,h, a)− Q̄ih(xk,h, a) ≤ βk · C.

Substituting this into Eq. (32) yields

Q̄ih(xk,h, π∗(x, h))− Q̄ih(xk,h, a) ≤ 4(1 + λ+ · · ·+ λi−1) · βk · C.

This completes the proof of Lemma 3. �
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F. Proof of Lemma 4
Recall the definition of Q̄ik,h(·, ·) in Eq. (9) and Bellman equation:

Q̄ik,h(x, a) = rih(x, a) +

∫
x′∈S

V̂ ik,h+1(x′)Ph(x′|x, a)dx′,

V iπ,h(x) = Qiπ,h(x, π(x, h)), Qiπ,h(x, a) = rih(x, a) +

∫
x′∈S

V iπ,h+1(x′)Ph(x′|x, a)dx′.

From these, we can write V iπ∗,h(x) as

V iπ∗,h(x) = Q̄ik,h(x, π∗(x, h)) +

∫
x′∈S

(
V iπ∗,h+1(x′)− V̂ ik,h+1(x′)

)
Ph(x′|x, π∗(x, h))dx′.

Lemma 3 establishes the bound

Q̄ik,h(xk,h, π∗(xk,h, h))− Q̄ik,h(xk,h, πk(xk,h, h)) ≤ 8Λi(λ) · βk · 2−sk,h(xk,h)

where πk(xk,h, h) ∈ Ask,h(xk,h) and Ask,h(xk,h) is constructed by setting C = 2−sk,h(xk,h)+1 in the LAE procedure.
Substituting this into the expression for V iπ∗,h(x), we obtain

V iπ∗,h(xk,h) ≤ Q̄ik,h(xk,h, πk(xk,h, h)) + 8Λi(λ) · βk · 2−sk,h(xk,h)

+

∫
x′∈S

(
V iπ∗,h+1(x′)− V̂ ik,h+1(x′)

)
Ph(x′|xk,h, π∗(xk,h, h))dx′.

(33)

Lemma 1 provides the confidence interval

Q̄ik,h(xk,h, πk(xk,h, h)) ≤ Q̂ik,h(xk,h, πk(xk,h, h)) + βk · ‖φ(xk,h, πk(xk,h, h))‖Uk,h
≤ Q̂ik,h(xk,h, πk(xk,h, h)) + 2βk · 2−sk,h(xk,h)

= V̂ ik,h(xk,h) + 2βk · 2−sk,h(xk,h).

Substituting this inequality into (33) yields

V iπ∗,h(xk,h) ≤ V̂ ik,h(xk,h) + 2βk · 2−sk,h(xk,h) + 8Λi(λ) · βk · 2−sk,h(xk,h)

+ max
a∈A

∫
x′∈S

(
V iπ∗,h+1(x′)− V̂ ik,h+1(x′)

)
Ph(x′|xx,k, a)dx′.

Applying induction over h, we have

V iπ∗,h(xk,h)− V̂ ik,h(xk,h) ≤
H∑

h′=h

10Λi(λ) · βk · 2−sk,h′ (xk,h′ ).

This completes the proof of Lemma 4. �

G. Proof of Theorem 2
Notation. Let Uk,h, ŵi

k,h, and Q̂ik,h denote the parameters and the estimated Q-function for episode k, with πk representing
the policy at k-th episode. The estimated value function V̂ ik,h is defined as V̂ ik,h(x) = Q̂ik,h(x, πk(x, h)). For notational
simplicity, we define φk,h = φ(xk,h, ak,h). For any (x, a, k, h) ∈ S×A× [K]× [H], the surrogate Q-function for objective
i ∈ [m] is given by

Q̄ik,h(x, a) = rih(x, a) +

∫
x′∈S

V̂ ik,h+1(x′)Ph(x′|x, a)dx′. (34)

We now present the following proposition and lemmas, which extend key tools used in the proof of Theorem 1. Specifically,
Proposition 3 extends Proposition 3, while Lemmas 7, 8, 9, and 10 extend Lemmas 1, 2, 3, and 4, respectively.
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Proposition 3. In an ε-approximate linear MOMDP, for any objective i ∈ [m] and any k ∈ [K], there exist weights
{w̄i

k,h}h∈[H] such that for any (x, a, h) ∈ S ×A× [H], we have

|Q̄ik,h(x, a)− 〈φ(x, a), w̄i
k,h〉| ≤ 2Hε.

Proof. From the definition of Q̄ik,h(x, a) in Eq. (34), for all i ∈ [m] and h ∈ [H]

Q̄ik,h(x, a) = rih(x, a) + [PhV̂ ik,h+1](x, a)

= rih(x, a) + Ex′∼Ph(·|x,a)[V̂
i
k,h+1(x′)]

= rih(x, a) +

∫
x′∈S

V̂ ik,h+1(x′)Ph(x′|x, a)dx′.

(35)

By the definition of ε-approximate linear MOMDP,

|rih(x, a)− 〈φ(x, a),θih〉| ≤ ε, ‖Ph(x′|x, a)− 〈φ(x, a),µh(x′)〉‖1 ≤ ε.

Taking these bounds into Eq. (35), we derive:

Q̄ik,h(x, a) ≤ 〈φ(x, a),θih〉+ ε+

∫
x′∈S

V̂ ik,h+1(x′) · 〈φ(x, a),µh(x′)〉dx′ +Hε

≤ 〈φ(x, a),θih +

∫
x′∈S

V̂ ik,h+1(x′)µh(x′)dx′〉+ 2Hε.

A symmetric argument provides the lower bound:

〈φ(x, a),θih +

∫
x′∈S

V̂ ik,h+1(x′)µh(x′)dx′〉 − 2Hε ≤ Q̄ik,h(x, a).

Thus, setting w̄i
k,h = θih +

∫
x′∈S V̂

i
k,h+1(x′)dµh(x′) completes the proof of Proposition 3. �

Lemma 7. Let βk = 3H
√
d log

(
2mkH
δ

)
+2Hε

√
kd. With probability at least 1−δ, for all (x, a, k, h) ∈ S×A×[K]×[H]

and i ∈ [m], we have
|〈φ(x, a), ŵi

k,h〉 − Q̄ik,h(x, a)| ≤ βk‖φ(x, a)‖Uk,h + 2Hε.

Proof. By Proposition 3, we derive the initial bound:

|〈φ(x, a), ŵi
k,h〉 − Q̄ik,h(x, a)| ≤ |〈φ(x, a), ŵi

k,h − w̄i
k,h〉|+ 2Hε. (36)

From the definition of ŵi
k,h in Eq. (4), we express the difference:

ŵi
k,h − w̄i

k,h = U−1k,h

k∑
τ=1

φτ,h · r̂iτ,h − w̄i
k,h.

Using the surrogate reward relation in Eq. (3), where r̂iτ,h = riτ,h + Q̂ik,h+1(xτ,h+1, aτ,h+1) for all τ ∈ [k], we expand:

ŵi
k,h − w̄i

k,h = U−1k,h

(
k∑
τ=1

φτ,h ·
(
riτ,h + Q̂ik,h+1(xτ,h+1, aτ,h+1)

)
−Uk,hw̄

i
k,h

)

= U−1k,h

(
k∑
τ=1

φτ,h ·
(
riτ,h + V̂ ik,h+1(xτ,h+1)

)
−Uk,hw̄

i
k,h

)
.

Let P̃h(·|x, a) = 〈φ(x, a),µh(·)〉. Recalling the proof of Proposition 3 that w̄i
k,h = θih +

∫
x′∈S V̂

i
k,h+1(x′)dµh(x′), we

restructure the above equation to

ŵi
k,h − w̄i

k,h = −U−1k,hw̄
i
k,h + U−1k,h

k∑
τ=1

φτ,h

(
riτ,h − 〈φτ,h,θih〉+ [(Ph − P̃h)V̂ ik,h+1](xτ,h, aτ,h)

)
+ U−1k,h

(
k∑
τ=1

φτ,h ·
(
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

))
.

(37)
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Taking the Eq. (37) into Eq. (36), we have∣∣〈φ(x, a), ŵi
k,h − w̄i

k,h

〉∣∣
≤
∣∣∣〈φ(x, a),U−1k,hw̄

i
k,h

〉∣∣∣︸ ︷︷ ︸
A1

+

∣∣∣∣∣
〈
φ(x, a),U−1k,h

k∑
τ=1

φτ,h ·
(
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

)〉∣∣∣∣∣︸ ︷︷ ︸
A2

+

∣∣∣∣∣
〈
φ(x, a),U−1k,h

k∑
τ=1

φτ,h

(
riτ,h − 〈φτ,h,θih〉+ (Ph − P̃h)V̂ ik,h+1(xτ,h, aτ,h)

)〉∣∣∣∣∣︸ ︷︷ ︸
A3

.

(38)

Term A1 and A2 are bounded by the same methodology as Lemma 1. For A3, noting that |riτ,h − 〈φτ,h,θih〉| ≤ ε and
‖Ph − P̃h‖1 ≤ ε, we can bound A3 as

A3 ≤ 2Hε · |
k∑
τ=1

φ(x, a)>U−1k,hφτ,h|

≤ 2Hε ·

√√√√ k∑
τ=1

φ(x, a)>U−1k,hφ(x, a) ·
k∑
τ=1

φ>τ,hU−1k,hφτ,h

≤ 2Hε
√
kd · ‖φ(x, a‖Uk,h .

(39)

Integrating Eqs. (21), Eq. (22), and Eq. (39) into Eq. (38) produces:

|〈φ(x, a), ŵi
k,h〉 − Q̄ik,h(x, a)| ≤

(
3H

√
d log

(
2mkH

δ

)
+ 2Hε

√
kd

)
· ‖φ(x, a)‖Uk,h + 2Hε,

which concludes the proof of Lemma 7. �

The proofs of the following three lemmas follow analogous arguments to their counterparts in Lemmas 2, 3, and 4, requiring
only the replacement of βk‖φ(x, a)‖Uk,h with βk‖φ(x, a)‖Uk,h + 2Hε. We therefore omit their full proofs for brevity.

Lemma 8. Let δik,h = V̂ ik,h(xk,h)− V iπk,h(xk,h) and ζik,h = δik,h − E[δik,h|xk,h, ak,h]. With probability at least 1− δ, for
any (k, h) ∈ [K]× [H] and i ∈ [m], we have

V̂ ik,h(xk,h)− V iπk,h(xk,h) ≤
H∑

h′=h

2βk · 2−sk,h′ (xk,h′ ) +

H∑
h′=h+1

ζik,h′ + 2H(H − h+ 1)ε,

where sk,h′(xk,h′) denotes the stage at which LLRL selects the action for state xk,h′ .

Lemma 9. For Algorithm 2, if π∗(x, h) ∈ As, then with probability at least 1− δ, for any objective i ∈ [m] and action
a ∈ Ais, we have

π∗(x, h) ∈ Ais, and

Q̄ik,h(x, π∗(x, h))− Q̄ik,h(x, a) ≤ 4Λi(λ) · βk · (C + 2Hε).

Lemma 10. With probability at least 1− δ, for all (x, a, k, h) ∈ S ×A× [K]× [H] and i ∈ [m], we have

V iπ∗,h(xk,h)− V̂ ik,h(xk,h) ≤
H∑

h′=h

10Λi(λ) · βk · 2−sk,h′ (xk,h′ ) + 20Λi(λ) · (H − h+ 1)Hε

where sk,h′(xk,h′) denotes the stage at which LLRL selects the action for state xk,h′ .
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Proof of Theorem 2: Using Lemma 8 and Lemma 10, we decompose the regret for each objective i ∈ [m] as:

Ri(K) =

K∑
k=1

V iπ∗,1(xk,1)− V iπk,1(xk,1)

=

K∑
k=1

V iπ∗,1(xk,1)− V̂ ik,1(xk,1) +

K∑
k=1

V̂ ik,1(xk,1)− V iπk,1(xk,1).

Following an analogous procedure to Theorem 1, we derive:

Ri(K) ≤ 60Λi(λ) · βK log(K)
√
dH2K +

√
2KH3 · log(m/δ) + 22Λi(λ) ·H2Kε.

Substituting βK = 3H
√
d log (2mKH/δ) + 2Hε

√
Kd yields:

Ri(K) ≤ Õ
(

Λi(λ) ·
(√

d2H4K + dH2Kε
))

.

This completes the proof of Theorem 2. �

H. Proof of Lemma 5
By the Bellman equation in Eq. (1), for any (x, a, k, h) ∈ S ×A× [K]× [H] and i ∈ [m], we have

Q̄ik,h(x, a) = rih(x, a) + [PhV̂ ik,h+1](x, a).

Applying reasoning analogous to Proposition 1, we derive

w̄i
k,h = θih +

∫
x′∈S

V̂ ik,h+1(x′)dµh(x′).

Given the bounded reward rih(x, a) ∈ [0, 1], the value function satisfies V̂ ik,h+1(x′) ≤ H for any state x′. Therefore,

‖θh‖ ≤
√
d, and

∥∥∥∥∫
x′∈S

V̂ ik,h+1(x′)dµh(x′)

∥∥∥∥ ≤ H√d,
which finishes the proof. �

I. Proof of Lemma 6
According to Lemma 11, for any fixed i ∈ [m] and h ∈ [H], with probability at least 1− δ, the following inequality holds
for all k ≥ 1: ∥∥∥∥∥

k∑
τ=1

φτ,h

[
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

]∥∥∥∥∥
2

Uk,h

≤ 2H2 log

[√
det(Uk)

δ

]
.

Lemma 12 simplifies this bound via the inequality det, yielding:

∥∥∥∥∥
k∑
τ=1

φτ,h

[
V̂ ik,h+1(xτ,h+1)− [PhV̂ ik,h+1](xτ,h, aτ,h)

]∥∥∥∥∥
2

Uk,h

≤ 2H2 log

[√
(1 + k/d)d

δ

]
≤ dH2 log

[
1 + k

δ

]
.

Applying a union bound over all i ∈ [m] and h ∈ [H] completes the proof. �
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J. Auxiliary Lemmas
Lemma 11. (Abbasi-yadkori et al., 2011, Theorem 1) Let {εt}Tt=1 be a real-valued stochastic process adapted to filtration
{Ft}∞t=0, where εt|Ft−1 be zero-mean and σ-subGaussian, i.e.,

E[εt|Ft−1] = 0, and ∀λ ∈ R,E[eλεt |Ft−1] ≤ eλ
2σ2/2.

Let {φt}∞t=0 ⊆ Rd be a stochastic process where φt ∈ Ft−1. Assume U0 is a d × d positive definite matrix, and let
Ut = U0 +

∑t
s=1 φsφ

>
s . Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0:∥∥∥∥∥

t∑
s=1

φsεs

∥∥∥∥∥
2

Ut

≤ 2σ2 log

(√
det(Ut)/det(U0)

δ

)
.

Lemma 12. (Abbasi-yadkori et al., 2011, Lemma 10) Let φ1, φ2, . . . , φt ∈ Rd satisfy ‖φs‖2 ≤ L for any 1 ≤ s ≤ t.
Define Ut = λI +

∑t
s=1 φsφ

>
s for some λ > 0. Then:

det(Ut) ≤ (λ+ tL2/d)d.

Lemma 13. (Chu et al., 2011, Lemma 3) Let φ1, φ2, . . . , φt ∈ Rd and Ut = I +
∑t
s=1 φsφ

>
s . Then:

t∑
s=1

‖φs‖Us ≤ 5
√
dt log t.
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