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Abstract

Personal attributes represent structured infor-001
mation about a person, such as their hobbies,002
pets, family, likes and dislikes. We introduce003
the tasks of extracting and inferring personal004
attributes from human-human dialogue, and005
analyze the linguistic demands of these tasks.006
To meet these challenges, we introduce a sim-007
ple and extensible model that combines an008
autoregressive language model utilizing con-009
strained attribute generation with a discrimina-010
tive reranker. Our model outperforms strong011
baselines on extracting personal attributes as012
well as inferring personal attributes that are not013
contained verbatim in utterances and instead014
requires commonsense reasoning and lexical015
inferences, which occur frequently in every-016
day conversation. Finally, we demonstrate the017
benefit of incorporating personal attributes in018
social chit-chat and task-oriented dialogue set-019
tings.020

1 Introduction021

Personal attributes are structured information about022

a person, such as what they like, what they have,023

and what their favorite things are. These attributes024

are commonly revealed either explicitly or implic-025

itly during social dialogue as shown in Figure 1,026

allowing people to know more about one another.027

These personal attributes, represented in the form028

of knowledge graph triples (e.g. I, has_hobby, vol-029

unteer) can represent large numbers of personal030

attributes in an interpretable manner, facilitating031

its usage by weakly-coupled downstream dialogue032

tasks (Li et al., 2014; Qian et al., 2018; Zheng et al.,033

2020a,b; Hogan et al., 2021).034

One such task is to ground open-domain chit-035

chat dialogue agents to minimize inconsistencies036

in their language use (e.g., I like cabbage →(next037

turn) →Cabbage is disgusting) and make them038

engaging to talk with (Li et al., 2016; Zhang et al.,039

2018; Mazaré et al., 2018; Qian et al., 2018; Zheng040

et al., 2020a,b; Li et al., 2020; Majumder et al.,041

Figure 1: Overview of obtaining personal attribute
triple from utterances using our model GenRe. At-
tribute values are contained within the utterance in the
EXTRACTION task, but not the INFERENCE task.

2020). Thus far, personalization in chit-chat has 042

made use of dense embeddings and natural lan- 043

guage sentences. While KG triples have been 044

shown to be capable of grounding Natural Lan- 045

guage Generation (Moon et al., 2019; Koncel- 046

Kedziorski et al., 2019), they have yet to be used 047

to personalize chit-chat dialogue agents. 048

Personal attributes can also help task-oriented 049

dialogue agents to provide personalized recommen- 050

dations (Mo et al., 2017; Joshi et al., 2017; Luo 051

et al., 2019; Lu et al., 2019; Pei et al., 2021). Such 052

personalized recommendations have only been at- 053

tempted for single-domain tasks with a small set of 054

one-hot features (< 30). Personalization across a 055

wide range of tasks (recommending food, movies 056

and music by multi-task dialogue agents such as 057

Alexa, Siri and Assistant) however can require or- 058

ders of magnitude more personal attribute features. 059

This makes KG triples ideal for representing them, 060

given the advantages of this data structure in select- 061

ing and utilizing pertinent features (Li et al., 2014; 062
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Hogan et al., 2021).063

Based on these advantages, we investigate how064

personal attributes can be predicted from dialogue.065

An important bottleneck for this step lies in the poor066

coverage of relevant personal attributes in existing067

labeled datasets. Therefore, we introduce two new068

tasks for identifying personal attributes in Section069

2. As shown in Figure 1, the EXTRACTION task070

requires determining which phrase in an utterance071

indicate a personal attribute, while the INFERENCE072

task adds further challenge by requiring models073

to predict personal attributes that are not explic-074

itly stated verbatim in utterances. This is common075

in conversational settings, where people express076

personal attributes using a variety of semantically077

related words or imply them using commonsense078

reasoning. We analyze how these factors allow079

personal attributes to be linked to utterances that080

express them.081

To tackle these tasks, we propose a simple yet ex-082

tensible model, GenRe, in Section 3. GenRe com-083

bines a constrained attribute generation model (that084

is flexible to accommodate attributes not found ver-085

batim in utterances) with a discriminative reranker086

(that can contrast between highly similar candi-087

dates). Our experiments in Section 4 suggests that088

such design allows our model to outperform strong089

baseline models on both the EXTRACTION and090

INFERENCE tasks. Subsequently in Section 5, de-091

tailed ablation studies demonstrate the value of our092

model components while further analysis identifies093

future areas for improvement.094

Finally in Section 6, we show how personal at-095

tributes in the form of KG triples can improve the096

personalization of open-domain social chit-chat097

agents as well as task-oriented dialogue agents.098

In the former case, personal attributes can be uti-099

lized to improve chat-bot consistency on the Per-100

sonaChat task (Zhang et al., 2018). In the latter101

case, we suggest how our personal attributes can102

support personalization in multi-task, task-oriented103

dialogue settings.104

2 Personal Attribute Tasks105

Having motivated the importance of personal at-106

tributes, we propose the task of obtaining them107

from natural language sentences. We first explain108

how we formulate two complementary tasks from109

DialogNLI data and then formally define our tasks.110

Finally, we analyze the task datasets to gather in-111

sights into the linguistic phenomena that our tasks112

involve. 113

2.1 Source of Personal Attributes 114

DialogNLI (Welleck et al., 2019) contains sam- 115

ples of PersonaChat utterances (Zhang et al., 2018), 116

each paired with a manually annotated personal 117

attribute triple. Each triple consists of a head en- 118

tity, a relation, and a tail entity. These triples were 119

initially annotated to identify entailing, contradict- 120

ing and neutral statements within the PersonaChat 121

corpus. For instance, a statement labelled with 122

(I, [has_profession], chef) will contradict with an- 123

other statement labelled with (I, [has_profession], 124

engineer). The three largest groups of relations 125

are: a. has_X (where X = hobby, vehicle, pet) b. 126

favourite_Y (where Y = activity, color, music) c. 127

like_Z (where Z = read, drink, movie). 128

2.2 Extraction and Inference Tasks 129

By re-purposing the DialogNLI dataset, our tasks 130

seek to extract these personal attribute triples from 131

their paired utterances. We first used a script that 132

obtains pairs of personal triples and utterances. 133

Next, we combined relations with similar meanings 134

such as like_food and favourite_food and removed 135

under-specified relations such as favourite, have 136

and others. Finally, we removed invalid samples 137

with triples containing None or < blank > and 138

removed prefix numbers of tail entities (e.g. 11 139

dogs), since the quantity is not important for our 140

investigation. 141

We formulate two tasks by partitioning the Di- 142

alogNLI dataset into two non-overlapping subsets. 143

Here, each sample refers to a sentence paired with 144

an annotated triple. Train/dev/test splits follow Di- 145

alogNLI, with descriptive statistics shown in Table 146

1. The dataset for the EXTRACTION task contains 147

samples in which both the head and tail entities are 148

spans inside the paired sentence. An example is (I, 149

[has_profession], receptionist) from the sentence 150

“I work as a receptionist in my day job”. We for- 151

mulate the EXTRACTION task in a similar way to 152

existing Relation Extraction tasks such as ACE05 153

(Wadden et al., 2019) and NYT24 (Nayak and Ng, 154

2020). This allows us to apply modeling lessons 155

learned from Relation Extraction. 156

The complementary set is the dataset for the IN- 157

FERENCE task, for which the head entity and/or 158

the tail entity cannot be found as spans within the 159

paired sentence. This is important in real-world 160

conversations because people do not always ex- 161

press their personal attributes explicitly and instead 162
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use paraphrasing and commonsense reasoning to163

do so. An example of a paraphrased triple is (I,164

[physical_attribute], tall) from the sentence “I am165

in the 99th height percentile”, while one based on166

commonsense reasoning is (I, [want_job], umpire)167

from the sentence “my ultimate goal would be call-168

ing a ball game”.169

EXTRACTION INFERENCE

Samples
train 22911 25328
dev. 2676 2658
test 2746 2452

Unique elements
head entities 88 109
relations 39 39
tail entities 2381 2522

Avg. words
head entities 1.03 1.08
relations 1.00 1.00
tail entities 1.20 1.28
sentences 12.9 12.2

Table 1: Statistics of the dataset for the two tasks.

The INFERENCE task is posed as a challeng-170

ing version of the EXTRACTION task that tests171

models’ ability to identify pertinent information172

in sentences and then make commonsense infer-173

ences/paraphrases based on such information. An174

existing task has sought to predict personal at-175

tributes that are not always explicitly found within176

sentences (Wu et al., 2019). However, it did not177

distinguish between personal attributes that can be178

explicitly found within sentences (i.e. EXTRAC-179

TION) from those that cannot (i.e. INFERENCE) .180

We believe that, given that the inherent difficulty of181

identifying the two types of personal attributes are182

greatly different, it is helpful to pose them as two183

separate tasks. In this way, the research commu-184

nity can first aim for an adequate performance on185

the simpler task before applying lessons to make186

progress at the more challenging task. This is also187

the first time that personal attributes that are not188

explicitly contained in sentences are shown to be189

derivable from words in the sentence using com-190

monsense/lexical inferences.191

2.3 Formal Task Definition192

Given a sentence S, we want to obtain a personal-193

attribute triple in the form of (head entity,194

relation, tail entity). The relation 195

must belong to a set of 39 predefined relations. 196

In the EXTRACTION subset, the head entity and 197

tail entity are spans within S. Conversely, in the 198

INFERENCE subset, the head entity and/or the tail 199

entity cannot be found as spans within S. 200

2.4 Dataset Analysis 201

We analyze the datasets to obtain insights into how 202

the tasks can be approached. Because the majority 203

of head entities (93.3%) are simply the word “I”, 204

our analysis will focus on tail entities. 205

Figure 2: Bar plot for 10 most common dependency
labels of tail entities

Dataset for the EXTRACTION task We use de- 206

pendency parses of sentences to understand the 207

relationship between words within tail entities and 208

the sentence ROOT. Dependency parsing was cho- 209

sen because it is a well-studied syntactic task (Nivre 210

et al., 2016) and has been shown to contribute to 211

the relation extraction task (Zhang et al., 2017). 212

Dependency parses and labels associated with each 213

dependent word were identified using a pre-trained 214

transformer model from spaCy.1 The parser was 215

trained on data annotated with the ClearNLP de- 216

pendency schema that is similar to Universal De- 217

pendencies (Nivre et al., 2016).2 218

As shown in Figure 2, objects of prepositions 219

(pobj) and direct objects (dobj) each comprise of 220

17.5% of tail entities, followed by compound words 221

(compound), attributes (attr) and adjectival com- 222

plements (acomp), plus 138 other long-tail labels. 223

The range of grammatical roles as well as the fact 224

1https://spacy.io/
2https://github.com/clir/clearnlp-

guidelines/blob/master/md/specifications/dependency_labels.md
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that one third of tail entities do not involve nouns225

(see Figure in Section A.2) also suggest that the226

tail entities in our dataset go beyond proper nouns,227

which are what many Relation Extraction datasets228

(e.g., ACE05 and NYT24) are mainly concerned229

with. Such diversity in grammatical roles played by230

tail entities means that approaches based on rule-231

based extraction, parsing or named entity recog-232

nition alone are unlikely to be successful in the233

EXTRACTION task.234

Dataset for the INFERENCE task A qualitative235

inspection of the dataset showed that inferences can236

be made on the basis of semantically-related words237

and commonsense inferences, as shown in exam-238

ples discussed in Section 2.2. To better understand239

how tail entities can be inferred from the sentence240

in the INFERENCE subset, we analyze the relation-241

ship between words in the tail entity and words242

in the sentence. 79.2% of tail entities cannot be243

directly identified in the sentence. We performed244

a few transformations to identify potential links245

between the tail entity and the sentence. Concept-246

Net_connect refers to words with highest-weighted247

edges on ConceptNet to sentence words while Con-248

ceptNet_related refers to words that have closest249

embedding distances to sentence words. Details of250

their preparation are in Appendix A.3. As in Table251

2, our analysis shows that a model that can perform252

well on the INFERENCE task requiring both Word-253

Net semantic knowledge (Fellbaum, 1998) as well254

as ConceptNet commonsense knowledge (Speer255

et al., 2017).256

Transformation Example %
(sentence→tail entity)

ConceptNet_related mother →female 71.3
ConceptNet_connect wife →married 56.8
WordNet_synonym outside →outdoors 39.5
WordNet_hypernym drum →instrument 5.04
WordNet_hyponym felines →cats 4.17
Same_stem swimming →swim 43.3

Table 2: Proportion (%) of tail entities that can be re-
lated to sentence words after applying each transforma-
tion.

3 GenRe257

This section proposes GenRe, a model that uses a258

unified architecture for both the EXTRACTION and259

the INFERENCE tasks. We use a simple and exten-260

sible generator-reranker framework to address the 261

needs of the two tasks. On one hand, a generative 262

model is necessary because head and/or tail entities 263

cannot be directly extracted from the sentence for 264

INFERENCE dataset. On the other hand, prelim- 265

inary experiments using a Generator in isolation 266

showed that a large proportion of correct triples 267

are among the top-k - but not top-1 - outputs (see 268

Table ??). A Reranker can be used to select the 269

most likely triple among the top-k candidate triples, 270

leading to a large improvement in performance (see 271

Table 4). 272

3.1 Generator 273

We use an autoregressive language model (GPT-2 274

small) as our Generator because its extensive pre- 275

training is useful in generating syntactically and 276

semantically coherent entities. The small model 277

was chosen to keep model size similar to baselines. 278

We finetune this model to predict a personal at- 279

tribute triple occurring in a given input sentence. 280

Specifically, we treat the flattened triples as targets 281

to be predicted using the original sentence as con- 282

text. The triple is formatted with control tokens to 283

distinguish the head entity, relation, and tail entity 284

as follows: 285

y = [HEAD], thead1:m , [RELN], treln, [TAIL], ttail1:k 286

where {[HEAD],[RELN], [TAIL]} are control to- 287

kens, thead1:m is the head entity (a sequence of length 288

m), treln is a relation, and ttail1:k is the tail entity. 289

During evaluation, we are given a sentence as 290

context and seek to generate a personal attribute 291

triple in the flattened format as above. To reduce 292

the search space, we adopt a constrained genera- 293

tion approach. Specifically, after the [RELN] to- 294

ken, only one of 39 predefined relations can be 295

generated, and so the output probability of all other 296

tokens is set to 0. After the [TAIL] token, all output 297

tokens not appearing in the input sentence will have 298

zeroed probabilities in the EXTRACTION task. Con- 299

versely for the INFERENCE task, the only allowed 300

output tokens after the [TAIL] token are those 301

which have appeared following the predicted re- 302

lation in the training data. For example, tail entities 303

that can be generated with a [physical_attribute] re- 304

lation include “short”, “skinny” or “wears glasses”, 305

as these examples occur in the training data. We 306

imposed this restriction to prevent the model from 307

hallucinating attributes that are not associated to 308

the predicted relation (such as “dog” with [physi- 309

cal_attribute]). Despite limiting the model’s ability 310
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to generate novel but compatible tail entities (and311

thereby upper-bounding maximum possible recall312

to 75.7%), this approach in balance helped to im-313

prove model performance. Implementation details314

are in Appendix A.4.315

3.2 Reranker316

We use BERT-base as the Reranker because its bi-317

directionality allows tail tokens to influence the318

choice of relation tokens. Furthermore, BERT has319

demonstrated the best commonsense understanding320

among pre-trained language models (Petroni et al.,321

2019; Zhou et al., 2020). These benefits have led322

to many relation extraction models using BERT as323

part of the pipeline (Wadden et al., 2019; Yu et al.,324

2020; Ye et al., 2021).325

For each S, we obtain the L most likely se-326

quences using the Generator, including the con-327

text sentence. Each sequence is labelled as correct328

or incorrect based on whether the predicted triple329

(head entity, relation, tail entity) matches exactly330

the ground-truth triple. Incorrect sequences serve331

as challenging negative samples for the Reranker332

because they are extremely similar to the correct se-333

quence since they were generated together. We fine-334

tune a BERT model with a binary cross-entropy335

loss function to classify whether sequences are cor-336

rect. During inference, we select the sequence with337

the highest likelihood of being correct as our pre-338

dicted sequence. We set L to 10 in all experiments.339

Implementation details are in Appendix A.5.340

4 Experiments341

We first explain the metrics used in the experiments.342

Next, we introduce the baseline models. Finally,343

we examine how GenRe compares to baseline mod-344

els to understand its advantages.345

4.1 Metrics346

Micro-averaged Precision/Recall/F1 were calcu-347

lated following Nayak and Ng (2020), in which a348

sample is considered correct only when all three349

elements (head_entity, relation and tail entity) are350

resolved correctly. We chose these metrics because351

we are interested in the proportion of all predicted352

personal attributes that have been correctly iden-353

tified (precision) and of all ground truth personal354

attributes (recall). F1 is considered as an aggregate355

metric for precision and recall.356

4.2 Baseline Models 357

Generative models can be used for both the EX- 358

TRACTION and the INFERENCE tasks. 359

WDec is an encoder-decoder model that 360

achieved state-of-the-art performance in the 361

NYT24 and NYT29 tasks (Nayak and Ng, 2020). 362

The encoder is a Bi-LSTM, while the decoder is 363

an LSTM with attention over encoder states. An 364

optional copy mechanism can be used: when used, 365

the decoder will only generate tokens found in the 366

original sentence. The copy mechanism was used 367

on the EXTRACTION dataset but not on the INFER- 368

ENCE dataset (given their better empirical perfor- 369

mance). 370

GPT2 is an autoregressive language model that 371

we build GenRe on. We use the same configuration 372

as in GenRe. 373

Extractive models can be used only for the EX- 374

TRACTION task, because they select for head and 375

tail entities from the original sentence. 376

DyGIE++ is a RoBERTa-based model that 377

achieved state-of-the-art performance in multiple 378

relation extraction tasks including ACE05 (Wad- 379

den et al., 2019). It first extracts spans within the 380

original sentence as head and tail entities. Then, 381

it pairs up these entities with a relation and passes 382

them through a graph neural network, with the head 383

and tail entities as the nodes, and relations as the 384

edges. This allows information flow between re- 385

lated entities before passing the triple through a 386

classifier. 387

PNDec is an Encoder-Decoder model that 388

achieved close to SOTA performance in NYT24 389

and NYT29 (Nayak and Ng, 2020). It uses the 390

same encoder as WDec but uses a pointer network 391

to identify head and tail entities from the original 392

sentence, which it pairs with possible relation to- 393

kens to form a triple that is subsequently classified. 394

All baseline models were trained on our datasets 395

using their suggested hyper-parameters. 396

4.3 Model Results 397

The top-performing baseline models on the EX- 398

TRACTION dataset are the extractive models, which 399

select spans within the sentence and classify 400

whether an entire triple is likely to be correct. Be- 401

cause there are only a small number of spans within 402

the sentence, this approach can effectively limit its 403

search space. On the other hand, extractive models 404

cannot solve the INFERENCE task, because the un- 405

derlying assumption that head and tail entities must 406
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EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
Generative
WDec 57.0 49.0 52.7 33.6 34.7 34.1
GPT2 50.9 31.1 38.6 31.3 17.3 22.3
Extractive
DyGIE++ 60.8 50.9 55.3
PNDec 63.1 49.5 55.5

Table 3: Performance on the test set. GenRe has signif-
icantly higher F1 than all baseline models with 5 runs
based on a two-tailed t-test (p < 0.05).

be found within the sentence does not hold. Con-407

versely, generative models perform more poorly on408

the Extraction task but are capable on the INFER-409

ENCE task. This is because generation happens in410

a left-to-right manner, meaning that some elements411

of the triple have to be generated without know-412

ing what the other elements are. Our approach of413

combining a Generative model with a BERT-base414

Reranker that is akin to models used by Extractive415

approaches combines the best of both worlds. Not416

only does it perform well on the Extraction task (≥417

3.7 F1 points over baselines), it also excels on the418

Inference task (≥ 5.1 F1 points over baselines).419

5 Analysis420

We first conduct an ablation study to better under-421

stand the contribution of constrained generation422

and the Reranker, by measuring the performance423

of our model when each component is removed.424

Then, we seek to understand how errors are made425

on predicted personal attribute relations to identify426

future areas of improvement.427

5.1 Ablation Study428

Table 4 shows that both the Reranker and con-429

strained generation contribute to the performance430

of GenRe. In particular, the constrained generation431

plays a larger role on the EXTRACTION dataset432

while the Reranker plays a greater role on the IN-433

FERENCE dataset.434

Constrained generation has a large impact on435

the EXTRACTION dataset (+13.0% F1), likely be-436

cause it very much restricts the generation search437

space to spans from the context sentence. On the438

INFERENCE dataset, the original search space can-439

not be effectively limited to tokens in the context440

sentence. Therefore, applying the heuristic that441

EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
- Constr. Gen 53.5 40.7 46.2 37.2 27.1 31.4
- Reranker 67.6 41.0 51.0 31.0 22.3 25.9

Table 4: Ablation study for Reranker and constrained
generation.

only tail entities associated with a particular rela- 442

tion (in the training set) can be decoded is useful, 443

even though it upper bounds maximum recall to 444

75.7%, which is much higher than the achieved 445

35.4%. Compared to the EXTRACTION dataset, the 446

improvement on the INFERENCE dataset is smaller 447

(+7.8% F1), since the range of tail entities that can 448

be decoded after imposing the constraint is greater. 449

The Reranker is needed because, many times, 450

the correct triple can be generated by the Genera- 451

tor but might not be the triple that is predicted to 452

have the highest likelihood. The maximum possi- 453

ble recall on the EXTRACTION and INFERENCE 454

tasks increases from 41.0% to 59.9% and 22.3% 455

to 41.0% respectively when considering top-10 in- 456

stead of only top-1 generated candidate. While the 457

achieved recall (52.4% and 35.4% respectively) are 458

still a distance from the maximum possible recall, 459

the achieved recall is much higher than using the 460

Generator alone. 461

5.2 Misclassification of Relations 462

Major sources of error on the EXTRACTION dataset 463

came from relation tokens that have close se- 464

mantic meanings. They either were related to 465

one another (e.g., [has_profession] vs [want_job]) 466

or could be correlated with one another (e.g., 467

[like_animal] vs [have_pet] or [like_music] vs [fa- 468

vorite_music_artist]) , as illustrated in Table 5. 469

Such errors likely arose due to the way that the 470

DialogNLI dataset (Welleck et al., 2019) was anno- 471

tated. Specifically, annotators were asked to label a 472

single possible triple given a sentence instead of all 473

applicable triples. Because of this, our evaluation 474

metrics are likely to over-penalize models when 475

they generate reasonable triples that did not match 476

the ground truth. Future work can avoid this prob- 477

lem by labelling all possible triples and framing the 478

task as multilabel learning. 479
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Top 3 Most Frequent (n)
Dataset True Relation (n) P R F1 Predicted Relations True Tail Entities Predicted Tail Entities

EXTRACTION [has_profession] (274) 83.8 62.0 71.3 [has_profession] (189) teacher (29) nurse (27)
[employed_by_general] (30) nurse (28) real estate (25)
[want_job] (17) real estate agent (25) teacher (19)

[have_pet] (149) 97.3 55.0 70.3 [have_pet] (88) dog (55) cat (32)
[have_family] (18) cat (45) pets (23)
[like_animal] (12) pets (22) dog (18)

INFERENCE [like_food] (77) 46.7 41.6 44.0 [like_food] (62) pizza (18) pizza (19)
[like_activity] (5) onion (9) italian cuisine (10)
[like_animal] (4) italian (7) onion (8)

[like_music] (71) 40.8 23.9 30.2 [like_music] (40) jazz (10) the story so far (12)
[favorite_music_artist] (9) country (9) country (8)
[like_activity] (7) rap (6) jazz (7)

Table 5: Some common relations in EXTRACTION and INFERENCE datasets

6 Applications of Personal Attributes480

Personal attributes can make social chit-chat agents481

more consistent and engaging as well as enable482

task-oriented agents to make personalized recom-483

mendations. In this section, we use personal at-484

tributes to improve chit-chat agent consistency and485

provide information for personalizing task-oriented486

dialogue agents.487

6.1 Consistency in Chit-chat agents488

PersonaChat (Zhang et al., 2018) was created to im-489

prove the personality consistency of open-domain490

chit-chat dialogue agents. PersonaChat was con-491

structed by giving pairs of crowdworkers a set of492

English personal attribute related sentences and493

asking them to chat in a way that is congruent with494

those sentences. Models were then trained to gen-495

erate dialogue responses that are in line with those496

expressed by crowdworkers using the provided per-497

sona information as context.498

Methods We fine-tune the generative version of499

Blender 90M (a transformer-based model trained500

on multiple related tasks) on PersonaChat, which is501

currently the state-of-the-art generative model on502

this task (Roller et al., 2020). We prepend a corre-503

sponding DialogNLI personal attribute before each504

utterance (i.e. +Per. Attr.), in order to better direct505

the model in generating a suitable response that is506

consistent with the set persona. This modification507

is relatively minimal to demonstrate the informa-508

tiveness of personal attributes, while keeping the509

model architecture and hyperparameter fine-tuning510

the same as in the original work (details in Ap-511

pendix A.1).512

Metrics We follow Roller et al. (2020) and Di-513

nan et al. (2019). Metrics for +Per. Attr. setting514

consider both personal attributes and utterances.515

Hits@1 uses the hidden states of the generated out- 516

put to select the most likely utterance amongst 20 517

candidates (the correct utterance and 19 randomly 518

chosen utterances from the corpus). Perplexity re- 519

flects the quality of the trained language model. F1 520

demonstrates the extent of the overlap between the 521

generated sequence and the ground truth sequence. 522

Hits@1 ↑ Perplexity ↓ F1 ↑

Blender 32.3 11.3 20.4
+ Per. Attr. 35.2* 10.4* 20.6*

Table 6: Effects of using personal attributes to augment
Blender on Personachat. Higher is better for Hits@1
and F1; lower is better for perplexity. *Significantly dif-
ferent from Blender with 5 runs based on a two-tailed
t-test (p<0.05).

Fact 1 I love cats and have two cats
Fact 2 I’ve a hat collection of over 1000 hats.
Blender My cats names are all the hats i have
+ Per. Attr. My cats are called kitties

Fact 1 I am a doctor.
Fact 2 My daughter is a child prodigy.
Blender My daughter is prodigy so she gets a lot of accidents.
+ Per. Attr. I’ve seen a lot of accidents.

Table 7: Examples of incorrect utterances generated by
Blender by mixing up two facts.

Results As shown in Table 6, including personal 523

attributes can improve performance on the Per- 524

sonaChat task. An inspection of the generated ut- 525

terances suggests that including personal attributes 526

into Blender can more effectively inform the model 527

which persona statement to focus on during gen- 528

eration. This can prevent Blender from including 529

information in irrelevant persona statements (e.g. 530

by mixing up facts from two unrelated persona 531

7



statements), as in Table 7.532

6.2 Personalization in Task-oriented dialogue533

While personalization has been incorporated into534

single-task settings (Joshi et al., 2017; Mo et al.,535

2017; Luo et al., 2019; Lu et al., 2019; Pei et al.,536

2021), there has been no attempt for personaliza-537

tion in multi-task settings. This is against the back-538

ground in which multi-task dialogue is rapidly be-539

coming the standard in task-oriented dialogue eval-540

uation (Byrne et al., 2019; Rastogi et al., 2019;541

Zang et al., 2020; Shalyminov et al., 2020). To542

overcome this gap, we show how our dataset can543

lay a foundational building block for personaliza-544

tion in multi-task dialogue.545

Methods We used several popular datasets on546

multi-task task-oriented dialogue (Zang et al., 2020;547

Shalyminov et al., 2020; Byrne et al., 2019; Ras-548

togi et al., 2019). From each dataset, we manually549

observed its tasks and categorized them into sev-550

eral overarching domains, as shown in Table 8.551

We then created a mapping between the various552

domains and datasets available for personalizing553

task-oriented dialogue (including ours). Domains554

that are not supported by any dataset are omitted.555

Results Compared to existing datasets in Table556

8, our dataset is capable of personalizing recom-557

mendations in a much larger number of domains.558

These domains include restaurants and shopping,559

which have been explored by existing datasets, as560

well as movies, music, sports and recreation, which561

have thus far been overlooked. For domains that562

have been previously explored, such as restaurants,563

our dataset contains a more diverse set of possi-564

ble personal attribute values (e.g. the foods people565

like), which can support it to personalize recom-566

mendations in more realistic manners.567

Dataset Domains #Unique
features

Ours Restaurants, Movies, 5583
Music, Sports,
Recreation, Shopping

Ours Restaurants only 206
Joshi et al. (2017) Restaurants 30
Mo et al. (2017) Restaurants 10
Lu et al. (2019) Shopping 7

Table 8: Domains covered by various datasets for per-
sonalizing task-oriented dialogue. #Uniques features
refers to the number of unique attribute-values (e.g. the
specific food people like) that can be used for personal-
ization.

7 Related Work 568

Personal Attribute Extraction: Most work on ex- 569

tracting personal attributes from natural language 570

(Pappu and Rudnicky, 2014; Mazaré et al., 2018; 571

Wu et al., 2019; Tigunova et al., 2019, 2020) em- 572

ployed distant supervision approaches using heuris- 573

tics and hand-crafted templates, which have poor 574

recall. In contrast, we use a strong supervision ap- 575

proach in which triples were manually annotated. 576

Li et al. (2014) and Yu et al. (2020) attempted to 577

extract personal information from dialogue using 578

a strongly supervised paradigm. However, they fo- 579

cused on demographic attributes as well as interper- 580

sonal relationships, which contrast with our focus 581

on what people own and like. Li et al. (2014) used 582

SVMs to classify relations and CRFs to perform 583

slot filling of entities while Yu et al. (2020) used 584

BERT to identify relations between given entities. 585

Generating KG triple using Language Models: 586

Autoregressive language models have been applied 587

to a wide range of tasks involving the genera- 588

tion of data with similar structures as personal at- 589

tribute KG triples, including dialogue state tracking 590

(Hosseini-Asl et al., 2020) and commonsense KG 591

completion (Bosselut et al., 2019). The most sim- 592

ilar application is Alt et al. (2019), which used 593

the original GPT model (Radford and Narasimhan, 594

2018) for relation classification. Their task formu- 595

lation involves identifying a specific relation (out 596

of around 30 possible options) for two given enti- 597

ties. On the other hand, our tasks seek to identify 598

not only the relation, but also the head and tail 599

entities, which have potentially open vocabulary 600

requirements, which makes it much harder. 601

8 Conclusion 602

In conclusion, we propose the novel tasks of ex- 603

tracting and inferring personal attributes from dia- 604

logue and carefully analyze the linguistic demands 605

of these tasks. To meet the challenges of our tasks, 606

we present GenRe, a model which combines con- 607

strained attribute generation and re-ranking on top 608

of pre-trained language models. GenRe achieves 609

the best performance vs. established Relation Ex- 610

traction baselines on the Extraction task (≥ 3.7 611

F1 points) as well as the more challenging INFER- 612

ENCE task that involve lexical and commonsense 613

inferences (≥ 5.1 F1 points). Together, our work 614

contributes an important step towards realizing the 615

potential of personal attributes in personalization of 616

social chit-chat and task-oriented dialogue agents. 617
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Ethics and Broader Impact618

Privacy in real world applications Because our619

task involves extracting and inferring personal at-620

tributes, real-world users should be given the option621

to disallow particular types of relations from being622

collected and/or used for downstream applications.623

Users should also be given the freedom to delete624

their collected personal attributes. A further step625

might be to restrict the extraction and storage of626

personal attributes to only local devices using dif-627

ferential privacy and federated learning techniques.628
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A Appendix878

A.1 Blender Fine-tuning Details879

Finetuning hyperparameters are taken from880

https://parl.ai/projects/recipes/, with the exception881

of validation metric changed to Hits@1. Each fine-882

tuning epoch takes 1.5 hours on a Nvidia V100883

GPU. We only prepend personal attributes before884

system utterances but not user utterances. Metrics885

are for the validation set because test set was not886

available. All experiments were conducted using887

ParlAI (Miller et al., 2017).888

A.2 Task Analysis Details889

Figure 3: Bar plot for 10 most common POS tags of
tail entities.

A.3 Details of Transformations to Link Tail890

Entity to Sentence891

ConceptNet_related: All words in the tail entity892

can be found in the 100 most related words to each893

sentence word based on embedding distance on894

ConceptNet895

ConceptNet_connect: All words in the tail en-896

tity can be found in the 100 words that have the897

highest-weighted edge with each sentence word on898

ConceptNet.899

WordNet_synonym: All words in the tail entity900

can be found in the synonyms of every synset of901

each sentence word on WordNet.902

WordNet_hypernym: All words in the tail en-903

tity can be found in the hypernyms of every synset904

of each sentence word on WordNet905

WordNet_hyponym: All words in the tail entity906

can be found in the hyponyms of every synset of907

each sentence word on WordNet908

Same_stem: All words in the sentence and tail 909

entity are stemmed using a Porter Stemmer (Porter, 910

1980) before searching for the tail entity in the 911

sentence 912

A.4 Generator Details 913

GPT-2-small was used. Additional special tokens 914

including the control tokens ([HEAD], [RELN], 915

[TAIL]) as well as relation tokens were added into 916

the tokenizer. Beam search decoding (beam size 917

= 10) was used at inference time. GPT2-small 918

was accessed from HuggingFace Transformers li- 919

brary with 125M parameters, context window 1024, 920

768-hidden, 768-hidden, 12-heads, dropout = 0.1. 921

AdamW optimizer was used with α = 7.5 ∗ 10−4 922

for the EXTRACTION dataset and α = 2.5 ∗ 10−3 923

for the INFERENCE dataset, following a uniform 924

search using F1 as the criterion at intervals of 925

{2.5, 5, 7.5, 10} ∗ 10n;−5 ≤ n ≤ −3. Learning 926

rate was linearly decayed (over a max epoch of 8) 927

with 100 warm-up steps. Each training epoch took 928

around 0.5 hour on an Nvidia V100 GPU with a 929

batch size of 16. Validation was done every 0.25 930

epochs during training. 5 different seeds (40-44) 931

were set for 5 separate runs. 932

A.5 Reranker Details 933

BERT-base-uncased was used. Additional spe- 934

cial tokens including the control tokens ([HEAD], 935

[RELN], [TAIL]) as well as relation tokens were 936

added into the tokenizer. BERT-base-uncased was 937

accessed from HuggingFace Transformers library 938

(with 12-layer, 768-hidden, 12-heads, 110M param- 939

eters, dropout = 0.1). The choice of the base model 940

was made to have fairness of comparison with base- 941

line models in terms of model size. AdamW op- 942

timizer was used with α = 5 ∗ 10−6, following a 943

uniform search using F1 as the criterion at intervals 944

of {2.5, 5, 7.5, 10} ∗ 10n;−6 ≤ n ≤ −3. Learn- 945

ing rate was linearly decayed (over a max epoch of 946

8) with 100 warm-up steps. Each training epoch 947

took around 1 hour on an Nvidia V100 GPU with 948

a batch size of 10.Validation was done every 0.25 949

epochs during training. 5 different seeds (40-44) 950

were set for 5 separate runs. 951
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