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ABSTRACT

Crowd simulation has garnered significant attention in domains including traffic
management, urban planning, and emergency management. Existing methods can
be classified as either rule-based or learning-based approaches, with the former
lacking authenticity and the latter lacking generalization. Recent research has at-
tempted to combine these approaches and propose physics-infused methods to ad-
dress the aforementioned limitations. However, they continue to adhere strictly to
the framework of the physical model, neglecting to depict the attention mechanism
as a critical component of behavior. This limitation results in deficiencies in both
the fidelity and generalizability of the simulations. This paper introduces a novel
framework called Physics-infused Intention NEtwork (PINE) for crowd simula-
tion. Our model introduces a physical bias while endowing pedestrians with the
ability to selectively enhance the fine-grained information most relevant to one’s
current behavior. In addition, we design a variable-step rollout training approach
with an optimized loss function to address cumulative errors in simulation. By
conducting extensive experiments on four publicly available real-world datasets,
we demonstrate that our PINE outperforms state-of-the-art simulation methods in
accuracy, physical fidelity, and generalizability.

1 INTRODUCTION

Crowd simulation is a process of simulating the movements of a large number of individuals in
specific scenarios, with a focus on interaction dynamics. It serves as the foundation of various
important applications, including facility, infrastructure, and building design (Bitgood, 2006), crowd
evacuation (Boltes et al., 2018), autonomous driving cars (Poibrenski et al., 2020), human-robot
interactions (Tai et al., 2018), assistive technologies in industrial scenarios (Leo et al., 2017), and
entertainment (e.g., augmented and virtual reality) (Rodin et al., 2021).

Current crowd simulation methods can be broadly categorized into two main types: rule-based and
learning-based. Rule-based methods use a set of expert knowledge-based rules to simulate crowd
dynamics. These methods exhibit robust performance across various scenarios but overlook the
heterogeneity of pedestrian behavior. Previous studies (Cao et al., 2016; Subaih et al., 2020) have
shown that pedestrian behavior is influenced by multiple factors such as age, gender, and culture.
Uniform physical rules fail to effectively capture these individual differences. Additionally, lim-
ited rules struggle to accurately represent the complex interactions and motion patterns of crowds
in real-world scenarios. On the other hand, learning-based methods are able to model more intri-
cate behavioral patterns when provided with ample data. However, it is important to note that these
methods often face challenges when it comes to generalizing to long-term simulations or different
scenarios. This limitation has been highlighted in related studies (Zhang et al., 2022). Consider-
ing the complementarity of rule-based and learning-based methods, recent researchers have started
to explore the integration of these two approaches by proposing physics-informed deep learning
frameworks. They replace key components of the rule-based model, such as partial or complete set
of parameters of force components in SFM (Social Force Model), with neural networks and train
on real data. It is important to note that they adhere to the characterization framework of pedestrian
behavior patterns in the physical model, wherein pedestrians assign equal importance to all factors.
Nevertheless, the human brain operates as a limited information system. Humans possess behavioral
intention that selectively prioritizes information that aligns with their present behavioral objectives
(Buschman & Kastner, 2015).
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Figure 1: A visualization of Human-Car interaction scenario. Different colored dots represent differ-
ent pedestrians, while the rectangular box represents vehicles. The black arrow indicates the forward
direction of the vehicle. The horizontal axis represents the time steps, increasing from left to right.
The vertical axis represents the simulated effects presented by different methods in this scenario.

In order to incorporate the impact of behavioral intention, we propose a novel framework that enables
pedestrians to adaptively adjust the influence of different factors on their behavior. This approach
facilitates the achievement of accurate and physically consistent simulation outcomes. Fig. 1 il-
lustrates the simulation effects of various methods in a person-vehicle interaction scenario. In the
rule-based simulation (SFM (Helbing & Molnar, 1995)), pedestrians consistently allocate equal at-
tention to the attraction of distant goals and the repulsion exerted by nearby vehicles. Consequently,
pedestrians repeatedly collide with vehicles, resembling the behavior of a pinball. Learning-based
(MID (Gu et al., 2022)) and existing physics-infused (PCS and NSP (Karniadakis et al., 2021; Yue
et al., 2022)) methods disregard the influence of vehicles and solely concentrate on reaching the
goal. Consequently, pedestrians directly cross through vehicles. In contrast, our proposed method
incorporates an attention mechanism that enables pedestrians to dynamically adjust their attention.
As pedestrians approach vehicles, they allocate more attention to the vehicles in front of them. Once
the vehicles move away, pedestrians redirect their attention towards their intended goals. Through
our attention mechanism, pedestrians demonstrate behavior patterns that closely resemble real-life
scenarios, encompassing deceleration, avoidance, and resumption of movement.

In this paper, we present a crowd simulation model called Physics-infused Intention NEtwork
(PINE). Our model combines the advantages of rule-based and learning-based approaches. By in-
tegrating rule-based models to incorporate physical biases and utilizing neural networks to learn
complex attention mechanisms of pedestrians, our model provides an accurate, physical consistent
and generalized simulation. The contributions of our work are outlined as follows:

1) We propose PINE for crowd simulation. At the input end of the model, we design an adaptive
feature extraction module that selectively extracts important features based on the physical model’s
characterization of the state. At the output end of the model, we introduce an attention module that
operates on the raw output of the rule-based model. Additionally, the neural network generates a
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residual behavior representing patterns beyond the scope of the rule-based model. The optimized
rule model output and neural network output jointly control pedestrian behavior

2) We introduce a Variable-step Rollout Training algorithm to address cumulative errors during
simulation. Similiar to (Zhang et al., 2022), we adopt a multi-step rollout training approach in
the training phase. Building upon this, taking into account the computational burden and shift
phenomenon, we design an automated adjustment of rollout steps and a loss function with a shift
regression bias.

3) Extensive experiments demonstrate the accuracy, fidelity, and generalizability of our method in
various scenarios.

2 RELATED WORK

2.1 RULE-BASED CROWD SIMULATION

Rule-based methods typically use calibrated rules to model the interaction between individuals (Hel-
bing & Molnar, 1995; Dietrich & Köster, 2014; Xi et al., 2011) or groups of pedestrians (Hughes,
2002; Karamouzas & Overmars, 2011). One of the most known techniques in this category is the
social forces method (Helbing & Molnar, 1995) which models changes in pedestrian behavior based
on forces calculated by combining three components : acceleration force which captures an indi-
vidual desire to reach a certain velocity, repulsive force which shows the tendency of pedestrians to
keep a certain distance from their neighboring individuals, and repulsive force from obstacles. This
type of approach exhibits good generalization ability, but lacks the capability to represent complex
and heterogeneous behaviors of pedestrians.

2.2 LEARNING-BASED CROWD SIMULATION

With the emergence of machine learning techniques and increase in computation power, many recent
approaches rely on learning-based approaches to learn and predict different patterns of pedestrian
behavior (Song et al., 2018; Kouskoulis et al., 2018). For example, (Alahi et al., 2016) use a long
short-term memory (LSTM) network with a social pooling layer that extracts interactions among
nearby pedestrians, and (Gupta et al., 2018) use Generative Adversarial Networks (GANs) to predict
social acceptable trajectories. Other approaches (Sun et al., 2021; Mangalam et al., 2021; Gu et al.,
2022) propose other strategies such as diffusion models. However, they still have shortcomings in
terms of generalization ability.

2.3 PHYSICS-INFUSED CROWD SIMULATION

Due to the complementarity of rule-based and learning-based methods, recent researchers have made
attempts to integrate physical models with neural networks. These attempts involve replacing certain
key components of the physical model with neural networks and training them using real data. For
example, PCS (Physics-informed Crowd Simulator) (Zhang et al., 2022) replaces the core terms of
SFM with GNNs (Graph Neural Networks), and the NSP (Neural Social Physics) model (Yue et al.,
2022) designs a SFM with learnable parameters. However, they continue to adhere to the framework
of SFM and neglect the attention mechanism of humans, resulting in deficiencies in both fidelity and
generalizability.

3 PROBLEM FORMULATION

3.1 PEDESTRIAN SIMULATION

Given the initial state, the pedestrian simulation aims to simulate the pedestrian behavior of an ar-
bitrary duration. We formulate the simulation as an iterative prediction problem. At each time step
t, we take pedestrian internal states, including their positions, velocities, accelerations, and destina-
tions, together with the environment external states, including the map information, the obstacles’
positions, velocities, and accelerations, as input. The output is the actions that pedestrians need to
adopt at the current time frame. After taking actions, we can obtain new states at t + 1 from the
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environment. Formally, it can be formulated as follows,

st+1
p , st+1

e = P (stp, s
t
e, fθ(s

t
p, s

t
e)) (1)

where stp and ste are the the pedestrians’ states and the environment states at time t. fθ outputs
the actions of pedestrian and P reflects the dynamics of the environment. To better portray the
continuum of pedestrian behavior and generate physically consistent results, fθ directly outputs the
accelerations of pedestrians. Then the update of crowd can be formulated as follows,

pt+1 = pt + vt+1∆t, vt+1 = vt + at+1∆t (2)

where p, v and a represent the position, velocity and acceleration of the pedestrian, respectively.

3.2 PHYSICAL MODEL

The Social Force Model (SFM) was established by Helbing et al. according to the Newton’s second
law of motion (Helbing & Molnar, 1995). The model assumes that pedestrians are influenced by
three factors: mentality, other pedestrians and environment. The influences of the three factors
can be respectively measured by three forces: the self-driving force, the acting force between two
pedestrians and the acting force between a pedestrian and obstacles, which can be formulated as
follows,

miai = fiD +
∑

j ̸=i,j∈P

fji +
∑
o∈O

foi (3)

fiD = mi
vidniD − vi

τ
(3a)

fji = λ1e
−dji/α1 · nji (3b)

foi = λ2e
−doi/α2 · noi (3c)

where P and O refer to the set of pedestrians and obstacles, respectively. fiD, fjiand foi represent
the traction force of destination D, the repulsive force of pedestrian j and obstacle o on pedestrian i,
respectively. The magnitude and direction of the traction force fiD depend on the desired walking
velocity vidniD, where vid denotes the speed and niD denotes the unit vector to the target direction,
and the current velocity vi of pedestrian i. τ is the simulation time step. The repulsive force between
pedestrian i and other pedestrians or obstacles is correlated with the relative distance between them,
denotes as dji and doi, and in the direction of their relative position, denotes as nji and noi. λ1,
λ2, α1 and α2 are tunable parameters with a physical meaning. Since these parameters can greatly
affect the effectiveness of SFM, we adopt the optimized form (Moussaı̈d et al., 2009), where the
parameters have been optimized in controlled experiments.

4 METHOD

4.1 FRAMEWORK

In this section, we present PINE, which simulates crowd behaviour based on the physical model and
neural networks. As shown in Fig. 2 (a), at each time step t, we construct a field of view for each
pedestrian with their current position as the center, a certain radius, and angle. Only pedestrians or
obstacles appearing within the field of view will be considered as features and constitute the cur-
rent state of pedestrians. We propose two modules, namely the Feature Adaptive Extraction Module
(FAEM) and the Force Intention Module (FIM), which introduce physical biases and attention mech-
anisms. Moreover, we generate an additional Residual Action (RA) at the output to compensate for
behavior patterns that cannot be accurately captured by the physical model. To address the cumu-
lative error that occurs during simulation, we introduce a Variable-step Rollout Training Algorithm
(VRTA).

4.2 FEATURE ADAPTIVE EXTRACTION MODULE (FAEM)

The raw information received by the neural network may contain a lot of noises and irrelevant con-
tents. Inputting all contents indiscriminately into the neural network can hinder its learning process.
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Figure 2: The simulation framework and the architecture of our proposed PINE are described. PINE
is designed to receive information about the current visual field of pedestrians and generate corre-
sponding actions. The model utilizes an abstract representation of the environment through a physi-
cal model, which helps extract critical information from raw data. The spatio-temporal information
collected by the sequential model is then used to direct pedestrians’ attention to factors that require
more focus in the current context. Additionally, the neural network generates a residual action to
cooperatively control pedestrian behavior.

The intermediate physical quantities of the physical model, on the other hand, can more accurately
reflect the influence of current factors on pedestrian behavior. Specificly, in Social Force Model
(SFM) (Helbing & Molnar, 1995), the magnitude and direction of the forces directly reflect the
influence of corresponding factors on pedestrians. For example, when the repulsive force towards
obstacles in SFM is high, the neural network should receive more raw information related to obsta-
cles. Therefore, as shown in Fig. 2(c), we construct gate units for corresponding features based on
the SFM forces at the input end of the features as follow:

zt = iptx
p
t + iotx

o
t + igtx

g
t (4)

ipt = σ(W p · [xp
t , f

p
t ] + bp) (4a)

iot = σ(W o · [xo
t , f

o
t ] + bo) (4b)

igt = σ(W g · [xg
t , f

g
t ] + bg) (4c)

where xp
t , xo

t and xg
t respectively denote the raw feature of the surrounding pedestrians, obstacles

and goals at time t. fp
t , fo

t and fg
t respectively denote the force components of the surrounding

pedestrians, obstacles and goals at time t. W and b are learnable parameters and σ is the sigmod
function. ip, io and ig are used to adjusting the weights of different input features, respectively.
zt represents the final input features to the sequential model at time t. These gate units adjust the
input magnitude of different features, helping the neural network learn the corresponding behavior
on features it needs to focus on.

4.3 FORCE INTENTION MODULE (FIM)

The physical model possesses stronger generalization capability and maintains physical consistency.
Therefore, we preserve the output of the SFM at the output end to inherit the excellent properties
of the physical model. However, the original output of the physical model has flaws in terms of
the realism in simulations. For example, SFM fails to capture the behavior of pedestrians gradually
slowing down or stopping while waiting for vehicles to pass. Instead, it continues to exert force,
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resulting in pedestrians continuously colliding with vehicles. The main reason is that in SFM, dif-
ferent factors act independently on pedestrians. When pedestrians are obstructed by vehicles, they
still maintain the drive to reach their destination. However, pedestrians possess attention mecha-
nisms. They have behavioral intention which selectively prioritizes information that is most relevant
to their current behavioral goals. In order to incorporate attention mechanisms into SFM, we design
the Force Intention Module (FIM) to adjust the force components in SFM as follow:

ft = ept f
p
t + eotf

o
t + egt f

g
t (5)

ept = σ(W p · [ht, f
p
t ] + bp) (5a)

eot = σ(W o · [ht, f
o
t ] + bo) (5b)

egt = σ(W g · [ht, f
g
t ] + bg) (5c)

where ht represents the output of the sequential model at time t, ept , eot and egt denote the attention
on force components fp

t , fo
t and fg

t , respectively. ft represents the optimized force after the FIM.

4.4 RESIDUAL ACTION (RA)

SFM only considers the influence of three limited factors on pedestrian behavior. However, pedes-
trian behavior is complex and influenced by a multitude of underlying factors, such as pedestrians’
psychological state. In order to compensate for the shortcomings of SFM in characterizing the
impact of these latent features on pedestrians, our model directly outputs an additional Residual
Action (RA) from the sequential model based on the information of historical trajectories, which is
computed as follow

aRA
t = MLP (ht) (6)

where ht represents the output of the sequential model at time t and aRA
t represents the RA at time

t. In contrast to FIM, where all forces are determined by known factors, RA can capture the the
influence of latent features on pedestrian. FIM and RA collectively govern pedestrian behavior.

4.5 VARIABLE-STEP ROLLOUT TRAINING ALGORITHM (VRTA)

Employing single-step training strategy on a limited set of trajectory data would not be sufficient for
conducting long trajectory simulations. A recognized problem is the compounding errors that occur
when deviating from the trajectory samples during simulation. An effective solution is to employ
rollout training (Ross & Bagnell, 2010), wherein the model simulates T steps and utilizes the results
collectively to compute losses and update model parameters. Similar strategies have also been im-
plemented in previous studies (Zhang et al., 2022). Considering the inefficiency of rollout training,
it is usually to combine single-step and multi-step approaches in practical applications. However,
the existing training strategy still has two significant limitations: 1) it initiates iteration at a fixed
length, unable to achieve a balance between model performance and computational efficiency, and
2) it neglects the regression of the shift. To overcome the aforementioned limitations, we propose
the Variable-step Rollout Training Algorithm (VRTA). Firstly, we incrementally increase the value
of T , allowing the model to improve simulation results on shorter time steps before extending the
step length. This approach enhances training efficiency. Secondly, we optimized the loss function
to minimize the model’s shift, which is computed as follows:

LF =

T∑
t=1

λt||fθ(ŝt, τt)− at −
t∑

i=1

i · (at−i − ât−i)||2 (7)

τt = (ât−1, ŝt−1, ât−2, ŝt−2, ..., â1, s1) (8)
where τt represents the simulation trajectory before time t and ŝt represents the current state at time
t. fθ(ŝt, τt) generates the predicted action ât and at denotes to the true action at state st. Previous
work solely focused on the loss function between fθ(ŝt, τt) and at, disregarding the differences
between ŝt and st. In other words, pedestrian cannot transition to st+1 by performing at at ŝt.
Therefore, we introduce the additional bias

∑t
i=1 i · (at−i − ât−i). The additional bias represents

the accumulated error between predicted actions and true actions up to the current time step t,
which helps the pedestrian transition back to st+1 at the next step. To prevent excessive behavioral
distortions, we introduce a weighting factor 0 < λ < 1 that emphasizes actions made in states closer
to the initial steps, which are closer to the ground truth. The derivation process of the loss function
can be referred to in the appendix.
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DUT ETH

Groups Models MAE DTW OT MMD MAE DTW OT MMD

Rule
-based SFM 1.509 0.506 2.865 0.033 0.816 0.334 1.262 0.200

Learning
-based

PCCSNet 8.009 7.978 32.98 0.588 3.799 3.624 10.97 0.907
Y-net 2.658 2.122 8.173 0.096 1.682 1.415 4.148 0.29
MID 2.653 2.300 7.711 0.108 2.246 2.008 7.654 0.724

Physics
-infused

PCS 1.851 0.894 3.249 0.062 1.265 0.738 1.997 0.303
NSP 0.860 0.455 1.702 0.018 0.590 0.350 0.986 0.147
Ours 0.781 0.396 1.433 0.014 0.430 0.308 0.448 0.109

∆ (+9.2%) (+13%) (+16%) (+22%) (+27%) (+12%) (+55%) (+26%)

Table 1: The performance evaluation results on the DUT and ETH datasets. The training and testing
of the model are conducted on the same dataset.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset. We conduct crowd simulation evaluation experiments of the model on four open-source
datasets: the DUT (Yang et al., 2019) dataset, the ETH (Pellegrini et al., 2009) dataset, the GC (Zhou
et al., 2011) dataset and the UCY (Lerner et al., 2007) dataset. The four datasets differ in scenarios,
scale, duration, and pedestrian density, allowing us to verify the generalization performance of the
model.

Baseline Methods. We compare our framework with six state-of-the-art models from three cat-
egories, including rule-based models, learning-based models and physical-infused models. Rule-
based model adopts the Social Force Model (SFM) (Moussaı̈d et al., 2009), which is widely used in
the state-of-the-art commercial crowd simulators. Learning-based methods include PCCSNet (Sun
et al., 2021), Y-net (Mangalam et al., 2021) and MID (Gu et al., 2022), which are the state-of-the-art
methods based on different framework to predict pedestrian trajectories. Physical-infused models
include PCS (Zhang et al., 2022) and NSP (Yue et al., 2022), which both combine physical models
with neural networks to enhance pedestrian simulation effectiveness.

Experiment Settings and Reproducibility. For the DUT and ETH datasets, we divided the dataset
into training, valid and testing sets in a 4:1:1 ratio based on the time scale to validate the effectiveness
of our method in training and simulating on similar datasets. For the GC and UCY datasets, we used
them as test sets to validate the transferability of our method in simulating pedestrian behavior
after training on DUT and ETH datasets. We use four widely adopted metrics, including the Mean
Absolute Error (MAE) and Dynamic Time Warping (DTW) characterizing microscopic simulation
accuracy, Optimal Transport divergence (OT) and Maximum Mean Discrepancy (MMD), measuring
macro-level distribution differences. We perform a grid search on all the hyperparameters for all
models. For reproducibility, we make our codes available.

5.2 OVERALL PERFORMANCE COMPARISON

To examine the effectiveness of our proposed framework, we compare the performance of the PINE
with different types of state-of-the-art baselines on two different scenario large-scale datasets in
Table 5.2. Here, we summarize key observations and insights as follows:

The Superior Performance of PINE: PINE outperforms all state-of-the-art baselines across all four
evaluation metrics on both datasets. Specifically, it provides a relative performance gain of 9.2%,
13%, 16%, and 22% on the DUT dataset and 27%, 12%, 55%, and 26% on the ETH dataset, in terms
of MAE, DTW, OT, and MMD, respectively, which demonstrates the effectiveness of our proposed
model. Our model gives accurate simulations from both micro trajectory and macro distribution
perspectives.
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Figure 3: Scenarios involving interactions between individual pedestrian and vehicle. As pedestrians
approach vehicles, their attention towards obstacles increases while their attention towards reaching
the goal decreases. Our model is able to output fidelity changes in acceleration.

GC UCY

Groups Models MAE DTW OT MMD MAE DTW OT MMD

Rule
-based SFM 1.996 0.940 5.939 0.209 1.487 0.751 4.086 0.711

Learning
-based

PCCSNet 9.591 9.509 44.77 0.810 8.298 8.296 94.56 2.288
Y-net 8.594 7.842 68.80 0.704 2.535 2.147 11.56 0.955
MID 5.335 5.108 17.79 0.407 2.435 2.243 8.503 1.025

Physics
-infused

PCS 2.357 1.286 4.891 0.188 1.481 0.754 3.669 0.796
NSP 2.501 1.459 6.346 0.203 1.039 0.737 2.302 0.529
Ours 1.309 0.832 3.240 0.139 0.807 0.492 1.839 0.393

∆ (+34%) (+11%) (+43%) (+32%) (+26%) (+29%) (+20%) (+19%)

Table 2: The generalization performance results on the GC and UCY datasets. The training is
conducted on DUT and ETH datasets.

Intention Analysis and Its Effect: To further explore how pedestrian intentions change in response
to different scenarios, we conducted a case study using our model’s rollout simulations involving
human-vehicle interactions shown in Fig. 3 (a). We plot the changes of intention corresponding to
goal and obstacle respectively in Fig. 3 (b). The calculation method for intention involves dividing
the current time neural network output weights by the output weights at timestep 1. As we can see,
as the pedestrian approaches vehicles, their intention towards goal weakens, while their intention
towards obstacle avoidance strengthens. This kind of change aligns with the realistic pedestrian be-
havior, where they pay more attention to higher priority matters. As shown in Fig 3 (c), Intention
mechanism helps our model generate smoother acceleration changes, which aligned with real-world
situations. On the other hand, SFM and PCS which lack dynamic driving exhibit noticeable oscilla-
tions in acceleration changes that do not align with real-world situations.

5.3 GENERALIZABILITY

To examine whether our proposed method can generalize well beyond its training distributions, we
test the performance of all methods trained on the previous two datasets on GC and UCY datesets.
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DUT ETH

Models MAE DTW OT MMD MAE DTW OT MMD

Ours 0.781 0.396 1.433 0.014 0.446 0.313 0.465 0.122
w/o FAEM 1.096 0.577 1.971 0.028 0.553 0.429 0.601 0.132
w/o FIM 1.100 0.764 2.413 0.018 0.747 0.664 1.233 0.185
w/o RA 1.040 0.630 1.943 0.026 0.643 0.522 0.912 0.117

w/o VSRT 0.974 0.581 1.979 0.023 0.547 0.441 0.881 0.147

Table 3: The ablation performance results on the DUT and ETH datasets. The training and testing
of the model are conducted on the same dataset.

GC UCY

Models MAE DTW OT MMD MAE DTW OT MMD

Ours 1.309 0.832 3.240 0.139 0.807 0.492 1.839 0.393
w/o FAEM 1.629 1.089 3.675 0.144 0.975 0.703 2.42 0.504
w/o FIM 1.944 1.448 8.178 0.215 1.207 0.964 3.206 0.501
w/o RA 1.455 0.829 3.378 0.139 0.995 0.567 2.323 0.503

w/o VSRT 1.565 1.079 4.397 0.159 0.991 0.765 2.600 0.408

Table 4: The ablation performance results on the GC and UCY datasets. The training is conducted
on DUT and ETH datasets.

Both datasets have a data distribution fundamentally different from the training dataset. We show
the results in Table 5.2. PINE outperforms all the baselines on both datasets, which demonstrates
their strong generalizability. In particular, it provides a relative performance gain of 34%, 11%,
43%, and 32% on the GC dataset and 26%, 29%, 20%, and 19% on the UCY dataset, in terms of
MAE, DTW, OT, and MMD, respectively.

5.4 ABLATION STUDY

In order to examine how different parts of our designs, including the Feature Adaptive Extraction
Module (FAEM), Force Intention Module (FIM), Residual Action (RA), and Variable-step Rollout
Training (VSRT) contribute to the performance, we consider four variants of our proposed methods,
including PINE w/o FAEM, PINE w/o FIM, PINE w/o RA, and PINE w/o VSRT. For each of the
variants, we remove one of the key designs.

We present the performance results of the aforementioned version in Table 5.4 and generalization
performance in Table 5.4. We have two key observations: First, removing any of the components
results in a certain level of performance decrease compared with the full model, which suggests that
all the designed components are effective. Second, the removal of the FIM, which is key component
of attention mechanism, generally leads to the most significant decline in the model’s performance.
The introduction of physical biases and intention mechanism significantly improve the performance
of our model. This further validates the effectiveness of our framework.

6 CONCLUSION

This paper presents a novel approach called Physics-infused Intention NEtwork (PINE) for crowd
simulation. The approach employs a rule-based model to incorporate physics biases and neural net-
works to learn the attention mechanism of pedestrians directly from real data. Extensive experiments
were conducted to demonstrate the outstanding performance of the proposed model. Currently, the
model has been exclusively applied to pedestrian simulation. Furthermore, the proposed frame-
work can be adapted to learn human behavior in various scenarios. Future studies should explore
additional scenes to expand the variety of behaviors that the model can simulate.
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A APPENDIX

A.1 DATASET STATISTICS

To evaluate our models, we introduce two large-scale real-world datasets that differ in the scene,
scale, pedestrian density, pedestrian demographics, and pedestrian behavior patterns. The basic
statistics of all four datasets are shown in Table 5.4, and the details of the datasets are as follows:
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Table 5: The snapshots of four datasets.

Statistics DUT ETH GC UCY

Average duration of a trajectory (s) 9.967 7.859 12.859 13.178
Average speed (m · s−1) 1.317 1.18 1.016 1.071
Average acceleration (m · s−1) 0.42 0.607 0.412 0.143
Pedestrian density (m−2) 0.073 0.054 0.028 0.032

DUT: The DUT dataset was collected at two crowded locations in the campus of Dalian University
of Technology (DUT) in China. When a crowd of pedestrians interact with a vehicle, there is no
priority (the right of way) for either pedestrians or the vehicle. It annotates 1793 pedestrians and
moving vehicles. This dataset provides the physical location of pedestrians in real space.

GC: The GC dataset is built on a half an hour crowd surveillance video. It annotates the walking
routes of 12684 pedestrians on a 30m × 35m square in image coordinates. As our models are
based on the physical laws, we need the pedestrian positions in real-world coordinates but not image
coordinates. Therefore, we perform a projective transformation to transform the coordinates. The
homography matrix is calculated based on the the proposed spatial information in (Schlichting,
2003).

ETH: The ETH dataset contains two scens coined as ETH and Hotel. This dataset is extensively used
in Human Trajectory Prediction literature. This dataset provides the physical location of pedestrians
in real space.

UCY: The UCY dataset is composed of three sequences, but as we focus on long-term and complex
behavior simulation in this work, we only choose the sequence of Zara. In this scenario, not only are
there a large number of long trajectories, but there are also complex behaviors such as sharp turns.
These trajectories can better test the performance of the models.

A.2 PINE IMPLEMENTATION DETAILS

We construct each pedestrian’s visual field and employ two different structures to process the raw
information within the field of view. For features such as vehicles and pedestrians that can be rep-
resented with a single point, we utilize graph structures for processing. For semantic information
in the scene, such as walkable and non-walkable areas, we process it using image-based representa-
tions. As shown in Fig. 4, the pedestrian’s field of view is controlled by parameters rp, ω , and renv .
In our experimental setup,, we set the sector-based visual fields’ rp as 4 meters, the angle ω as 90
degrees and renv as 5 meters.

Our framework supports the integration of multiple sequence models, such as LSTM and Trans-
former. In our experimental setup, we use Transformer as our sequence model, and the input and
output of Transformer are illustrated in Fig. 5. At each time step t, we input the current state of
pedestrians and their historical trajectory information into Transformer, and output the correspond-
ing latent variables ht for further processing by FIM and RA.

The training of the model can be divided into two steps, namely Single-step Pre-train and Variable-
step Rollout Training Algorithm (VRTA). The differences between the Single-step Pre-train and
Rollout Training are illustrated in Fig. 6. Rollout training is closer to real-world simulation scenar-
ios, as the model’s input is influenced by the errors generated from its past predictions. The longer
the training step, the closer it approximates the real-world simulation scenario. Correspondingly,
this training mode also requires more time as it involves continuous simulation to generate new
data. In our experiment, we adopt a method of continuously increasing the rollout step to obtain a
balance between model performance and computational efficiency. Specifically, we first update the
model parameters by performing Rollout on shorter time steps until convergence is achieved. Then,
we increase the training step and repeat the aforementioned process. Training on shorter time steps
provides a good initialization for training on longer time steps, thereby improving computational ef-
ficiency. The balance of model effectiveness and computational efficiency brought about by VRAT
can be intuitively seen through a simple case depicted in Fig. 7.
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Figure 4: The shape of the pedestrian’s field of view and its corresponding control parameters. (a)
The field of view of a person for pedestrians and vehicles is a sector within a circle (centered at this
person with radius rp) spanned by an angle ω from the current velocity vector (orange arrow). (b)
The environment is segmented into walkable (black) and unwalkable (red) areas. The view field is a
square with dimension renv based on the current velocity vector (orange arrow)
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Figure 5: The input and output of the Transformer model in our framework. The input of the model
consists of the states and corresponding actions of pedestrians in the past n steps. The output of the
model is a latent variable ht that includes the current moment information of pedestrians as well as
their historical information. ht is used as input for the FIM and RA modules.

A.3 LOSS FUNCTION

We propose a loss function to correct the model shift in VRTA. Here, we will further elaborate on
the derivation process of our formula. As stated in the PROBLEM FORMULATION, the update of
crowd is formulated as follows:

pt+1 = pt + vt+1∆t, vt+1 = vt + at+1∆t (9)

Therefore, the update mechanism for position can be expressed as follows:
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Figure 6: The differences between Single-step Pre-train and Rollout Training. In single-step Pre-
train, only ground truth values are used as input. In contrast, multi-step training requires simulating
a certain number of time steps and incorporating the information that is influenced by the model’s
prediction errors.
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Figure 7: The role of VRAT in saving training time. In experiments without VRAT, the model is
trained directly with rollouts at time steps of 20. However, in experiments with VRAT, the model
is first trained with rollouts at time steps of 10 for a duration equivalent to 5 epochs at 20, before
proceeding to perform rollouts at time steps of 20. It can be observed that performing rollouts at
shorter time steps provides better model parameter initialization for rollouts at longer time steps,
thus further balancing the effectiveness of the model with computational efficiency.

p1 = p0 + v1∆t

= p0 + (v0 + a1∆t)∆t

= p0 + v0∆t+ a1∆t2

p2 = p1 + v2∆t

= p1 + (v1 + a2∆t)∆t

= p0 + (v0 + a1∆t)∆t+ (v0 + a1∆t+ a2∆t)∆t

= p0 + 2v0∆t2 + 2a1∆t2 + a2∆t2

p3 = p0 + 3v0∆t2 + 3a1∆t2 + 2a2∆t2 + a3∆t2

...

pt+1 = p0 + (t+ 1)v0∆t2 + (t+ 1)a1∆t2 + ta2∆t2 + ...+ at+1∆t2

(10)
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After t simulation steps, the position of the pedestrian controlled by the model can be represented as
follows:

p̂t+1 = p̂0 + (t+ 1)v0∆t2 + (t+ 1)â1∆t2 + tâ2∆t2 + ...+ ât+1∆t2 (11)

The loss is calculated by the difference between pt+1. and p̂t+1. Therefore, it is not only necessary to
consider the differences between at+1 and ât+1, but also the losses incurred by historical behaviors,
which can be represented as follows:

L = ||p̂t+1 − pt+1||2

= ∆t4||(ât+1 − at+1) + 2(ât − at) + ...+ (t+ 1)(â1 − a1)||2

= ∆t4||
t∑

i=1

i · (at+1−i − ât+1−i)||2
(12)

A.4 BASELINES

As all existing learning-based and hybrid models need an observed sequence as input, for a fair
comparison, we permit all models to observe each pedestrian for 8 steps

Rule-based Models: For Social Force Model (SFM), we let it observe each pedestrian for 8 steps
and calculate the mean speed of each pedestrian as their desired walking speeds respectively, which
makes it perform better than the classical SFM, in which all pedestrians have the same desired speed
determined manually.

Learning-based Models: For all three data-driven models, We use their official implementations,
convert our data to their accepted data format, and train the model with the observation length of
8 time steps and prediction length of 12 time steps. We then perform grid searches on the learning
rate.

Physics-infused Models: For all three hybrid models, We use their official implementations, convert
our data to their accepted data format. For NSP, we train it with the observation length of 8 time
steps and prediction length of 12 time steps. We perform grid searches on the learning rate for NSP.
We perform grid searches on the learning rate, rollout steps and regularization coefficient for PCS.

A.5 SUPPLEMENTARY EXPERIMENT

We follow the experimental setup in Zhang et al. (2022). The experimental dataset are two public
real-world datasets, including the GC dataset and the UCY dataset. We compare our framework with
five state-of-the-art models from three categories, including physics-based models, learning-based
models and physics-infused. Physics-based models include the Social Force Model (SFM) Helbing
& Molnar (1995) and the Machine-Learning-Aided Physical Model (MLAPM) Zhang et al. (2022).
Learning-based methods include Social-LSTM Alahi et al. (2016), Social-GAN Gupta et al. (2018),
and Social-STGCNN Mohamed et al. (2020). Physcis-infused method is Physical-informed Crowd
Simulator (PCS) Zhang et al. (2022)

For the GC dataset, we use three minutes for training, one for validation, and one for testing. For
the UCY dataset, we use 108 seconds for training, 54 seconds for validation, and 54 seconds for
testing. We use four widely adopted metrics, including the Mean Absolute Error (MAE), charac-
terizing microscopic simulation accuracy, Optimal Transport divergence (OT) and Maximum Mean
Discrepancy (MMD), measuring the differences between the generated simulation and the ground
truth, and Collision (Col), characterizing the simulation’s fidelity in terms of the collision avoidance
behaviors. The performance is illustrated in Table A.5, our model outperforms the state-of-the-art
(SOTA) in most metrics.

To examine whether our proposed method can generalize well beyond its training distributions, we
test the performance of all methods trained on the GC Dataset on the UCY dataset and a new time
period of the GC dataset, which we referred to as GC2 Dataset. Both datasets have a data distribution
fundamentally different from the original GC dataset, and the degree of the differences is different.
We show the results in Table A.5. Our models outperform all the baselines on both datasets, which
demonstrates their strong generalizability.
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GC UCY

Groups Models MAE OT MMD Col MAE OT MMD Col

Rule
-based

SFM 1.259 2.114 0.015 622 2.539 6.571 0.129 434
MLAPM 1.136 1.740 0.012 398 2.406 6.383 0.125 204

Learning
-based

Social-STGCNN 7.669 20.31 0.613 >9999 8.304 23.31 0.698 >9999
Social-GAN 7.513 25.21 0.387 >9999 8.698 54.54 0.557 >9999

Social-LSTM 6.922 11.34 0.345 >9999 7.291 16.41 0.476 >9999

Physics
-infused

PCS 1.097 1.774 0.015 558 2.330 6.250 0.109 264
Ours 0.747 1.208 0.008 436 1.327 3.800 0.047 226

Table 6: The performance evaluation results on the GC and UCY datasets.

GC2 UCY

Groups Models MAE OT MMD Col MAE OT MMD Col

Rule
-based

SFM 1.545 2.998 0.033 338 2.435 6.535 0.133 358
MLAPM 1.394 2.765 0.029 218 2.366 6.268 0.123 208

Learning
-based

Social-STGCNN 7.691 24.61 0.509 >9999 7.763 19.06 0.5719 >9999
Social-GAN 8.948 44.18 0.581 >9999 6.884 32.25 0.512 >9999

Social-LSTM 6.889 14.63 0.387 >9999 7.744 19.04 0.569 >9999

Physics
-infused

PCS 1.500 2.910 0.036 330 2.327 6.165 0.107 296
Ours 0.745 2.108 0.016 230 1.499 4.211 0.072 282

Table 7: The generalization performance of the models trained on GC dataset.

In the aforementioned experiment, our approach consistently performed slightly lower than
MLAPM in the collision metric. One major reason for this phenomenon is the explicit repulsion
between pedestrians in rule-based methods, which significantly reduces the probability of collisions
among pedestrians. In our model, there may also exist an attraction between pedestrians, similar to
walking in groups, which makes pedestrians more likely to move in clusters.

A.6 EVALUATION METRICS

Mean Absolute Error (MAE): It can be expressed as follows:

MAE =
1

N

N∑
i=1

||p̂i − pi||2 (13)

where N denotes the total number of predicted instances, p̂i denotes the prediction of the pedestrian
position and pi denotes the real position, and the || · || is the l2 norm of a given vector.

Dynamic Time Warping (DTW): It is a widely used approach for comparing the similarity between
two time series. The calculation method involves aligning the two series at the beginning and end,
and then computing the cumulative pairwise distance between the elements of the two sequences as
follows:

P = p1, p2, ..., pn, P̂ = p̂1, p̂2, ..., p̂n (14)

D(i, j) = d(p̂i, pj) +min(D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)) (15)

where d(p̂i, pj) represents the measured distance between the i-th point of the predicted trajectory
and the j-th element of real trajectory. D(n, n) represents the optimal matching distance between
the predicted trajectory and the real trajectory.
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Optimal Transport (OT): It measures the distance between two distributions as the minimum cost to
transport from distribution P to distribution Q. Specifically, it has the form as

OT (P ||Q) = inf
π

∫
X×Y

π(x, y)c(x, y)dxdy,

s.t.

∫
Y

π(x, y)dy = P (x),

∫
X

π(x, y)dx = Q(y),

(16)

where π(x, y) can be approximated from P (x) and Q(y) by Sinkhorn Algorithm. In this work, We
use 2D Wasserstein distance, i.e. c(x, y) = ||x− y||22, and X ≡ Y is the simulation duration, P , Q:
R → R2is the prediction trajectory and the true trajectory.

Maximum Mean Discrepancy (MMD): It takes the maximum difference between two distributions’
moments in any order as their distance. It is mainly used to measure the distance between the
distributions of two different but related random variables. Specifically, it has the form as

MMD[F, p, q] := sup
f∈F

(Ep[f(x)]− Eq[f(y)]) (17)

where p, q correspond to the predicted and the true position, respectively.

Collision: We count two pedestrians with a distance less than 0.5m as a collision and take the
summation of collisions in all frames as Collision. But considering that pedestrians could walk with
their friends, to whom they won’t keep a large social distance, We take the pair of pedestrians that
have a collision in more than 2 seconds as friends and do not count the collisions between them into
Collision.
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