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ABSTRACT

Counterfactual generation has demonstrated impressive performance in tasks such
as image editing and synthesis, largely due to the development of diffusion mod-
els. However, existing diffusion-based counterfactual generation models suffer
from instability due to a lack of understanding of the latent space. These models
either retain too much of the original information or make excessive modifica-
tions, sacrificing crucial details, leading to inefficiency and inauthenticity. In this
paper, we propose a framework that balances the latent space by incorporating
signals that facilitate the transition to new counterfactuals while preserving fac-
tual information. We first identify the cause of this imbalance as the uncontrolled
signal from the counterfactuals. Based on this understanding, we introduce a bal-
ancing method within the diffusion process. Our approach is evaluated on the
colored MNIST dataset, a modified version of the standard MNIST dataset, with
experimental results showing significant improvements over previous latent space
methods.

1 INTRODUCTION

Counterfactual data generation has become an essential way to explore alternative modifications
by generating causally coherent variations of input data. Previously, Pawlowski et al. (2020) pro-
posed Deep-SCM that leverages Normalizing Flows (Tabak & Turner, 2013) and variational infer-
ence (Kingma & Welling, 2022) to infer exogenous noise and perform causal inference under the
assumption of no unobserved confounders. Subsequent works further explore the application on
Variational Autoencoders (VAEs) (Ribeiro et al., 2023; Kladny et al., 2024), Generative Adversarial
Networks (GANs) (Kocaoglu et al., 2017; Dash et al., 2022), and real-world scenario (Wang et al.,
2023; Yeganeh et al., 2024).

Recent work on diffusion models (DMs) has demonstrated impressive capabilities in counterfactual
generation (Sanchez & Tsaftaris, 2022). Building on these developments, researchers have fur-
ther explored the role of the latent space in DMs. Kwon et al. (2022) introduced a semantic latent
space to address the semantic generative problems. Park et al. (2023) have analyzed the theoretical
properties of the latent space in Riemannian geometry. Despite the remarkable success of diffusion
models, there remains a lack of exploration into the latent space associated with the forward process,
particularly in understanding its role in counterfactual generation.

To enhance the performance of counterfactual generation, we propose a novel latent space for DMs
and an algorithm that leverages an auxiliary classifier and information knowledged by human. To
the best of our knowledge, this is the first attempt to explicitly balance the preservation of factual
features with the generation of counterfactual features. We design a counterfactual generative model
and evaluate our method on the colored MNIST dataset, demonstrating improvements over the orig-
inal latent space.

In this paper, our main contributions are: (i) We propose a latent space of DMs for counterfactual
generation using auxiliary classifier; (ii) We propose an algorithm for mapping the image data to the
balanced latent space using auxiliary classifier; (iii) We design a counterfactual generative model
which can address OOD tasks.
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2 PRELIMINARIES

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPMS)

DDPMs (Ho et al. (2020)) are defined as a Markov chain that gradually adds Gaussian noise to im-
ages x0 ∼ pdata(x). The latent variable xt, with t ∈ [0, T ], can be expressed as a linear combination
of x0 and a noise z:

xt =
√
αtx0 +

√
1− αtz, where z ∼ N (0, I) (1)

Generative models aim to learn a denoising function εθ that predicts the noise component in Eq. 1.
Once εθ has been trained, the sampling process is performed via a reverse Markov chain starting
from xT ∼ N (0, I):

xt−1 =
1√

1− βt
[xt + βtεθ(xt, t)] +

√
βtz, t ∈ [0, T ], z ∼ N (0, I) (2)

2.2 SAMPLING PROCESS WITH LATENT VARIABLES AND INTERVENTIONS

We assume that the denoising model εθ is pre-trained and fixed. Instead of denoising a white noise
xT ∼ N (0, I), Denoising Diffusion Implicit Models (DDIMs, Song et al. (2021a)) formulate a
forward process that allows a mapping from the image x0 to a latent variable xT :

xt+1 =
√
αt+1

(
xt −

√
1− αtεθ(xt, t)√

αt

)
+

√
αt+1εθ(xt, t), t ∈ [0, T ] (3)

This process preserves certain features of the original image throughout the sampling process. To
enable controllable intervention, Sanchez & Tsaftaris (2022) proposed a backward process based on
Eq. 14 in Song et al. (2021b):

ε := εθ(xt, t)− s
√
1− αt∇xt

log pt(y | xt)

xt−1 =
√
αt−1

(
xt −

√
1− αtε√
αt

)
+

√
αt−1ε, t = T, T − 1, · · · , 1

(4)

where log pt(y | xt) is a conditional log probability that can be estimated by a separate model. In
this case, the sampling process can be divided into two parts:

• Forward process toward latent space: Given an original image x0, generate the latent
variable xT using Eq. 3.

• Backward process with intervention: Denoise the latent variable xT and obtain x0 by
applying Eq. 4 iteratively.

2.3 ISSUES WITH THE LATENT SPACE OF DDIMS

Note that Eq. 3 implies a latent space in which each latent variable xT retains certain features of x0.
However, the preserved features in xT may be disproportionate, resulting in an unbalanced latent
representation. For instance, in the MNIST dataset, the latent variable xT closely resembles the
original image x0, as illustrated in Fig. 1.

When the original and target distributions differ significantly, such imbalance may cause the model
to fail in generating accurate results.

3 METHODOLOGY

3.1 OVERVIEW OF THE BALANCED LATENT SPACE AND FRAMEWORK

We will introduce the definition and construction of our balanced latent space as shown in Fig.
1. The framework of our proposed model for counterfactual generation is illustrated in Fig. 2 in
Appendix 6.2.
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Figure 1: Overview of the balanced latent space and comparison with the old latent space.

3.2 COUNTERFACTUAL GENERATION

3.2.1 BALANCED LATENT SPACE IN SAMPLING PROCESS

Suppose the set of data points X , together with a metric d : X × X → R, forms a metric space
(X, d). Let (XF , d|XF×XF

) and (XCF , d|XCF×XCF
) be the factual (original) and counterfactual

(target) subspaces, separately. We define the balanced latent space as follows:
Definition 1 (Balanced latent space). A subspace (XT , d|XT×XT

) ⊂ (X, d) is a balanced latent
space if ∀xT ∈ XT , we have:

d(xT , x
F
0 ) = d(xT , x

CF
0 ) (5)

where xF
0 ∈ XF and xCF

0 ∈ XCF are the factual and counterfactual points corresponding to xT .

Although the metric d can be defined as a simple Euclidean distance, we leverage the conditional
probability pt(y | x) from Eq. 4 to define the balanced latent space with a specific metric:
Definition 2 (Balanced latent space with uniform likelihood). Consider a metric d defined by:

d(x1, x2) := |pt(yCF |x1)− pt(yCF |x2)|+ ρ(x1, x2) (6)

where yCF ∈ {0, 1} is the label related to the counterfactual space and

ρ(x1, x2) =

{
0, x1 = x2

1, x1 ̸= x2
(7)

Then (XT , d|XT×XT
) ⊂ (X, d) in Def. 1 is a balanced latent space with uniform likelihood.

Theorem 1. The function d : X ×X → R defined by Eq. 6 is a metric.
Theorem 2 (Uniform likelihood). d(xT , x

F
0 ) = d(xT , x

CF
0 ) if and only if pt(yCF | xT ) =

pt(yF | xT ).

The corresponding proofs are provided in Appendix 6.1.

3.2.2 FORWARD PROCESS TOWARD BALANCED LATENT SPACE

We can use auxiliary information that is easy to obtain to design an “auxiliary classifier” to estimate
the conditional probability pt(y | x). Examples of auxiliary information include the color or shade
of images that can be easily obtained from image metadata. After training the auxiliary classifier
pϕ(y | x), we can derive a forward process toward the balanced latent space:

∆xt = εθ [xt + ζt · ∇xt
pϕ(yCF |xt), t]− εθ (xt, t) (8)

xt+1 = xt + γ1∆xt + γ2z, z ∼ N (0, I), t = 0, · · · , T − 1 (9)

3



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

where γ1 and γ2 are hyperparameters, ∇xt
pϕ is the gradient of the auxiliary classifier and ζt is a

empirical function defined by:

ζt = 2 exp

(
− 1

4max{10−6,∆p}

)
(10)

where
∆p = pϕ(yF | xt)− pϕ(yCF | xt) (11)

ζt is an adaptive coefficient that rapidly decays to zero, as ∆p approaches zero. This design ensures
a large update step at the beginning of the forward process, while guaranteeing that the update
gradually stops once xT lies within the balanced latent space.

The complete sampling algorithm is provided in Appendix 6.2.

4 EXPERIMENTS AND RESULTS

Dataset: The colored MNIST dataset is a modified version of the standard MNIST (Lecun et al.,
1998) dataset, where each digit is assigned a specific color. In this dataset, the training set contains
digits 0–4 in red and 5–9 in green, while the test set uses the opposite coloring.

Implementation: We apply our model to the colored MNIST dataset, where digits are represented in
RGB color. Each digit class is assigned an auxiliary label corresponding to its shape. The diffusion
model εθ is implemented using a UNet architecture, following the approach of Nichol & Dhariwal
(2021). The auxiliary classifier pϕ is a partial UNet model, consisting only of the encoder part of εθ.
Our goal is to generate red digit 5, which appears only in the test set and not in the training set.

Fig.3 illustrates how the likelihoods evolve during the forward process. By the end of the forward
process (t = 1000), each sample becomes a latent variable with uniform likelihoods, indicating
unbiased distances between the factual and counterfactual spaces. We observe that these latent vari-
ables incorporate both the original shape and the target shape (digit 5), consistent with the observed
uniform likelihoods.

As shown in Fig.4, the diffusion model failed to generate digits 5 or preserve the original features
from red digits when using the original latent space. In contrast, with our proposed latent space,
most red digits are successfully transformed into digit 5 while retaining their original features.

Additional experimental results and details and be found in Appendix 6.4.

5 CONCLUSION

This paper proposes a framework that balances the latent variables in the diffusion process for more
efficient and authentic counterfactual generation. In the proposed framework, the denoising process
is guided by an auxiliary classifier, which induces a counterfactual generation signal. We further
propose a balancing method for the diffusion process to ensure that the information retained in the
latent variables of the original (factual) and target (counterfactual) states is balanced, enabling bet-
ter counterfactual generation by facilitating the transfer between latent variables. This balancing
method improves generation efficiency by avoiding two inefficiencies: retaining too much of the
original latent information, resulting in minimal modification, or incorporating excessive latent sig-
nals from the target, leading to a loss of the original pattern. We demonstrate the effectiveness of
the proposed method using the colored MNIST dataset, achieving more authentic and controlled
counterfactual generation aligned with the counterfactual signal.
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1. If x1 = x2, then we have

d(x1, x2) = |pt(yCF | x1)− pt(yCF | x1)|+ ρ(x1, x1) = 0 (13)

If d(x1, x2) = 0, then we have

|pt(yCF | x1)− pt(yCF | x2)| = 0 and ρ(x1, x2) = 0 (14)

From the definition of ρ, we know that x1 = x2. Therefore, x1 = x2 if and only if d(x1, x2) = 0.

2. (Symmetry) ∀x1, x2 ∈ X , we have

d(x1, x2) = |pt(yCF | x1)− pt(yCF | x2)|+ ρ(x1, x2) (15)
= |pt(yCF | x2)− pt(yCF | x1)|+ ρ(x2, x1) (16)
= d(x2, x1) (17)

3. (Triangle inequality) Note that ρ is in fact a discrete metric and its triangle inequality naturally
holds. ∀x1, x2, x

′ ∈ X , we have

d(x1, x2) = |pt(yCF | x1)− pt(yCF | x2)|+ ρ(x1, x2) (18)

= |pt(yCF | x1)− pt(yCF | x′) + pt(yCF | x′)− pt(yCF | x2)|+ ρ(x1, x2) (19)

≤ |pt(yCF | x1)− pt(yCF | x′)|+ |pt(yCF | x′)− pt(yCF | x2)|+ ρ(x1, x2) (20)

≤ |pt(yCF | x1)− pt(yCF | x′)|+ ρ(x1, x
′) + |pt(yCF | x′)− pt(yCF | x2)| (21)

+ ρ(x′, x2) (22)

= d(x1, x
′) + d(x′, x2) (23)

Hence, d is a metric.

Proof of Theorem 2. We only consider the case where xT ̸= xF
0 and xT ̸= xCF

0 . Suppose
d(xT , x

F
0 ) = d(xT , x

CF
0 ), then

|pt(yCF | xT )− pt(yCF | xF
0 )|+ 1 = |pt(yCF | xT )− pt(yCF | xCF

0 )|+ 1 (24)

⇒|pt(yCF | xT )− pt(yCF | xF
0 )| = |pt(yCF | xT )− pt(yCF | xCF

0 )| (25)
⇒|pt(yCF | xT )− 0| = |pt(yCF | xT )− 1| (26)

Since 0 ≤ pt(yCF | xT ) ≤ 1, we have

pt(yCF | xT ) =
1

2
= pt(yF | xT ) (27)

On the other hand, suppose pt(yCF | xT ) = pt(yF | xT ) =
1
2 , then

d(xT , x
F
0 ) = |pt(yCF | xT )− pt(yCF | xF

0 )|+ ρ(xT , x
F
0 ) (28)

= |1
2
− 0|+ 1 (29)

=
3

2
(30)

and

d(xT , x
CF
0 ) = |pt(yCF | xT )− pt(yCF | xCF

0 )|+ ρ(xT , x
CF
0 ) (31)

= |1
2
− 1|+ 1 (32)

=
3

2
(33)

= d(xT , x
F
0 ) (34)

Hence, d(xT , x
F
0 ) = d(xT , x

CF
0 ) if and only if pt(yCF | xT ) = pt(yF | xT ).
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6.2 SAMPLING ALGORITHM

Figure 2: Overview of the proposed framework. Both the forward and backward processes are
guided by the gradient of an auxiliary classifier. The gray block, which encompasses both processes,
corresponds to our balanced latent space.

Algorithm 1 Sampling Process with Balanced Latent Space
Require: Input data xF

0
Ensure: Output result xCF

0
1: for t = 0 to T do ▷ Forward process toward balanced latent space
2: ∆xt = εθ [xt + ζt · ∇xt

pϕ(yCF |xt), t]− εθ (xt, t)
3: xt+1 = xt + γ1∆xt + γ2z, z ∼ (0, I)
4: end for
5:
6: for t = T to 0 do ▷ Generation under intervention
7: ε = εθ(xt, t)− s

√
1− αt∇xt

log pϕ(yCF |xt)

8: xt−1 =
√
αt−1

(
xt−

√
1−αtε√
αt

)
+
√
αt−1ε

9: end for
10: xCF

0 = x0
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6.3 EXPERIMENT DETAILS

Figure 3: Sample likelihoods at different time steps during the forward process. We randomly select
three different digits and compare their likelihoods of being classified as the original digit versus the
target digit.

Figure 4: Generation results using the original latent space (DDIM) and the proposed balanced latent
space on the colored MNIST dataset.

6.4 ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

Dataset: The masked MNIST dataset is a modified version of the standard MNIST (Lecun et al.,
1998) dataset, where each digit is assigned a specific background color. In this dataset, the training
set consists of digits 0–4 with a red background and 5–9 with a green background, while the test set
has the opposite coloring.

Implementation: We apply our model to the masked MNIST dataset, where digits are assigned
an auxiliary label corresponding to their background color. The diffusion model εθ is implemented
using a UNet architecture, following the approach of Nichol & Dhariwal (2021). The auxiliary
classifier pϕ is a partial UNet model that consists only of the encoder part of εθ. Our goal is to
generate digits 0-4 with a green background, which appear only in the test set and not in the training
set.

As shown in Fig.5, when given any digit with a red background, the diffusion model fails to change
the background color using the original latent space. In contrast, with our proposed latent space, all
red backgrounds are successfully transformed into green backgrounds while preserving their original
features.
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Figure 5: Generation results using the original latent space (DDIM) and the proposed balanced latent
space on the masked MNIST dataset.
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