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ABSTRACT

This paper presents a novel hybrid Fuzzy-Logic Graph Neural Network (FL-
GNN) by combining Fuzzy Neural Network (FNN) with Graph Neural Network
(GNN) to effectively capture and aggregate local information flows within graph
structural data. FL-GNN by design has three novel features. First, we introduce
a specific structure fuzzy rule to boost the graph inference capability of FL-GNN
to be on par with the representative GNN models. Second, we enhance the in-
terpretability of FL-GNN by adding the analytic exploration methods to its graph
inference ability from two perspectives: Fuzzy Inference System and Message
Passing Algorithm (MPA). Finally, we ameliorate the structure of FL-GNN based
on MPA to address the inherent limitations of FL-GNN. This optimization can
reduce the calculation complexity of FL-GNN and further improve its learning ef-
ficiency. Extensive experiments are conducted to validate the graph inference ca-
pability of FL-GNN and report the performance comparison against other widely
used GNN models. The results demonstrate that FL-GNN can outperform existing
representative graph neural networks for graph inference tasks.

1 INTRODUCTION

Graph is a powerful mathematical tool to model complex relationships between data items, such as
establishing social networks, knowledge graphs, biological protein structures, etc. However, graph
data often contain unknown or missing information that must be inferred. The process of inferring
this information is known as graph inference, which encompasses a variety of tasks, including node
classification, link prediction, graph generation, and so on. Graph inference has many applications
in various domains, such as traffic-flow prediction, computer vision, and bioinformatics.

GNNs (Xu et al., 2019; Shi et al., 2021; Brody et al., 2022; Velickovic et al., 2018; Kipf & Welling,
2017; Hamilton et al., 2017) are a powerful tool in the deep learning domain to work with graph data
and also the most popular tool for graph inference. GNNs learn the structure and feature information
among the vertices and edges in the graph by iteratively updating their features based on their local
or global neighborhood or even higher-order topology structure. This enables GNNs to capture the
rich semantics and structural information hidden in graph data to apply to various graph inference
tasks.

Fuzzy logic is a type of multi-valued logic that allows for degrees of truth instead of only crisp
values. A fuzzy inference system (Czogala & Leski, 2000) is built using fuzzy logic consisting of a
well-designed fuzzy rule base and a fuzzy inference engine, and it is often used to simulate human
reasoning and decision-making processes. The fuzzy rule base comprises a set of IF-THEN fuzzy
rules, such as “IF temperature is cold, THEN fan speed is slow”. The quality of a fuzzy inference
system depends on the design of the fuzzy rules and the choice of the membership function type and
parameters, which are usually determined by experts. However, this task can be challenging and
trivial for complex systems. To overcome this challenge, Buckley & Hayashi (1994) propose FNN,
which draws lessons from Artificial Neural Network (ANN) to learn the parameters of a fuzzy sys-
tem. Combining FNN with Deep Learning (DL) is a promising direction that has attracted extensive
attention (Zheng et al., 2022; Das et al., 2021). Actually, FNN has been successfully applied in var-
ious fields such as medical image processing (Kaur & Singh, 2020), time series analysis (Luo et al.,
2019), reinforcement learning (Fang et al., 2023), and multimodal sentiment analysis (Chaturvedi
et al., 2019).
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The current GNN has three limitations that can be addressed by exploiting FNN:
1) Representation capacity. The concept of fuzzification has been extensively researched to improve
data representation capabilities. Real-world data often contains uncertainty and fuzziness beyond the
scope of traditional crisp values (Hu et al., 2023; Krleza & Fertalj, 2017). To tackle this challenge,
the tools for fuzzification have been developed to capture such fuzziness and uncertainty. However,
relying solely on fuzzification as a data augmentation technique is insufficient to fully utilize the
benefits of fuzziness. This is why traditional GNN frameworks are limited in their feature extrac-
tion, focusing solely on feature dimensions and disregarding the fuzzy dimension. To overcome this
limitation, we have created the FL-GNN, which utilizes fuzzy rules to highlight fuzzy-level features
and harness the advantages of fuzzy features for a more comprehensive data representation solution.
2) Interpretability. In traditional GNNs, the correlation between the network’s parameter weights
and inference process is implicit. In FL-GNN, the differences in topological structure between com-
munities are explicitly presented in the firing strength distribution. By studying the firing strength
distribution, we can know which rules are valid and which are redundant. Therefore, in this paper,
interpretability not only provides a visual perspective for us to observe the local topology infor-
mation and feature distribution differences of vertices but also provides reliable evidence for us to
improve the model structure.
3) Degree of freedom. Several frameworks have been developed in graph inference, such as Mes-
sage Passing Algorithms, which are compatible with most graph inference models. Fuzzy inference
systems can offer a more flexible way to establish inference models. Fuzzy rules are not limited
to graph-structured data and can be extended to other data structures and temporal data processing
(Luo et al., 2019). In addition, in Hu et al. (2023), fuzzy rules are directly designed for specialized
graph-level task inference. Therefore, we believe that the potential of FL-GNN will be fully realized
in future works, where more effective fuzzy rules can be designed for graph inference tasks. In Ap-
pendix A, we have mentioned that the fuzzy rule of FL-GNN is limited to message aggregation in
1-order neighbors. Nevertheless, by designing more sophisticated fuzzy rules, they can be extended
to complex topology structures such as "Hyperedge" and "Simplicial Complex", which will help the
model break through the 1-dim WL-test.

Recently, there have been studies combining FNN with GNN. In Zhang et al. (2023), the authors
propose using fuzzy features to carry out graph contrastive learning. The paper demonstrates the
advantages of data fuzzification in representing graph information and supports this viewpoint with
abundant experiments. However, the authors do not incorporate the core of fuzzy inference systems,
i.e., the rule base and inference engine, into such graph inference tasks. In Hu et al. (2023), the
authors propose a model to deal with graph-level inference tasks, including graph regression tasks
and graph classification tasks. The model refers to the fuzzy logic system to generate appropriate
fuzzy rules to adapt specific inference tasks. The authors utilize the graph cluster algorithm to
find the prototype graphs, and each prototype graph’s feature will be used to generate an IF-part
of the fuzzy rule. Then, the prototype graph will be fed into a GNN-dominated network structure
GCPU to generate the network parameters for the THEN-part of the fuzzy rule. This work focuses
on graph-level inference tasks but ignores the local topology information, while the model utilizes
graph kernel function and traditional GNN to extract the graph information instead of fuzzy logic.

One of the biggest challenges for integrating FNN and GNN is the discrepancy between fuzzy rules
and graph inference patterns. fuzzy rules are usually designed to capture human intuition reasoning
processes, while graph inference patterns are derived from high-level abstractions of graph struc-
tures. Hence, it is challenging to define effective fuzzy rules that work well with graph inference
patterns. To address the challenge, we explore a new perspective, where the fuzzy rule can also be
viewed as a flexible network structure. By defining a specific fuzzy rule, FNN can handle tasks with
a unique data structure, such as the temporal relationship in time series data, the local relationship
in image data, or even the topology relationship in graph data. With this in mind, a novel model
FL-GNN is proposed, which bridges the gap between FNN and GNN by allowing both fuzzy rules
and graph inference patterns to be represented in a unified way.

FL-GNN follows the fuzzy inference process with a human-like mindset and uses MPA (Gilmer
et al., 2017) to explain it in the GNN field. From the perspective of the fuzzy inference system,
FL-GNN utilizes the IF-part of the fuzzy rule to construct the fuzzy relation about the center ver-
tex with its neighborhood vertices, and then the THEN-part outputs the defuzzification inference
result as the high-order features for the center vertex. We can directly obtain the structure and se-
mantic information for each vertex in the graph through the firing strength distribution. From the
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Figure 1: TS-FNN architecture

perspective of MPA, the IF-part is designed to capture and aggregate the neighborhood information
by combining the t-norm operator and s-norm operator, and the THEN-part is designed to produce
the representations by applying a linear transformation. The rule layer of FL-GNN can be seen as
a set of aggregation functions to generate abundant aggregation results from different views, i.e.,
different permutation and combination methods of fuzzy subsets in the rule layer.

Our main contributions include: 1) This paper proposes a novel hybrid model named FL-GNN,
which integrates the architecture of the FNN and the concept of MPA to handle various graph in-
ference tasks. We also present two perspectives through which FL-GNN can be interpreted: MPA
and fuzzy inference system. 2) An improved version of FL-GNN, FL-GNN-A, is proposed that
significantly reduces model complexity while maintaining model performance. 3) Extensive exper-
iments show the inference capability, performance, principle, and interpretability of FL-GNN and
FL-GNN-A.

2 PRELIMINARIES:TAKAGI-SUGENO-FNN

Takagi-Sugeno-FNN (TS-FNN) (Rajurkar & Verma, 2017) is one of the most common FNN, whose
architecture is shown in Figure 1, usually consists of 5 layers: fuzzification layer, rule layer, normal-
ization layer, defuzzification layer, and output layer.

Given an input vector x = [x1, .., xD] ∈ RD. The fuzzy subset corresponding to the ith input
variable xi in the kth rule could be denoted as Ai,k. Let µi,k be the corresponding membership
function (MF) of Ai,k. A Gaussian-type MF is defined as

µi,k(xi) = e

−(xi−ci,k)2

2σ2
i,k , (1)

where ci,k is the Gaussian function center, σi,k is the Gaussian function width. They can be tuned
according to the distribution of input data. When we use singleton fuzzification to fuzzify each input
component xi, the fuzzification result of xi is denoted by o1

i = [µi,1(xi), ..., µi,K(xi)] ∈ RK , and
the output of the fuzzification layer is given by

O1 = [o1
1,o

1
2, ...,o

1
D] ∈ RD×K , (2)

where K is the number of rules. In the TS-FNN, we define the kth rule as follows:

IF x1 is A1,k AND x2 is A2,k ... AND xD is AD,k

THEN yk(x′) = qk0 + qk1x1 + ...+ qkDxD,
(3)

where, qk = [qk0 , q
k
1 , ..., q

k
D]T (1 ≤ k ≤ K) is the trainable parameters of defuzzification layer for

the kth rule. "AND" is the t-norm operator in fuzzy logic, denoting the logic conjunction operation
between fuzzy subsets. In addition, each t-norm in fuzzy logic has a dual operator named s-norm,
which can be written as "OR", denoting disjunction operation between fuzzy subsets. In the fol-
lowing sections, we use s(·) and t(·) as the abbreviation for the s-norm and t-norm functions. As
Equation (3) shows, the fuzzy rule is often built by IF-THEN structure. The IF-part of each rule gen-
erates a single value in the rule layer named firing strength, reflecting the matching degree of input
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with the rule. Moreover, the THEN-part is responsible for defuzzification, which means converting
the fuzzy value into a crisp value. TS-FNN calculates THEN-part on the defuzzification layer.

Here for Equation (3) if we use "product" as the t-norm operator, then the output of kth rule in the
rule layer is rk =

∏D
i=1 µi,k(xi) (1 ≤ k ≤ K). We call rk as the firing strength value. The output

of the rule layer is the firing strength vector as

o2 = [r1, r2, ..., rK ] ∈ RK . (4)

The normalization layer is in charge of calculating the weight of the firing strength value of each
rule within the whole fuzzy rule base, reflecting its importance of a reasoning process. Then, the kth
rule is normalized as follows:

O3
k = rk =

∏D
i=1 µi,k(xi)∑K

k=1

∏D
i=1 µi,k(xi)

. (5)

Thereafter, the normalized result of the rule layer is given by

o3 = [O3
1, O

3
2, ..., O

3
K ] ∈ RK . (6)

The defuzzification layer is designed to calculate the THEN-part of the fuzzy rule to output crisp
value directly. The defuzzification result of the kth rule is given by

O4
k = O3

k(q
k
0 + qk1x1 + ...+ qkDxD) = O3

k(x
′qk), (7)

where x′ is the input vector in the defuzzification layer. In 1-order TS-FNN, x′ is the ordinary
input vector of the fuzzification layer concatenating extra element 1, x′ = [1,x] = [1, x1, .., xD] ∈
RD+1. Besides, if qk = [qk0 ], the TS-FNN will degenerate to 0-order while the input vector of
the defuzzification layer becomes x′ = [1] ∈ R1. Furthermore, the above description just depicts
a Multiple Input Multiple Output (MIMO) system; if we adjust the trainable parameter vector to
qk ∈ R(D+1)×out_feature, the system will become to Multiple Input Single Output (MISO). The
output vector of the defuzzification layer is denoted by

o4 = [O4
1, O

4
2, ...O

4
K ] ∈ RK . (8)

The output layer summarises the total output result of the defuzzification layer, i.e.,

O5 =

K∑
k=1

O4
k. (9)

3 METHODOLOGY

We first introduce a new concept of fuzzy representation graph (FRG) to describe a graph with fuzzy
and uncertain information. Then, we propose FL-GNN to conduct graph inference based on FRG.

3.1 FUZZY REPRESENTATION GRAPH

The information in the real-world graph may be incomplete and fuzzy. Fuzzifying the graph data
can capture the fuzziness and prevent information loss. To this end, we present FRG (Fuzzy Repre-
sentation Graph) to realize the node-level graph fuzzification.

FRG is denoted as G = (V,E, Fv, Fe, Av, Ae), where V is the set of vertices, E is the set of
edges, Fv is the vertex attribute set, Fe is the edge attribute set, Av is the set of fuzzy subsets
for the vertex attribute, and Ae is the set of fuzzy subsets for the edge attribute. For ith attribute
Fv,i ∈ Fv , we consider it as a universe of discourse, which has kv,i fuzzy subsets, corresponding to
a membership function set Av,i = {µn, ..., µn+kv,i−1} ⊂ Av . Similarly, for jth attribute Fe,j ∈ Fe,
we also consider it as a universe of discourse, which includes ke,j fuzzy subsets, corresponding to
a membership function set Ae,i = {µm, ..., µm+ke,j−1} ⊂ Ae. Let ϕ : V → 2Fv , ψ : E → 2Fe

denote the mapping functions for vertex attributes and edge attributes, where 2Fv and 2Fe are the
power sets of Fv and Fe, respectively, and then each vertex vi ∈ V and edge ei ∈ E can be
represented by a set of vertex attributes ϕ(vi) ⊂ Fv and a set of edge attributes ψ(ei) ⊂ Fe.
Meanwhile, we also define two fuzzy subset mapping functions, ρ : 2Fv → 2Av , σ : 2Fe → 2Ae .
Having the above functions, we could fuzzify any vertex and edge by mapping them into a set of
fuzzy subsets in FRG, e.g., ρ(ϕ(vi)) ⊂ Av , σ(ψ(ei)) ⊂ Ae.

4



Under review as a conference paper at ICLR 2024

F
u

zzifica
tio

n
 La

y
e
r

R
u

le
 L

a
y
e
r

…

O
u

tp
u

t L
a
y
e
r

𝑴

D
e
fu

zzifica
tio

n
 L

a
y
e
r

…

…

…

…

…

…

…

…

…

…

…

…

…

𝑴𝑫
𝑴𝑫

𝑫

…

…

…

…

…𝑵

N
o

rm
a
liza

tio
n

 L
a
y
e
r

𝑴𝑫

Rule layer

FL-GNN

Figure 2: The architecture of FL-GNN

3.2 FL-GNN

The architecture of FL-GNN generally follows the TS-FNN. The difference between MIMO FL-
GNN and MISO FL-GNN depends on the trainable parameters qk. Without loss of generality, we
take MISO FL-GNN as an example to illustrate. The architecture of FL-GNN is shown in Figure
2. The upper box displays the main workflow of FL-GNN, while the lower box shows the working
procedure of the rule layer for one vertex.

Given an FRG G with N vertices, each vertex’s feature vector is denoted by xn = [x1, . . . , xD] ∈
RD (1 ≤ n ≤ N), and each attribute is assigned with M fuzzy subsets, i.e., |Av,d| = M (1 ≤ d ≤
D). Let Ami,j

denote the jth fuzzy subset of ith vertex feature (1 ≤ i ≤ D, 1 ≤ j ≤ M ), and
the membership function of Ami,j

is denoted by µmi,j
(we use the abbreviations Am and µm in the

remaining part). The input of FL-GNN is the collection of all vertices’ feature vectors, X ∈ RN×D.
These vectors are first expanded to the fuzzy dimension through the fuzzification layer and we obtain
O1 ∈ RN×D×M . Then, in FL-GNN we write the kth (1 ≤ k ≤MD) rule of each vertex v ∈ V as

IF AND
Am∈(Am1,a

,...,AmD,b
)
( OR
u∈N(v)

(v is Am AND u is Am))

THEN yk(x′) = (qk0 + qk1x1 + ...+ qkDxD),
(10)

where the tuple (Am1,a
, ..., AmD,b

) is an element of S = Av,1 × Av,2 × · · · × Av,D, and ’×’
denotes the Cartesian product, and indexes a, b represent a combination of index results generated
by Cartesian product. Hence, set S has a total of MD tuples, corresponding to MD rules in the rule
layer.

The rule design is based on the concept of MPA to achieve aggregation and update. Specifically, the
rule employs a compound logic expression in the IF-part to achieve a Mixed Aggregation Function
(Beliakov et al., 2020), which can aggregate the local information in the fuzzy dimension. In the
THEN-part, each vertex updates its self-state based on its firing strength value (aggregation mes-
sage). The IF-part of Equation (10) corresponds to three steps inside the rule layer described in the
lower box of Figure 2: 1) the neighboring vertices of the center vertex v calculate their similari-
ties to v by applying the t(·) operator under the fuzzy subset Am Note that the expression t(v, ui)
represents the t-norm operation on the fuzzy values of vertex v and ui in the fuzzy subset Am. 2)
vertex v uses the s(·) operator to aggregate the similarity messages from its neighboring vertices.
3) the aggregation results from different fuzzy subsets (Am1,a , ..., AmD,b

) are further aggregated by
t(·). Then, we obtain the ultimate aggregation outcome corresponding to the firing strength value
rk (1 ≤ k ≤ MD). The firing strength vector corresponding to the input vertex vector xn is de-
noted as rn = [r1, . . . , rMD ] (1 ≤ n ≤ N) and the output of the rule layer is represented by
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O2 = [r1, . . . , rN ] ∈ RN×MD

. The working procedure of the rule layer is designed to implement
an attention mechanism in the fuzzy dimension. Specifically, different combination results in S
will generate diverse attention scores to different fuzzy information. In Appendix C, we visualize
the firing strength distribution values to verify that different vertices present different firing strength
values (attention scores) for different rules. After normalization, the normalized firing strength val-
ues O3 ∈ RN×MD

and all vertices’ feature vectors X are fed into the defuzzification layer to obtain
the defuzzification result O4 ∈ RN×MD

. Finally, the output layer performs the sum operation on
O4 and outputs the final result O5 ∈ RN×1.

3.3 IMPROVEMENT TO FL-GNN

The aforementioned FL-GNN has two inherent limitations:

1) As the input feature dimension increases, the number of rules increases exponentially, directly
leading to dimension explosion and information redundancy. Dimension explosion is a common
problem faced by FNNs (Luo et al., 2019; Wang et al., 2022; Zhang et al., 2018; Wang, 2020; Yu
et al., 2022). Wang et al. (2022) proposes to reduce the number of rules through constructing an
OR-AND structure of fuzzy rule. Wang & Qiao (2022) propose a Restricted Boltzmann Machine
(RBM) that can dynamically adjust the size of the hidden layer so as to reduce the dimension of
input data. Besides, Yu et al. (2022) use the topology learning method to learn the data distribution
in advance, enabling FNNs to self-organize more effective rule structures. Meanwhile, the number
of rules with low firing strength values also increases with the number of rules, making it difficult
to provide effective aggregation messages and causing information redundancy. For example, the
cumulative firing strength distribution values on the ogbg-molhiv dataset indicates that almost 85%
of the firing strength values are below 0.5, and 20% are below 0.2. The main reason is that as the
number of rules grows, the granularity of fuzzy information that each rule focuses on becomes finer,
making it difficult for the original data distribution to cover every fuzzy information that each rule
targets.

2) The structural design of the defuzzification and output layers is still complex for graph inference
tasks. The additional training parameters and computational steps introduced by the defuzzification
and output layers are not proportional to the performance improvement they bring. Meanwhile, the
firing strength vector is sufficient to reflect the local structure information, so we can directly use
it as the representation information of the vertex in the graph. We visualize this phenomenon in
Appendix B, where we use unsupervised learning methods to learn graph structure information only
through the rule layer.

To address both limitations, we propose two solutions to improve our model as follows:

1) We first introduce a sliding window mechanism to achieve dimension reduction. Specifically, we
use a sliding window in FL-GNN to split the high-dimensional input into multiple low-dimensional
segments, and each individual segment is assigned an independent fuzzification layer and rule layer.
This structural design allows multiple FL-GNNs to share the complexity of the monolithic FL-GNN,
and the number of rules is reduced from MD to BMW , where W is the sliding window size (W ≪
D), andB is the number of segments determined by the sliding window stride size andW . Note that
the calculation procedure of firing strength value for each input segment is absolutely independent,
enabling us to design a parallel architecture that can process all segments simultaneously, thereby
improving computation efficiency. Then, we propose a feature-refinement scheme to overcome the
problem of information redundancy. The scheme chooses the MaxPooling1D function as the firing
strength refiner to compress the firing strength vector by filtering out invalidated features to obtain a
more expressive firing strength vector.

2) To improve the model efficiency for graph inference tasks, we make some changes to FL-GNN’s
architecture, replacing the defuzzification layer, normalization layer, and output layer with the re-
finement layer, concatenate layer, and fully connected layer. The refinement layer compresses the
size of the firing strength vector to reduce information redundancy. The concatenate layer com-
bines the vertex vector with its firing strength, allowing us to obtain more complete vertex feature
information and local structure information. The fully connected layer offers the necessary trainable
parameters and transforms the firing strength vector to the required form for downstream tasks.
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Figure 3: The architecture of FL-GNN-A

We incorporate two improvement solutions into FL-GNN and elicit FL-GNN-A. For FL-GNN-A,
we use a two-part architecture to replace the original 5-layer architecture of FL-GNN to represent
the aggregation operation and update operation in turn. The schematic diagram of FL-GNN-A is
shown in Figure 3, where the sliding window size is 3, and the stride size is 2. To facilitate the
description, we transpose the model input X ∈ RN×D to XT = [x1,x2, ...,xD] ∈ RD×N , where
the xd ∈ RN (1 ≤ d ≤ D) denotes the vector consisting of the dth feature of all vertices.

In part-1 of FL-GNN-A, we first utilize the sliding window to split the vertex feature along the
feature dimension. These segments are then independently processed in the fuzzification layer and
rule layer to generate the firing strength segment Rb = [rb1, . . . , r

b
N ] ∈ RN×MW

(1 ≤ b ≤ B), where
rbn ∈ RMW

(1 ≤ n ≤ N) denotes the firing strength vector for the nth vertex in the bth segment.
The output of part-1 is denoted by R = [R1, . . . ,RB ] ∈ RN×BMW

. After that, R is fed into
the feature-refinement layer of part-2 to compress the size of R and obtain more informative firing
strength R′. In the concatenate layer, the original feature vectors and the firing strength values are
combined to obtain X′. Finally, we input the concatenate layer’s output X′ through a fully connected
layer to generate the final outcome. Although FL-GNN-A does not follow the conventional structure
of FNN, it still maintains the fundamental structure of the fuzzification layer and the rule layer. This
implies that FL-GNN-A can effectively mitigate noise and extract fuzzy information from a graph.
It is a trade-off between computational efficiency and the capacity for model inference.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the performance of the model in various graph inference tasks, we conduct experiments
on multiple datasets. Specifically, for node-level tasks, we choose three small node classification
datasets, including Cora, Citeseer, and Pubmed (Yang et al., 2016), and two large-scale node clas-
sification datasets, Reddit (Hamilton et al., 2017) and ogbn-protines (Hu et al., 2020). Reddit uses
F1-micro as its evaluation metric and ogbn-protines uses AUC-ROC as its evaluation metric. For the
graph-level task, we choose three small-scale graph-level node classification/regression datasets, in-
cluding ogbg-molhiv (classification), ogbg-molsol (regression), and ogbg-molfreesolv (regression),
as well as the medium-scale dataset ogbg-molpcba (classification) (Hu et al., 2020). ogbg-molhiv
uses ROC-AUC as an evaluation metric. The ogbg-molfreesolv and ogbg-molsol use RMSE, and
ogbg-molpcba uses AP (average precision).

4.2 PERFORMANCE COMPARISON

Experiment Settings. For FL-GNN-A, we choose the "product" t-norm operator and replace its
dual operator (s-norm operator) with the "mean" average operator by considering that the calculation
of s-norm cannot be performed in parallel. We choose several widely-used GNNs as the baseline
models, including Graph Isomorphism Network (GIN) (Xu et al., 2019), TransformerConv (Shi
et al., 2021), GATv2 (Brody et al., 2022), GAT (Velickovic et al., 2018), Graph Convolutional
Network (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017). For the models with
the multi-heads mechanism, such as TransformerConv and GAT, we set 6 heads for them. On the
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Table 1: Performance on node-level dataset
Cora (F1-micro) CiteSeer (F1-micro) Pubmed (F1-micro) Reddit (F1-micro) ogbn-proteins (AUC-ROC)

FL-GNN-A 0.8230±0.0039 0.7121±0.0065 0.7860±0.0010 0.9521±0.0015 0.7989 ±0.0043

GraphSage-mean 0.7930±0.0048 0.7206±0.0049 0.7689±0.0090 0.9501±0.0023 0.7962 ±0.0039

GAT 0.8506±0.0031 0.7368±0.0059 0.7852±0.0046 0.9429±0.0074 0.7996 ± 0.0018

GCN 0.8100±0.0028 0.7194±0.0034 0.7924±0.0420 0.9311±0.0131 0.7551±0.0079

TransformerConv 0.8002±0.0039 0.7160±0.0042 0.7803±0.0012 0.9550±0.0067 0.8003 ± 0.0025

GATv2 0.8001±0.0036 0.7332±0.0024 0.7800±0.0023 0.9220±0.0445 0.7908 ± 0.0033

GIN 0.7950±0.0203 0.7001±0.0028 0.7512±0.0087 0.9218±0.0173 0.7569 ± 0.0054

Table 2: Performance on graph-level dataset
ogbg-molhiv (AUC-ROC) ogbg-molesol (RMSE) ogbg-molfreesolv (RMSE) ogbg-molpcba (AP)

FL-GNN-A 0.7863±0.0112 0.8113±0.0134 0.1821±0.0190 0.2468±0.0032

GraphSage-mean 0.7662±0.0419 0.7740±0.0205 0.1841±0.0280 0.2333±0.0045

GAT 0.7796±0.0223 0.8111±0.2638 0.1811±0.2007 0.2370±0.0632

GCN 0.7608±0.0247 0.7914±0.0074 0.1866±0.0309 0.2287±0.0113

TransformerConv 0.7816±0.0162 0.8325±0.0059 0.1823±0.2912 0.2433±0.0124

GATv2 0.7504±0.0288 0.8277±0.0076 0.1794±0.0627 0.2455±0.0113

GIN 0.7803±0.0113 0.8101±0.0200 0.1787±0.0583 0.2423±0.0299

dataset Reddit, all models are trained in batches using the NeighborSampling scheme (Hamilton
et al., 2017), and the sample sizes are set to layer1 = 35 and layer2 = 20 for both the 1st-order
and 2nd-order neighbors, and on ogbn-proteins the sample sizes of the 1st-4th order neighbours are
set to layer1 = 40, layer2 = 35, layer3 = 15, layer4 = 5. For the graph-level datasets, we select
"sum" as the readout function.

Experimental Results. The results on node-level and graph-level graph inference tasks are dis-
played in Table 1 and 2, respectively. We observe that FL-GNN-A substantially possesses sufficient
graph inference capability compared to popular GNN models. FL-GNN-A can handle both node-
level and graph-level inference tasks regardless of their scales, indicating that the model structure
of FL-GNN-A is suitable for common graph inference tasks. Furthermore, FL-GNN-A achieves
great performance on graph-level datasets. For example, on both small-scale and medium-scale
datasets, ogbg-molhiv and ogbg-molpcba, FL-GNN-A outperforms the other models. Meanwhile,
FL-GNN-A still achieves good performance on the node-level tasks, where its performance exceeds
most of the traditional models, especially on the Cora and Reddit datasets. We regard that the great
performance of FL-GNN-A can be attributed to the fuzzification providing finer-grained features,
which not only enhance the representation ability of the original features but also provide a certain
extent of noise resistance, while the rule layer provides rich attention in fuzzy dimension, enabling
FL-GNN-A to capture the fuzzy information more comprehensively.

4.3 ABLATION STUDY

Table 3: The performance results
model feature refine hidden ogbg-molhiv hidden Cora

5 0.7091±0.0171 5 0.3871±0.1181
FL-GNN None 7 0.7121±0.0165 7 0.5204±0.1048

9 0.7607±0.0165 9 0.6102±0.0581
None 0.7496±0.2038 0.8138±0.0084
MaxPooling1D-70% 32 0.7616±0.0073 128 0.8106±0.0097
MaxPooling1D-30% 0.7649±0.01584 0.7918±0.0214
None 0.7604±0.1769 0.8205±0.0056

FL-GNN-A MaxPooling1D-70% 64 0.7616±0.0273 256 0.8183±0.0071
MaxPooling1D-30% 0.7768±0.0127 0.8105±0.0062
None 0.7840±0.0090 0.8213±0.0060
MaxPooling1D-70% 128 0.7723±0.0117 512 0.8230±0.0039
MaxPooling1D-30% 0.7820±0.0101 0.8192±0.0054

32 0.6442±0.0106 128 0.3691±0.0349
FL-GNN-* None 64 0.6244±0.0201 256 0.4864±0.0182

128 0.6443±0.0198 512 0.4437±0.0261
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Table 4: Model computing resource cost comparison
FL-GNN-A† (layer=2) FL-GNN-A (layer=2)

hidden Time consumption(ms)
Inference/Training

Total trainable
params

Time consumption(ms)
Inference/Training

Total trainable
params

64 19.337 / 30.301 24,353,607 4.980 / 5.172 473,972
128 1907.848 / 4119.772 200,805,767 5.964 / 6.510 1,772,935
256 NA NA 9.535 / 10.668 4,943,111
512 NA NA 27.748 / 41.993 19,031,559

FL-GNN-A† (layer=3) FL-GNN-A (layer=3)

hidden Time consumption(ms)
Inference/Training

Total trainable
params

Time consumption(ms)
Inference/Training

Total trainable
params

64 135.894 / 245.978 36,485,319 7.877 / 9.548 497,991
128 NA NA 13.130 / 16.730 1,867,271
256 NA NA 23.497 / 30.585 7,229,703
512 NA NA 47.609 / 235.219 28,177,415

We conduct two groups of experiments to verify whether FL-GNN and FL-GNN-A positively impact
graph inference and whether FL-GNN-A can improve the inference speed and reduce the trainable
parameters of FL-GNN.

It is crucial to note that the NA in the experiment result indicates that the memory requirement
exceeds the limitations of our hardware.

In the first group of experiments, we compare performance among FL-GNN, FL-GNN-A, and FL-
GNN-* on the ogbg-molhiv and Cora datasets, where FL-GNN-* is a variant of FL-GNN-A that
removes the fuzzy inference module and retains only the necessary fully connected layer. We use
the feature-refinement module to extract 70% and 30% of the firing strength values, i.e., 70% and
30% of the length of the original firing strength vector will be retained. For the FL-GNN, when we
set the number of membership functions for each feature greater than or equal to 3 and the number
of hidden dimensions exceeds 10 the dimension explosion will occur. Since, in this experiment, we
set the number of hidden units for FL-GNN to be much smaller than FL-GNN-A and FL-GNN-*.
As Table 3 shows, compared to FL-GNN-*, FL-GNN achieves a significant performance improve-
ment on the Cora and ogbg-molhiv datasets. This improvement is attributed to the fuzzy inference
structure, which provides FL-GNN with powerful graph inference ability. Compared to FL-GNN,
FL-GNN-A achieves further improvement. We regard that FL-GNN-A strikes a significant balance
between model performance and computational overhead. However, for FL-GNN, the improvement
in model performance is disproportionate to the increase in computational overhead of the model.
In addition, when observing the effect on the MaxPooling1D function, we find that the MaxPool-
ing1D function only slightly affects the final model performance. However, the MaxPooling1D
function improves the speed of inference and training 1.2X ∼ 1.3X , while significantly reducing
the trainable parameters of the model.

In the second group of experiments. We investigate the effect of using the part-2 architecture of
FL-GNN-A on time consumption and the number of trainable parameters. We introduce an ablation
model FL-GNN-A†, which retains the part-1 architecture but replaces the part-2 architecture with the
normalization layer, defuzzification layer, and output layer same as FL-GNN. Also, we introduce a
naive FL-GNN-A as a comparison, the feature refinement ratio of FL-GNN-A is 70%. For FL-GNN-
A and FL-GNN-A†, we set the sliding window size to 5, the sliding step size to 5, and the number
of membership functions for each feature to 3. Table 4 presents the comparison results of time
consumption and variations in trainable parameters for FL-GNN-A† and FL-GNN-A on the Cora
dataset under different hidden dimensions and stacked layers. From the table, it can be observed that
FL-GNN-A† showcases an exponential increase in time consumption and trainable parameters as the
hidden dimensionality increases. In comparison, FL-GNN-A shows a linear increase. The reason
is that the defuzzification layer and output layer incur excessive computation overheads. However,
FL-GNN-A utilizes the fully connected layer to replace them.

5 CONCLUSION

Integrating FNN with GNN offers new insights into graph inference using fuzzy logic. The fuzzy
inference system provides an inference paradigm with high degrees of freedom and enhances the
interpretability of reasoning processes by using formalized inference rules. Fuzzy set theory enables
numerical representation of various data sources, improving the data fusion process. Currently,
there are still some limitations in FL-GNN that need to be overcome in the future. 1) FL-GNN
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uses Type-1 fuzzy sets to fuzzify the feature data of vertices, but the ability of Type-1 fuzzy sets
to represent fuzziness is limited. Instead, more powerful fuzzy sets such as Type-2 fuzzy (Castillo
& Melin, 2008) sets and intuitionistic fuzzy (Luo et al., 2019; Eyoh et al., 2018) sets can provide
stronger fuzziness. By using these fuzzy sets, we can obtain better representation capabilities. 2)
Computational complexity is still an issue in FL-GNN due to the need to handle a large number
of fuzzy rules. Although we proposed FL-GNN-A in this paper to greatly alleviate this problem
and enable FL-GNN-A to work effectively on large datasets, how to reduce computational com-
plexity further remains a highly challenging issue. One direction we plan to pursue is to use the
interpretability property of FL-GNN to guide us in designing evolutionary algorithms to compress
network structures and obtain more effective models.
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APPENDIX

A WHY FL-GNN IS USEFUL?

In this section, we explain the principle of FL-GNN.

Fuzzy neural networks are particularly attractive because of their interpretability. This means that the
IF-THEN rules are made up of understandable linguistic variables, which makes it easier for humans
to understand. FL-GNN can also be explained from the perspective of the fuzzy inference system.
To illustrate this, let’s consider a scenario where we have a social network graph of a campus, where
each vertex has two attributes, namely "age" and "income". Our goal is to determine the career of
each vertex based on these two attributes. Using common sense, we can come up with the following
two appropriate rules:

(1): IF most of the neighborhoods surrounding v are young in age AND their income is
low, THEN v is a student.

(2): IF most of the neighborhoods surrounding v are old OR middle in age AND their
income is high, THEN v is a teacher.

The above two rules can be interpreted from the view of FL-GNN’s fuzzy rule, where "age" and
"income" are the universe of discourse, "young", "middle", and "old" are the linguistic label of
fuzzy subsets of "age", "low" and "high" are the linguistic labels of fuzzy subsets of "income".
The "most" indicates the high matching degree of the inner part of the fuzzy rule ORu∈N(v)(·),
which means the similarity between the center vertex v and its neighborhoods. Here, we merely use
the 1-hop neighborhood of the center vertex v to define the concept "neighborhood", namely, the
pairwise relationship between two vertices. To further ameliorate the performance of FL-GNN to
breakthrough 1-WL test (Xu et al., 2019), we can also introduce the higher order relationship
concepts such asHyperedge or Simplicial Complex to better interpret "neighborhood". More-
over, the innermost operator (v is Am AND u is Am) corresponds to the similarity of the vertex
pair, which is the concept of "Strength of Connectedness" of "Complete fuzzy graph"(Mordeson
et al., 2023), indicating the maximum value of the path strength between two vertices. In other
words, based on the "similarity of vertex pair", we can filter out noisy vertices adjacent to the cen-
tral vertex but with low correlation. Subsequently, "AND" integrates different factors included
in reasoning to construct a complete rule, which corresponds to the outer part of the fuzzy rule
ANDAm∈(Am1,a ,...,AmD,b

)(·). Therefore, the inference result "student" or "teacher" can support
more high-level inference, which interprets why FL-GNN can achieve better performance through a
stacked structure. Additional experiments have been included in Appendix C to better showcase the
interpretability of FL-GNN.

On the other hand, let us shift our focus to the Message Passing Neural Network (MPNN) (Gilmer
et al., 2017), which is the generalized paradigm for most GNNs. MPA is a crucial phase of MPNN.
The major steps of MPA can be divided into two steps: the message aggregation step and the mes-
sage update step, where the step of message aggregation for each vertex combines the neighbors’
message and leverages some aggregation mechanisms such as sum, concatenate, attention, etc.,
to aggregate them. The message update step for each vertex updates the self-state using some update
function.

We consider the calculation process of the IF-part in each fuzzy rule as the Mixed Aggregation Func-
tion f : [0, 1]n −→ [0, 1] to take real arguments from the closed interval I = [0, 1] and produces a
real value in that same interval. The components of f that compose the t-norm and s-norm operators
are the conjunctive aggregation function and disjunctive aggregation function, respectively (Beli-
akov et al., 2020). No matter whether t-norm or s-norm, they both possess symmetric, namely,
permuation equivariant, which property satisfies the basic inductive bias of GNN. Moreover, we
have also attempted to leverage the average aggregation function to supersede t-norm and s-norm.
Because we consider when there are too many aggregated elements, the aggregation results of t-
norm and s-norm tend to be the extreme value of 0 and 1, yet the averaging aggregation still leads to
a technically valid aggregation result.

To make a summary, in IF-part FL-GNN generatesMD different aggregation functions (fuzzy rules),
and the THEN-part in each fuzzy rule plays the role of update function to combine the aggregation
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message (firing strength value) into center vertex to generate new vertex state. In terms of the
conclusion of Corso et al. (2020)): "In order to discriminate between multisets of size n whose
underlying set is R, at least n aggregators are needed.". FL-GNN obtains rich aggregation functions
by combining different fuzzy subsets. Therefore, we believe that the rule layer provides enough
inference capability for FL-GNN.

B FL-GNN AND MPA.

In order to concretize the relation between FL-GNN and MPA, We use an unsupervised learning
approach to show how our fuzzy inference module captures the structural information of a graph
without any label information, which also had been conducted in Kipf & Welling (2017). In this
experiment, we select Zachary’s Karate Club Network, a simple graph that is undirected and un-
weighted and only has the graph topology information. Then each vertex is labeled by one of four
classes by the method of modularity-based clustering Brandes et al. (2008). In the beginning, the
vertex vector is initiated by identity matrix X = IN , in which N is the number of vertices. The
identity matrix ensures that all graph structure information is learned from the model rather than
obtained from vertex feature vectors. We select FL-GNN-A for feature extraction and set the num-
ber of membership functions in each feature to 3, the hidden dimensionality to 128, and the stacked
layer to 3.

The initial distribution of each vertex is shown in Figure 4a, where the color denotes the community
to which the vertex belongs, we can see that there is no distinct community distribution, suggesting
that the identity matrix cannot provide any structural information. Therefore, the vertices of various
classes cannot establish clear community boundaries. However, after undergoing feature extraction
by FL-GNN-A, as shown in Figure 4b, the community boundaries become apparent. This reveals
that the rule layer of FL-GNN is essentially extracting structural information from the graph.

(a) Karate Club Network before embedding (b) Karate Club Network after embedding

Figure 4: Graph embedding experiment on Karate Club Network graph

C INTERPRETABILITY OF FL-GNN.

In order to demonstrate FL-GNN’s interpretability, we use a campus scenario mentioned in Apped-
nix A. The campus social network consists of three types of roles: students, teachers, and logistics,
and each vertex has two features: age and income. To make the social network graph reflective of
reality, we use the Stochastic Block Model (SBM) algorithm Lee & Wilkinson (2019) to generate
a stochastic graph that characterizes real-world graph properties such as power-law degree distri-
bution, small diameter, and overlapping communities. The configuration of the stochastic campus
network is listed in Table 5. We then set up FL-GNN with three fuzzy subsets for each feature. For
the fuzzy subsets of age, the linguistic labels are young, middle-age, and old. For the fuzzy subsets
of income, the linguistic labels are low, medium, and high. This configuration will generate 32 = 9
rules in the rule layer. Next, we input the graph into FL-GNN (single layer, without training) and
we can directly observe the firing strength distribution in the rule layer. We consider the differ-
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ent firing strength distributions in the rule layer of each vertex can represent the unique identity in
the social network, similarly, the vertices with identical identities exhibit analogous firing strength
distributions in the rule layer.

In Figure 5a, the stochastic campus social network graph is generated using SBM, which includes
students (blue), teachers (green), and logistics (red). In our code, the permutation of rules conforms
to M-digit (M is the number of fuzzy subsets) encoding, specifically, each digit of the rule number
points to a feature, and the value of this digit points to the fuzzy subset of the feature. In this case,
we set three fuzzy subsets for each feature, thus the ternary encoding of the 7th rule is 21. The
linguistic label corresponding to the 7th rule is "income is high AND age is middle". The ternary
encoding of the 0th rule is 00. The linguistic label of the 0th rule is "income is low AND age is
young".

The average firing strength of each career community with 9 rules is shown in Figure 5b. By ob-
serving which rules in each community have higher firing strength values, we can find the student
community is adapted to Rule:0, the teacher community is adapted to Rule:7 and Rule:8, and the
logistic community is adapted to Rule:4 and Rule:5. According to the linguistic label for each rule
we could summarize the inference rule as follows

Table 5: Configuration of stochastic social network
Graph Setting Vertex Feature

number connection probability age income

Student 15000 [Student:0.002, Teacher: 0.001, Logistic: 0.001] X∼U(15,25) X∼U(0,2000)

Teacher 300 [Student:0.001, Teacher: 0.25, Logistic: 0.02] X∼U(35,70) X∼U(9000,13000)

Logistic 100 [Student:0.001, Teacher: 0.02, Logistic: 0.25] X∼U(35,70) X∼U(5000,6000)

(a) Stochastic Campus Social network (b) Firing Strength of each Career

Figure 5: The Stochastic Campus Social Network graph (left) and firing strength distribution for
each career (right)

(1): IF most of v′s neighborhoods′ age is young AND income is low, THEN v is student.

(2): IF most of v′s neighborhoods′ age is middle OR old AND income is high, THEN
v is teacher.

(3): IF most of v′s neighborhoods′ age is middle OR old AND income is middle,
THEN v is logistic.
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In the above experiment, we only present narrow interpretability, where we assume a simple social
network scenario where the raw features of each vertex are comprehensible so that we can confer
the feature with meaningful linguistic labels to make the fuzzy rule intuitionally understood.

In FL-GNN, interpretability is not limited to linguistic labels. The interpretability of FL-GNN is
based on hidden features. That is, the firing strength distribution of the fuzzy rule can provide
interpretations for the inference process of FL-GNN. The firing strength distribution of communities
directly reflects their topological structure information and feature distribution. Here topological
information is specified as the degree of community overlap, i.e., the probability of having edges
within a community and between multiple communities. Feature distribution specifically refers to
the differences in node feature value between different communities. As we can see in the above
experiment, communities of different professions exhibit intuitive differences in firing strength
distribution.

In FL-GNN, the differences in topology structure between communities are explicitly presented in
the firing strength distribution, indicating that there is a direct relationship between which fuzzy rules
have a positive effect on capturing topology differences and which ones do not work. Therefore, our
improvement in fuzzy rules can be intuitively reflected in the differences in model performance,
just as we performed MaxPooling on the output of fuzzy rule layers in FL-GNN-A. Filtering out
redundant rules not only ensures model accuracy but also improves the inference speed of the model.

In Section 3.2, we introduce a Multiple Input Single Output (MISO) FL-GNN. Here, we use Multiple
Input Multiple Output (MIMO) FL-GNN for the generic case to introduce stacked FL-GNNs. The
output of MIMO FL-GNN is defined as O5 ∈ RN×hidden_nums, where N denotes the number of
nodes. The difference between MISO FL-GNN and MIMO FL-GNN is that the value space of train-
able parameters qk of kth fuzzy rule changes from RK to RK×hidden_nums, where hidden_nums
is the hidden dimension size.

We formally define the FL-GNN with a stacked structure as follows: First, similar to the definition
of FL-GNN in Section 3.2, a single-layer MIMO FL-GNN is defined as O5 = fθ(X,A), where X
denotes the input node data, A denotes the adjacency matrix, θ denotes the trainable parameters in
FL-GNN, and O5 denotes the output of the single layer of FL-GNN. In the following description,
we replace O5 with H to make the formula more concise. Then, for the FL-GNN with a stacked
structure, we define the output of the lth layer as Hl = fθl(Hl−1,A) + Hl−1, where we add the
residual connection Hl−1. Meanwhile, some research papers have reported that the FNN structure
has the ability to fit nonlinear functions (Hu et al., 2023; Rodríguez-Fdez et al., 2016; Jang, 1993). To
enhance the sparsity of the parameters and mitigate overfitting, we incorporate an activation function
σ(·) of the ReLU family in each layer of FL-GNN. In addition, we also add a BatchNormalization
Layer BN(·) for the stability of the model. Finally, the output of the lth layer is defined as Hl =
BN(σ(fθl(Hl−1,A) +Hl−1)).

In Figure 6 we visualized the firing strength distribution of each layer in the FL-GNN with the
stacked structure. By observing the changes in trends of firing strength distribution in different com-
munities, we have found that as the interaction order increases, the firing strength distribution of a
community gradually changes from reflecting the topology information of a single community to
that of multiple overlapping communities. Ultimately, the firing strength distributions of all com-
munities will tend to be consistent, representing the topology information of the entire graph. We
can also notice that the two communities of teachers and logistics converge faster, while the student
community converges relatively slower, due to the higher overlap (higher probability of edge con-
nection) of the two communities of teachers and logistics, as a result, information is exchanged more
quickly between the two communities. The student community has a lower overlap (lower proba-
bility of edge connection) with the teacher community and logistics community, and the student
community has a much larger community radius. Therefore, nodes at the edge of the community
need higher-order message passing to access information from the rest of the community.

For a more general scenario, we try to verify that fuzzy rules with low firing strength values are
redundant for the FL-GNN inference process, which will further prove that the firing strength
distribution is explicitly related to the graph inference process of FL-GNN. Therefore, we con-
ducted fidelity test experiments to verify whether the fuzzy rules with low firing strength values
are redundant for the inference of FL-GNN-A. We also introduced the GNNExplainer(Ying et al.,

17



Under review as a conference paper at ICLR 2024

Figure 6: Firing strength distribution under indirect interaction of vertices. The three rows from top
to bottom represent the firing strength distribution of students, teachers, and logistics. From left to
right, it represents the firing strength distribution from 1-order to 7-order interaction.

2019) as a performance control. GnnExplainer is a model-free method that can provide a reliable
explanation for GNN that conforms to the message-passing paradigm. Specifically, GnnExplainer
will take a trained GNN model and its prediction results as input, and output the subgraphs and
feature sets that truly affect the prediction results.

In the experiment section, we set up two sets of experiments. In the first group, we pre-trained
the FL-GNN-A on the Pumbed dataset. Then we mark the indexes of the fuzzy rules that have
low values in the inference phase of the pre-trained model. Next, we re-trained the model while
masking out the corresponding fuzzy rules for the bottom 70%, 50%, and 30% of the ranked firing
strength values in each layer. In the second experimental group, we feed the FL-GNN-A model
pre-trained on the Pubmed dataset into the GNNExplainer model to extract the subgraphs as well
as the feature sets that are more useful for the inference task. Next, the information extracted by
GNNExplainer is used for inference on the test dataset to calculate the fidelity of GNNExplainer.
For GNNExplainer the regularization hyperparameters for subgraph size is 0.005; for laplacian is
0.5; for feature explanation is 0.1. The experimental results are presented in Table 6.

From Table 6, we observe that when we mask out the fuzzy rules with firing values in the bottom
30%, the model’s prediction performance improves, while when we mask out 50% of the fuzzy rules
the model’s performance only fluctuates slightly, which we believe is because the fuzzy rules with
low firing strength values become noise in the prediction. When we mask out 70% of the fuzzy rules,
the model performance decreases due to the loss of too much useful information. This shows that
there is a clear correlation between the firing strength distribution and the graphical inference process
of FL-GNN-A, and thus our masking of fuzzy rules with low firing strength values does not affect the
inference process. At the same time, we can see that the information extracted by GNNExplainer
improves the model significantly. We believe that the reason for such a difference is as follows:
1) The training of GNNExplainer is dependent on the prediction results, so the label information
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in the test dataset is utilized for the training of the interpreter. While FL-GNN-A performs rule
masking without utilizing the label information. 2) In the first group of the experiment, we only
mask redundant rules without extracting more efficient rules among the high firing strength value
ones. Nevertheless, by locating the redundant parts of the network, we can further simplify the
network structure of FL-GNN-A, thereby further improving the inference efficiency of the model.

Table 6: The Fidelity Experiment on the Pubmed dataset.
Pubmed Pubmed-70% Pubmed-50% Pubmed-30% GNNExplainer
0.7704 ± 0.0012 0.7536 ± 0.0090 0.7733 ± 0.0013 0.7803 ± 0.0019 0.9397 ± 0.0004
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