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Abstract

Large Language Models (LLMs) generate functionally correct solutions but often
fall short in code efficiency, a critical bottleneck for real-world deployment. In this
paper, we introduce a novel test-time iterative optimization framework to address
this, employing a closed-loop system where LLMs iteratively refine code based
on empirical performance feedback from an execution sandbox. We explore three
training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimiza-
tion (DPO), and Group Relative Policy Optimization (GRPO). Experiments on our
Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate
in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with
execution feedback, continuously optimizes code performance, significantly boost-
ing both PASS@ 1 (from 47% to 62%) and the likelihood of outperforming human
submissions in efficiency (from 31% to 45%). Our work demonstrates effective
test-time code efficiency improvement and critically reveals the power of RL in
teaching LLMs to truly self-improve code efficiency.

1 Introduction

Large Language Models (LLMs) and agent frameworks are catalyzing a profound transformation in
software engineering [63\ 38, 51} 2528, [19] 165]], significantly improving the functional correctness
of their code generation and starting to rival human engineers in certain tasks [[7, 158} 23]. However,
this focus on correctness often overshadows another critical dimension of software quality: com-
putational efficiency. In real-world systems, where latency and memory budgets are paramount,
code that is merely correct but inefficient can precipitate severe performance bottlenecks, leading to
inflated computing costs and system-wide latencies. This chasm between functional correctness and
computational efficiency represents a formidable challenge to deploying automatic code generation in
mission-critical tasks. This challenge has also spurred the development of code efficiency benchmarks.
For instance, EffiBench [21] introduces a relative performance metric against reference solutions,
while PIE4PERF [50] utilizes system simulation to meticulously assess the impact of optimizations
across a vast corpus of C++ code pairs. Moving beyond pairwise comparisons, Mercury [[14] employs
percentile ranking against human solutions to highlight the efficiency disparity, and EVALPERF [36]
categorizes generated solution efficiency against reference solutions. These benchmarks consistently
point out that despite their prowess in generating correct code, current LLMs often produce solutions
with suboptimal efficiency [49]. Initial attempts to address this gap, such as Chain-of-Thought [55]
in PIE [50], self-optimization in Effilearner [20], or fine-tuning LL.Ms on an efficiency-oriented
dataset [22], have yielded limited success, often failing to instill the adaptive knowledge for robust
efficiency improvements.
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While the pass@1 and efficiency gains of supervised fine-tuning plateau, RL facilitates self-improving code efficiency optimization during inference.

Figure 1: Comparison of iterative optimization performance between a SFT model and a RL model on
Venus. While the correctness and efficiency gains of the SFT model plateau, the RL model facilitates
iterative optimization during the inference time effectively.

In this work, we introduce a novel iterative optimization framework (IOF) designed to enhance
LLM-generated code efficiency through a closed-loop system of generation and evaluation, driven
by Afterburner and Monolith. As shown in Figure[2] Afterburner takes the original code as
input and generates an improved one for the subsequent optimization, where Monolith evaluates
the improved code and feeds the empirical code performance back to Afterburner. The process
mirrors how human developers often optimize code through trial and feedback.

Our extensive experiments on the novel Venus benchmark and the widely-used APPS [18]] benchmark
demonstrate the varied learning dynamics of different optimization strategies within I0F. While
Supervised Fine-Tuning (SFT) [30] offers initial efficiency gains in the first few iterations, it quickly
saturates and struggles with sustained improvement. Direct Preference Optimization (DPO) [46]
consistently performs better than SFT but has the same trend as SFT. In stark contrast, Group Relative
Policy Optimization (GRPO) [47] continuously refines code performance. As illustrated in Figure [T}
it boosts PASS@ 1 from 47% to 62% and significantly elevates all efficiency metrics, for instance,
increasing BEYOND-I from 31% to 45%. We attribute these divergent behaviors to the fundamental
nature of what each method tends to capture: SFT tends to capture superficial patterns from
mimicking examples. DPO internalizes static preferences based on pairwise comparisons from
offline data. In contrast, through online interaction with execution feedback, GRPO cultivates an
adaptive proficiency in code efficiency optimization, which enables it to explore and exploit the
solution space effectively within an iterative, test-time optimization process. Our key contribution
not only lies in demonstrating effective test-time improvement of code efficiency but, more critically,
in dissecting how different strategies contribute to this iterative optimization and highlighting the
superior adaptability of online feedback-driven RL approaches in efficient-oriented code generation.

2 Related Work

LLMs for Code Generation LILMs have demonstrated remarkable progress in code generation,
fueled by extensive training on vast code corpora [2, 33|42} 38]. Building upon foundational models
such as Llama [52]] and Qwen [59]], subsequent efforts have specialized these models for coding tasks,
yielding variants like StarCoder [38]], QwenCoder [27] and OpenCoder [26]. These models excel in
diverse applications, including code completion [8, 30, [11]], program repair [41} |37} 62], and unit test
generation [24] 3]. Despite their success in generating functionally correct code, as evidenced by
benchmarks like HumanEval [8]], LiveCodeBench [29], and BigCodeBench [66], the computational
efficiency of the generated code remains a less explored frontier.

Code Efficiency Evaluation Addressing this gap, recent work has focused on quantitatively assess-
ing the efficiency of LLM-generated code [60,30,144]]. EffiBench [21] collects 1000 efficiency-critical
Python problems, evaluating code via an efficiency ratio against reference solutions. PIE4Effi [50]
emphasizes the importance of reliable measurement. It utilizes a system simulator for code exe-
cution and contributes a dataset of over 77,000 C++ efficiency preference pairs. Deviating from
pairwise comparisons, EVALPERF [36] introduces Differential Performance Evaluation (DPE) on
121 performance-challenging tasks, categorizing generated solution efficiency against reference
implementations. Mercury [14]] measures efficiency by percentile rank against a substantial corpus of



human-written solutions. More recently, ENAMEL [45] proposed an unbiased estimator eff@k for
time efficiency. These benchmarks reveal that current LLMs still significantly struggle to produce
code that consistently matches expert-level computational efficiency. Building on these efforts and
inspired by Mercury [[14]], our work introduces the Venus dataset, which expands upon existing
resources with more tasks and solutions to facilitate a more rigorous efficiency assessment.

Preference Alignment in Code Generation While functional correctness is paramount, code
efficiency is a critical yet often overlooked preference in LLM-based code generation. Initial attempts
to steer LLMs towards efficiency via prompt engineering, such as Chain-of-Thought [55] in PIE [50]]
or self-optimization in Effilearner [20]. Subsequent instruction tuning methods have predominantly
aimed at enhancing functional correctness [39, 55} |56]. Although some recent works like Swift-
Coder [22]] and PIE4PEREF [50] used efficiency-focused datasets for model fine-tuning, their reliance
on cross-entropy loss hindered the direct instillation of nuanced efficiency preferences. To achieve
finer-grained preference alignment, RL has emerged as a powerful paradigm for code preference
alignment [54]]. Initial methods like CodeRL [32]] use code execution outcomes as feedback. More
recent approaches such as StepCoder [[13], RLEF [16], and Focused-DPO [61] have significantly
advanced functional correctness by leveraging execution feedback. However, these RL methods have
largely neglected computational efficiency as a primary optimization target, with existing execution
environments typically providing only correctness-based rewards. To enable RL-based optimization
for code efficiency, our work introduces Monolith, a high-fidelity sandbox that delivers real-time
efficiency metrics, thereby fostering a deeper preference for performant code.

3 Iterative Optimization Framework

While current LLMs can produce viable solutions, these often fall short of the performance standards
required in resource-constrained or time-sensitive applications [14} 45]. To bridge this gap, we
introduce the Iterative Optimization Framework (I0F), a novel approach designed to enhance the
efficiency of LLM-generated code. As illustrated in Figure 2] IOF employs a closed-loop system
where code is progressively refined through cycles of forward generation and backward evaluation.

Central to I0F are two synergistic components: Afterburner, a model suite that proposes targeted
efficiency improvements, and Monolith, a robust code execution sandbox that provides precise,
real-world performance metrics. The interplay between these components drives each optimization
iteration: commencing with an original code and an efficiency instruction, Afterburner takes
the inputs to generate an improved code alongside its reasoning content. This improved code
is subsequently executed within Monolith, yielding empirical efficiency feedback to guide the
subsequent optimization iteration. The sections detail the mechanics of Afterburner and Monolith,
and the overall iterative workflow as formalized in Algorithm [T}

3.1 Afterburner: Code Efficiency Optimization Models

In the realm of aviation, an afterburner is a secondary combustion system integrated into jet engines,
designed to provide a significant thrust augmentation [67]]. While this surge in power comes at
the cost of considerably higher fuel consumption, it serves as a critical mechanism for scenarios
demanding peak performance. Drawing a parallel to this concept, our Afterburner aims to push the
efficiency of LLM-generated code to the maximum. Instead of consuming more fuel, Afterburner
leverages the inference-time scaling law([57] and the execution feedback from the Monolith sandbox
to iteratively refine generated code. For the ¢-th iteration, the process can be formalized as:

Co" = Afterburner(P,Z,C", M), M

where P is the problem description, Z € { ‘time-efficient’, ‘memory-efficient’, ‘integral-efficient’}
denotes a specific efficiency instruction (e.g., minimizing execution time, reducing peak memory
usage, or optimizing the integral score). C!™ denotes the input solution for the current iteration,
and M = Monolith(C{") is its performance metric corresponding to objective Z. The refined
candidate code C?* is then evaluated to obtain its performance metric, M¢“* = Monolith(C?"").
For the subsequent iteration, we select the best-performing code via a greedy approach:

_ e M) M M

(Citr, Mita) {(C{",Mﬁ”) otherwise ’ 2
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Figure 2: Inference Workflow of the Iterative Optimization Framework (IOF). In the forward
generation (blue lines), Afterburner takes a problem description, efficiency instruction, original
code (optional), and original performance as input. It then produces reasoning content and improved
code in a designated format. For the backward evaluation (green lines), the original code and original
performance are updated with the improved versions. The detailed pipeline is defined in Algorithm ]

where M¢“* = M™ indicates that the performance of CZ* is superior to that of C:" with respect to
the objective Z. The iterative process continues for a predetermined number of iterations Ne;..

3.2 Monolith: Code Execution Sandbox

Monolith is a catalyst of IOF, which executes generated code and provides the empirical performance
feedback to the iterative optimization. Since the efficacy of RL and preference optimization methods
hinges on the quality and consistency of the feedback signal [47, [16]], Monolith prioritizes the
consistent measurement in its design. While theoretical complexity analysis (e.g., Big O notation)
offers high-level insights into algorithmic scalability [10], it often fails to capture the nuances
of real-world performance. A return signal without discrimination may cause the optimization
algorithm to lose the optimization gradient [17]]. Moreover, Constant factors, specific implementation
details (such as language runtime, library choices, and compiler optimizations), and hardware
interactions (CPU architecture, memory hierarchy) significantly influence actual execution time and
memory consumption [36]. Therefore, for the Afterburner models to learn to generate genuinely
efficient code, they require empirical metrics from Monolith that reflect these practical realities.

{passed, time, memory,integral} = Monolith(code,test_cases), 3)

where code is the code, paassed is a boolean value indicating whether code is passed all test cases.
time, memory, and integral denote the absolute execution time, peak memory usage, and the
integral score of the code, respectively. We will explain how to measure these metrics in Section 3]

4 Code Efficiency Optimization

Data Preparation Recent initiatives like Mercury [14], EffiBench [21], and EVALPERF [36]
have made important strides in evaluating code efficiency (see Table[3)), but persistent limitations
remain. To address these shortcomings, while also building upon these foundational efforts, we
introduce Venus, a new dataset designed for rigorous code efficiency assessment: (1) Inspired by
Mercury [14] and EVALPERF [36], it computes percentile ranks against a diverse distribution of
reference solutions, unlike methods relying on single, potentially biased baselines [21} 150]. (2)
Venus provides a substantially larger set of solutions, averaging 106.6 per task by expanding upon
EffiBench [21] and Mercury [14]]. This is a significant increase from the fewer than 20 solutions
found in existing Python efficiency benchmarks as listed in Table [} ensuring more stable and reliable
percentile calculations. (3) It offers a holistic assessment by evaluating execution time, memory
usage, and their combined impact. As shown in Table[7] Venus Python set includes 2,181 training
and 300 test tasks. From this data, we derived training subsets for various optimization methods:

* SFT Dataset. For Supervised Fine-Tuning, D Ssrr is constructed by sampling pairs of functionally
correct solutions for tasks from Venusy,4;,, Where the solution exhibiting inferior computational
efficiency is designated C~ and the superior one is C*. DSgpr comprises 58,833 training instances,
with 19,611 instances generated for each of the three targeted efficiency instructions.



* DPO Dataset. Each instance in the preference dataset D.Sppo consists of a prompt (P,Z,C, M)
and a pair of responses (C +, C™), where we randomly sample three solutions from Venus,qin,
assigning the best code as C* and worst as C ™, and the mediocre C?**¢/"€ as the baseline, according
to their efficiency performance M with respect to the objective Z. Averaging approximately 13.3K
instances per efficiency instruction type, D.Sppo contains 90,864 training instances.

Cold Start Dataset. This dataset is designed to rapidly adapt Af terburner models to the expected
response format. DSco,p is constructed using tasks from Venusy,.q;y,, for which initial responses
were generated by Gemini 2.5 Pro. From an initial collection of 3,392 raw responses with the
‘<thinking><solution>" format, we filter and construct DScorp with 2,071 instances.

¢ GRPO Dataset. Since Afterburnergrpo learns from code execution feedback, the DSgrpo
training dataset does not require ground-truth responses. Each instance herein is a prompt structured
as (P,Z,C, M). DScrpo employs all 984 distinct tasks in Venusy,qin.

Supervised Fine-Tuning SFT is the most intuitive approach to imbue LLMs with an initial
understanding of code efficiency. Its core idea is to expose the model to the inefficient code paired
with the optimized code, thereby teaching it to learn the patterns that transform suboptimal solutions
into more performant ones. The Afterburnergpr takes a prompt X = (P, Z,C~, M™), and the
training objective is to minimize the cross-entropy loss for generating the expected response C™:

Lsrr(me) = —Ep 1.0+ 0~ M-)~DSsrr [108T(CTIX)], “)

where 79 (CT|X) is the likelihood of generating the optimized code C* given the prompt X. It impels
LLMs to learn the mapping from inefficient code to their more efficient counterparts.

Direct Preference Optimization While SFT provides a strong baseline, DPO offers a more direct
way to align LLMs with efficiency preferences offline, without the need for explicit sampling from a
reference model during the training. DPO directly increases the likelihood of positive responses C*
and decreases that of negative ones C~, thereby tuning the model to inherently generate more efficient
code according to the specified efficiency objective Z. Its key advantage is directly optimizing for the
preference objective. The Afterburnerppo loss function is formulated as:

b + b -
Lppo(me; Trey) = —E(x ct.c-)~DSpro {bgd ([3 log% — Blog %)] , (5

where 7y is the target model, 7. is a reference model (we use the above Afterburnergyr7 model
as the reference). X = (P, T, Cb**¢!""¢ M) is the input prompt. 3 is a hyperparameter controlling
the deviation from the reference model, and o is the logistic function.

Group Relative Policy Optimization Building upon the principles of preference-based learning,
GRPO [47] extends the pairwise offline comparison of DPO to a group-wise online ranking scenario.
For a given prompt, GRPO generates multiple roll-outs and learns the relative advantage amongst
these roll-outs. Inspired by recent works [17} [16], we explore whether it can enhance the code
efficiency. As depicted in Figure ] we first SFT the base model on DScorp to align it quickly with
the designated response format, thereby providing a well-aligned foundation for Afterburnergrpo.

Reward Functions. We encourage Afterburnerggrpo to think about how to improve the efficiency
before generating correct and efficient code. Therefore, the reward function comprises three parts:
format control reward, functional correctness reward, and computational efficiency reward:

* Format Control Reward. This reward component encourages the model to structure its out-
put in a predefined format. Specifically, Afterburner models are expected to have a thinking
phase encapsulated in <thinking>...</thinking> tags, followed by the actual code within <solu-
tion>...</solution> tags. Eq. () defines the reward as 1 when the model response matches the regex
pattern (See Appendix [E.5)), otherwise, the reward will be -1.

RFormat(Cout) =

{1 if C°“t matches the pattern ©)

—1 otherwise

* Functional Correctness Reward. Ensuring the generated code is functionally sound is paramount.
We define a boolean A = Monolith(C,test_cases) to indicate whether the provided code C



passes all test cases, where test_cases is a set of test cases. R¢orrect 1S defined as:

1.0  if A% =1 and A" = 0 (upgrade)

0.5 if A°%* =1 and A™ = 1 (maintained passing status)
—0.5 if A% = 0and A" = 0 (maintained failing status)
—1.0 if A°%" = 0and A" = 1 (downgrade)

Rcarrect(cin7 COUt) = (7)

* Efficiency Improvement Reward. Given the efficiency instruction Z, this reward measures the
relative improvement in the corresponding performance metric £ € {time, memory, integral}
of a roll-out code compared to the baseline input code. Here, £ = Monolith(C, test_cases) and
Eupper are the absolute performance value and the upper limitation with respect to Z, respectively.

out

mn
lip — “cli .
Reﬁ‘iciency = tanh(é’gain), ggain = %7 gclip = Chp(g, Oa gupper)7 (8)

clip
* Final Reward. We apply an additive reward to combine all rewards comprehensively. 3¢, 3., and
B are weight hyperparameters to each corresponding reward competent.

Rﬁnal = ﬂf : Rformat + 60 : Rcorrect + Be : Refﬁciency (9)

Objective. GRPO leverages a policy gradient approach to optimize the target policy my based on the
old one my,,,. The training objective encourages the policy to favor generated candidates that not
only possess high intrinsic quality but also demonstrate superior performance relative to their peers
within the same generation group for a given prompt. This objective is formalized as:

Larpo(T0;T0,0) = ~Exapserro. {018~ (0i%) (Wi, clip(Wi, 1+ 6,1 =€) - Aj)], (10)

_ . me(0i]X) . _ Ri—mean({Ri}% ;)

X = (P,I,C), W’L - ﬂgold(oi‘;(); -Az - Std({Ri}iGzl) . ’ (]1)
where X is the input prompt, {O;}$_ | is the roll-out group with the size G. W; denotes the policy
ratio comparing how the new policy my prefer a generation against the old policy mg_,,. To prevent
drastic W; updates, we clip the ratio within the interval [1 — €, 1 + €]. Finally, .A; is computed on the
reward score of each roll-out R;, to show the relative advantage in the same roll-out group.

5 Experiment Setup

Dataset Recipe Venus Python subset contains 2,78/ algorithmic problems, each accompanied by
a validated test case generator and an average of /06.6 human solutions, enabling robust empirical
analysis of code efficiency beyond functional correctness. Based on Venus, Section [ introduces
several datasets for Af terburner training, including DSsrr, DSppo, DScorp, and DSgrpo.
APPS is a widely recognized benchmark for evaluating the functional correctness of code generation
models [18]]. While its original design, with 21.2 test cases and 23.4 solutions per problem, focuses
on correctness, we integrate it into our efficiency evaluation pipeline as an auxiliary benchmark (see

Appendix [C).

>
>

Functional Correctness Ensuring functional
correctness is a prerequisite for code genera-
tion models. Following the evaluation paradigm
in Codex [9], we employ the PAss@1 =
Npassed/Ntotal score to assess the global func-
tional correctness, where Npsseq 1S the number
of passed generations and Ny, 1s the total num-
ber of test tasks.

PR(z, D) = 5 Xaep lld > 2] (12)

Memory Usage (mj; )

Integral (i};)

Running Time (t}) ’
Figure 3: Tllustration of task-level efficiency metrics.
" {Di . Dy, Dy })

V]
BEYOND-{T, M, I} = B PR(sTVt ¢ ’

13)



Computational Efficiency Following Mercury [14] and EffiBench [21], we avoid employing
absolute efficiency metrics because they are highly sensitive to hardware configurations and operating
systems. For each task in Venus test set v, € Vi.s:, We instead compute percentile ranks of an absolute
performance £;" relative to the distribution Dy, collected from corresponding reference solutions Sj.
Except the execution time (15 ") and peak memory (max(m§™" (t))), we also consider using the integral

won
. s . . . . .
score 45" = [, m{" () dt as a comprehensive efficiency metric, where mj™ () is the instantaneous

memory footprint at time ¢. To compute relative efficiency metrics, we establish reference distributions
|Sk| |Sk|

H H T _ n M _ n
of execution time overhead D, = {r}},’*], memory overhead D;' = {m}} k|,

efficiency D;ﬁ = {ZZ}LS:”I, where 1, my, and 7} are the absolute execution time, memory usage,
and integral score of the n-th collected solution s}, € Sy, respectively. Based on these distributions,
we can calculate the task-level efficiency percentile-rank of the generated solution in Eq. (I2)). The
global efficiency metrics are computed as the average of all task-level percentile-ranks in Eq. (T3).
Higher scores indicate that the generated code outperforms a larger fraction of the reference

solutions, reflecting stronger code efficiency.

and integral

Implementation Details Afterburner models are trained on a single node with eight H100 GPUs.
We utilized Llama-Factory [64] for SFT and DPO training phases, and Verl [48] for GRPO training.
Dataset construction details can be found in Section[5] For inference acceleration, we use vLLM [31].
Comprehensive details regarding the training pipeline (as shown in Figure ) and hyperparameters
are provided in the Appendix [E] Monolith configuration can be found in Appendx [H|

DSspr DSpro

Afterburnergpr Afterburnerppp

Base Model

Afterburnercg Afterburnergrpo

DScs DScrpro

Figure 4: Illustration of the training pipeline of Afterburner models.

6 Discussion and Key Takeaways

6.1 How about the Code Efficiency Performance of Vanilla LLMs?

Our baseline evaluation of diverse LLMs on the Venus and APPS benchmarks (Tables[I]and[9) reveals
a critical performance limitation: Despite achieving high functional correctness (PASS @ 1), vanilla
models generate code with strikingly inferior computational efficiency compared to human
solutions [36} 45]]. For example, OpenAl 04 mini, a top-performing model with 89.11% PASS @ 1
on Venus, produces code whose runtime efficiency (BEYOND-T) surpasses only 56.85% of human
solutions (and merely 40.07% on APPS), with similar disparities observed for other leading models
and across all efficiency metrics. While stronger (bigger) models exhibit marginally better code
efficiency, this is insufficient to overcome the fundamental gap. This pervasive efficiency deficit in
LLM-generated code clearly motivates the development of dedicated optimization frameworks, such
as Afterburner, to enhance code generation in real-world applications.

6.2 Does Iterative Improvement Framework Work?

The foundational hypothesis of the Afterburner framework is that iterative refinement, driven
by execution feedback, can progressively enhance code efficiency. This section investigates the
effectiveness of such iterative self-optimization and how the choice of underlying optimization
strategy impacts learning dynamics and outcomes across successive iterations. Notably, the prompt
placeholder original_code is left empty for the initial code generation (see Section [F.3).

* SFT Memorized Superficial Patterns. SFT primarily learns to mimic transformations from less
to more efficient code based on its training data. In the model training phase, Afterburnergpr
updates these learned patterns. Initial gains are possible if the input code matches known suboptimal
patterns. However, SFT’s capacity to generalize to novel inefficiencies or explore fundamentally
different algorithmic solutions is inherently limited, as it lacks a deep understanding of why a
pattern is efficient beyond its training data co-occurrence. Consequently, as seen in Figure 5] SFT
often quickly exhausts its applicable patterns in iterative optimization.



Table 1: Comparison of Vanilla Efficiency Performance between Open-Source and Closed-Source
Models on the Venus Benchmark. Parentheses denote 95% CI. The top score for each metric is
highlighted in bold. Afterburner uses ‘both time and memory efficient’ instruction in the generation.

Model Name Pass@1 t BEYOND-T 1 BEYOND-M 1 BEYOND-1 1
Open-source Models
Qwen 2.5 3B 27.99 12.40 (12.35,12.45)  13.24 13.21,13.28)  10.29 (10.24, 10.34)
Qwen 2.5 Coder 7B 52.21 20.66 (20.61,20.71)  25.21 (25.16,25.26)  16.78 (16.74, 16.83)
Qwen 2.5 7B instruct 60.78 27.67 (27.61,27.73)  29.79 (29.73,29.85)  21.02 (20.98, 21.07)
Llama 4 Scout 62.82 33.10 (33.03,33.16)  38.22 (38.17,38.26)  26.91 (26.86, 26.95)
DeepSeek V3 86.33 48.66 (48.57,48.75)  51.20 (51.15,51.25)  39.20 (39.13, 39.26)
QwQ 32B ¢ 83.09 51.09 (51.03,51.16)  45.22 (45.16,4527)  41.66 (41.61, 41.70)
Closed-source Models
OpenAl 4o 82.26 38.22 (38.15,3829)  42.09 (42.04,42.15)  28.89 (28.84,28.95)
Claude 3.5 Haiku 66.45 38.82 (38.75,38.89)  37.77 (37.71,37.82)  30.15 (30.10, 30.20)
Claude 3.7 Sonnet 86.52 52.19 (52.10,52.27)  49.86 (49.81,49.92)  40.49 (40.43, 40.55)
OpenAl 04 mini ¢ 89.11 56.85 (56.77,56.93)  53.41 (53.35,53.46)  45.71 (45.66, 45.77)
Our Afterburner Tuned on Qwen 2.5 3B at Iteration 10
Afterburnerspr 48.67 26.78 (26.72,26.91)  25.30 (25.25,25.41)  22.50 (22.41,22.67)
Afterburnergrpro 61.67 45.17 45.08,45.30)  48.05 (47.96,48.26)  38.95 (38.89, 39.17)
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Figure 5: Iterative Optimization with an Efficient Instruction ‘both time and memory efficient’.

* DPO Realized Static Preferences. DPO internalizes preferences for more efficient solutions from
ranked pairs. This allows Afterburnerppo to make more nuanced judgments than SFT, guided
by characteristics correlated with better performance under the objective Z. Iteratively, DPO can
steer code towards these preferred traits. However, since DPO is typically an offline method, it
does not learn from its own generations without retraining. Thus, its exploration is still bounded
by the diversity of its initial preference dataset. Figure [5]shows DPO may offer more consistent
improvement than SFT, but also tends to plateau once its learned preferences are fully exploited.

* GRPO Cultivated Adaptive Proficiency. GRPO utilizes an online reinforcement learning ap-
proach. In the training phase, Afterburnergrpo generates multiple candidates, which are
evaluated by Monolith. The resultant empirical feedback directly updates the policy my to fa-
vor strategies yielding more efficient code for objective Z. This online learning is pivotal for
iterative self-improving optimization. Rather than merely static patterns or preferences, GRPO
develops a deeper proficiency in code optimization. By actively exploring the solution space
and receiving direct feedback, Afterburnergrpo continuously refines its generation strategy,
adapts to problem-specific nuances, and uncovers sophisticated optimization policy over iterations.
The group-wise ranking further enhances its fine-grained understanding of relative efficiencies.
This adaptive capability, evident in Figure [5} allows GRPO to achieve sustained and superior
performance improvements, continually pushing its optimization boundaries.



Table 2: Performance of Afterburner models at Iteration 4 with removing execution feedback and
original code input, respectively. Bracketed values represent the change in performance compared to
the baseline: red indicates degradation, and green indicates improvement.

Model/Method PAss@1 BEYOND-T BEYOND-M BEYOND-I
Afterburner-SFT 48.33 26.61 24.39 22.25

- Remove Feedback 46.33 (-2.00) 2541 (-1.20) 24.70 (+0.31) 21.43 (-0.82)
- Remove Original Code  45.33 (-3.00)  25.64 (-0.97)  26.17 (+1.78)  20.08 (-2.17)
Afterburner-DPO 51.67 28.45 28.03 27.89

- Remove Feedback 50.33 (-1.34) 27.33(-1.12) 26.73 (-1.30)  25.68 (-2.21)
- Remove Original Code  47.33 (-4.34)  25.32 (-3.13) 24.17 (-3.86)  22.01 (-5.88)
Afterburner-GRPO 57.00 40.81 40.68 33.51

- Remove Feedback 52.51 (-4.49) 34.15(-6.66) 34.49 (-6.19)  29.87 (-3.64)

- Remove Original Code  54.17 (-2.83)  32.17 (-8.64)  33.25(-7.43)  24.24 (-9.27)

Table 3: Model vs. Human on Venus. Bold indicates the top performance per column and model
category. B%, M%, W %, and F% denote percentages of solutions: Better than all human, Within
mediocre human range, Worse than all human, or Failed to pass all test cases, respectively.

Model Name Time Memory Integral
B% M% W% F% B% M% W% F% B% M% W% F%
Qwen 2.5 3B 0.67 27.00 033 7200 033 2733 033 7200 067 2667 067 72.00

Qwen 2.5 Coder 7B 1.33 50.67 033 47.67 0.67 5067 1.00 47.67 133 50.67 033 47.67
Qwen 2.5 7B Instruct 1.67 5833 0.67 3933 1.00 5833 133 3933 133 5800 1.67 39.33
Llama 4 Scout Instruct  3.00 5933 033 3733 200 6067 033 3733 1.67 6067 0.67 3733

Deepseek V3 533 80.67 0.67 1367 333 8267 033 1367 3.00 81.67 1.67 13.67
QwQ 32B 6.67 76.00 033 17.00 233 79.67 1.00 17.00 333 79.00 1.00 17.00
GPT-40 233 79.00 1.00 17.67 133 79.00 1.67 17.67 133 79.67 133 17.67
Claude 3.5 Haiku 467 61.67 033 3367 200 6400 033 33.67 267 6333 0.67 33.67
Claude 3.7 Sonnet 5.67 80.67 033 1333 267 8333 033 1333 333 8200 1.00 13.33
O4-mini 7.00 82.00 000 11.00 333 8533 067 11.00 4.00 8433 067 11.00

Afterburnergrpo 8.00 4633 733 3833 7.00 4433 1033 3833 533 46.00 10.00 3833

6.3 Why GRPO Can Iteratively Enhance Code Efficiency?

Generation diversity is foundational to its iterative capability. By unleashing the KL divergence
restriction in the training phase, Afterburnergrpo inherently explores multiple potential opti-
mization pathways without the ground-truth. This diversity ensures that Afterburnergrpo is not
confined to local optima. Moreover, GRPO gains experience improving code from what it gener-
ated through the iterative refinement loop. It does not just generate code, but executes it to gather
concrete feedback on its real-world performance, effectively learning from its successes and failures
in a continuous cycle. As the model identifies more efficient code structures in training, it becomes
progressively better at producing them in inference. Ablation studies (Table 2 confirm that remov-
ing the feedback mechanism or original code context significantly diminishes Afterburnergrpo
performance, an effect not always as evident in Afterburnergpr or Afterburnerppo.

6.4 Can Afterburner Generate Code Surpassing Human Efficiency?

While LLMs excel at generating functionally correct code, often by imitating human-written examples
in their training data, a key question remains: Can they produce solutions exceeding the code
efficiency of this best human-written code? To investigate this, we compare the efficiency of
model-generated code against human solutions from Venus. As presented in Table [3| reasoning
models such as QwQ 32B and OpenAl o4-mini exhibit a higher ability to occasionally generate super-
human solutions. Crucially, our proposed Afterburnerggrpo yields the highest B% scores across
all evaluated metrics after 8 iterations: TIME (8.00%), MEMORY (7.00%), and INTEGRAL (5.33%).
This demonstrates that Afterburnergrpo moves beyond merely replicating common patterns
observed during pre-training. By actively exploring the solution space through RL, it discovers highly
optimized implementations that are often structurally different from canonical human approaches.
However, this enhanced exploration entails a trade-off: Afterburnergprpo also generates a larger
fraction of solutions that are less efficient than the human baseline.



7 Conclusion

We introduced an iterative optimization framework designed to enhance the computational efficiency
of LLM-generated code. Central to this framework are the Af terburner models, which are critically
guided by real-time efficiency feedback from the Monolith sandbox. Our comparative analysis of
distinct optimization strategies revealed that SFT primarily learned superficial code optimization
patterns, while DPO internalized efficiency preferences. In stark contrast, by leveraging online
RL with direct execution feedback, GRPO achieved superior and sustained improvements in code
efficiency across multiple iterations.
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A Limitations

While Afterburner demonstrates effective efficiency optimization for competition-level program-
ming tasks, its extension to larger, real-world software engineering projects warrants further inves-
tigation. These projects often entail greater complexity in their code context, diverse efficiency
criteria beyond algorithmic performance (e.g., library interactions or I/O operations), and may require
sophisticated strategies for task decomposition, which are outside the scope of the current work.

Moreover, our iterative optimization framework inherently requires more inference time during the
code generation phase compared to single-pass methods. We argue that this upfront investment
in optimization can be offset by significant cumulative runtime savings when the highly efficient
code is deployed in production, especially for frequently executed or performance-critical modules.
Nonetheless, this trade-off between the optimization cost and long-term execution benefits needs to
be carefully evaluated based on specific application requirements and deployment scenarios.

B Model Details

Model Name Model Size URL

Qwen 2.5 3B [59] 3B https://huggingface.co/Quwen/Qwen2.5-3B

Qwen 2.5 Coder 7B [59] 7B https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
Qwen 2.5 7B [59] 7B https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

Llama 4 Scout 17B 16E Instruct [40 17B https://huggingface.co/meta-1lama/Llama-4-Scout-17B-16E-Instruct
QwQ 32B [59] ¢ 32B https://huggingface.co/Qwen/QwQ-32B

GPT-4o [1] Unknown  https://platform.openai.com/docs/models/gpt-40

Claude 3.5 Haiku [4] Unknown  https://www.anthropic.com/claude/haiku

Claude 3.7 Sonnet [5] Unknown  https://www.anthropic.com/claude/sonnet

DeepSeek V3 [34] Unknown  https://www.deepseek.com/

O4-mini [43] o Unknown  https://platform.openai.com/docs/models/o4-mini

Table 4: Model list with their size, reasoning ability, and model URL. ¢ denotes a reasoning model.

C Dataset Curation and Statistics

Table 5: Overall Statistics of Representative Function-level Code Generation Benchmark Datasets. &
indicates the datasets are designed for functional correctness solely, while © indicates the datasets are
designed for code efficiency. We list the average number of solutions per problem for each dataset.
The detailed definition of each metric can be found in Section 2l * indicates that there are some
works [63]] that extend the original datasets to more diverse programming languages.

Dataset Tasks Test Cases Solutions Metrics Languages Source
& HumanEval [8] 164 8.1 1.0 Pass@k + Python  Crowdsource
& MBPP [6] 257 3.0 1.0 Pass@k Python Crowdsource
& APPS [18] 10,000 21.2 23.4 Pass@k * Python CodeForces
& BigCodeBench [66] 1,140 5.6 1.0 Pass@k Python Synthesis
O EffiBench [21] 1000 100 14.6 NET/ NMU Python LeetCode
O Mercury [14] 1,889 +00 18.4 Pass/ Beyond Python LeetCode
Q ENAMEL [45] 142 20 1 Eff@Qk Python HumanEval
O EVALPERF [36] 1,474 - 10 DPS Python  [81l61(18][35]
Q PIE [50] 1,889 104 80.6 %0pt /| %Correct / Speedup CPP CodeNet
O Ecco [53] 48 20 16.5 Time/Memory python CodeNet
Q© Venus (ours) 8,598 +o0 79.3 Pass/ Time/ Memory/ Integral ~ Multilingual LeetCode

C.1 Venus Dataset

We constructed the Venus benchmark through a multi-stage filtering pipeline, as illustrated in
Figure@ Beginning with 3,535 problems from LeetCode we first removed paid-only questions
to adhere to fair-use principles, retaining 2,821 freely accessible problems. We then filtered for
algorithmic problems, discarding other categories such as Database or Shell. To ensure reliable
efficiency distribution in the evaluation, we executed all available solutions using the Monolith

"https://leetcode.com/problemset/
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https://platform.openai.com/docs/models/o4-mini
https://leetcode.com/problemset/

runtime. Problems with fewer than 16 solutions passing all test cases were further excluded. This
resulted in a curated set of 1,284 high-quality problems. Finally, we split the dataset into a training
set of 984 problems and a held-out test set of 300 problems, forming the complete Venus dataset.

Table 6: Definitions of the fields within Venus datasets.

Column Name Description

problem_id Unique identifier for each problem (int64)
title Title of the problem (string)
question_content Full text of the problem statement (string)
difficulty Difficulty level (categorical)

tags List of associated tags (sequence)

code_prompt
test_case_generator
test_case_evaluator
test_case_runners

Prompt used for solution generation (string)
Code generating test cases (string)

Code evaluating test case outputs (string)

Code executing solutions with test cases (string)

solutions Human-submitted solutions from LeetCode (list of strings)
Paid Only
714
Others
Database
303
LeetCode
Insufficient Pass Solutions
3535 Free 1199
2821 Al.gorlthm Test Set
2483 Sufficient 300
Solutions T St
1284 984

Figure 6: Pipeline for constructing the Venus dataset. We start from 3,535 LeetCode problems and
apply a series of quality-control and de-duplication filters, retaining 1,284 high-quality problems in
the Venus benchmark.

Multilingual Scope. Transcending the prevalent Python focus of prior benchmarks [8l, 16} 66| 21 [14],
Venus offers robust support for a multilingual scope as listed in Table[/] Since the test case generator
is rooted in standard I/O-based test case interaction, Venus can further support multilingual code
generation benchmarking and training.

Language-Agnostic Test Cases A significant challenge in benchmarking code generation models,
especially for efficiency, is the availability of extensive and diverse test cases. Most online judge
platforms do not disclose their test suites, and existing benchmarks often provide a limited number
of test cases (Table[3]), which may be insufficient for robust efficiency profiling. To address this
issue, we propose a novel approach to generate a large-scale, language-agnostic test case dataset. The
process involves:

* Automated Test Case Generation: For each problem in Venus, a dedicated test case generator
program is synthesized by GPT-40 based on the given problem description. These generators are
designed to produce a virtually unbounded stream of diverse and valid inputs.

* Rigorous Validation: The validity of each generated test case is paramount. Before being used
for evaluation, a candidate test case is run against all collected canonical human solutions for that
problem. Only test cases for which all canonical solutions produce consistent outputs are accepted.
This ensures that the test cases are unambiguous and accurately reflect the problem’s requirements
as understood by proficient human programmers.

» Standard I/O for Language Agnosticism: The key to the multilingual capability of Monolith
lies in its interaction protocol with the code being tested. All solutions, irrespective of their
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# Solutons
def evaluate(expected_output: str, program_output: str) -> bool:

def deserialize_bool(s: str) -> bool:

292 nim-game easy

t) > bool:

lass Solution:\n def canwinNin(self,
return \n \n \m\n \n \n ",

elif s == "false™s

[ "math", "brainteaser", "game-theory" ] return False
else:
raise ValueError(f"Invalid boolean string: '{s}'") 3
. {
class Solution: e "co lass Solution:\n def canWinNim(self, n: int) -> bool:
def canWinNim(self, n: int) —> bool: e

expected = deserialize_bool(expected_output) 62112,

0,

program = deserialize_bool(program_output)
except ValueError:

return False
return expected == program

def generate_test_cases(nun_cases: int, seed: int = 42) —> list:
inport randon
random. seed(seed)
def sample_solution(n: int) - str:

+ 787.12429

ass Solution:\n def canWinNin(self, n: int) -> bool:
return "true” if n % 4 != 0 else "false" : 345032,
23560,
test_cases = (]

fixed_cases = [1, 2, 3, 4, 5, 8, 16, 2147483647]

if num_cases <= len(fixed_cases): Solution:\n def canWinNim(self, n: int) —> bool:

selected = fixed_cases|:nun_cases] alse, True, True, Truel\n \n if n % 4 = B:\n ref

else:
selected = fixed_cases[:]

while len(selected) < num_cases:
n = random. randint (1, 104%9)
if n not in selected:
selected.append(n)
tion:\n def canWinNin(self, n: int) => bool
for n_val in selected:
input_str = str(n_val)
output_str = sanple_solution(n_val)
test_cases.append({"input": input_str, "output": output_str})

return test_cases

Figure 7: An Example in Venus Python Subset.

programming language, interface with the test harness exclusively via standard input (stdin) and
standard output (stdout). Test inputs are provided as text streams via stdin, and the solution’s output
is captured from stdout. This text-based I/O mechanism decouples the test data from the specifics
of any programming language.

This design allows the same set of validated test cases to be used for evaluating solutions written
in any of the languages supported by Venus (Python, C++, Go, Java, JavaScript, etc., as shown in
Table[7). This language-agnostic approach not only broadens the applicability of our framework but
also simplifies its extension to new programming languages in the future, as new test case generators
are not required for each language. The common testbed ensures fair and consistent efficiency
comparisons across different languages and models.

Table 7: Breakdown of Venus dataset by programming language. For each language we list the total
number of tasks and the average number of human submission per task.

Language Python C++ Go  Java  JavaScript  Total
Train Tasks 2,181 2,183 866 1,358 704 7,298
Test Tasks 300 300 200 300 200 1,300
Avg. Solutions  106.6 1122 336 69.6 74.4 79.3

Venus Instance. To better illustrate the Venus dataset, we provide a complete instance from Venus
as shown in Figure[7]

C.2 APPS Dataset
APPS is a widely recognized benchmark for evaluating the functional correctness of code generation
models [18]. While its original design focuses on correctness, we integrate it into our efficiency

evaluation pipeline as an auxiliary benchmark. It consists of /0,000 Python programming problems,
where each problem is accompanied by an average of 27.2 test cases and 23.4 solutions.

D Iterative Efficiency Optimization Procedure

The Iterative Efficiency Optimization Procedure, detailed in Algorithm([T} is designed to systematically
enhance source code performance. Given a problem description P, an efficiency instruction Z (e.g.,
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Table 8: Definitions of the fields within APPS datasets.

Column Name Description
title Title of the problem (string)
question_content Full text of the problem statement (string)
difficulty Difficulty level (categorical)
solutions Human-submitted solutions from LeetCode (list of strings)
test_cases Test cases (list of strings)
Test Set
5000
CodeForces APPS
10400 10000 Insufficient Pass Solutions
2197
Train Set cuffic Test st
t
5000 ol _
olutions Train Set
2803 2503

Figure 8: Selection procedure for the APPS subset used in our benchmark. Beginning with the
official APPS training split (5,000 problems), we discard problems that lack a sufficient number of
accepted reference solutions, yielding 2,803 problems in the final dataset.

targeting time or memory), and a set of test cases 1455, the algorithm iteratively refines code.
It begins with an initial code version C{", which is generated by the Afterburner component if
not provided, and its initial performance M{" is evaluated by the Monolith component. Over
Njer iterations, new code versions are proposed by Afterburner based on the current code and
its metrics, and then evaluated by Monolith. If a newly generated version C2“* exhibits improved
performance M¢“* according to the criterion Z when compared to the current iteration’s input
performance M}, it is adopted as the input for the subsequent iteration; otherwise, the previous
code is retained. The procedure concludes by returning the best-performing code C}Qter found after

. . . . . . zn
N4, iterations, along with its corresponding performance metrics Nier

Algorithm 1 Iterative Efficiency Optimization Procedure

Input: Problem description P, Efficiency instruction Z € {time, memory, integral}, Set of test
cases Trqses, Original code C§" (optional), Number of iterations Nje,
Output: Improved code C§“¢, Improved code performance Mg“

if not Ci" then

Ci" < Afterburner(P,Z, None, None) > Initial code generation.
end if
M« Monolith(Ci™, Teases) > Initial code evaluation.
for i < 1to Ny, do
Co" « Afterburner(P,Z,Ci", M) > Code optimization.
M + Monolith(CO"!, Tuses) > Code evaluate.
if M2Ut — Mi™) then > Compare the performance concerning 1.
(Clmy, ML) = (C9™F, MM > Update with the better performing candidate.
else
(Ciny, Miny) « (Cim, Mim) > Otherwise, retain the current best.
end if
end for
return ( ]"\’}im_, Mﬁ{}te) > Return the best code found after V4, iterations and its metrics
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Table 9: Comparison of Efficiency Performance between Open-Source and Closed-Source Models on
the APPS Benchmark. Parentheses denote 95% confidence intervals. The top score for each metric is
highlighted in bold, while the leading score within each model category is underlined.

Model Name Pass@1 Beyond-T Beyond-M Beyond-1
Open-source Models
Qwen 2.5 3B 9.67 5.10 (5.06,5.13) 5.48 (5.45,5.51) 3.80 (3.78,3.83)
Qwen 2.5 Coder 7B 16.00 9.30 (9.25,9.34) 8.79 8.75,8.83) 6.81 (6.78, 6.85)
Qwen 2.5 7B instruct 17.00 9.65 (9.59,9.70) 9.33 (9.29,9.37) 7.28 (7.24,7.32)
Llama 4 Scout 47.67 24.85 (24.78,24.92)  27.96 (27.90,28.03)  18.22 (18.17, 18.28)
QwQ 32B ¢ 69.62 35.59 (35.51,35.68) 37.84 (37.75,37.93)  27.32 (27.26,27.39)
Closed-source Models
GPT-40 46.23 26.30 (26.24,2637)  26.47 (26.41,26.53)  19.76 (19.71, 19.82)
Claude 3.5 Haiku 36.67 13.63 (1357.13.69)  20.96 (20.91,21.01)  10.74 (10.70, 10.77)
Claude 3.7 Sonnet 45.63 21.68 1.61,21.75)  25.76 (25.70,25.81)  15.75 (15.69, 15.81)
DeepSeek V3 56.63 31.58 31.49,31.66) 31.42 (31.35,31.49)  23.20 (23.13,23.27)
OpenAl 04 Mini ¢ 78.81 40.07 (39.98,40.15)  41.00 (40.93,41.07) 28.76 (28.69, 28.82)

E Model Training Details

E.1 Training Pipeline.

As shown in Figure[d] we explore different optimization strategies to train the Af terburner models.
Initially, Afterburnergpr models are trained using the D Sgpr dataset. For Afterburnerppo
models, we initialize them from the checkpoints of the corresponding Afterburner gy models and
subsequently finetune them on the DSppo dataset. The training process for Afterburnergrpo
models involves two steps: first, a base model is finetuned on the DS.i4 stqrt dataset to ensure
adherence to the required response format; thereafter, these models are trained on DSgrpo.

E.2 Details of Afterburner SFT

Training. We fine-tune Qwen/Qwen2.5-3B-Instruct using Low-Rank Adaptation (LoRA). The model
is trained for one epoch on DSsrr. Key hyperparameters include a learning rate of 3e-5, managed
by a cosine scheduler with 200 warm-up steps, an effective batch size of 64 (per-device batch size of
4 with 16 gradient accumulation steps), and the adamw_torch optimizer. For LoRA, the rank is 8 and
alpha is 16. The training uses BF16 precision, and gradients are clipped at a norm of 1.0.

E.3 Details of Afterburner DPO

Training. Afterburnerppo is trained from the checkpoint of Afterburnergpr utilizing LoRA
for one epoch of D.Sppo dataset. Key hyperparameters include: learning_rate=4e-5 with a cosine
scheduler and 300 warm-up steps, an effective batch size of 16 (per-device batch size of 2 with 8
gradient accumulation steps), and the adamw optimizer. LoRA parameters are set to rank 16, alpha
16, and a dropout of 0.05. DPO-specific settings include a beta of 0.1 and a sigmoid loss function,
with pref_ftx (SFT loss component) set to 0. The training uses BF16 precision, and gradients are
clipped at a norm of 1.0.

E.4 Details of Afterburner Code Start

Model Response Collection. We collect the model response from gemini-2.5-pro-exp-03-25, using
the system prompt as shown in Section [F.2] and the Afterburner inference prompt as shown in
Section[F3] We only keep the responses that can pass the response regex filter as shown in Section|[E.3]

Training. We conduct SFT on base model Qwen2.5-3B-Instruct using the LLaMA Factory frame-
work [64]. The model undergoes full fine-tuning on an epoch of the DS¢cop dataset, with input
sequences processed up to a maximum length of 32,768 tokens. Key hyperparameters included
learning rate=5e-5, managed by a cosine scheduler with 50 warm-up steps, an effective batch size of
4, and the adamw_bnb_8bit optimizer.
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E.5 Details of Afterburner GRPO

Training. Afterburnergpgpo is trained on Verl [48]] and initialized from Afterburnercg. The
GRPO training runs for 20 epochs on DScrpo- Since executing generated code and computing
its efficiency metrics are time-consuming, we use a batch reward function to accelerate the re-
ward calculation in a parallel manner. Key hyperparameters include: actor_learning_rate=1e-6,
ppo_mini_batch_size=32 (4 per-GPU micro-batch). During the roll-outs, 16 responses are generated
per prompt using VLLM [31] with inference_temperature=1.0. KL loss for actor updates is disabled,
and the entropy coefficient is 0. For the reward weights, we set 5y = 0.2, 8. = 0.3, 3. = 0.5. Note
that R giciency 15 set to 0 if Cgl)ass = 0. eypper 1s set to 90, 1048576, 94371840, respectively, which
aligns with our timeout (90s) and memory (! GB) limitation.

Format Regex. Inspired by recent works [[17,147]], we encourage our model to generate the reasoning
content before the code solution. The designated response format: “<thinking> thing_content
</thinking> <solution> solution_content </solution>".

| import re
2> def single_thinking_solution_format(text: str) -> bool:

pattern = re.compile(
4 15 nmnn
5 \A\s* # optional leading whitespace

6 <thinking>

7 (7:(?!<thinking>) .) *?

8 </thinking>\s* # end <thinking>

9 <solution>

10 (?:(?!'<thinking>|<solution>) .) *?
11 </solution>\s* # end <solution>
12 \Z

13 DO®

14 re.DOTALL | re.VERBOSE,

15 )

16 return bool(pattern.fullmatch(text))

Reward Function Design for Enhanced Code Generation The efficacy of our Group Relative
Policy Optimization (GRPO) framework, particularly for a task as nuanced as code generation,
heavily relies on a well-designed reward function. Our objective is to guide the Afterburnerggrpo
model not merely towards syntactically valid code, but towards solutions that are functionally correct,
computationally efficient, and adhere to a desired structured output format that includes an explicit
reasoning phase. To this end, our final reward Ry, is a carefully weighted composite of three distinct
components, each targeting a critical aspect of code quality.

Format Control (Rpyrmq). We first incentivize adherence to a predefined output structure, which
mandates a thinking phase encapsulated in <thinking>...</thinking> tags followed by the code
within <solution>...</solution> tags. As defined in Eq. (@), Rrma provides a strong binary
signal (+1 for compliance, —1 otherwise). This not only ensures predictable and parsable outputs for
automated assessment but also explicitly encourages the model to engage in a "thought process" prior
to generating the final solution, a step we believe is crucial for complex problem-solving.

Functional Correctness (R;oret). Ensuring functional soundness is paramount. However, a simple
binary pass/fail reward for the current generation C’ can be a sparse and inefficient signal. Instead,
Reorrect (Eq. @) evaluates C’ in comparison to a baseline attempt C'. It assigns the highest positive
reward (1.0) for an "upgrade" (i.e., C" passes tests while C' fails) and the largest penalty (—1.0) for a
"downgrade" (C’ fails while C' passes). Maintaining a passing or failing status yields intermediate
rewards (0.5 and —0.5 respectively). This relative assessment provides a more nuanced gradient,
strongly favoring improvements and robustly penalizing regressions.

Efficiency Improvement (Rgiciency)- Beyond correctness, generating efficient code is our key objec-
tive. Repiciency (EQ. @)) is designed to reward relative improvements in computational performance
(e.g., time, memory). The core of this reward is eg.,, which measures the normalized improvement
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of the current solution C°“! over a baseline C*", after clipping efficiency metrics to a sensible range
[0, eupper] to handle outliers. Crucially, we apply the hyperbolic tangent function (tanh) to eg,in. This
bounds the reward component within (—1, 1), providing a smooth, scaled signal that is sensitive to
gains but diminishes returns for extremely large improvements or degradations, thereby stabilizing
the learning process. A small € in the denominator of eg,, ensures numerical stability. Furthermore,
the inherent stochasticity often present in empirical efficiency measurements (e.g., due to minor
system-level variations or non-deterministic aspects of complex code execution) means that R grciency
naturally introduces a degree of noise. This moderate, implicit stochasticity can be beneficial for
GRPO, as it helps maintain variance in reward signals across roll-outs. This, in turn, can prevent the

advantage term A; (Eq. (TI)) from prematurely collapsing or vanishing, thereby fostering continued
exploration and more robust policy updates.

Pass@1 v.s. Iterations . Time% v.s. Iterations

16 raesn 15922%

1o 1618%  1618%  1618%

s 2267%  2267%  2300% %, owe 1wom LLn 2% 1L27%  127% 127%

2033%  2033%  2033%

% 901% 0% 901%  9.05%
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Figure 9: Iterative Optimization Performance on APPS.

F Model Prompts

F.1 Baseline Prompt

I You are an expert competitive programmer who excels at solving
algorithm problems in multiple programming languages.

Your task is to implement a {efficiency_instruction} solution to
the following problem in {target_lang}.

3
4 ## Problem Description
5 {question}

7 ## Output Format

8 - Provide the complete solution code in **one markdown code
block** with appropriate language identifier.

9 - Implement the function with the exact signature (name,
parameters, etc.) specified in the starter code.

F.2 System Prompt

I A conversation between User and Assistant.
> The User asks a question and provides an original solution, then
the Assistant improves it.

3 The assistant first thinks about the reasoning process in the
mind and then provides the user with the improved solution.

4 The reasoning process and solution are enclosed within <thinking
> </thinking> and <solution> </solution> tags, respectively.

5 For example, "<thinking>reasoning_process</thinking> <solution>
improved_solution</solution>".

N}
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F.3 Afterburner Prompt Template

I ## Instructions
Your task is to implement a solution to the following problem in
{target_lang}.

)

4 ## Problem Description
5 {problem_description}

7 ## Original Solution
8 {original_solution}

10 ## Original Performance
I Passed: {original_passed} / Time: {original_time} / Memory: {

original_memory} / Integral: {original_integrall

13 ## Output Format

14 - Provide the complete solution code in one markdown code block
with an appropriate language identifier.
15 - Generate the initial solution code directly if Original

Solution is empty.

16 - Fix the original solution if it was not passed. Optimize the {
efficiency_instruction} performance if the original solution
was passed.

G Uncertainty in Code Efficiency Measurement

Quantifying code efficiency is a nuanced challenge. Theoretical efficiency, typically expressed via
asymptotic notation (e.g., O(nlogn)), offers high-level algorithmic understanding but often neglects
constant factors, compiler optimizations, and hardware-specific impacts (like cache performance
or instruction-level parallelism) crucial for real-world performance. Consequently, it provides an
incomplete picture for comparing concrete code implementations.

On the other end of the spectrum, simulation and low-level statistics (e.g., cycle-accurate simulations,
CPU performance counters) can provide extremely detailed data [50]. However, these methods often
introduce substantial complexity in setup and interpretation, may have limited scope in accurately
modeling all modern system intricacies, or can be overly specific to a particular hardware configura-
tion, making generalization difficult. For our purposes, the granularity and setup overhead of such
approaches outweigh their benefits.

We therefore opt for empirical performance measurement, directly observing execution metrics
like runtime and memory usage. This approach holistically captures the interplay of algorithm, code
structure, compilation, and the underlying hardware. While direct, empirical results are subject
to inherent system noise and run-to-run variability. To rigorously address this and derive stable
performance indicators, robust statistical techniques are indispensable, leading to our choice of
bootstrapping for uncertainty quantification.

G.1 Details of Bootstrapping Evaluation

To quantify the statistical uncertainty of our efficiency metrics, we employ a bootstrapping proce-
dure [15]. Task-level efficiency metrics are first grouped by their respective IDs to ensure independent
sampling for each task. We generate B = 128 bootstrap replicates. Each replicate is constructed by
sampling & = 4 solutions for every unique problem (in our settings, we repeatedly evaluate each
generated code 16 times). For each of these B replicates, we then calculate the Average BEYOND-T,
BEYOND-M, and BEYOND-I. Finally, we report the mean of each of these four metrics across all
replicates, along with their corresponding 95% confidence intervals, to offer a robust evaluation of
model performance.
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H Monolith Implementation

Code Execution Environment. We deploy a code execution environment on a GCP n2-highcpu-96
instance (96 vCPUs, 96 GB Memory) with 81 Monolith workers. Each worker operates within a
dedicated Docker container [12], which is allocated 1 vCPU, 1 GB of memory, and provided with
an isolated temporary directory. To ensure a pristine execution environment for each evaluation,
containers are created anew for every task. CPU affinity for each worker was set to 100% to minimize
performance variability during measurements. Execution time and peak memory overhead were
measured using the ‘time -v’ command. To gather instantaneous memory usage and calculate the
integral score, we sampled the "VmRSS’ field from the process status file (/proc/[pid]/status). To
accelerate model inference, we use the batch inference feature on Neibus E] for all available models
listed in Table[d] For proprietary models, we call their provided APIs. For those models without an
online inference point, we host vLLM [31] inference service locally. Further details on the execution
environment are available in the Appendix [H]

Runtime. The monolith’s runtime environment is standardized using Docker containerization to
ensure consistency and portability across different programming languages. Each language or service
within the monolith operates within a specific, pre-defined Docker image. Table[10]details the official
Docker images utilized for various supported programming languages.

Table 10: Programming Language Docker Images

Language Image

Python python:3.9.19-bullseye

Java openjdk:11.0.12-jdk-bullseye

Javascript  node:22-bullseye

Cpp gcc:11.2.0-bullseye

Go golang:1.17.0-bullseye

Ruby ruby:3.0.2-bullseye

Rust rust:1.85.0-bullseye

I Symbol List

Symbol / Term Description
LLM Large Language Model
SFT Supervised Fine-Tuning
DPO Direct Preference Optimization
GRPO Group Relative Policy Optimization
RL Reinforcement Learning
IOF Iterative Optimization Framework (the proposed framework)
Afterburner Code optimization models (trained via SFT, DPO, GRPO)
Monolith A high-fidelity code execution sandbox for performance feedback
Venus A dataset with human solutions, curated for efficiency benchmarking
APPS An existing dataset for code generation, also used for evaluation
DSspr Dataset constructed for Supervised Fine-Tuning
DSppo Preference dataset constructed for Direct Preference Optimization
DScs Cold Start Dataset used for initial format alignment of GRPO models
DSarro Dataset used for Group Relative Policy Optimization training
P Problem description
A Efficiency instruction
C A code solution. Variants:
cir Input code solution for iteration ¢

Continued on next page

*https://studio.nebius.com/
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Symbol / Term

Description

cout Output (improved) code solution from Afterburner at iteration ¢
c* A more efficient/preferred code solution
c™ A less efficient/dis-preferred code solution
Chaseline A baseline code solution for comparison (in DPO context)
M Performance metric(s) of a solution. Variants:
Min Performance metrics of C{"
Mout Performance metrics of CZ*
- Relation indicating superior performance (e.g., M4 = Mim)
Niter Total number of optimization iterations
X Input prompt to a model (often includes P, Z, C*™", M™)
Ty The policy (language model) being trained, parameterized by 6
Tref Reference policy (e.g., in DPO, the SFT model)
Lspr Loss function for Supervised Fine-Tuning
Lppro Loss function for Direct Preference Optimization
LarpPo Loss function for Group Relative Policy Optimization
Weights for reward components (8¢, ., Be).
o(+) The logistic function
Rrormat Reward component for adhering to the specified output format
correct Reward component for functional correctness
Ref ficiency Reward component for improvement in computational efficiency
£ An absolute code efficiency value (e.g., execution time, peak memory)
Egain Normalized relative gain in an efficiency metric e
Eelip Clipped value of an efficiency metric e
Eupper Upper limit for clipping an efficiency metric e
R final The final combined reward signal for GRPO
O; The i-th generated output (rollout/candidate solution) in a GRPO group
G Size of the rollout group in GRPO
Wi Policy ratio (importance weight) for rollout O; in GRPO, %
A; Advantage of rollout O; within its group in GRPO o
€ A small constant
PAass@1 Percentage of the first generated solution passes all test cases
Percentile Rank: fraction of items in distribution D that z is greater
PR(z, D) than or equal to (for efficiency, lower is better, so 1 — PR or adjusted
PR is used implicitly if higher means better)
B Global efficiency metric: average percentile rank of generated code’s
EYOND-T L . : . .
execution time relative to human solutions. Higher is better.
B Global efficiency metric: average percentile rank of generated code’s
EYOND-M . . . .
memory usage relative to human solutions. Higher is better.
B Global efficiency metric: average percentile rank of generated code’s
EYOND-I . . . . .
integral score relative to human solutions. Higher is better.
pgen ogen igen Absolute execution time, peak memory usage, and integral score of the
E oMy 5t

DI DM D]
B%
M%

W%
F%

generated solution for task &

Distributions of execution times, memory usages, and integral scores
from reference human solutions for task %

Percentage of generations that are better than all human solutions
Percentage of generations whose efficiency falls within the range of
human solutions

Percentage of generations that are worse than all human solutions
Percentage of failed model generation
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